1
|
Joy J, Fusari E, Milán M. Aneuploidy-induced cellular behaviors: Insights from Drosophila. Dev Cell 2024; 59:295-307. [PMID: 38320484 DOI: 10.1016/j.devcel.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/09/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
A balanced gene complement is crucial for proper cell function. Aneuploidy, the condition of having an imbalanced chromosome set, alters the stoichiometry of gene copy numbers and protein complexes and has dramatic consequences at the cellular and organismal levels. In humans, aneuploidy is associated with different pathological conditions including cancer, microcephaly, mental retardation, miscarriages, and aging. Over the last century, Drosophila has provided a valuable system for studying the consequences of systemic aneuploidies. More recently, it has contributed to the identification and molecular dissection of aneuploidy-induced cellular behaviors and their impact at the tissue and organismal levels. In this perspective, we review this active field of research, first by comparing knowledge from yeast, mouse, and human cells, then by highlighting the contributions of Drosophila. The aim of these discussions was to further our understanding of the functional interplay between aneuploidy, cell physiology, and tissue homeostasis in human development and disease.
Collapse
Affiliation(s)
- Jery Joy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Elena Fusari
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08010 Barcelona, Spain.
| |
Collapse
|
2
|
Barrio L, Gaspar AE, Muzzopappa M, Ghosh K, Romao D, Clemente-Ruiz M, Milán M. Chromosomal instability-induced cell invasion through caspase-driven DNA damage. Curr Biol 2023; 33:4446-4457.e5. [PMID: 37751744 DOI: 10.1016/j.cub.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/28/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Chromosomal instability (CIN), an increased rate of changes in chromosome structure and number, is observed in most sporadic human carcinomas with high metastatic activity. Here, we use a Drosophila epithelial model to show that DNA damage, as a result of the production of lagging chromosomes during mitosis and aneuploidy-induced replicative stress, contributes to CIN-induced invasiveness. We unravel a sub-lethal role of effector caspases in invasiveness by enhancing CIN-induced DNA damage and identify the JAK/STAT signaling pathway as an activator of apoptotic caspases through transcriptional induction of pro-apoptotic genes. We provide evidence that an autocrine feedforward amplification loop mediated by Upd3-a cytokine with homology to interleukin-6 and a ligand of the JAK/STAT signaling pathway-contributes to amplifying the activation levels of the apoptotic pathway in migrating cells, thus promoting CIN-induced invasiveness. This work sheds new light on the chromosome-signature-independent effects of CIN in metastasis.
Collapse
Affiliation(s)
- Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ana-Elena Gaspar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kaustuv Ghosh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Daniela Romao
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
3
|
Yildirim K, van Nierop Y Sanchez P, Lohmann I. Analysis of Bub3 and Nup75 in the Drosophila male germline lineage. Cells Dev 2023; 175:203863. [PMID: 37286104 DOI: 10.1016/j.cdev.2023.203863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Extensive communication at the stem cell-niche interface and asymmetric stem cell division is key for the homeostasis of the Drosophila male germline stem cell system. To improve our understanding of these processes, we analysed the function of the mitotic checkpoint complex (MCC) component Bub3 and the nucleoporin Nup75, a component of the nuclear pore complex realizing the transport of signalling effector molecules to the nucleus, in the Drosophila testis. By lineage-specific interference, we found that the two genes control germline development and maintenance. Bub3 is continuously required in the germline, as its loss results in the beginning in an over-proliferation of early germ cells and later on in loss of the germline. The absence of the germline lineage in such testes has dramatic cell non-autonomous consequences, as cells co-expressing markers of hub and somatic cyst cell fates accumulate and populate in extreme cases the whole testis. Our analysis of Nups showed that some of them are critical for lineage maintenance, as their depletion results in the loss of the affected lineage. In contrast, Nup75 plays a role in controlling proliferation of early germ cells but not differentiating spermatogonia and seems to be involved in keeping hub cells quiescent. In sum, our analysis shows that Bub3 and Nup75 are required for male germline development and maintenance.
Collapse
Affiliation(s)
- Kerem Yildirim
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Patrick van Nierop Y Sanchez
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
4
|
Zhang Y, Chen R, Gong L, Huang W, Li P, Zhai Z, Ling E. Regulation of intestinal stem cell activity by a mitotic cell cycle regulator Polo in Drosophila. G3 (BETHESDA, MD.) 2023; 13:jkad084. [PMID: 37154439 PMCID: PMC10234410 DOI: 10.1093/g3journal/jkad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
Maintaining a definite and stable pool of dividing stem cells plays an important role in organ development. This process requires an appropriate progression of mitosis for proper spindle orientation and polarity to ensure the ability of stem cells to proliferate and differentiate correctly. Polo-like kinases (Plks)/Polo are the highly conserved serine/threonine kinases involved in the initiation of mitosis as well as in the progression of the cell cycle. Although numerous studies have investigated the mitotic defects upon loss of Plks/Polo in cells, little is known about the in vivo consequences of stem cells with abnormal Polo activity in the context of tissue and organism development. The current study aimed to investigate this question using the Drosophila intestine, an organ dynamically maintained by the intestinal stem cells (ISCs). The results indicated that the polo depletion caused a reduction in the gut size due to a gradual decrease in the number of functional ISCs. Interestingly, the polo-deficient ISCs showed an extended G2/M phase and aneuploidy and were subsequently eliminated by premature differentiation into enterocytes (ECs). In contrast, the constitutively active Polo (poloT182D) suppressed ISC proliferation, induced abnormal accumulation of β-tubulin in cells, and drove ISC loss via apoptosis. Therefore, Polo activity should be properly maintained for optimal stem cell function. Further analysis suggested that polo was a direct target gene of Sox21a, a Sox transcription factor that critically regulates stem cell activity. Together, this study provided a novel perspective on the correlation between the progression of mitosis and the ISC function in Drosophila.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rongbing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Liyuan Gong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wuren Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongzhao Zhai
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Erjun Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, The Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
5
|
Tang J, Fu M, Chen X, Zhao Y, Gao L, Cao H, Li X, Zheng SJ, Wang Y. Arrest of Cell Cycle by Avian Reovirus p17 through Its Interaction with Bub3. Viruses 2022; 14:v14112385. [PMID: 36366482 PMCID: PMC9693402 DOI: 10.3390/v14112385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Avian reoviruses (ARV) are a group of poultry pathogens that cause runting and stunting syndrome (RSS), a condition otherwise known as "frozen chicken", which are characterized by dramatically delayed growth in broilers. It has been known that p17, a nonstructural protein encoded by ARV, prohibits cellular proliferation by halting the cell cycle at the G2/M phase, the result of which is directly associated with the typical clinical sign of RSS. Nevertheless, the mechanism by which p17 modulates cell-cycle progression remains largely unknown. Here, we screened the interactome of ectopically expressed p17 through a yeast two-hybrid assay and identified Bub3, a cellular mitotic checkpoint protein, as a binding partner of p17. The infection of the Vero cells by ARV downregulated the Bub3 expression, while the knockdown of Bub3 alleviated the p17-modulated cell-cycle arrest during ARV infection. Remarkably, the suppression of Bub3 by RNAi in the Vero cells significantly reduced the viral mRNA and protein abundance, which eventually led to diminished virus replication. Altogether, our findings reveal that ARV p17 impedes host cell proliferation through a Bub3-dependent cell-cycle arrest, which eventually contributes to efficient virus replication. These results also unveil a hitherto unknown therapeutic target for RSS.
Collapse
Affiliation(s)
- Junyu Tang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengjiao Fu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yimeng Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel./Fax: +86-(10)-6273-3026
| |
Collapse
|
6
|
Zhou Y, Shen S, Du C, Wang Y, Liu Y, He Q. A role for the mitotic proteins Bub3 and BuGZ in transcriptional regulation of catalase-3 expression. PLoS Genet 2022; 18:e1010254. [PMID: 35666721 PMCID: PMC9203020 DOI: 10.1371/journal.pgen.1010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/16/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022] Open
Abstract
The spindle assembly checkpoint factors Bub3 and BuGZ play critical roles in mitotic process, but little is known about their roles in other cellular processes in eukaryotes. In aerobic organisms, transcriptional regulation of catalase genes in response to developmental or environmental stimuli is necessary for redox homeostasis. Here, we demonstrate that Bub3 and BuGZ negatively regulate cat-3 transcription in the model filamentous fungus Neurospora crassa. The absence of Bub3 caused a significant decrease in BuGZ protein levels. Our data indicate that BuGZ and Bub3 interact directly via the GLEBS domain of BuGZ. Despite loss of the interaction, the amount of BuGZ mutant protein negatively correlated with the cat-3 expression level, indicating that BuGZ amount rather than Bub3-BuGZ interaction determines cat-3 transcription level. Further experiments demonstrated that BuGZ binds directly to the cat-3 gene and responses to cat-3 overexpression induced by oxidative stresses. However, the zinc finger domains of BuGZ have no effects on DNA binding, although mutations of these highly conserved domains lead to loss of cat-3 repression. The deposition of BuGZ along cat-3 chromatin hindered the recruitment of transcription activators GCN4/CPC1 and NC2 complex, thereby preventing the assembly of the transcriptional machinery. Taken together, our results establish a mechanism for how mitotic proteins Bub3 and BuGZ functions in transcriptional regulation in a eukaryotic organism.
Collapse
Affiliation(s)
- Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangjie Shen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Du
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (QH)
| |
Collapse
|
7
|
Silva PMA, Bousbaa H. BUB3, beyond the Simple Role of Partner. Pharmaceutics 2022; 14:pharmaceutics14051084. [PMID: 35631670 PMCID: PMC9147866 DOI: 10.3390/pharmaceutics14051084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/07/2022] Open
Abstract
The BUB3 protein plays a key role in the activation of the spindle assembly checkpoint (SAC), a ubiquitous surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis and, consequently, prevents chromosome mis-segregation and aneuploidy. Besides its role in SAC signaling, BUB3 regulates chromosome attachment to the spindle microtubules. It is also involved in telomere replication and maintenance. Deficiency of the BUB3 gene has been closely linked to premature aging. Upregulation of the BUB3 gene has been found in a variety of human cancers and is associated with poor prognoses. Here, we review the structure and functions of BUB3 in mitosis, its expression in cancer and association with survival prognoses, and its potential as an anticancer target.
Collapse
Affiliation(s)
- Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), University Polytechnic Higher Education Cooperative (CESPU), Rua Central de Gandra, 4585-116 Gandra, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
8
|
Chimplee S, Roytrakul S, Sukrong S, Srisawat T, Graidist P, Kanokwiroon K. Anticancer Effects and Molecular Action of 7-α-Hydroxyfrullanolide in G2/M-Phase Arrest and Apoptosis in Triple Negative Breast Cancer Cells. Molecules 2022; 27:407. [PMID: 35056723 PMCID: PMC8779136 DOI: 10.3390/molecules27020407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7-9 expression and downregulation of Bcl-2 and full-length caspase-7-9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Theera Srisawat
- Faculty of Science and Industrial Technology, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand;
- Faculty of Innovative Agriculture and Fisheries, Surat Thani Campus, Prince of Songkla University, Surat Thani 84000, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.C.); (P.G.)
| |
Collapse
|
9
|
Joy J, Barrio L, Santos-Tapia C, Romão D, Giakoumakis NN, Clemente-Ruiz M, Milán M. Proteostasis failure and mitochondrial dysfunction leads to aneuploidy-induced senescence. Dev Cell 2021; 56:2043-2058.e7. [PMID: 34216545 DOI: 10.1016/j.devcel.2021.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/03/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023]
Abstract
Aneuploidy, an unbalanced number of chromosomes, is highly deleterious at the cellular level and leads to senescence, a stress-induced response characterized by permanent cell-cycle arrest and a well-defined associated secretory phenotype. Here, we use a Drosophila epithelial model to delineate the pathway that leads to the induction of senescence as a consequence of the acquisition of an aneuploid karyotype. Whereas aneuploidy induces, as a result of gene dosage imbalance, proteotoxic stress and activation of the major protein quality control mechanisms, near-saturation functioning of autophagy leads to compromised mitophagy, accumulation of dysfunctional mitochondria, and the production of radical oxygen species (ROS). We uncovered a role of c-Jun N-terminal kinase (JNK) in driving senescence as a consequence of dysfunctional mitochondria and ROS. We show that activation of the major protein quality control mechanisms and mitophagy dampens the deleterious effects of aneuploidy, and we identify a role of senescence in proteostasis and compensatory proliferation for tissue repair.
Collapse
Affiliation(s)
- Jery Joy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Celia Santos-Tapia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nikolaos Nikiforos Giakoumakis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
10
|
Liu D, Shaukat Z, Hussain R, Khan M, Gregory SL. Drosophila as a model for chromosomal instability. AIMS GENETICS 2021. [DOI: 10.3934/genet.2015.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractChromosomal instability (CIN) is a common feature of tumours that leads to increased genetic diversity in the tumour and poor clinical outcomes. There is considerable interest in understanding how CIN comes about and how its contribution to drug resistance and metastasis might be counteracted. In the last decade a number of CIN model systems have been developed in Drosophila that offer unique benefits both in understanding the development of CIN in a live animal as well as giving the potential to do genome wide screens for therapeutic candidate genes. This review outlines the mechanisms used in several Drosophila CIN model systems and summarizes some significant outcomes and opportunities that they have produced.
Collapse
Affiliation(s)
- Dawei Liu
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Zeeshan Shaukat
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Rashid Hussain
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Mahwish Khan
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| | - Stephen L. Gregory
- School of Molecular and Biomedical Science, University of Adelaide, North Terrace, Adelaide S.A. 5006, Australia
| |
Collapse
|
11
|
Expression and prognosis analyses of BUB1, BUB1B and BUB3 in human sarcoma. Aging (Albany NY) 2021; 13:12395-12409. [PMID: 33872216 PMCID: PMC8148488 DOI: 10.18632/aging.202944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/27/2021] [Indexed: 01/13/2023]
Abstract
Budding Uninhibited By Benzimidazoles are a group of genes encoding proteins that play central roles in spindle checkpoint during mitosis. Improper mitosis may lead to aneuploidy which is found in many types of tumors. As a key mediator in mitosis, the dysregulated expression of BUBs has been proven to be highly associated with various malignancies, such as leukemia, gastric cancer, breast cancer, and liver cancer. However, bioinformatic analysis has not been applied to explore the role of the BUBs in sarcomas. Herein, we investigate the transcriptional and survival data of BUBs in patients with sarcomas using Oncomine, Gene Expression Profiling Interactive Analysis, Cancer Cell Line Encyclopedia, Kaplan-Meier Plotter, LinkedOmics, and the Database for Annotation, Visualization and Integrated Discovery. We found that the expression levels of BUB1, BUB1B and BUB3 were higher in sarcoma samples and cell lines than in normal controls. Survival analysis revealed that the higher expression levels of BUB1, BUB1B and BUB3 were associated with lower overall and disease-free survival in patients with sarcomas. This study implies that BUB1, BUB1B and BUB3 are potential treatment targets for patients with sarcomas and are new biomarkers for the prognosis of sarcomas.
Collapse
|
12
|
Ji Z, Chuen J, Kiparaki M, Baker N. Cell competition removes segmental aneuploid cells from Drosophila imaginal disc-derived tissues based on ribosomal protein gene dose. eLife 2021; 10:61172. [PMID: 33847264 PMCID: PMC8043752 DOI: 10.7554/elife.61172] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy causes birth defects and miscarriages, occurs in nearly all cancers and is a hallmark of aging. Individual aneuploid cells can be eliminated from developing tissues by unknown mechanisms. Cells with ribosomal protein (Rp) gene mutations are also eliminated, by cell competition with normal cells. Because Rp genes are spread across the genome, their copy number is a potential marker for aneuploidy. We found that elimination of imaginal disc cells with irradiation-induced genome damage often required cell competition genes. Segmentally aneuploid cells derived from targeted chromosome excisions were eliminated by the RpS12-Xrp1 cell competition pathway if they differed from neighboring cells in Rp gene dose, whereas cells with normal doses of the Rp and eIF2γ genes survived and differentiated adult tissues. Thus, cell competition, triggered by differences in Rp gene dose between cells, is a significant mechanism for the elimination of aneuploid somatic cells, likely to contribute to preventing cancer. Aneuploid cells emerge when cellular division goes awry and a cell ends up with the wrong number of chromosomes, the tiny genetic structures carrying the instructions that control life’s processes. Aneuploidy can lead to fatal conditions during development, and to cancer in an adult organism. A safety mechanism may exist that helps the body to detect and remove these cells. Yet, exactly this happens is still poorly understood: in particular, it is unclear how cells manage to ‘count’ their chromosomes. One way they could do so is through the ribosomes, the molecular ‘factories’ that create the building blocks required for life. In a cell, every chromosome carries genes that code for the proteins (known as Rps) forming ribosomes. Aneuploidy will alter the number of Rp genes, and in turn the amount and type of Rps the cell produces, so that ribosomes and the genes for Rps could act as a ‘readout’ of aneuploidy. Ji et al set out to test this theory in fruit flies. The first experiment used a genetic manipulation technique called site-specific recombination to remove parts of chromosomes from cells in the developing eye and wing. Cells which retained all their Rp genes survived, while those that were missing some usually died – but only when the surrounding cells were normal. In this situation, healthy cells eliminated their damaged neighbours through a process known as cell competition. A second experiment, using radiation as an alternative method of damaging chromosomes, also gave similar results. The work by Ji et al. reveals how the body can detect and eliminate aneuploid cells, potentially before they can cause harm. If the same mechanism applies in humans, boosting cell competition may, one day, helps to combat diseases like cancer.
Collapse
Affiliation(s)
- Zhejun Ji
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Jacky Chuen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| | - Nicholas Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
13
|
Maharjan M, Tanvir RB, Chowdhury K, Duan W, Mondal AM. Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies. BMC Bioinformatics 2020; 21:218. [PMID: 33272232 PMCID: PMC7713218 DOI: 10.1186/s12859-020-3524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Lung cancer is the number one cancer killer in the world with more than 142,670 deaths estimated in the United States alone in the year 2019. Consequently, there is an overreaching need to identify the key biomarkers for lung cancer. The aim of this study is to computationally identify biomarker genes for lung cancer that can aid in its diagnosis and treatment. The gene expression profiles of two different types of studies, namely non-treatment and treatment, are considered for discovering biomarker genes. In non-treatment studies healthy samples are control and cancer samples are cases. Whereas, in treatment studies, controls are cancer cell lines without treatment and cases are cancer cell lines with treatment. RESULTS The Differentially Expressed Genes (DEGs) for lung cancer were isolated from Gene Expression Omnibus (GEO) database using R software tool GEO2R. A total of 407 DEGs (254 upregulated and 153 downregulated) from non-treatment studies and 547 DEGs (133 upregulated and 414 downregulated) from treatment studies were isolated. Two Cytoscape apps, namely, CytoHubba and MCODE, were used for identifying biomarker genes from functional networks developed using DEG genes. This study discovered two distinct sets of biomarker genes - one from non-treatment studies and the other from treatment studies, each set containing 16 genes. Survival analysis results show that most non-treatment biomarker genes have prognostic capability by indicating low-expression groups have higher chance of survival compare to high-expression groups. Whereas, most treatment biomarkers have prognostic capability by indicating high-expression groups have higher chance of survival compare to low-expression groups. CONCLUSION A computational framework is developed to identify biomarker genes for lung cancer using gene expression profiles. Two different types of studies - non-treatment and treatment - are considered for experiment. Most of the biomarker genes from non-treatment studies are part of mitosis and play vital role in DNA repair and cell-cycle regulation. Whereas, most of the biomarker genes from treatment studies are associated to ubiquitination and cellular response to stress. This study discovered a list of biomarkers, which would help experimental scientists to design a lab experiment for further exploration of detail dynamics of lung cancer development.
Collapse
Affiliation(s)
- Mona Maharjan
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Raihanul Bari Tanvir
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Kamal Chowdhury
- School of Natural Sciences and Mathematics, Claflin University, Orangeburg, SC, USA
| | - Wenrui Duan
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ananda Mohan Mondal
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
14
|
Dewey EB, Parra AS, Johnston CA. Loss of the spectraplakin gene Short stop induces a DNA damage response in Drosophila epithelia. Sci Rep 2020; 10:20165. [PMID: 33214581 PMCID: PMC7677407 DOI: 10.1038/s41598-020-77159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelia are an eminent tissue type and a common driver of tumorigenesis, requiring continual precision in cell division to maintain tissue structure and genome integrity. Mitotic defects often trigger apoptosis, impairing cell viability as a tradeoff for tumor suppression. Identifying conditions that lead to cell death and understanding the mechanisms behind this response are therefore of considerable importance. Here we investigated how epithelia of the Drosophila wing disc respond to loss of Short stop (Shot), a cytoskeletal crosslinking spectraplakin protein that we previously found to control mitotic spindle assembly and chromosome dynamics. In contrast to other known spindle-regulating genes, Shot knockdown induces apoptosis in the absence of Jun kinase (JNK) activation, but instead leads to elevated levels of active p38 kinase. Shot loss leads to double-strand break (DSB) DNA damage, and the apoptotic response is exacerbated by concomitant loss of p53. DSB accumulation is increased by suppression of the spindle assembly checkpoint, suggesting this effect results from chromosome damage during error-prone mitoses. Consistent with DSB induction, we found that the DNA damage and stress response genes, Growth arrest and DNA damage (GADD45) and Apoptosis signal-regulating kinase 1 (Ask1), are transcriptionally upregulated as part of the shot-induced apoptotic response. Finally, co-depletion of Shot and GADD45 induced significantly higher rates of chromosome segregation errors in cultured cells and suppressed shot-induced mitotic arrest. Our results demonstrate that epithelia are capable of mounting molecularly distinct responses to loss of different spindle-associated genes and underscore the importance of proper cytoskeletal organization in tissue homeostasis.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Amalia S Parra
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
15
|
Palladino J, Chavan A, Sposato A, Mason TD, Mellone BG. Targeted De Novo Centromere Formation in Drosophila Reveals Plasticity and Maintenance Potential of CENP-A Chromatin. Dev Cell 2020; 52:379-394.e7. [PMID: 32049040 DOI: 10.1016/j.devcel.2020.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 11/25/2022]
Abstract
Centromeres are essential for accurate chromosome segregation and are marked by centromere protein A (CENP-A) nucleosomes. Mis-targeted CENP-A chromatin has been shown to seed centromeres at non-centromeric DNA. However, the requirements for such de novo centromere formation and transmission in vivo remain unknown. Here, we employ Drosophila melanogaster and the LacI/lacO system to investigate the ability of targeted de novo centromeres to assemble and be inherited through development. De novo centromeres form efficiently at six distinct genomic locations, which include actively transcribed chromatin and heterochromatin, and cause widespread chromosomal instability. During tethering, de novo centromeres sometimes prevail, causing the loss of the endogenous centromere via DNA breaks and HP1-dependent epigenetic inactivation. Transient induction of de novo centromeres and chromosome healing in early embryogenesis show that, once established, these centromeres can be maintained through development. Our results underpin the ability of CENP-A chromatin to establish and sustain mitotic centromere function in Drosophila.
Collapse
Affiliation(s)
- Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Anthony Sposato
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Timothy D Mason
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
16
|
Abstract
Cancer is a genetic disease that involves the gradual accumulation of mutations. Human tumours are genetically unstable. However, the current knowledge about the origins and implications of genomic instability in this disease is limited. Understanding the biology of cancer requires the use of animal models. Here, we review relevant studies addressing the implications of genomic instability in cancer by using the fruit fly, Drosophila melanogaster, as a model system. We discuss how this invertebrate has helped us to expand the current knowledge about the mechanisms involved in genomic instability and how this hallmark of cancer influences disease progression.
Collapse
Affiliation(s)
- Stephan U Gerlach
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Yorkie and JNK Control Tumorigenesis in Drosophila Cells with Cytokinesis Failure. Cell Rep 2019; 23:1491-1503. [PMID: 29719260 DOI: 10.1016/j.celrep.2018.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 01/23/2023] Open
Abstract
Cytokinesis failure may result in the formation of polyploid cells, and subsequent mitosis can lead to aneuploidy and tumor formation. Tumor suppressor mechanisms limiting the oncogenic potential of these cells have been described. However, the universal applicability of these tumor-suppressive barriers remains controversial. Here, we use Drosophila epithelial cells to investigate the consequences of cytokinesis failure in vivo. We report that cleavage defects trigger the activation of the JNK pathway, leading to downregulation of the inhibitor of apoptosis DIAP1 and programmed cell death. Yorkie overcomes the tumor-suppressive role of JNK and induces neoplasia. Yorkie regulates the cell cycle phosphatase Cdc25/string, which drives tumorigenesis in a context of cytokinesis failure. These results highlight the functional significance of the JNK pathway in epithelial cells with defective cytokinesis and elucidate a mechanism used by emerging tumor cells to bypass this tumor-suppressive barrier and develop into tumors.
Collapse
|
18
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
19
|
Resende LP, Monteiro A, Brás R, Lopes T, Sunkel CE. Aneuploidy in intestinal stem cells promotes gut dysplasia in Drosophila. J Cell Biol 2018; 217:3930-3946. [PMID: 30282810 PMCID: PMC6219720 DOI: 10.1083/jcb.201804205] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Aneuploidy is associated with different human diseases including cancer. However, different cell types appear to respond differently to aneuploidy, either by promoting tumorigenesis or causing cell death. We set out to study the behavior of adult Drosophila melanogaster intestinal stem cells (ISCs) after induction of chromosome missegregation either by abrogation of the spindle assembly checkpoint or through kinetochore disruption or centrosome amplification. These conditions induce moderate levels of aneuploidy in ISCs, and we find no evidence of apoptosis. Instead, we observe a significant accumulation of ISCs associated with increased stem cell proliferation and an excess of enteroendocrine cells. Moreover, aneuploidy causes up-regulation of the JNK pathway throughout the posterior midgut, and specific inhibition of JNK signaling in ISCs is sufficient to prevent dysplasia. Our findings highlight the importance of understanding the behavior of different stem cell populations to aneuploidy and how these can act as reservoirs for genomic alterations that can lead to tissue pathologies.
Collapse
Affiliation(s)
- Luís Pedro Resende
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Augusta Monteiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Brás
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tatiana Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Benhra N, Barrio L, Muzzopappa M, Milán M. Chromosomal Instability Induces Cellular Invasion in Epithelial Tissues. Dev Cell 2018; 47:161-174.e4. [DOI: 10.1016/j.devcel.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
|
21
|
Rosa EA, Hurtado-Puerto AM, Falcão DP, Brietzke AP, De Almeida Prado Franceschi LE, Cavalcanti Neto FF, Tiziane V, Carneiro FP, Kogawa EM, Moreno H, Amorim RFB. Oral lichen planus and malignant transformation: The role of p16, Ki-67, Bub-3 and SOX4 in assessing precancerous potential. Exp Ther Med 2018; 15:4157-4166. [PMID: 29731815 PMCID: PMC5920964 DOI: 10.3892/etm.2018.5971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The association of oral lichen planus (OLP) lesions with malignant transformation risk has remained a controversial topic and is of clinical importance. Therefore, the present study evaluated the expression levels of p16, Ki-67, budding uninhibited by benzimidazoles 3 (Bub-3) and sex-determining region Y-related high mobility group box 4 (SOX4), and their roles as precancerous biomarkers in OLP. A retrospective study was performed, in which tissue blocks of OLP, oral dysplasia (OD), cutaneous lichen planus (CLP) and oral fibrous hyperplasia (OFH) were used (n=120). A positivity index (PI) for p16, BUB3, Ki-67 and SOX4 expression was calculated in each group. The PI for p16 was 20.65% for OLP, 7.85% for OD, 86.59% for CLP and 11.8% for OFH, and the difference between these groups was statistically significant (P<0.001). PIs of Ki-67 were indicated as 11.6% for OLP, 14.4% for OD, 8.24% for CLP and 5.5% for OFH, and a statistically significant difference was observed between the groups (P<0.001). Notably, the expression levels of BUB3 were not statistically different among groups. The highest expression levels of SOX4 were identified in CLP (P<0.001 vs. OLP/CLP; P=0,001 vs. CLP/OD). The determined expression levels of p16 and Ki-67 suggest that specific OLP lesions may have an intermediate malignant potential and should be carefully followed up. The intense SOX4 staining in CLP indicated a different proliferation pattern of epithelium compared with oral mucosa cells. These findings suggest that SOX4 expression may also be associated with the different clinical courses of OLP and CLP.
Collapse
Affiliation(s)
- Eduardo Augusto Rosa
- Post-Graduation Program in Medical Sciences, Department of Pathology, School of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Aura Maria Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Denise Pinheiro Falcão
- Post-Graduation Program in Medical Sciences, Department of Pathology, School of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Aline Patricia Brietzke
- Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-903, Brazil
| | | | | | - Valdenize Tiziane
- Center for Learning and Research, Brasília Children's Hospital, Brasília 70910-90, Brazil
| | - Fabiana Pirani Carneiro
- Post-Graduation Program in Medical Sciences, Department of Pathology, School of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Evelyn Mikaela Kogawa
- Post-Graduation Program in Medical Sciences, Department of Pathology, School of Medicine, University of Brasília, Brasília 70910-900, Brazil
| | - Heitor Moreno
- Laboratory of Cardiovascular Pharmacology, School of Medical Sciences, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Rivadávio Fernandes Batista Amorim
- Post-Graduation Program in Medical Sciences, Department of Pathology, School of Medicine, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
22
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
23
|
Abstract
The growth of epithelial tumors is often governed by cell interactions with the surrounding stroma. Drosophila has been instrumental in identifying the relevant molecular elements mediating these interactions. Of note is the role of the TNF ligand Eiger, released from recruited blood cells, in activating the JNK tumor-promoting pathway in epithelial tumors. JNK drives the transcriptional induction of mitogenic molecules, matrix metalloproteases and systemic signals that lead to tumor growth, tissue invasiveness and malignancy. Here we review our findings on a tumor-intrinsic, Eiger- and stroma-independent mechanism that contributes to the unlimited growth potential of tumors caused either by chromosomal instability or impaired cell polarity. This newly identified mechanism, which was revealed in an experimental condition in which contacts between tumor cells and wild-type epithelial cells were minimized, relies on interactions between functionally distinct tumor cell populations that activate JNK in a cell-autonomous manner. We discuss the impact of cell interaction-based feedback amplification loops on the unlimited growth potential of epithelial tumors. These findings are expected to contribute to the identification of the relevant cell populations and molecular mechanisms to be targeted in drug therapy.
Collapse
Affiliation(s)
- Mariana Muzzopappa
- a Institute for Research in Biomedicine (IRB Barcelona) , the Barcelona Institute of Science and Technology , Baldiri Reixac, 10-12, Barcelona , Spain
| | - Marco Milán
- a Institute for Research in Biomedicine (IRB Barcelona) , the Barcelona Institute of Science and Technology , Baldiri Reixac, 10-12, Barcelona , Spain.,b Institució Catalana de Recerca i Estudis Avan¸ats (ICREA) , Passeig de Lluís Companys , Barcelona , Spain
| |
Collapse
|
24
|
A Mathematical Framework for Kinetochore-Driven Activation Feedback in the Mitotic Checkpoint. Bull Math Biol 2017; 79:1183-1200. [PMID: 28386668 DOI: 10.1007/s11538-017-0278-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/30/2017] [Indexed: 02/02/2023]
Abstract
Proliferating cells properly divide into their daughter cells through a process that is mediated by kinetochores, protein-complexes that assemble at the centromere of each sister chromatid. Each kinetochore has to establish a tight bipolar attachment to the spindle apparatus before sister chromatid separation is initiated. The spindle assembly checkpoint (SAC) links the biophysical attachment status of the kinetochores to mitotic progression and ensures that even a single misaligned kinetochore keeps the checkpoint active. The mechanism by which this is achieved is still elusive. Current computational models of the human SAC disregard important biochemical properties by omitting any kind of feedback loop, proper kinetochore signals, and other spatial properties such as the stability of the system and diffusion effects. To allow for more realistic in silico study of the dynamics of the SAC model, a minimal mathematical framework for SAC activation and silencing is introduced. A nonlinear ordinary differential equation model successfully reproduces bifurcation signaling switches with attachment of all 92 kinetochores and activation of APC/C by kinetochore-driven feedback. A partial differential equation model and mathematical linear stability analyses indicate the influence of diffusion and system stability. The conclusion is that quantitative models of the human SAC should account for the positive feedback on APC/C activation driven by the kinetochores which is essential for SAC silencing. Experimental diffusion coefficients for MCC subcomplexes are found to be insufficient for rapid APC/C inhibition. The presented analysis allows for systems-level understanding of mitotic control, and the minimal new model can function as a basis for developing further quantitative-integrative models of the cell division cycle.
Collapse
|
25
|
Poulton JS, Cuningham JC, Peifer M. Centrosome and spindle assembly checkpoint loss leads to neural apoptosis and reduced brain size. J Cell Biol 2017; 216:1255-1265. [PMID: 28351851 PMCID: PMC5412557 DOI: 10.1083/jcb.201607022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 01/14/2023] Open
Abstract
Accurate mitotic spindle assembly is critical for mitotic fidelity and organismal development. Multiple processes coordinate spindle assembly and chromosome segregation. Two key components are centrosomes and the spindle assembly checkpoint (SAC), and mutations affecting either can cause human microcephaly. In vivo studies in Drosophila melanogaster found that loss of either component alone is well tolerated in the developing brain, in contrast to epithelial tissues of the imaginal discs. In this study, we reveal that one reason for that tolerance is the compensatory relationship between centrosomes and the SAC. In the absence of both centrosomes and the SAC, brain cells, including neural stem cells, experience massive errors in mitosis, leading to increased cell death, which reduces the neural progenitor pool and severely disrupts brain development. However, our data also demonstrate that neural cells are much more tolerant of aneuploidy than epithelial cells. Our data provide novel insights into the mechanisms by which different tissues manage genome stability and parallels with human microcephaly.
Collapse
Affiliation(s)
- John S Poulton
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John C Cuningham
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
26
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
27
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
28
|
Clemente-Ruiz M, Murillo-Maldonado JM, Benhra N, Barrio L, Pérez L, Quiroga G, Nebreda AR, Milán M. Gene Dosage Imbalance Contributes to Chromosomal Instability-Induced Tumorigenesis. Dev Cell 2016; 36:290-302. [PMID: 26859353 DOI: 10.1016/j.devcel.2016.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/27/2015] [Accepted: 01/08/2016] [Indexed: 01/15/2023]
Abstract
Chromosomal instability (CIN) is thought to be a source of mutability in cancer. However, CIN often results in aneuploidy, which compromises cell fitness. Here, we used the dosage compensation mechanism (DCM) of Drosophila to demonstrate that chromosome-wide gene dosage imbalance contributes to the deleterious effects of CIN-induced aneuploidy and its pro-tumorigenic action. We present evidence that resetting of the DCM counterbalances the damaging effects caused by CIN-induced changes in X chromosome number. Importantly, interfering with the DCM suffices to mimic the cellular effects of aneuploidy in terms of reactive oxygen species (ROS) production, JNK-dependent cell death, and tumorigenesis upon apoptosis inhibition. We unveil a role of ROS in JNK activation and a variety of cellular and tissue-wide mechanisms that buffer the deleterious effects of CIN, including DNA-damage repair, activation of the p38 pathway, and cytokine induction to promote compensatory proliferation. Our data reveal the existence of robust compensatory mechanisms that counteract CIN-induced cell death and tumorigenesis.
Collapse
Affiliation(s)
- Marta Clemente-Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Juan M Murillo-Maldonado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Najate Benhra
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Lidia Pérez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Gonzalo Quiroga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Angel R Nebreda
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08011 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Marco Milán
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08011 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
29
|
Ibrahim B. In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex. MOLECULAR BIOSYSTEMS 2016; 11:2867-77. [PMID: 26256776 DOI: 10.1039/c5mb00395d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In response to the activation of the mitotic spindle assembly checkpoint (SAC), distinct inhibitory pathways control the activity of the anaphase-promoting complex (APC/C). It remains unclear whether the different regulatory mechanisms function in separate pathways or as part of an integrated signalling system. Here, five variant models of APC/C regulation were constructed and analysed. The simulations showed that all variant models were able to reproduce the wild type behaviour of the APC. However, only one model, which included both the mitotic checkpoint complex (MCC) as well as BubR1 as direct inhibitors of the APC/C, was able to reproduce both wild and mutant type behaviour of APC/C regulation. Interestingly, in this model, the MCC as well as the BubR1 binding rate to the APC/C was comparable to the known Cdc20-Mad2 binding rate and could not be made higher. Mad2 active transport towards the spindle mid-zone accelerated the inhibition speed of the APC/C but not its concentration level. The presented study highlights the principle that a systems biology approach is critical for the SAC mechanism and could also be used for predicting hypotheses to design future experiments. The presented work has successfully distinguished between five potent inhibitors of the APC/C using a systems biology approach. Here, the favoured model contains both BubR1 and MCC as direct inhibitors of the APC/C.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Bio System Analysis Group, Friedrich-Schiller-University Jena, and Jena Centre for Bioinformatics (JCB), 07743 Jena, Germany.
| |
Collapse
|
30
|
Zhou Z, He M, Shah AA, Wan Y. Insights into APC/C: from cellular function to diseases and therapeutics. Cell Div 2016; 11:9. [PMID: 27418942 PMCID: PMC4944252 DOI: 10.1186/s13008-016-0021-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a multifunctional ubiquitin-protein ligase that targets different substrates for ubiquitylation and therefore regulates a variety of cellular processes such as cell division, differentiation, genome stability, energy metabolism, cell death, autophagy as well as carcinogenesis. Activity of APC/C is principally governed by two WD-40 domain proteins, Cdc20 and Cdh1, in and beyond cell cycle. In the past decade, the results based on numerous biochemical, 3D structural, mouse genetic and small molecule inhibitor studies have largely attracted our attention into the emerging role of APC/C and its regulation in biological function, human diseases and potential therapeutics. This review will aim to summarize some recently reported insights into APC/C in regulating cellular function, connection of its dysfunction with human diseases and its implication of therapeutics.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
31
|
Stormo BM, Fox DT. Distinct responses to reduplicated chromosomes require distinct Mad2 responses. eLife 2016; 5. [PMID: 27159240 PMCID: PMC4898934 DOI: 10.7554/elife.15204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/08/2016] [Indexed: 01/17/2023] Open
Abstract
Duplicating chromosomes once each cell cycle produces sister chromatid pairs, which separate accurately at anaphase. In contrast, reduplicating chromosomes without separation frequently produces polytene chromosomes, a barrier to accurate mitosis. Chromosome reduplication occurs in many contexts, including: polytene tissue development, polytene tumors, and following treatment with mitosis-blocking chemotherapeutics. However, mechanisms responding to or resolving polyteny during mitosis are poorly understood. Here, using Drosophila, we uncover two distinct reduplicated chromosome responses. First, when reduplicated polytene chromosomes persist into metaphase, an anaphase delay prevents tissue malformation and apoptosis. Second, reduplicated polytene chromosomes can also separate prior to metaphase through a spindle-independent mechanism termed Separation-Into-Recent-Sisters (SIRS). Both reduplication responses require the spindle assembly checkpoint protein Mad2. While Mad2 delays anaphase separation of metaphase polytene chromosomes, Mad2’s control of overall mitotic timing ensures efficient SIRS. Our results pinpoint mechanisms enabling continued proliferation after genome reduplication, a finding with implications for cancer progression and prevention. DOI:http://dx.doi.org/10.7554/eLife.15204.001 Before a cell divides, it duplicates all its genetic information, which is stored on chromosomes. Then, each chromosome evenly divides into two new cells so that each cell ends up with identical copies of the genetic information. Because the cellular machinery that evenly divides chromosomes is built to recognize chromosomes that were duplicated exactly once, it is important to maintain this pattern of alternating one round of duplication with one round of division. Cells that instead duplicate their chromosomes more than once can make mistakes during division that are associated with diseases such as cancer. Chromosomes with extra duplications are present in normal tissues such as the placenta of mammals. They can also occur in human diseases and may even result from chemotherapy treatment. However, we know almost nothing about how cells respond to these problematic chromosomes when dividing. By studying cells from the Drosophila melanogaster species of fruit fly, Stormo and Fox discovered two distinct ways in which cells respond to extra chromosome duplications. One response occurs in cells that were experimentally engineered to undergo an extra chromosome duplication. These cells delay division so that the chromosome separation machinery can somehow adapt to the challenge of separating more than two chromosome copies at once. The second response occurs in cells that naturally undergo extra chromosome duplications before division. In these cells, Stormo and Fox discovered a new type of chromosome separation, whereby the extra chromosome copies move apart from each other before cell division. In doing so the chromosomes can better interact with the chromosome separation machinery during division. Stormo and Fox also found that a protein named Mad2 is important in both responses, and gives the cell enough time to respond to extra chromosome copies. Without Mad2, the separation of chromosomes with extra duplications is too hasty, and can lead to severe cell division errors and cause organs to form incorrectly. Having uncovered two new responses that cells use to adapt to extra chromosomes, it will now be important to find other proteins like Mad2 that are important in these events. Understanding these processes and the proteins involved in more detail could help to prevent diseases that are associated with extra chromosomes. DOI:http://dx.doi.org/10.7554/eLife.15204.002
Collapse
Affiliation(s)
- Benjamin M Stormo
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Donald T Fox
- Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Pharamacology and Cancer biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
32
|
|
33
|
Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nat Commun 2015; 6:8894. [PMID: 26573328 PMCID: PMC4660207 DOI: 10.1038/ncomms9894] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophila. We show that aneuploidy causes brain size reduction due to a decrease in the number of proliferative neural stem cells (NSCs), but not through apoptosis. Instead, aneuploid NSCs present an extended G1 phase, which leads to cell cycle exit and premature differentiation. Moreover, we show that this response to aneuploidy is also present in adult intestinal stem cells but not in the wing disc. Our work highlights a neural and intestine stem cell-specific response to aneuploidy, which prevents their proliferation and expansion. It is unclear why certain tissues are more susceptible to the consequences of aneuploidy. Here, in Drosophila, Gogendeau et al. identify aneuploidy as the cause of lengthened G1 and premature differentiation in both neural and adult intestinal stem cells, which prevents cells with abnormal genomes from cycling.
Collapse
|
34
|
Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resist Updat 2015; 24:1-12. [PMID: 26830311 DOI: 10.1016/j.drup.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
An increased tendency of genomic alterations during the life cycle of cells leads to genomic instability, which is a major driving force for tumorigenesis. A considerable fraction of tumor cells are tetraploid or aneuploid, which renders them intrinsically susceptible to mitotic aberrations, and hence, are particularly sensitive to the induction of mitotic catastrophe. Resistance to cell death is also closely linked to genomic instability, as it enables malignant cells to expand even in a stressful environment. Currently it is known that cells can die via multiple mechanisms. Mitotic catastrophe represents a step preceding apoptosis or necrosis, depending on the expression and/or proper function of several proteins. Mitotic catastrophe was proposed to be an onco-suppressive mechanism and the evasion of mitotic catastrophe constitutes one of the gateways to cancer development. Thus, stimulation of mitotic catastrophe appears to be a promising strategy in cancer treatment. Indeed, several chemotherapeutic drugs are currently used at concentrations that induce apoptosis irrespective of the cell cycle phase, yet are very efficient at triggering mitotic catastrophe at lower doses, significantly limiting side effects. In the present review we summarize current data concerning the role of mitotic catastrophe in cancer drug resistance and discuss novel strategies to break this link.
Collapse
|
35
|
Abstract
This protocol describes a method to allograft Drosophila larval tissue into adult fly hosts that can be used to assay the tumorigenic potential of mutant tissues. The tissue of interest is dissected, loaded into a fine glass needle and implanted into a host. Upon implantation, nontransformed tissues do not overgrow beyond their normal size, but malignant tumors grow without limit, are invasive and kill the host. By using this method, Drosophila malignant tumors can be transplanted repeatedly, for years, and therefore they can be aged beyond the short life span of flies. Because several hosts can be implanted using different pieces from a single tumor, the method also allows the tumor mass to be increased to facilitate further studies that may require large amounts of tissue (i.e., genomics, proteomics and so on). This method also provides an operational definition of hyperplastic, benign and malignant growth. The injection procedure itself requires only ∼1 d. Tumor development can then be monitored until the death of the implanted hosts.
Collapse
|
36
|
Ibrahim B. Systems Biology Modeling of Five Pathways for Regulation and Potent Inhibition of the Anaphase-Promoting Complex (APC/C): Pivotal Roles for MCC and BubR1. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:294-305. [PMID: 25871779 DOI: 10.1089/omi.2015.0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Correct DNA segregation is a fundamental process that ensures the precise and reliable inheritance of genomic information for the propagation of cell life. Eukaryotic cells have evolved a conserved surveillance control mechanism for DNA segregation named the Spindle Assembly Checkpoint (SAC).The SAC ensures that the sister chromatids of the duplicated genome are not separated and distributed to the spindle poles before all chromosomes have been properly linked to the microtubules of the mitotic spindle. Biochemically, the SAC delays cell cycle progression by preventing activation of the anaphase-promoting complex (APC/C) or cyclosome whose activation by Cdc20 is required for sister-chromatid separation; this marks the transition into anaphase. In response to activation of the checkpoint, various species control the activity of both APC/C and Cdc20. However, the underlying regulatory pathways remain largely elusive. In this study, five possible model variants of APC/C regulation were constructed, namely BubR1, Mad2, MCC, MCF2, and an all-pathways model variant. These models were validated with experimental data from the literature. A wide range of parameter values has been tested to find the critical values of the APC/C binding rate. The results show that all variants are able to capture the wild-type behavior of the APC/C. However, only one model variant, which included both MCC as well as BubR1 as potent inhibitors of the APC/C, was able to reproduce both wild-type and mutant type behavior of APC/C regulation. In conclusion, the presented work informs the regulation of fundamental processes such as SAC and APC/C in cell biology and has successfully distinguished between five competing dynamical models using a systems biology approach. The results attest that systems-level approaches are vital for molecular and cell biology.
Collapse
Affiliation(s)
- Bashar Ibrahim
- 1 Bio System Analysis Group, Friedrich-Schiller-University Jena , and Jena Centre for Bioinformatics (JCB), Jena, Germany
| |
Collapse
|
37
|
Ibrahim B. Spindle assembly checkpoint is sufficient for complete Cdc20 sequestering in mitotic control. Comput Struct Biotechnol J 2015; 13:320-8. [PMID: 25977749 PMCID: PMC4430708 DOI: 10.1016/j.csbj.2015.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022] Open
Abstract
The spindle checkpoint assembly (SAC) ensures genome fidelity by temporarily delaying anaphase onset, until all chromosomes are properly attached to the mitotic spindle. The SAC delays mitotic progression by preventing activation of the ubiquitin ligase anaphase-promoting complex (APC/C) or cyclosome; whose activation by Cdc20 is required for sister-chromatid separation marking the transition into anaphase. The mitotic checkpoint complex (MCC), which contains Cdc20 as a subunit, binds stably to the APC/C. Compelling evidence by Izawa and Pines (Nature 2014; 10.1038/nature13911) indicates that the MCC can inhibit a second Cdc20 that has already bound and activated the APC/C. Whether or not MCC per se is sufficient to fully sequester Cdc20 and inhibit APC/C remains unclear. Here, a dynamic model for SAC regulation in which the MCC binds a second Cdc20 was constructed. This model is compared to the MCC, and the MCC-and-BubR1 (dual inhibition of APC) core model variants and subsequently validated with experimental data from the literature. By using ordinary nonlinear differential equations and spatial simulations, it is shown that the SAC works sufficiently to fully sequester Cdc20 and completely inhibit APC/C activity. This study highlights the principle that a systems biology approach is vital for molecular biology and could also be used for creating hypotheses to design future experiments.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Bio System Analysis Group, Friedrich-Schiller-University Jena, and Jena Centre for Bioinformatics (JCB), 07743 Jena, Germany
| |
Collapse
|
38
|
Abstract
Aneuploidy is deleterious at the cellular and organismal level and can promote tumorigenesis. Two new studies in Drosophila imaginal discs underscore the cellular and tissue-wide mechanisms that prevent the accumulation of aneuploid cells in symmetrically dividing epithelial tissues upon changes in centrosome number.
Collapse
Affiliation(s)
- Marta Clemente-Ruiz
- Institute for Research in Biomedicine, Parc Cientific de Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine, Parc Cientific de Barcelona, Baldiri Reixac, 10, 08028 Barcelona, Spain; ICREA, Parc Cientific de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
39
|
Zhu S, Jing R, Yang Y, Huang Y, Wang X, Leng Y, Xi J, Wang G, Jia W, Kang J. A motif from Lys216 to Lys222 in human BUB3 protein is a nuclear localization signal and critical for BUB3 function in mitotic checkpoint. J Biol Chem 2015; 290:11282-92. [PMID: 25814666 DOI: 10.1074/jbc.m114.598029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 11/06/2022] Open
Abstract
Human BUB3 is a key mitotic checkpoint factor that recognizes centromeric components and recruits other mitotic checkpoint molecules to the unattached kinetochore. The key amino acid residues responsible for its localization are not yet defined. In this study, we identified a motif from Lys(216) to Lys(222) in BUB3 as its nuclear localization signal. A BUB3 mutant with deletion of this motif (Del216-222) was found to localize to both the cytoplasm and the nucleus, distinct from the exclusively nuclear distribution of wild-type BUB3. Further analysis revealed that residues Glu(213), Lys(216), Lys(217), Lys(218), Tyr(219), and Phe(221), but not Lys(222), contribute to nuclear localization. Interestingly, the nuclear localization signal was also critical for the kinetochore localization of BUB3. The deletion mutant Del216-222 and a subtle mutant with four residue changes in this region (E213Q/K216E/K217E/K218E (QE)) did not localize to the kinetochore efficiently or mediate mitotic checkpoint arrest. Protein interaction data suggested that the QE mutant was able to interact with BUB1, MAD2, and BubR1 but that its association with the centromeric components CENP-A and KNL1 was impaired. A motif from Leu(61) to Leu(65) in CENP-A was found to be involved in the association of BUB3 and CENP-A in cells; however, further assays suggested that CENP-A does not physically interact with BUB3 and does not affect BUB3 localization. Our findings help to dissect the mechanisms of BUB3 in mitotic checkpoint signaling.
Collapse
Affiliation(s)
- Songcheng Zhu
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Ruiqi Jing
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Yiwei Yang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Yitong Huang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Xin Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Ye Leng
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Jiajie Xi
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Guiying Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Wenwen Jia
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| | - Jiuhong Kang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research at School of Life Science and Technology, Tongji University, 1239 Si-ping Road, Shanghai 200092, China
| |
Collapse
|
40
|
Sabino D, Gogendeau D, Gambarotto D, Nano M, Pennetier C, Dingli F, Arras G, Loew D, Basto R. Moesin is a major regulator of centrosome behavior in epithelial cells with extra centrosomes. Curr Biol 2015; 25:879-89. [PMID: 25772448 PMCID: PMC4386030 DOI: 10.1016/j.cub.2015.01.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Centrosome amplification has severe consequences during development and is thought to contribute to a variety of diseases such as cancer and microcephaly. However, the adverse effects of centrosome amplification in epithelia are still not known. Here, we investigate the consequences of centrosome amplification in the Drosophila wing disc epithelium. We found that epithelial cells exhibit mechanisms of clustering but also inactivation of extra centrosomes. Importantly, these mechanisms are not fully efficient, and both aneuploidy and cell death can be detected. Epithelial cells with extra centrosomes generate tumors when transplanted into WT hosts and inhibition of cell death results in tissue over-growth and disorganization. Using SILAC-fly, we found that Moesin, a FERM domain protein, is specifically upregulated in wing discs with extra centrosomes. Moesin localizes to the centrosomes and mitotic spindle during mitosis, and we show that Moesin upregulation influences extra-centrosome behavior and robust bipolar spindle formation. This study provides a mechanistic explanation for the increased aneuploidy and transformation potential primed by centrosome amplification in epithelial tissues. Consequences of centrosome amplification in epithelia are discussed Centrosome clustering or inactivation is not fully efficient High levels of Moesin contribute to defects in bipolar spindle assembly Centrosome amplification generates aneuploidy and epithelial transformation
Collapse
Affiliation(s)
- Dora Sabino
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | | | | | - Maddalena Nano
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Carole Pennetier
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France
| | - Florent Dingli
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Guillaume Arras
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Damarys Loew
- Institut Curie, CNRS, LSMP, 26 Rue d'Ulm, 75005 Paris, France
| | - Renata Basto
- Institut Curie, CNRS UMR144, 12 Rue Lhomond, 75005 Paris, France.
| |
Collapse
|
41
|
Ibrahim B, Henze R. Active transport can greatly enhance Cdc20:Mad2 formation. Int J Mol Sci 2014; 15:19074-91. [PMID: 25338047 PMCID: PMC4227261 DOI: 10.3390/ijms151019074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/30/2014] [Accepted: 10/11/2014] [Indexed: 12/12/2022] Open
Abstract
To guarantee genomic integrity and viability, the cell must ensure proper distribution of the replicated chromosomes among the two daughter cells in mitosis. The mitotic spindle assembly checkpoint (SAC) is a central regulatory mechanism to achieve this goal. A dysfunction of this checkpoint may lead to aneuploidy and likely contributes to the development of cancer. Kinetochores of unattached or misaligned chromosomes are thought to generate a diffusible “wait-anaphase” signal, which is the basis for downstream events to inhibit the anaphase promoting complex/cyclosome (APC/C). The rate of Cdc20:C-Mad2 complex formation at the kinetochore is a key regulatory factor in the context of APC/C inhibition. Computer simulations of a quantitative SAC model show that the formation of Cdc20:C-Mad2 is too slow for checkpoint maintenance when cytosolic O-Mad2 has to encounter kinetochores by diffusion alone. Here, we show that an active transport of O-Mad2 towards the spindle mid-zone increases the efficiency of Mad2-activation. Our in-silico data indicate that this mechanism can greatly enhance the formation of Cdc20:Mad2 and furthermore gives an explanation on how the “wait-anaphase” signal can dissolve abruptly within a short time. Our results help to understand parts of the SAC mechanism that remain unclear.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Al-Qunfudah University College, Umm Al-Qura University, 1109 Makkah Al-Mukarramah, Saudi Arabia.
| | - Richard Henze
- Bio Systems Analysis Group, Institute of Computer Science, Jena Center for Bioinformatics and Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
42
|
Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation. Dev Cell 2014; 30:731-45. [PMID: 25241934 DOI: 10.1016/j.devcel.2014.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 12/14/2022]
Abstract
Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome missegregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the spindle assembly checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia and demonstrate the robust compensatory mechanisms at the cellular and organismal level.
Collapse
|
43
|
Affiliation(s)
- Konstantina Rowald
- Mouse Biology Unit; European Molecular Biology Laboratory (EMBL); Monterotondo, Italy
| | - Rocio Sotillo
- Mouse Biology Unit; European Molecular Biology Laboratory (EMBL); Monterotondo, Italy
| |
Collapse
|
44
|
Milán M, Clemente-Ruiz M, Dekanty A, Muzzopappa M. Aneuploidy and tumorigenesis in Drosophila. Semin Cell Dev Biol 2014; 28:110-5. [DOI: 10.1016/j.semcdb.2014.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 12/15/2022]
|
45
|
Patel PH, Edgar BA. Tissue design: how Drosophila tumors remodel their neighborhood. Semin Cell Dev Biol 2014; 28:86-95. [PMID: 24685612 DOI: 10.1016/j.semcdb.2014.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 12/24/2022]
Abstract
Drosophila genetics has long been appreciated as a powerful approach for discovering the normal functions of genes that act as oncogenes and tumor suppressors in human cancer. Recent studies have also highlighted its advantages for deciphering how such genes function during tumorigenesis itself. Here we detail studies relating to how tumors, generated in developing organs and adult stem cell-based tissues, remodel the tissue landscape to their benefit. Like mammalian tumors, insect tumors can dissolve extracellular matrix, recruit blood cells, migrate and invade other tissues. While much is known about how mammalian fibroblasts, immune cells and vasculature promote late tumorigenesis, less is understood about the very earliest stages of tumor development in mammals. Because Drosophila has fewer mitotic cells and a simpler tissue architecture, it affords easy detection and analysis of early clonal tumor growth. Drosophila studies have revealed both cooperative and competitive interactions between tumor and normal cells during early tumor growth. During development, these interactions typically occur with other proliferative progenitor cells, but in adult stem cell-based tissues, the stem cell niche can fuel tumor growth.
Collapse
Affiliation(s)
- Parthive H Patel
- German Cancer Research Center (DKFZ) and Center for Molecular Biology Heidelberg (ZMBH) Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | - Bruce A Edgar
- German Cancer Research Center (DKFZ) and Center for Molecular Biology Heidelberg (ZMBH) Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
46
|
Clemente-Ruiz M, Muzzopappa M, Milán M. Tumor suppressor roles of CENP-E and Nsl1 in Drosophila epithelial tissues. Cell Cycle 2014; 13:1450-5. [PMID: 24626182 DOI: 10.4161/cc.28417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Depletion of spindle assembly checkpoint (SAC) genes in Drosophila epithelial tissues leads to JNK-dependent programmed cell death and additional blockade of the apoptotic program drives tumorigenesis. A recent report proposes that chromosomal instability (CIN) is not the driving force in the tumorigenic response of the SAC-deficient tissue, and that checkpoint proteins exert a SAC-independent tumor suppressor role. This notion is based on observations that the depletion of CENP-E levels or prevention of Bub3 from binding to the kinetochore in Drosophila tissues unable to activate the apoptotic program induces CIN but does not cause hyperproliferation. Here we re-examined this proposal. In contrast to the previous report, we observed that depletion of CENP-E or Nsl1-the latter mediating kinetochore targeting of Bub3-in epithelial tissues unable to activate the apoptotic program induces significant levels of aneuploidy and drives tumor-like growth. The induction of the JNK transcriptional targets Wingless, a mitogenic molecule, and MMP1, a matrix metaloproteinase 1 involved in basement membrane degradation was also observed in these tumors. An identical response of the tissue was previously detected upon depletion of several SAC genes or genes involved in spindle assembly, chromatin condensation, and cytokinesis, all of which have been described to cause CIN. All together, these results reinforce the role of CIN in driving tumorigenesis in Drosophila epithelial tissues and question the proposed SAC-independent roles of checkpoint proteins in suppressing tumorigenesis. Differences in aneuploidy rates might explain the discrepancy between the previous report and our results.
Collapse
Affiliation(s)
| | | | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| |
Collapse
|
47
|
Marzo I, Naval J. Antimitotic drugs in cancer chemotherapy: promises and pitfalls. Biochem Pharmacol 2013; 86:703-10. [PMID: 23886991 DOI: 10.1016/j.bcp.2013.07.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
Abstract
Cancer cells usually display higher proliferation rates than normal cells. Some currently used antitumor drugs, such as vinca alkaloids and taxanes, act by targeting microtubules and inhibiting mitosis. In the last years, different mitotic regulators have been proposed as drug target candidates for antitumor therapies. In particular, inhibitors of Cdks, Chks, Aurora kinase and Polo-like kinase have been synthesized and evaluated in vitro and in animal models and some of them have reached clinical trials. However, to date, none of these inhibitors has been still approved for use in chemotherapy regimes. We will discuss here the most recent preclinical information on those new antimitotic drugs, as well as the possible molecular bases underlying their lack of clinical efficiency. Also, advances in the identification of other mitosis-related targets will be also summarized.
Collapse
Affiliation(s)
- Isabel Marzo
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Spain.
| | | |
Collapse
|
48
|
Short B. Bub3’s function doesn’t stop at the checkpoint. J Biophys Biochem Cytol 2013. [PMCID: PMC3639388 DOI: 10.1083/jcb.2013iti2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|