1
|
Kodba S, Öztop A, van Berkum E, Katrukha EA, Iwanski MK, Nijenhuis W, Kapitein LC, Chaigne A. Aurora B controls microtubule stability to regulate abscission dynamics in stem cells. Cell Rep 2025; 44:115238. [PMID: 39854207 DOI: 10.1016/j.celrep.2025.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abscission is the last step of cell division. It separates the two sister cells and consists of cutting the cytoplasmic bridge. Abscission is mediated by the ESCRT membrane remodeling machinery, which also triggers the severing of a thick bundle of microtubules. Here, we show that rather than being passive actors in abscission, microtubules control abscission speed. Using mouse embryonic stem cells, which transition from slow to fast abscission during exit from naive pluripotency, we investigate the molecular mechanism for the regulation of abscission dynamics and identify crosstalk between Aurora B activity and microtubule stability. We demonstrate that naive stem cells maintain high Aurora B activity on the bridge after cytokinesis. This high Aurora B activity leads to transient microtubule stabilization that delays abscission by decreasing MCAK recruitment to the midbody. In turn, stable microtubules promote the activity of Aurora B. Overall, our data demonstrate that Aurora B-dependent microtubule stability controls abscission dynamics.
Collapse
Affiliation(s)
- Snježana Kodba
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Amber Öztop
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Eri van Berkum
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Malina K Iwanski
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands
| | - Wilco Nijenhuis
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands; Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Agathe Chaigne
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
2
|
Caspers J, Ritter A, Bahrami B, Hoock SC, Roth S, Friemel A, Oswald F, Louwen F, Kreis NN, Yuan J. Involvement of RBP-J interacting and tubulin-associated protein in the distribution of protein regulator of cytokinesis 1 in mitotic spindles. Front Cell Dev Biol 2025; 12:1472340. [PMID: 39839673 PMCID: PMC11747798 DOI: 10.3389/fcell.2024.1472340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the RBP-J interacting and tubulin-associated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A. As defective chromosome congression and segregation are the most remarkable features of cells depleted of RITA, we aimed to explore further potential related mechanisms, using various cellular and molecular techniques, including clustered regularly interspaced short palindromic repeats technique/deactivated CRISPR-associated protein 9 (CRISPR/dCas9), mass spectrometry, confocal microscopy, immunofluorescence, immunoprecipitation and Western blot analysis. Here, we show that FLAG-RITA precipitates PRC1 and tubulin, and that these two proteins co-localize in the central region of the central spindle. Reduction of RITA enlarges the staining area of PRC1 in mitotic spindles as well as in the central spindle. Its suppression reduces the inter-centromere distance in metaphase cells. Interestingly, microtubule bundles of the central spindle are often less organized in a non-parallel pattern, as evidenced by increased angles, relative to corresponding separating chromosomes. These data suggest a novel role for RITA in mitotic distribution of PRC1 and that its deregulation may contribute to defective chromosome movement during mitosis. As both RITA and PRC1 are closely associated with malignant progression, further work is required to elucidate the detailed molecular mechanisms by which RITA acts as a modulator in central spindle formation and cytokinesis.
Collapse
Affiliation(s)
- Julia Caspers
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Badi Bahrami
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
3
|
Zimyanin V, Magaj M, Manzi NI, Yu CH, Gibney T, Chen YZ, Basaran M, Horton X, Siller K, Pani A, Needleman D, Dickinson DJ, Redemann S. Chromokinesin Klp-19 regulates microtubule overlap and dynamics during anaphase in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564275. [PMID: 37961478 PMCID: PMC10634869 DOI: 10.1101/2023.10.26.564275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent studies have highlighted the significance of the spindle midzone, the region between the segregating chromosomes, in ensuring proper chromosome segregation. By combining 3D electron tomography, cutting-edge light microscopy and a novel single cell in vitro essay allowing single molecule tracking, we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans by the chromokinesin KLP-19, and its relevance for proper spindle function. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and KLP-19 in C. elegans, the homologs of PRC1 and KIF4a, suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length and thus microtubule-based interactions in the spindle midzone, which affects spindle dynamics and force transmission. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Theresa Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yu-Zen Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mustafa Basaran
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xavier Horton
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karsten Siller
- IT-Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Ariel Pani
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Daniel Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Daniel J Dickinson
- Department of Molecular Bioscience, University of Texas at Austin, TX, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Lim WM, Chew WX, Esposito Verza A, Pesenti M, Musacchio A, Surrey T. Regulation of minimal spindle midzone organization by mitotic kinases. Nat Commun 2024; 15:9213. [PMID: 39472429 PMCID: PMC11522559 DOI: 10.1038/s41467-024-53500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
During cell division, the microtubule cytoskeleton undergoes dramatic cell cycle-driven reorganizations of its architecture. Coordinated by changes in the phosphorylation patterns of a multitude of microtubule associated proteins, the mitotic spindle first self-assembles to capture the chromosomes and then reorganizes in anaphase as the chromosomes are segregated. A key protein for this reorganization is PRC1 which is differentially phosphorylated by the mitotic kinases CDK1 and PLK1. How the phosphorylation state of PRC1 orchestrates spindle reorganization is not understood mechanistically. Here, we reconstitute in vitro the transition between metaphase and anaphase-like microtubule architectures triggered by the changes in PRC1 phosphorylation. We find that whereas PLK1 regulates its own recruitment by PRC1, CDK1 controls the affinity of PRC1 for antiparallel microtubule binding. Dephosphorylation of CDK1-phosphorylated PRC1 is required and sufficient to trigger the reorganization of a minimal anaphase midzone in the presence of the midzone length controlling kinesin KIF4A. These results demonstrate how phosphorylation-controlled affinity changes regulate the architecture of active microtubule networks, providing new insight into the mechanistic underpinnings of the cell cycle-driven reorganization of the central spindle during mitosis.
Collapse
Affiliation(s)
- Wei Ming Lim
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Wei-Xiang Chew
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
5
|
LaFoya B, Penkert RR, Prehoda KE. The cytokinetic midbody mediates asymmetric fate specification at mitotic exit during neural stem cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609974. [PMID: 39253494 PMCID: PMC11383292 DOI: 10.1101/2024.08.27.609974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Asymmetric cell division (ACD) is a broadly used mechanism for generating cellular diversity. Molecules known as fate determinants are segregated during ACD to generate distinct sibling cell fates, but determinants should not be activated until fate can be specified asymmetrically. Determinants could be activated after cell division but many animal cells complete division long after mitosis ends, raising the question of how activation could occur at mitotic exit taking advantage of the unique state plasticity at this time point. Here we show that the midbody, a microtubule-rich structure that forms in the intercellular bridge connecting nascent siblings, mediates fate determinant activation at mitotic exit in neural stem cells (NSCs) of the Drosophila larval brain. The fate determinants Prospero (Pros) and Brain tumor (Brat) are sequestered at the NSC membrane at metaphase but are released immediately following nuclear division when the midbody forms, well before cell division completes. The midbody isolates nascent sibling cytoplasms, allowing determinant release from the membrane via the cell cycle phosphatase String, without influencing the fate of the incorrect sibling. Our results identify the midbody as a key facilitator of ACD that allows asymmetric fate determinant activation to be initiated before division.
Collapse
Affiliation(s)
- Bryce LaFoya
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Rhiannon R Penkert
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
6
|
Deng X, Xiao Y, Tang X, Liu B, Lin H. Arabidopsis α-Aurora kinase plays a role in cytokinesis through regulating MAP65-3 association with microtubules at phragmoplast midzone. Nat Commun 2024; 15:3779. [PMID: 38710684 PMCID: PMC11074315 DOI: 10.1038/s41467-024-48238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.
Collapse
Affiliation(s)
- Xingguang Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yu Xiao
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoya Tang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA.
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Kalashova J, Yang C, Li H, Long Y, Yu D, Zhang T, Liu X, Choudhry N, Shi Q, Allen TD. The Aurora kinase B relocation blocker LXY18 triggers mitotic catastrophe selectively in malignant cells. PLoS One 2023; 18:e0293283. [PMID: 37903144 PMCID: PMC10615259 DOI: 10.1371/journal.pone.0293283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
The mitotic regulator, Aurora kinase B (AURKB), is frequently overexpressed in malignancy and is a target for therapeutic intervention. The compound, LXY18, is a potent, orally available small molecule that inhibits the proper localization of AURKB during late mitosis, without affecting its kinase activity. In this study, we demonstrate that LXY18 elicits apoptosis in cancer cells derived from various indications, but not in non-transformed cell lines. The apoptosis is p53-independent, triggered by a prolonged mitotic arrest and occurs predominantly in mitosis. Some additional cells succumb post-mitotic slippage. We also demonstrate that cancer cell lines refractory to AURKB kinase inhibitors are sensitive to LXY18. The mitotic proteins MKLP2, NEK6, NEK7 and NEK9 are known regulators of AURKB localization during the onset of anaphase. LXY18 fails to inhibit the catalytic activity of these AURKB localization factors. Overall, our findings suggest a novel activity for LXY18 that produces a prolonged mitotic arrest and lethality in cancer cells, leaving non-transformed cells healthy. This new activity suggests that the compound may be a promising drug candidate for cancer treatment and that it can also be used as a tool compound to further dissect the regulatory network controlling AURKB localization.
Collapse
Affiliation(s)
- Julia Kalashova
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Chenglu Yang
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Hongmei Li
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Yan Long
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Duo Yu
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
| | - Ting Zhang
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Xumei Liu
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
| | - Namrta Choudhry
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Qiong Shi
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| | - Thaddeus D. Allen
- Division of Discovery Oncology, Chengdu Anticancer Bioscience, Chengdu, Sichuan, China
- Department of Basic Cancer Research, J. Michael Bishop Institute of Cancer Research, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Sun B, Cheng X, Zhang M, Shi Q, Zhao X, Wang X, Zhang Y. Dynamic observation of circRNA and mRNA profiles in a rat model of deep vein thrombosis. Exp Ther Med 2023; 26:467. [PMID: 37664678 PMCID: PMC10469585 DOI: 10.3892/etm.2023.12166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
The goal of the present study was to identify different transcriptome expression profiles involved in the pathogenesis of deep vein thrombosis (DVT), and to illustrate the diagnostic and therapeutic potential of circular RNAs (circRNAs) and mRNAs in DVT progression. A Sprague-Dawley rat model of DVT was successfully established through the stenosis method and samples were sequenced at four time points (1, 6 and 12 h, and 3 days after ligation) to observe the dynamic changes in circRNAs and mRNAs during DVT progression. RNA sequencing was used to analyze the circRNA and mRNA expression profiles, and associated functions and pathways, in the blood of DVT rats at the four time points. In addition, Short Time Series Expression Miner (STEM) analysis was performed to explore temporal gene expression. Differential expression of 1,680, 4,018, 3,724, and 3,036 circRNAs, and 400, 1,176, 373, and 573 mRNAs was observed in the 1, 6 and 12 h, and 3-day groups, respectively, compared with the sham group (fold change >2.0 or <-2.0, P<0.05). Functional enrichment analysis indicated that differentially expressed mRNAs were associated with the following terms: Immune response, cell activation, blood stasis facilitated organelle, extracellular membrane-bounded organelle, and blood microparticle, oxygen transporter activity. STEM analysis indicated that the expression of 366 circRNAs in circRNA profile 45 and 270 mRNAs in mRNA profile 45 was consistent with thrombus progression. Enrichment analysis was performed on mRNA profile 45. The main Gene Ontology annotations were chromosome segregation, mitotic sister chromatid segregation, cell cycle process, and ligand-dependent nuclear receptor transcription coactivator activity. Pathway enrichment analysis identified the platelet-associated pathway, immune-associated pathway, and inflammation-relation pathway. According to the enriched platelet-associated pathways, four mRNAs and ten candidate circRNAs were selected for reverse transcription-quantitative PCR verification. The expression of nine of the ten circRNAs and all four mRNAs was consistent with the sequencing results. In summary, differentially expressed circRNAs and mRNAs are dynamically involved in DVT development. Dysregulated transcriptome profiles and the corresponding functions and pathways may provide mechanistic insights into DVT diagnosis and treatment.
Collapse
Affiliation(s)
- Baolan Sun
- Department of Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mu Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qin Shi
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinxin Zhao
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuquan Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
9
|
do Rosário CF, Zhang Y, Stadnicki J, Ross JL, Wadsworth P. Lateral and longitudinal compaction of PRC1 overlap zones drives stabilization of interzonal microtubules. Mol Biol Cell 2023; 34:ar100. [PMID: 37467037 PMCID: PMC10551706 DOI: 10.1091/mbc.e23-02-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
During anaphase, antiparallel-overlapping midzone microtubules elongate and form bundles, contributing to chromosome segregation and the location of contractile ring formation. Midzone microtubules are dynamic in early but not late anaphase; however, the kinetics and mechanisms of stabilization are incompletely understood. Using photoactivation of cells expressing PA-EGFP-α-tubulin we find that immediately after anaphase onset, a single highly dynamic population of midzone microtubules is present; as anaphase progresses, both dynamic and stable populations of midzone microtubules coexist. By mid-cytokinesis, only static, non-dynamic microtubules are detected. The velocity of microtubule sliding also decreases as anaphase progresses, becoming undetectable by late anaphase. Following depletion of PRC1, midzone microtubules remain highly dynamic in anaphase and fail to form static arrays in telophase despite furrowing. Cells depleted of Kif4a contain elongated PRC1 overlap zones and fail to form static arrays in telophase. Cells blocked in cytokinesis form short PRC1 overlap zones that do not coalesce laterally; these cells also fail to form static arrays in telophase. Together, our results demonstrate that dynamic turnover and sliding of midzone microtubules is gradually reduced during anaphase and that the final transition to a static array in telophase requires both lateral and longitudinal compaction of PRC1 containing overlap zones.
Collapse
Affiliation(s)
- Carline Fermino do Rosário
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Ying Zhang
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
| | - Jennifer Stadnicki
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| | | | - Patricia Wadsworth
- Department of Biology, University of Massachusetts Amherst, Amherst MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst MA 01003
| |
Collapse
|
10
|
Wan Y, Morikawa M, Morikawa M, Iwata S, Naseer MI, Ahmed Chaudhary AG, Tanaka Y, Hirokawa N. KIF4 regulates neuronal morphology and seizure susceptibility via the PARP1 signaling pathway. J Cell Biol 2023; 222:e202208108. [PMID: 36482480 PMCID: PMC9735414 DOI: 10.1083/jcb.202208108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a common neurological disease worldwide, and one of its causes is genetic abnormalities. Here, we identified a point mutation in KIF4A, a member of kinesin superfamily molecular motors, in patients with neurological disorders such as epilepsy, developmental delay, and intellectual disability. KIF4 is involved in the poly (ADP-ribose) polymerase (PARP) signaling pathway, and the mutation (R728Q) strengthened its affinity with PARP1 through elongation of the KIF4 coiled-coil domain. Behavioral tests showed that KIF4-mutant mice exhibited mild developmental delay with lower seizure threshold. Further experiments revealed that the KIF4 mutation caused aberrant morphology in dendrites and spines of hippocampal pyramidal neurons through PARP1-TrkB-KCC2 pathway. Furthermore, supplementing NAD, which activates PARP1, could modulate the TrkB-KCC2 pathway and rescue the seizure susceptibility phenotype of the mutant mice. Therefore, these findings indicate that KIF4 is engaged in a fundamental mechanism regulating seizure susceptibility and could be a potential target for epilepsy treatment.
Collapse
Affiliation(s)
- Yuansong Wan
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Momo Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manatsu Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Suguru Iwata
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Coupling of microtubule bundles isolates them from local disruptions to set the structural stability of the anaphase spindle. Proc Natl Acad Sci U S A 2022; 119:e2204068119. [PMID: 36122237 PMCID: PMC9522340 DOI: 10.1073/pnas.2204068119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation requires load-bearing interactions across kinetochore fibers and antiparallel microtubule bundles, which constitute the spindle midzone. Mechanical properties of kinetochore fibers have been characterized during metaphase, when the mitotic spindle achieves steady state. However, it has been difficult to probe the mechanics of the spindle midzone that elongates during anaphase. Here, we combine superresolution expansion and electron microscopies, lattice light-sheet imaging, and laser microsurgery to examine how midzone organization sets its mechanics. We find that individual midzone bundles extend out to multiple positions across chromosomes and form multiple apparent microtubule-based connections with each other. Across the spindle's short axis, these microtubule bundles exhibit restricted, submicrometer-amplitude motions, which are weakly correlated on <10s timescales. Severing individual midzone bundles near their center does not substantially affect positions of neighboring bundles, nor the overall structural stability of the midzone. In contrast, severing multiple midzone bundles or individual bundles at their chromosome-proximal ends significantly displaces neighboring microtubule bundles. Together, these data suggest a model wherein multiple midzone connections both reinforce its structure and mechanically isolate individual bundles from local perturbations. This feature sets the robust midzone architecture to accommodate disruptions, including those which result from lagging chromosomes, and achieve stereotypic outputs, such as proper chromosome separation.
Collapse
|
12
|
KIF4A promotes tumor progression of bladder cancer via CXCL5 dependent myeloid-derived suppressor cells recruitment. Sci Rep 2022; 12:6015. [PMID: 35399116 PMCID: PMC8995359 DOI: 10.1038/s41598-022-10029-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Although KIF4A has been found to play an important role in a variety of tumors and is closely associated with the activation of immunocytes, its role in bladder cancer (BC) remains unclear. Here, we report increased expression of KIF4A in both lymph node-positive and high grade BC tissues. High expression of KIF4A has been significantly correlated with fewer CD8+ tumor-infiltrating lymphocytes (TILs) and a much worse prognosis in patients with BC. With respect to promoting tumor growth, the expression of KIF4A in promoting tumor growth was more pronounced in immune-competent mice (C57BL/6) than in immunodeficient mice (BALB/C). In addition, the more increased accumulation of myeloid-derived suppressor cells (MDSCs) was observed in tumor-bearing mice with KIF4A overexpression than in the control group. Transwell chemotaxis assays revealed that KIF4A overexpression in T24 cells increased MDSC recruitment. Furthermore, according to ELISA results, CXCL5 was the most noticeably increased cytokine in the KIF4A-transduced BC cells. Additional studies in vitro and in vivo showed that the capability of KIF4A to promote BC cells to recruit MDSCs could be significantly inhibited by anti-CXCL5 antibody. Therefore, our results demonstrated that KIF4A-mediated BC production of CXCL5 led to an increase in MDSC recruitment, which contributed to tumor progression.
Collapse
|
13
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
14
|
Gillani SQ, Reshi I, Nabi N, Un Nisa M, Sarwar Z, Bhat S, Roberts TM, Higgins JMG, Andrabi S. PCTAIRE1 promotes mitotic progression and resistance against antimitotic and apoptotic signals. J Cell Sci 2022; 135:jcs258831. [PMID: 35044463 PMCID: PMC8918779 DOI: 10.1242/jcs.258831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/29/2021] [Indexed: 10/24/2022] Open
Abstract
PCTAIRE1 (also known as CDK16) is a serine-threonine kinase implicated in physiological processes like neuronal development, vesicle trafficking, spermatogenesis and cell proliferation. However, its exact role in cell division remains unclear. In this study, using a library screening approach, we identified PCTAIRE1 among several candidates that resisted mitotic arrest and mitotic cell death induced by polyomavirus small T (PolST) expression in mammalian cells. Our study showed that PCTAIRE1 is a mitotic kinase that localizes at centrosomes during G2 and at spindle poles as the cells enter mitosis, and then at the midbody during cytokinesis. We also report that PCTAIRE1 protein levels fluctuate through the cell cycle and reach their peak at mitosis, during which there is an increase in PCTAIRE1 phosphorylation as well. Interestingly, knockdown of PCTAIRE1 resulted in aberrant mitosis by interfering with spindle assembly and chromosome segregation. Further, we found that PCTAIRE1 promotes resistance of cancer cells to antimitotic drugs, and this underscores the significance of PCTAIRE1 as a potential drug target for overcoming chemotherapeutic resistance. Taken together, these studies establish PCTAIRE1 as a critical mediator of mitotic progression and highlight its role in chemotherapeutic resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Irfana Reshi
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Nusrat Nabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Misbah Un Nisa
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Zarka Sarwar
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Sameer Bhat
- Department of Biotechnology, University of Kashmir, Srinagar 190006, India
| | - Thomas M. Roberts
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. G. Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University,Newcastle upon Tyne NE2 4HH, UK
| | - Shaida Andrabi
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
15
|
KIF4A Regulates the Progression of Pancreatic Ductal Adenocarcinoma through Proliferation and Invasion. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8249293. [PMID: 34805404 PMCID: PMC8601854 DOI: 10.1155/2021/8249293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Background Pancreatic cancer is a malignant tumor of the digestive tract, which is difficult to diagnose and treat due to bad early diagnosis. We aimed to explore the role of kinesin superfamily 4A (KIF4A) in pancreatic ductal adenocarcinoma (PDAC). Methods We first used the bioinformatic website to screen the data of pancreatic cancer in TCGA, and KIF4A protein was detected among the 86 specimens of patients in our hospital combined with clinic-pathological characteristics and survival analysis. KIF4A loss-expression cell lines were established by RNA interference (RNAi). In addition, we performed in vitro cell assays to detect the changes in cell proliferation, migration, and invasion. The proteins involved in the proliferation and metastasis of cancer cells were also detected by western blot. The above results could be proved in vivo. Further, the correlation between KIF4A and CDC5L was analyzed by TCGA and IHC data. Results We first found a high expression of KIF4A in pancreatic cancer, suggesting a role of KIF4A in the development of pancreatic cancer. KIF4A was found to be differentially expressed (P < 0.05) among the 86 specimens of patients in our hospital and was significantly associated with PDAC TNM stages and tumor size. High KIF4A expression also significantly worsened overall survival (OS) and disease-free survival rate (DFS) (P < 0.05, respectively). In addition, cell proliferation, migration, and invasion were inhibited by the KIF4A-shRNA group compared with the control (P < 0.05, respectively). In the end, knockdown of KIF4A could inhibit tumor development and metastasis in vivo. Further, the positive correlation between KIF4A and CDC5L existed, and KIF4A might promote pancreatic cancer proliferation by affecting CDC5L expression. Conclusion In conclusion, the high expression level of KIF4A in PDAC was closely related to poor clinical and pathological status, lymphatic metastasis, and vascular invasion. KIF4A might be involved in promoting the development of PDAC in vitro and in vivo, which might be a new therapeutic target of PDAC.
Collapse
|
16
|
Orr B, De Sousa F, Gomes AM, Afonso O, Ferreira LT, Figueiredo AC, Maiato H. An anaphase surveillance mechanism prevents micronuclei formation from frequent chromosome segregation errors. Cell Rep 2021; 37:109783. [PMID: 34758324 PMCID: PMC8595644 DOI: 10.1016/j.celrep.2021.109783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Micronuclei are a hallmark of cancer and several other human disorders. Recently, micronuclei were implicated in chromothripsis, a series of massive genomic rearrangements that may drive tumor evolution and progression. Here, we show that Aurora B kinase mediates a surveillance mechanism that integrates error correction during anaphase with spatial control of nuclear envelope reassembly to prevent micronuclei formation. Using high-resolution live-cell imaging of human cancer and non-cancer cells, we uncover that anaphase lagging chromosomes are more frequent than previously anticipated, yet they rarely form micronuclei. Micronuclei formation from anaphase lagging chromosomes is prevented by a midzone-based Aurora B phosphorylation gradient that stabilizes kinetochore-microtubule attachments and assists spindle forces required for anaphase error correction while delaying nuclear envelope reassembly on lagging chromosomes, independently of microtubule density. We propose that a midzone-based Aurora B phosphorylation gradient actively monitors and corrects frequent chromosome segregation errors to prevent micronuclei formation during human cell division. Anaphase lagging chromosomes are frequent but rarely form micronuclei A midzone Aurora B activity gradient prevents micronuclei from segregation errors Midzone Aurora B assists spindle forces at the kinetochores to correct errors Aurora B spatially regulates nuclear envelope reformation on lagging chromosomes
Collapse
Affiliation(s)
- Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe De Sousa
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Margarida Gomes
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Olga Afonso
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana C Figueiredo
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
17
|
Changing places: Chromosomal Passenger Complex relocation in early anaphase. Trends Cell Biol 2021; 32:165-176. [PMID: 34663523 DOI: 10.1016/j.tcb.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
The Chromosomal Passenger Complex (CPC) regulates a plethora of processes during multiple stages of nuclear and cytoplasmic division. Early during mitosis, the CPC is recruited to centromeres and kinetochores, and ensures that the duplicated chromosomes become properly connected to microtubules from opposite poles of the mitotic spindle. Progression into anaphase is accompanied by a striking relocation of the CPC from centromeres to the antiparallel microtubule overlaps of the anaphase spindle and to the equatorial cortex. This translocation requires direct interactions of the CPC with the kinesin-6 family member MKLP2/KIF20A, and the inactivation of cyclin B-cyclin-dependent kinase-1 (CDK1). Here, we review recent progress in the regulation of this relocation event. Furthermore, we discuss why the CPC must be relocated during early anaphase in light of recent advances in the functions of the CPC post metaphase.
Collapse
|
18
|
Asthana J, Cade NI, Normanno D, Lim WM, Surrey T. Gradual compaction of the central spindle decreases its dynamicity in PRC1 and EB1 gene-edited cells. Life Sci Alliance 2021; 4:4/12/e202101222. [PMID: 34580180 PMCID: PMC8500333 DOI: 10.26508/lsa.202101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Although different anaphase proteins bind with characteristically different strength to the central spindle, the overall central spindle dynamicity slows down as mitosis proceeds. During mitosis, the spindle undergoes morphological and dynamic changes. It reorganizes at the onset of the anaphase when the antiparallel bundler PRC1 accumulates and recruits central spindle proteins to the midzone. Little is known about how the dynamic properties of the central spindle change during its morphological changes in human cells. Using gene editing, we generated human cells that express from their endogenous locus fluorescent PRC1 and EB1 to quantify their native spindle distribution and binding/unbinding turnover. EB1 plus end tracking revealed a general slowdown of microtubule growth, whereas PRC1, similar to its yeast orthologue Ase1, binds increasingly strongly to compacting antiparallel microtubule overlaps. KIF4A and CLASP1 bind more dynamically to the central spindle, but also show slowing down turnover. These results show that the central spindle gradually becomes more stable during mitosis, in agreement with a recent “bundling, sliding, and compaction” model of antiparallel midzone bundle formation in the central spindle during late mitosis.
Collapse
Affiliation(s)
- Jayant Asthana
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Wei Ming Lim
- The Francis Crick Institute, London, UK.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- The Francis Crick Institute, London, UK .,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Chan KK, Abdul-Sater Z, Sheth A, Mitchell DK, Sharma R, Edwards DM, He Y, Nalepa G, Rhodes SD, Clapp DW, Sierra Potchanant EA. SIK2 kinase synthetic lethality is driven by spindle assembly defects in FANCA-deficient cells. Mol Oncol 2021; 16:860-884. [PMID: 34058059 PMCID: PMC8847993 DOI: 10.1002/1878-0261.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
The Fanconi anemia (FA) pathway safeguards genomic stability through cell cycle regulation and DNA damage repair. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established, but their function in mitosis is incompletely understood. Here, we performed a kinome-wide synthetic lethality screen in FANCA-/- fibroblasts, which revealed multiple mitotic kinases as necessary for survival of FANCA-deficient cells. Among these kinases, we identified the depletion of the centrosome kinase SIK2 as synthetic lethal upon loss of FANCA. We found that FANCA colocalizes with SIK2 at multiple mitotic structures and regulates the activity of SIK2 at centrosomes. Furthermore, we found that loss of FANCA exacerbates cell cycle defects induced by pharmacological inhibition of SIK2, including impaired G2-M transition, delayed mitotic progression, and cytokinesis failure. In addition, we showed that inhibition of SIK2 abrogates nocodazole-induced prometaphase arrest, suggesting a novel role for SIK2 in the spindle assembly checkpoint. Together, these findings demonstrate that FANCA-deficient cells are dependent upon SIK2 for survival, supporting a preclinical rationale for targeting of SIK2 in FA-disrupted cancers.
Collapse
Affiliation(s)
- Ka-Kui Chan
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zahi Abdul-Sater
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditya Sheth
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana K Mitchell
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richa Sharma
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donna M Edwards
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ying He
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Grzegorz Nalepa
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven D Rhodes
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
20
|
Abstract
During anaphase, a microtubule-containing structure called the midzone forms between the segregating chromosomes. The midzone is composed of an antiparallel array of microtubules and numerous microtubule-associated proteins that contribute to midzone formation and function. In many cells, the midzone is an important source of signals that specify the location of contractile ring assembly and constriction. The midzone also contributes to the events of anaphase by generating forces that impact chromosome segregation and spindle elongation; some midzone components contribute to both processes. The results of recent experiments have increased our understanding of the importance of the midzone, a microtubule array that has often been overlooked. This Journal of Cell Science at a Glance article will review, and illustrate on the accompanying poster, the organization, formation and dynamics of the midzone, and discuss open questions for future research.
Collapse
Affiliation(s)
- Patricia Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, 611 N. Pleasant Street, Amherst 01003, USA
| |
Collapse
|
21
|
Vukušić K, Ponjavić I, Buđa R, Risteski P, Tolić IM. Microtubule-sliding modules based on kinesins EG5 and PRC1-dependent KIF4A drive human spindle elongation. Dev Cell 2021; 56:1253-1267.e10. [PMID: 33910056 PMCID: PMC8098747 DOI: 10.1016/j.devcel.2021.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/03/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Proper chromosome segregation into two future daughter cells requires the mitotic spindle to elongate in anaphase. However, although some candidate proteins are implicated in this process, the molecular mechanism that drives spindle elongation in human cells is unknown. Using combined depletion and inactivation assays together with CRISPR technology to explore redundancy between multiple targets, we discovered that the force-generating mechanism of spindle elongation consists of EG5/kinesin-5 together with the PRC1-dependent motor KIF4A/kinesin-4, with contribution from kinesin-6 and kinesin-8. Disruption of EG5 and KIF4A leads to total failure of chromosome segregation due to blocked spindle elongation, despite poleward chromosome motion. Tubulin photoactivation, stimulated emission depletion (STED), and expansion microscopy show that perturbation of both proteins impairs midzone microtubule sliding without affecting microtubule stability. Thus, two mechanistically distinct sliding modules, one based on a self-sustained and the other on a crosslinker-assisted motor, power the mechanism that drives spindle elongation in human cells.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivana Ponjavić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Renata Buđa
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
22
|
Zheng P, Wu K, Gao Z, Li H, Li W, Wang X, Shi Z, Xiao F, Wang K, Li Z, Han Q. KIF4A promotes the development of bladder cancer by transcriptionally activating the expression of CDCA3. Int J Mol Med 2021; 47:99. [PMID: 33846765 PMCID: PMC8041479 DOI: 10.3892/ijmm.2021.4932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is among the most common urinary system tumors with a high morbidity and mortality worldwide. Despite advancements being made in the diagnosis and treatment of bladder cancer, targeted therapy remains the most promising treatment, and novel therapeutic targets are urgently required in to improve the outcomes of patients with BC. Kinesin family member 4A (KIF4A) is a plus-end directed motor protein involved in the regulation of multiple cellular processes, such as mitosis and axon growth. Notably, KIF4A plays important roles in tumor growth and progression, and its expression is associated with the prognosis of several types of cancer. However, the potential role and molecular mechanisms of KIF4A in bladder cancer development remain unclear. The present study demonstrated that KIF4A was highly expressed in human BC tissues, and its expression was associated with patient clinicopathological characteristics, such as tumor stage (P=0.012) and with the prognosis of patients with BC. It was further found that KIF4A promoted the cell proliferation of bladder cancer both in vitro and in vivo. On the whole, the data presented herein provide evidence that KIF4A promotes the development of BC through the transcriptional activation of the expression of CDCA3. The present study indicates the involvement of KIF4A in the progression of BC and suggests that KIF4A may be a promising therapeutic target for the treatment of BC.
Collapse
Affiliation(s)
- Pengyi Zheng
- Department of Urology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kaijie Wu
- Department of Urology, The First Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhongwei Gao
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Huibing Li
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Wensheng Li
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaohui Wang
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhenguo Shi
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Fei Xiao
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Kaixuan Wang
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhijun Li
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Qingjiang Han
- Department of Urology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
23
|
Paulson JR, Hudson DF, Cisneros-Soberanis F, Earnshaw WC. Mitotic chromosomes. Semin Cell Dev Biol 2021; 117:7-29. [PMID: 33836947 PMCID: PMC8406421 DOI: 10.1016/j.semcdb.2021.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the structure and function of mitotic chromosomes has come a long way since these iconic objects were first recognized more than 140 years ago, though many details remain to be elucidated. In this chapter, we start with the early history of chromosome studies and then describe the path that led to our current understanding of the formation and structure of mitotic chromosomes. We also discuss some of the remaining questions. It is now well established that each mitotic chromatid consists of a central organizing region containing a so-called "chromosome scaffold" from which loops of DNA project radially. Only a few key non-histone proteins and protein complexes are required to form the chromosome: topoisomerase IIα, cohesin, condensin I and condensin II, and the chromokinesin KIF4A. These proteins are concentrated along the axis of the chromatid. Condensins I and II are primarily responsible for shaping the chromosome and the scaffold, and they produce the loops of DNA by an ATP-dependent process known as loop extrusion. Modelling of Hi-C data suggests that condensin II adopts a spiral staircase arrangement with an extruded loop extending out from each step in a roughly helical pattern. Condensin I then forms loops nested within these larger condensin II loops, thereby giving rise to the final compaction of the mitotic chromosome in a process that requires Topo IIα.
Collapse
Affiliation(s)
- James R Paulson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, WI 54901, USA.
| | - Damien F Hudson
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Fernanda Cisneros-Soberanis
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, ICB, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
24
|
Li XH, Ju JQ, Pan ZN, Wang HH, Wan X, Pan MH, Xu Y, Sun MH, Sun SC. PRC1 is a critical regulator for anaphase spindle midzone assembly and cytokinesis in mouse oocyte meiosis. FEBS J 2020; 288:3055-3067. [PMID: 33206458 DOI: 10.1111/febs.15634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Protein regulator of cytokinesis 1 (PRC1) is a microtubule bundling protein that is involved in the regulation of the central spindle bundle and spindle orientation during mitosis. However, the functions of PRC1 during meiosis have rarely been studied. In this study, we explored the roles of PRC1 during meiosis using an oocyte model. Our results found that PRC1 was expressed at all stages of mouse oocyte meiosis, and PRC1 accumulated in the midzone/midbody during anaphase/telophase I. Moreover, depleting PRC1 caused defects in polar body extrusion during mouse oocyte maturation. Further analysis found that PRC1 knockdown did not affect meiotic spindle formation or chromosome segregation; however, deleting PRC1 prevented formation of the midzone and midbody at the anaphase/telophase stage of meiosis I, which caused cytokinesis defects and further induced the formation of two spindles in the oocytes. PRC1 knockdown increased the level of tubulin acetylation, indicating that microtubule stability was affected. Furthermore, KIF4A and PRC1 showed similar localization in the midzone/midbody of oocytes at anaphase/telophase I, while the depletion of KIF4A affected the expression and localization of PRC1. The PRC1 mRNA injection rescued the defects caused by PRC1 knockdown in oocytes. In summary, our results suggest that PRC1 is critical for midzone/midbody formation and cytokinesis under regulation of KIF4A in mouse oocytes.
Collapse
Affiliation(s)
- Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Hong-Hui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yao Xu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, China
| |
Collapse
|
25
|
Holder J, Mohammed S, Barr FA. Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. eLife 2020; 9:e59885. [PMID: 32869743 PMCID: PMC7529458 DOI: 10.7554/elife.59885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Francis A Barr
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
26
|
Cuijpers SAG, Willemstein E, Ruppert JG, van Elsland DM, Earnshaw WC, Vertegaal ACO. Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner. J Cell Sci 2020; 133:jcs248591. [PMID: 32591481 PMCID: PMC7390632 DOI: 10.1242/jcs.248591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cell division ends when two daughter cells physically separate via abscission, the cleavage of the intercellular bridge. It is not clear how the anti-parallel microtubule bundles bridging daughter cells are severed. Here, we present a novel abscission mechanism. We identified chromokinesin KIF4A, which is adjacent to the midbody during cytokinesis, as being required for efficient abscission. KIF4A is regulated by post-translational modifications. We evaluated modification of KIF4A by the ubiquitin-like protein SUMO. We mapped lysine 460 in KIF4A as the SUMO acceptor site and employed CRISPR-Cas9-mediated genome editing to block SUMO conjugation of endogenous KIF4A. Failure to SUMOylate this site in KIF4A delayed cytokinesis. SUMOylation of KIF4A enhanced the affinity for the microtubule destabilizer stathmin 1 (STMN1). We here present a new level of abscission regulation through the dynamic interactions between KIF4A and STMN1 as controlled by SUMO modification of KIF4A.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Edwin Willemstein
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan G Ruppert
- Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, Scotland, UK
| | - Daphne M van Elsland
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, EH9 3JR Edinburgh, Scotland, UK
| | - Alfred C O Vertegaal
- Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
27
|
The Correct Localization of Borealin in Midbody during Cytokinesis Depends on IQGAP1. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6231697. [PMID: 32685508 PMCID: PMC7334785 DOI: 10.1155/2020/6231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Borealin is a key component of chromosomal passenger complex, which is vital in cytokinesis. IQ domain-containing GTPase-activating protein 1 (IQGAP1) also participates in cytokinesis. The correlation between Borealin and IQGAP1 during cytokinesis is not yet clear. Here, we used mass spectrometry and endogenous coimmunoprecipitation experiments to investigate the interaction between IQGAP1 and Borealin. Results of the current study showed that Borealin interacted directly with IQGAP1 both in vitro and in vivo. Knockdown of IQGAP1 resulted in an abnormal location of Borealin in the midbody. Knocking down Borealin alone, IQGAP1 alone, or Borealin and IQGAP1 at the same time inhibited the completion of cytokinesis and formed multinucleated cells. Our results indicated that IQGAP1 interacts with Borealin during cytokinesis, and the correct localization of Borealin in the midbody during cytokinesis is determined by IQGAP1, and IQGAP1 may play an important role in regulating Borealin function in cytokinesis.
Collapse
|
28
|
Yang GH, Ren ZX, Yang X, Zhang YG. KIF4A Promotes Clear Cell Renal Cell Carcinoma (ccRCC) Proliferation in vitro and in vivo. Onco Targets Ther 2020; 13:2667-2676. [PMID: 32280241 PMCID: PMC7127824 DOI: 10.2147/ott.s240734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To evaluate the expression in human clear cell renal cell carcinoma (ccRCC) tissues and explore the effects of kinesin family member 4A (KIF4A) on ccRCC progression. METHODS GEPIA was used to evaluate the mRNA levels of KIF4A in human ccRCC tissues from TCGA database, and Immunohistochemistry (IHC) assays were performed to assess its expression in human ccRCC tissues collected in our hospital. The clinical-pathological analysis was performed to explore the correlation with KIF4A expression. The effects of KIF4A on ccRCC cell proliferation were detected through colony formation and MTT assays. Finally, the effects of KIF4A on tumor growth were measured using a mice model. RESULTS Bioinformation results showed the expression of KIF4A mRNA was upregulated in ccRCC tissues and high expression of KIF4A was related with poor prognosis in ccRCC patients. We also found a high expression of KIF4A in human ccRCC tissues collected in our hospital. We also found its expression level was correlated with clinical characteristics, including T stage (P=0.035*) and lymphatic metastasis (P=0.028*). We further confirmed that knockdown of KIF4A suppressed cell proliferation in HTB-47 and CRL-1932 cells. Furthermore, KIF4A contributes to tumor growth of ccRCC cells in mice. CONCLUSION We found the abnormal high expression of KIF4A in human ccRCC tissues and demonstrated that KIF4A could serve as a tumor induction gene.
Collapse
Affiliation(s)
- Guang-Hua Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province030032, People’s Republic of China
| | - Zhi-Xing Ren
- Education and Research Center, Taiyuan Radio and Television University, Taiyuan City, Shanxi Province030024, People’s Republic of China
| | - Xiong Yang
- Department of Urolith Center, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin300211, People’s Republic of China
| | - Yan-Gang Zhang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan City, Shanxi Province030032, People’s Republic of China
| |
Collapse
|
29
|
Biola-Clier M, Gaillard JC, Rabilloud T, Armengaud J, Carriere M. Titanium Dioxide Nanoparticles Alter the Cellular Phosphoproteome in A549 Cells. NANOMATERIALS 2020; 10:nano10020185. [PMID: 31973118 PMCID: PMC7074930 DOI: 10.3390/nano10020185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022]
Abstract
TiO2 nanoparticles (NPs) are one of the most produced NPs worldwide and are used in many consumer products. Their impact on human health, especially through inhalation, has been studied for more than two decades. TiO2 is known for its strong affinity towards phosphates, and consequently interaction with cellular phosphates may be one of the mechanisms driving its toxicity. In the present study, we used a phosphoproteomics approach to document the interaction of TiO2-NP with phosphoproteins from A549 human pulmonary alveolar epithelial cells. Cells were exposed to 21 nm anatase/rutile TiO2-NPs, then their phosphopeptides were extracted and analyzed using shotgun proteomics. By comparing the phosphoprotein content, phosphorylation status and phosphorylation sites of exposed cells with that of control cells, our results show that by affecting the phosphoproteome, TiO2-NPs affect cellular processes such as apoptosis, linked with cell cycle and the DNA damage response, TP53 being central to these pathways. Other pathways including inflammation and molecular transport are also affected. These molecular mechanisms of TiO2-NP toxicity have been reported previously, our study shows for the first time that they may derive from phosphoproteome modulation, which could be one of their upstream regulators.
Collapse
Affiliation(s)
| | - Jean-Charles Gaillard
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
| | - Thierry Rabilloud
- Chemistry and Biology of Metals, Univ. Grenoble Alpes, CNRS UMR5249, CEA, IRIG-DIESE-LCBM-ProMD, F-38054 Grenoble, France;
| | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France;
- Correspondence: (J.A.); (M.C.)
| | - Marie Carriere
- Univ. Grenoble-Alpes, IRIG, SyMMES, CIBEST, F-38000 Grenoble, France;
- Correspondence: (J.A.); (M.C.)
| |
Collapse
|
30
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
31
|
Diaz U, Bergman ZJ, Johnson BM, Edington AR, de Cruz MA, Marshall WF, Riggs B. Microtubules are necessary for proper Reticulon localization during mitosis. PLoS One 2019; 14:e0226327. [PMID: 31877164 PMCID: PMC6932760 DOI: 10.1371/journal.pone.0226327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
During mitosis, the structure of the Endoplasmic Reticulum (ER) displays a dramatic reorganization and remodeling, however, the mechanism driving these changes is poorly understood. Hairpin-containing ER transmembrane proteins that stabilize ER tubules have been identified as possible factors to promote these drastic changes in ER morphology. Recently, the Reticulon and REEP family of ER shaping proteins have been shown to heavily influence ER morphology by driving the formation of ER tubules, which are known for their close proximity with microtubules. Here, we examine the role of microtubules and other cytoskeletal factors in the dynamics of a Drosophila Reticulon, Reticulon-like 1 (Rtnl1), localization to spindle poles during mitosis in the early embryo. At prometaphase, Rtnl1 is enriched to spindle poles just prior to the ER retention motif KDEL, suggesting a possible recruitment role for Rtnl1 in the bulk localization of ER to spindle poles. Using image analysis-based methods and precise temporal injections of cytoskeletal inhibitors in the early syncytial Drosophila embryo, we show that microtubules are necessary for proper Rtnl1 localization to spindles during mitosis. Lastly, we show that astral microtubules, not microfilaments, are necessary for proper Rtnl1 localization to spindle poles, and is largely independent of the minus-end directed motor protein dynein. This work highlights the role of the microtubule cytoskeleton in Rtnl1 localization to spindles during mitosis and sheds light on a pathway towards inheritance of this major organelle.
Collapse
Affiliation(s)
- Ulises Diaz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Zane J. Bergman
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Brittany M. Johnson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Alia R. Edington
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Matthew A. de Cruz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
33
|
Gowans LJ, Cameron-Christie S, Slayton RL, Busch T, Romero-Bustillos M, Eliason S, Sweat M, Sobreira N, Yu W, Kantaputra PN, Wohler E, Adeyemo WL, Lachke SA, Anand D, Campbell C, Drummond BK, Markie DM, van Vuuren WJ, van Vuuren LJ, Casamassimo PS, Ettinger R, Owais A, van Staden I, Amendt BA, Adeyemo AA, Murray JC, Robertson SP, Butali A. Missense Pathogenic variants in KIF4A Affect Dental Morphogenesis Resulting in X-linked Taurodontism, Microdontia and Dens-Invaginatus. Front Genet 2019; 10:800. [PMID: 31616463 PMCID: PMC6764483 DOI: 10.3389/fgene.2019.00800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
The etiology of dental anomalies is multifactorial; and genetic and environmental factors that affect the dental lamina have been implicated. We investigated two families of European ancestry in which males were affected by taurodontism, microdontia and dens invaginatus. In both families, males were related to each other via unaffected females. A linkage analysis was conducted in a New Zealand family, followed by exome sequencing and focused analysis of the X-chromosome. In a US family, exome sequencing of the X-chromosome was followed by Sanger sequencing to conduct segregation analyses. We identified two independent missense variants in KIF4A that segregate in affected males and female carriers. The variant in a New Zealand family (p.Asp371His) predicts the substitution of a residue in the motor domain of the protein while the one in a US family (p.Arg771Lys) predicts the substitution of a residue in the domain that interacts with Protein Regulator of Cytokinesis 1 (PRC1). We demonstrated that the gene is expressed in the developing tooth bud during development, and that the p.Arg771Lys variant influences cell migration in an in vitro assay. These data implicate missense variations in KIF4A in a pathogenic mechanism that causes taurodontism, microdontia and dens invaginatus phenotypes.
Collapse
Affiliation(s)
- Lord J.J. Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sophia Cameron-Christie
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rebecca L. Slayton
- Department of Pediatric Dentistry, University of Washington, Seattle, WA, United States
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, United States
| | | | - Steven Eliason
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Mason Sweat
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Nara Sobreira
- Institute of Genetic Medicine, John Hopkins University, Baltimore, MD, United States
| | - Wenjie Yu
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | - Piranit N. Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Elizabeth Wohler
- Institute of Genetic Medicine, John Hopkins University, Baltimore, MD, United States
| | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, University of Lagos, Lagos, Nigeria
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Collen Campbell
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | | | - David M. Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | | - Paul S. Casamassimo
- Department of Pediatric Dentistry, Ohio State University, Columbus, OH, United States
| | - Ronald Ettinger
- Department of Prosthodontics, University of Iowa, Iowa City, IA, United States
| | - Arwa Owais
- Department of Pediatric Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, United States
| | - I. van Staden
- Department of Oral Sciences, University of Otago, Dunedin, New Zealand
| | - Brad A. Amendt
- Department of Anatomy, University of Iowa, Iowa City, IA, United States
| | | | - Jeffrey C. Murray
- Department of Pediatrics University of Iowa, Iowa City, IA, United States
| | - Stephen P. Robertson
- Department of Women’s and Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
34
|
Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. BIOLOGY 2019; 8:biology8030055. [PMID: 31357447 PMCID: PMC6784142 DOI: 10.3390/biology8030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
The primary goal of cytokinesis is to produce two daughter cells, each having a full set of chromosomes. To achieve this, cells assemble a dynamic structure between segregated sister chromatids called the contractile ring, which is made up of filamentous actin, myosin-II, and other regulatory proteins. Constriction of the actomyosin ring generates a cleavage furrow that divides the cytoplasm to produce two daughter cells. Decades of research have identified key regulators and underlying molecular mechanisms; however, many fundamental questions remain unanswered and are still being actively investigated. This review summarizes the key findings, computational modeling, and recent advances in understanding of the molecular mechanisms that control the formation of the cleavage furrow and cytokinesis.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Department of Biology, New York University, New York, NY 10012, USA
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
35
|
Abstract
Oocytes of many species lack centrioles and therefore form acentriolar spindles. Despite the necessity of oocyte meiosis for successful reproduction, how these spindles mediate accurate chromosome segregation is poorly understood. We have gained insight into this process through studies of the kinesin-4 family member Kif4 in mouse oocytes. We found that Kif4 localizes to chromosomes through metaphase and then largely redistributes to the spindle midzone during anaphase, transitioning from stretches along microtubules to distinct ring-like structures; these structures then appear to fuse together by telophase. Kif4’s binding partner PRC1 and MgcRacGAP, a component of the centralspindlin complex, have a similar localization pattern, demonstrating dynamic spindle midzone organization in oocytes. Kif4 knockdown results in defective midzone formation and longer spindles, revealing new anaphase roles for Kif4 in mouse oocytes. Moreover, inhibition of Aurora B/C kinases results in Kif4 mislocalization and causes anaphase defects. Taken together, our work reveals essential roles for Kif4 during the meiotic divisions, furthering our understanding of mechanisms promoting accurate chromosome segregation in acentriolar oocytes.
Collapse
Affiliation(s)
- Carissa M Heath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
36
|
Poser E, Caous R, Gruneberg U, Barr FA. Aurora A promotes chromosome congression by activating the condensin-dependent pool of KIF4A. J Cell Biol 2019; 219:e201905194. [PMID: 31881080 PMCID: PMC7041678 DOI: 10.1083/jcb.201905194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases create phosphorylation gradients within the spindle during prometaphase and anaphase, thereby locally regulating factors that promote spindle organization, chromosome condensation and movement, and cytokinesis. We show that one such factor is the kinesin KIF4A, which is present along the chromosome axes throughout mitosis and the central spindle in anaphase. These two pools of KIF4A depend on condensin I and PRC1, respectively. Previous work has shown KIF4A is activated by Aurora B at the anaphase central spindle. However, whether or not chromosome-associated KIF4A bound to condensin I is regulated by Aurora kinases remain unclear. To determine the roles of the two different pools of KIF4A, we generated specific point mutants that are unable to interact with either condensin I or PRC1 or are deficient for Aurora kinase regulation. By analyzing these mutants, we show that Aurora A phosphorylates the condensin I-dependent pool of KIF4A and thus actively promotes chromosome congression from the spindle poles to the metaphase plate.
Collapse
Affiliation(s)
- Elena Poser
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Renaud Caous
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Voic H, Li X, Jang JH, Zou C, Sundd P, Alder J, Rojas M, Chandra D, Randell S, Mallampalli RK, Tesfaigzi Y, Ryba T, Nyunoya T. RNA sequencing identifies common pathways between cigarette smoke exposure and replicative senescence in human airway epithelia. BMC Genomics 2019; 20:22. [PMID: 30626320 PMCID: PMC6325884 DOI: 10.1186/s12864-018-5409-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/26/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is affected by genetic and environmental factors, and cigarette smoking is strongly associated with accumulation of senescent cells. In this study, we wanted to identify genes that may potentially be beneficial for cell survival in response to cigarette smoke and thereby may contribute to development of cellular senescence. RESULTS Primary human bronchial epithelial cells from five healthy donors were cultured, treated with or without 1.5% cigarette smoke extract (CSE) for 24 h or were passaged into replicative senescence. Transcriptome changes were monitored using RNA-seq in CSE and non-CSE exposed cells and those passaged into replicative senescence. We found that, among 1534 genes differentially regulated during senescence and 599 after CSE exposure, 243 were altered in both conditions, representing strong enrichment. Pathways and gene sets overrepresented in both conditions belonged to cellular processes that regulate reactive oxygen species, proteasome degradation, and NF-κB signaling. CONCLUSIONS Our results offer insights into gene expression responses during cellular aging and cigarette smoke exposure, and identify potential molecular pathways that are altered by cigarette smoke and may also promote airway epithelial cell senescence.
Collapse
Affiliation(s)
- Hannah Voic
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Xiuying Li
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Jun-Ho Jang
- 0000 0004 0454 5075grid.417046.0Cardiovascular Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA USA
| | - Chunbin Zou
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Prithu Sundd
- 0000 0004 1936 9000grid.21925.3dVascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Jonathan Alder
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Mauricio Rojas
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Divay Chandra
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Scott Randell
- 0000 0001 1034 1720grid.410711.2Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC USA
| | - Rama K. Mallampalli
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| | - Yohannes Tesfaigzi
- Lovelace Respiratory Research Institute, COPD program, Albuquerque, NM USA
| | - Tyrone Ryba
- 0000 0004 0504 9575grid.422569.eDivision of Natural Sciences, New College of Florida, Sarasota, FL USA
| | - Toru Nyunoya
- 0000 0004 1936 9000grid.21925.3dDepartment of Medicine, University of Pittsburgh, NW628 UPMC Montefiore, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA ,0000 0004 0420 3665grid.413935.9VA Pittsburgh Healthcare System, Pittsburgh, PA USA
| |
Collapse
|
38
|
Courthéoux T, Reboutier D, Vazeille T, Cremet JY, Benaud C, Vernos I, Prigent C. Microtubule nucleation during central spindle assembly requires NEDD1 phosphorylation on Serine 405 by Aurora A. J Cell Sci 2019; 132:jcs.231118. [DOI: 10.1242/jcs.231118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
During mitosis, the cell sequentially constructs two microtubule-based spindles to ensure faithful segregation of chromosomes. A bipolar spindle first pulls apart the sister chromatids, then a central spindle further separates them away. Although the assembly of the first spindle is well described, the assembly of the second remains poorly understood. We report here that the inhibition of Aurora A leads to an absence of the central spindle due to a lack of nucleation of microtubules in the midzone. In the absence of Aurora A, the HURP and NEDD1 proteins that are involved in nucleation of microtubules fail to concentrate in the midzone. HURP is an effector of RanGTP and NEDD1 serves as an anchor for the γTURC. Interestingly, Aurora A already phosphorylates them during assembly of the bipolar spindle. We show here that the expression of a NEDD1 isoform mimicking Aurora A phosphorylation is sufficient to restore microtubule nucleation in the midzone in a context of Aurora A inhibition. These results reveal a new control mechanism of nucleation of microtubules by Aurora A during assembly of the central spindle.
Collapse
Affiliation(s)
- Thibault Courthéoux
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - David Reboutier
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Thibaut Vazeille
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jean-Yves Cremet
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Christelle Benaud
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Claude Prigent
- Univ. Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Equipe labellisée Ligue 2014, F35000 Rennes, France
| |
Collapse
|
39
|
Takata H, Madung M, Katoh K, Fukui K. Cdk1-dependent phosphorylation of KIF4A at S1186 triggers lateral chromosome compaction during early mitosis. PLoS One 2018; 13:e0209614. [PMID: 30576375 PMCID: PMC6303012 DOI: 10.1371/journal.pone.0209614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Chromosome organization during cell division is achieved through the timely association of proteins with chromatin and is regulated by protein phosphorylation. Kinesin family member 4A (KIF4A) plays an important role in the chromosome organization through the formation of the chromosome scaffold structure. However, the relationship between the function of KIF4A and its phosphorylation remains unclear. Here, we demonstrate that Cdk1-dependent phosphorylation of KIF4A at S1186 is required for chromosome binding and chromosome scaffold formation. The KIF4A mutant, which is not phosphorylated at S1186, was found to localize to the nucleus during interphase but did not accumulate in the chromosome scaffold after nuclear envelope breakdown. In addition, defects in KIF4A phosphorylation were found to disrupt the interaction of KIF4A with the condensin I complex. As a result, the morphology of the chromosomes was observed to be laterally decondensed, without condensin I in the chromosome scaffold. Additionally, a defect in chromosome segregation, chromosome bridge formation, was often observed. Although both KIF4A and condensin I disappeared from the chromosomes, the chromosomal localization of condensin II was not affected. Collectively, our novel results revealed that Cdk1-dependent KIF4A phosphorylation at S1186 is a trigger for chromosomal organization during early mitosis.
Collapse
Affiliation(s)
- Hideaki Takata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
- * E-mail:
| | - Marliza Madung
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
40
|
The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene 2018; 678:90-99. [DOI: 10.1016/j.gene.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
41
|
Wan Q, Shen Y, Zhao H, Wang B, Zhao L, Zhang Y, Bu X, Wan M, Shen C. Impaired DNA double‐strand breaks repair by kinesin family member 4A inhibition renders human H1299 non‐small‐cell lung cancer cells sensitive to cisplatin. J Cell Physiol 2018; 234:10360-10371. [DOI: 10.1002/jcp.27703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Qing Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University Nanjing China
| | - Yong Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Huzi Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Bei Wang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Lei Zhao
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Yongchen Zhang
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Xiaodong Bu
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Meiling Wan
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| | - Chuanlu Shen
- Department of Pathology and Pathophysiology Medical School, Southeast University Nanjing China
| |
Collapse
|
42
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
43
|
Bartlett E, Bonfiglio JJ, Prokhorova E, Colby T, Zobel F, Ahel I, Matic I. Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Rep 2018; 24:3488-3502.e5. [PMID: 30257210 PMCID: PMC6172693 DOI: 10.1016/j.celrep.2018.08.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
Serine ADP-ribosylation (Ser-ADPr) is a recently discovered protein modification that is catalyzed by PARP1 and PARP2 when in complex with the eponymous histone PARylation factor 1 (HPF1). In addition to numerous other targets, core histone tails are primary acceptors of Ser-ADPr in the DNA damage response. Here, we show that specific canonical histone marks interfere with Ser-ADPr of neighboring residues and vice versa. Most notably, acetylation, but not methylation of H3K9, is mutually exclusive with ADPr of H3S10 in vitro and in vivo. We also broaden the O-linked ADPr spectrum by providing evidence for tyrosine ADPr on HPF1 and other proteins. Finally, we facilitate wider investigations into the interplay of histone marks with Ser-ADPr by introducing a simple approach for profiling posttranslationally modified peptides. Our findings implicate Ser-ADPr as a dynamic addition to the complex interplay of modifications that shape the histone code.
Collapse
Affiliation(s)
- Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Juan José Bonfiglio
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Evgeniia Prokhorova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany
| | - Florian Zobel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany.
| |
Collapse
|
44
|
Perchey RT, Serres MP, Nowosad A, Creff J, Callot C, Gay A, Manenti S, Margolis RL, Hatzoglou A, Besson A. p27 Kip1 regulates the microtubule bundling activity of PRC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1630-1639. [PMID: 30327204 DOI: 10.1016/j.bbamcr.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27Kip1 (p27). p27 is a cyclin-CDK inhibitor that causes cell cycle arrest in G1. However, p27 has also been involved in the regulation of G2/M progression and cytokinesis, as well as of other cellular processes, including actin and microtubule cytoskeleton dynamics. We found that p27 interferes with the ability of PRC1 to bind to microtubules, without affecting PRC1 dimerization or its capacity to interact with other partners such as KIF4. In this way, p27 inhibited microtubule bundling by PRC1 in vitro and prevented the extensive microtubule bundling phenotype caused by PRC1 overexpression in cells in culture. Finally, co-expression of p27 or a p27 mutant that does not bind cyclin-CDKs inhibited multinucleation induced by PRC1 overexpression. Together, our results suggest that p27 may participate in the regulation of mitotic progression in a CDK-independent manner by modulating PRC1 activity.
Collapse
Affiliation(s)
- Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Alexandre Gay
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Robert L Margolis
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anastassia Hatzoglou
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France.
| |
Collapse
|
45
|
Tang F, Pan MH, Lu Y, Wan X, Zhang Y, Sun SC. Involvement of Kif4a in Spindle Formation and Chromosome Segregation in Mouse Oocytes. Aging Dis 2018; 9:623-633. [PMID: 30090651 PMCID: PMC6065292 DOI: 10.14336/ad.2017.0901] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Kif4a, a member of the kinesin superfamily, has been reported to participate in a series of cellular processes such as chromosome condensation and cytokinesis during mitosis. However, the roles of KIF4a in meiosis are still unknown. In present study we found that the Kif4a protein expression decreased in maternal aged mouse oocytes. We then explored the roles of Kif4a in mouse oocyte meiosis by knockdown analysis. Kif4a was enriched at the spindle during mouse oocyte maturation. By specific knock down of the Kif4a using morpholino microinjection, we found that the disruption of Kif4a caused the failure of polar body extrusion. Further analysis indicated that Kif4a might affect the spindle morphology and chromosome alignment in the mouse oocytes, and this might be due to the regulation of tubulin acetylation. Moreover, our results showed that an increased proportion of aneuploidy in the Kif4a knock down oocytes, and this might be due to the loss of kinetochore-microtubule attachment. Taken together, these results suggested that Kif4a possibly regulated mouse oocyte meiosis through its effects on the spindle organization and accurate chromosome segregation, and the loss of Kif4a might be related with aneuploidy of aging oocytes.
Collapse
Affiliation(s)
- Feng Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Chen J, Castelvecchi GD, Li-Villarreal N, Raught B, Krezel AM, McNeill H, Solnica-Krezel L. Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 2018; 45:376-391.e5. [PMID: 29738714 PMCID: PMC5983389 DOI: 10.1016/j.devcel.2018.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 01/15/2023]
Abstract
Atypical cadherin Dachsous (Dchs) is a conserved regulator of planar cell polarity, morphogenesis, and tissue growth during animal development. Dchs functions in part by regulating microtubules by unknown molecular mechanisms. Here we show that maternal zygotic (MZ) dchs1b zebrafish mutants exhibit cleavage furrow progression defects and impaired midzone microtubule assembly associated with decreased microtubule turnover. Mechanistically, Dchs1b interacts via a conserved motif in its intracellular domain with the tetratricopeptide motifs of Ttc28 and regulates its subcellular distribution. Excess Ttc28 impairs cleavages and decreases microtubule turnover, while ttc28 inactivation increases turnover. Moreover, ttc28 deficiency in dchs1b mutants suppresses the microtubule dynamics and midzone microtubule assembly defects. Dchs1b also binds to Aurora B, a known regulator of cleavages and microtubules. Embryonic cleavages in MZdchs1b mutants exhibit increased, and in MZttc28 mutants decreased, sensitivity to Aurora B inhibition. Thus, Dchs1b regulates microtubule dynamics and embryonic cleavages by interacting with Ttc28 and Aurora B.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gina D Castelvecchi
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Andrzej M Krezel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis. Oncogene 2018; 37:3562-3574. [PMID: 29563611 PMCID: PMC6021368 DOI: 10.1038/s41388-018-0191-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 11/09/2022]
Abstract
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (HIPK2) binding of chromosomal DNA, both H2B and HIPK2 localize at the midbody independently of nucleic acids. Instead, by using mitotic kinase-specific inhibitors in a spatio-temporal regulated manner, we found that Aurora-B kinase activity is required to recruit both HIPK2 and H2B to the midbody. Molecular characterization showed that Aurora-B directly binds and phosphorylates H2B at Ser32 while indirectly recruits HIPK2 through the central spindle components MgcRacGAP and PRC1. Thus, among different cytokinetic functions, Aurora-B separately recruits HIPK2 and H2B to the midbody and these activities contribute to faithful cytokinesis.
Collapse
|
48
|
Ohashi A, Ohori M, Iwai K. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission. Oncotarget 2018; 7:79964-79980. [PMID: 27835888 PMCID: PMC5346764 DOI: 10.18632/oncotarget.13206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659-2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.
Collapse
Affiliation(s)
- Akihiro Ohashi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Momoko Ohori
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| | - Kenichi Iwai
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Japan
| |
Collapse
|
49
|
Welburn JPI, Jeyaprakash AA. Mechanisms of Mitotic Kinase Regulation: A Structural Perspective. Front Cell Dev Biol 2018; 6:6. [PMID: 29459892 PMCID: PMC5807344 DOI: 10.3389/fcell.2018.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/19/2018] [Indexed: 12/18/2022] Open
Abstract
Protein kinases are major regulators of mitosis, with over 30% of the mitotic proteome phosphorylated on serines, threonines and tyrosines. The human genome encodes for 518 kinases that have a structurally conserved catalytic domain and includes about a dozen of cell division specific ones. Yet each kinase has unique structural features that allow their distinct substrate recognition and modes of regulation. These unique regulatory features determine their accurate spatio-temporal activation critical for correct progression through mitosis and are exploited for therapeutic purposes. In this review, we will discuss the principles of mitotic kinase activation and the structural determinants that underlie functional specificity.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| | - A Arockia Jeyaprakash
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
50
|
Adamowicz M, Morgan CC, Haubner BJ, Noseda M, Collins MJ, Abreu Paiva M, Srivastava PK, Gellert P, Razzaghi B, O’Gara P, Raina P, Game L, Bottolo L, Schneider MD, Harding SE, Penninger J, Aitman TJ. Functionally Conserved Noncoding Regulators of Cardiomyocyte Proliferation and Regeneration in Mouse and Human. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001805. [DOI: 10.1161/circgen.117.001805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
The adult mammalian heart has little regenerative capacity after myocardial infarction (MI), whereas neonatal mouse heart regenerates without scarring or dysfunction. However, the underlying pathways are poorly defined. We sought to derive insights into the pathways regulating neonatal development of the mouse heart and cardiac regeneration post-MI.
Methods and Results:
Total RNA-seq of mouse heart through the first 10 days of postnatal life (referred to as P3, P5, P10) revealed a previously unobserved transition in microRNA (miRNA) expression between P3 and P5 associated specifically with altered expression of protein-coding genes on the focal adhesion pathway and cessation of cardiomyocyte cell division. We found profound changes in the coding and noncoding transcriptome after neonatal MI, with evidence of essentially complete healing by P10. Over two-thirds of each of the messenger RNAs, long noncoding RNAs, and miRNAs that were differentially expressed in the post-MI heart were differentially expressed during normal postnatal development, suggesting a common regulatory pathway for normal cardiac development and post-MI cardiac regeneration. We selected exemplars of miRNAs implicated in our data set as regulators of cardiomyocyte proliferation. Several of these showed evidence of a functional influence on mouse cardiomyocyte cell division. In addition, a subset of these miRNAs, miR-144-3p, miR-195a-5p, miR-451a, and miR-6240 showed evidence of functional conservation in human cardiomyocytes.
Conclusions:
The sets of messenger RNAs, miRNAs, and long noncoding RNAs that we report here merit further investigation as gatekeepers of cell division in the postnatal heart and as targets for extension of the period of cardiac regeneration beyond the neonatal period.
Collapse
Affiliation(s)
- Martyna Adamowicz
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Claire C. Morgan
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Bernhard J. Haubner
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Michela Noseda
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Melissa J. Collins
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Marta Abreu Paiva
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Prashant K. Srivastava
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Pascal Gellert
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Bonnie Razzaghi
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Peter O’Gara
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Priyanka Raina
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Laurence Game
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Leonardo Bottolo
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Michael D. Schneider
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Sian E. Harding
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Josef Penninger
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| | - Timothy J. Aitman
- From the Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Scotland, United Kingdom (T.J.A.); National Heart and Lung Institute (M.A., C.C.M., M.N., M.A.P., P.O., M.D.S., S.E.H.), Department of Medicine (C.C.M., M.J.C., P.K.S., B.R., P.R., T.J.A.), Department of Mathematics (L.B.), Imperial College London, United Kingdom; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria (B.J.H., J.P.)
| |
Collapse
|