1
|
Kang H, Babola TA, Kanold PO. Rapid rebalancing of co-tuned ensemble activity in the auditory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599418. [PMID: 38948779 PMCID: PMC11212947 DOI: 10.1101/2024.06.17.599418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Sensory information is represented by small varying neuronal ensembles in sensory cortices. In the auditory cortex (AC) repeated presentations of the same sound activate differing ensembles indicating high trial-by trial variability in activity even though the sounds activate the same percept. Efficient processing of complex acoustic signals requires that these sparsely distributed neuronal ensembles actively interact in order to provide a constant percept. Thus, the differing ensembles might interact to process the incoming sound inputs. Here, we probe interactions within and across ensembles by combining in vivo 2-photon Ca2+ imaging and holographic optogenetic stimulation to study how increased activity of single cells level affects the cortical network. We stimulated a small number of neurons sharing the same frequency preference alongside the presentation of a target pure tone, further increasing their tone-evoked activity. We found that other non-stimulated co-tuned neurons decreased their tone-evoked activity when the frequency of the presented pure tone matched to their tuning property, while non co-tuned neurons were unaffected. Activity decrease was greater for non-stimulated co-tuned neurons with higher frequency selectivity. Co-tuned and non co-tuned neurons were spatially intermingled. Our results shows that co-tuned ensembles communicated and balanced their total activity across the larger network. The rebalanced network activity due to external stimulation remained constant. These effects suggest that co-tuned ensembles in AC interact and rapidly rebalance their activity to maintain encoding homeostasis, and that the rebalanced network is persistent.
Collapse
Affiliation(s)
- HiJee Kang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Travis A. Babola
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20215
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 20215
| |
Collapse
|
2
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Karpova A, Aly AAA, Marosi EL, Mikulovic S. Fiber-based in vivo imaging: unveiling avenues for exploring mechanisms of synaptic plasticity and neuronal adaptations underlying behavior. NEUROPHOTONICS 2024; 11:S11507. [PMID: 38390518 PMCID: PMC10883581 DOI: 10.1117/1.nph.11.s1.s11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
In recent decades, various subfields within neuroscience, spanning molecular, cellular, and systemic dimensions, have significantly advanced our understanding of the elaborate molecular and cellular mechanisms that underpin learning, memory, and adaptive behaviors. There have been notable advancements in imaging techniques, particularly in reaching superficial brain structures. This progress has led to their widespread adoption in numerous laboratories. However, essential physiological and cognitive processes, including sensory integration, emotional modulation of motivated behavior, motor regulation, learning, and memory consolidation, are intricately encoded within deeper brain structures. Hence, visualization techniques such as calcium imaging using miniscopes have gained popularity for studying brain activity in unrestrained animals. Despite its utility, miniscope technology is associated with substantial brain tissue damage caused by gradient refractive index lens implantation. Furthermore, its imaging capabilities are primarily confined to the neuronal somata level, thus constraining a comprehensive exploration of subcellular processes underlying adaptive behaviors. Consequently, the trajectory of neuroscience's future hinges on the development of minimally invasive optical fiber-based endo-microscopes optimized for cellular, subcellular, and molecular imaging within the intricate depths of the brain. In pursuit of this goal, select research groups have invested significant efforts in advancing this technology. In this review, we present a perspective on the potential impact of this innovation on various aspects of neuroscience, enabling the functional exploration of in vivo cellular and subcellular processes that underlie synaptic plasticity and the neuronal adaptations that govern behavior.
Collapse
Affiliation(s)
- Anna Karpova
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ahmed A. A. Aly
- Leibniz Institute for Neurobiology, RG Neuroplasticity, Magdeburg, Germany
| | - Endre Levente Marosi
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
| | - Sanja Mikulovic
- Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, RG Cognition and Emotion, Magdeburg, Germany
- German Centre for Mental Health (DZPG), Magdeburg, Germany
| |
Collapse
|
4
|
Naveed K, Rashidi-Ranjbar N, Kumar S, Zomorrodi R, Blumberger DM, Fischer CE, Sanches M, Mulsant BH, Pollock BG, Voineskos AN, Rajji TK. Effect of dorsolateral prefrontal cortex structural measures on neuroplasticity and response to paired-associative stimulation in Alzheimer's dementia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230233. [PMID: 38853564 PMCID: PMC11343312 DOI: 10.1098/rstb.2023.0233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 06/11/2024] Open
Abstract
Long-term potentiation (LTP)-like activity can be induced by stimulation protocols such as paired associative stimulation (PAS). We aimed to determine whether PAS-induced LTP-like activity (PAS-LTP) of the dorsolateral prefrontal cortex (DLPFC) is associated with cortical thickness and other structural measures impaired in Alzheimer's dementia (AD). We also explored longitudinal relationships between these brain structures and PAS-LTP response after a repetitive PAS (rPAS) intervention. Mediation and regression analyses were conducted using data from randomized controlled trials with AD and healthy control participants. PAS-electroencephalography assessed DLPFC PAS-LTP. DLPFC thickness and surface area were acquired from T1-weighted magnetic resonance imaging. Fractional anisotropy and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF)-a tract important to induce PAS-LTP-were measured with diffusion-weighted imaging. AD participants exhibited reduced DLPFC thickness and increased SLF MD. There was also some evidence that reduction in DLPFC thickness mediates DLPFC PAS-LTP impairment. Longitudinal analyses showed preliminary evidence that SLF MD, and to a lesser extent DLPFC thickness, is associated with DLPFC PAS-LTP response to active rPAS. This study expands our understanding of the relationships between brain structural changes and neuroplasticity. It provides promising evidence for a structural predictor to improving neuroplasticity in AD with neurostimulation. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- K. Naveed
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - N. Rashidi-Ranjbar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - S. Kumar
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - R. Zomorrodi
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
| | - D. M. Blumberger
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - C. E. Fischer
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, 209 Victoria Street, Toronto, OntarioM5B 1T8, Canada
| | - M. Sanches
- Biostatistics Core, Centre for Addiction and Mental Health, 60 White Squirrel Way, Toronto, OntarioM6J 1H4, Canada
| | - B. H. Mulsant
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - B. G. Pollock
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - A. N. Voineskos
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| | - T. K. Rajji
- Temerty Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, OntarioM5S 1A8, Canada
- Toronto Dementia Research Alliance, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
- Campbell Family Mental Health Research Institute, CAMH, 479 Spadina Avenue, Toronto, OntarioM5S 2S1, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, OntarioM5T 1R8, Canada
| |
Collapse
|
5
|
Vitureira N, Rafael A, Abudara V. P2X7 receptors and pannexin1 hemichannels shape presynaptic transmission. Purinergic Signal 2024; 20:223-236. [PMID: 37713157 PMCID: PMC11189373 DOI: 10.1007/s11302-023-09965-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Over the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts. In this review, we will discuss the contribution of ATP, P2X7 receptors, and pannexin hemichannels to the modulation of presynaptic strength and its impact on motor function, sensory processing, synaptic plasticity, and neuroglial communication, with special focus on the P2X7 receptor/pannexin hemichannel interplay. We also address major hypotheses about the role of this interaction in physiological and pathological circumstances.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Alberto Rafael
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Burch AM, Garcia JD, O'Leary H, Haas A, Orfila JE, Tiemeier E, Chalmers N, Smith KR, Quillinan N, Herson PS. TRPM2 and CaMKII Signaling Drives Excessive GABAergic Synaptic Inhibition Following Ischemia. J Neurosci 2024; 44:e1762232024. [PMID: 38565288 PMCID: PMC11079974 DOI: 10.1523/jneurosci.1762-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.
Collapse
Affiliation(s)
- Amelia M Burch
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Heather O'Leary
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Ami Haas
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
7
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
8
|
Chen JH, Xu N, Qi L, Yan HH, Wan FY, Gao F, Fu C, Cang C, Lu B, Bi GQ, Tang AH. Reduced lysosomal density in neuronal dendrites mediates deficits in synaptic plasticity in Huntington's disease. Cell Rep 2023; 42:113573. [PMID: 38096054 DOI: 10.1016/j.celrep.2023.113573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Huntington's disease (HD) usually causes cognitive disorders, including learning difficulties, that emerge before motor symptoms. Mutations related to lysosomal trafficking are linked to the pathogenesis of neurological diseases, whereas the cellular mechanisms remain elusive. Here, we discover a reduction in the dendritic density of lysosomes in the hippocampus that correlates with deficits in synaptic plasticity and spatial learning in early CAG-140 HD model mice. We directly manipulate intraneuronal lysosomal positioning with light-induced CRY2:CIB1 dimerization and demonstrate that lysosomal abundance in dendrites positively modulates long-term potentiation of glutamatergic synapses onto the neuron. This modulation depends on lysosomal Ca2+ release, which further promotes endoplasmic reticulum (ER) entry into spines. Importantly, optogenetically restoring lysosomal density in dendrites rescues the synaptic plasticity deficit in hippocampal slices of CAG-140 mice. Our data reveal dendritic lysosomal density as a modulator of synaptic plasticity and suggest a role of lysosomal mispositioning in cognitive decline in HD.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Na Xu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Lei Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Hao-Hao Yan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Fang-Yan Wan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Feng Gao
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chuanhai Fu
- CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chunlei Cang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Guo-Qiang Bi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Guangdong 518055, China
| | - Ai-Hui Tang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Neurodegenerative Disorder Research Center and Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
9
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Gutiérrez-Vera B, Reyes-García SE, Escobar ML. Brief environmental enrichment elicits metaplasticity on the insular cortex in vivo and reduces the strength of conditioned taste aversion. Neurobiol Learn Mem 2023; 205:107840. [PMID: 37805119 DOI: 10.1016/j.nlm.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Environmental enrichment (EE) is known to improve memory and cognition and modulate the impact of aversive stimuli in animals, promoting the development of resilience to stressful situations. Likewise, it is known that EE can modulate synaptic plasticity as is the case of long-term potentiation (LTP). These findings have been described initially in ex vivo preparations, suggesting that the effects of EE are the result of an early modification of the synaptic excitability and transmission. In this regard, it is known that metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. In addition, we have shown that CTA extinction allows the induction but not the maintenance of IC-LTP of the Bla-IC pathway. Recently, we also showed that prior exposure to environmental enrichment for three weeks reduces the strength of CTA, restoring the brain-derived neurotrophic factor (BDNF) levels in the IC. The present study aimed to analyze the effects of brief exposure to an enriched environment on the strength of aversive memory, as well as on the in vivo IC-LTP. To do so, adult rats were exposed for seven days to an EE, either before CTA training or LTP induction in the Bla-IC pathway. Our results demonstrate that a seven-day exposure to an enriched environment attenuates the aversive response to a strong CTA and allows the induction but not the maintenance of LTP in the insular cortex. These findings provide evidence that metaplastic regulation in a neocortical region takes part in the mechanisms through which brief exposure to enriched environments attenuates an aversive response.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Vera
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Salma E Reyes-García
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico.
| |
Collapse
|
11
|
Bergoin R, Torcini A, Deco G, Quoy M, Zamora-López G. Inhibitory neurons control the consolidation of neural assemblies via adaptation to selective stimuli. Sci Rep 2023; 13:6949. [PMID: 37117236 PMCID: PMC10147639 DOI: 10.1038/s41598-023-34165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Brain circuits display modular architecture at different scales of organization. Such neural assemblies are typically associated to functional specialization but the mechanisms leading to their emergence and consolidation still remain elusive. In this paper we investigate the role of inhibition in structuring new neural assemblies driven by the entrainment to various inputs. In particular, we focus on the role of partially synchronized dynamics for the creation and maintenance of structural modules in neural circuits by considering a network of excitatory and inhibitory [Formula: see text]-neurons with plastic Hebbian synapses. The learning process consists of an entrainment to temporally alternating stimuli that are applied to separate regions of the network. This entrainment leads to the emergence of modular structures. Contrary to common practice in artificial neural networks-where the acquired weights are typically frozen after the learning session-we allow for synaptic adaptation even after the learning phase. We find that the presence of inhibitory neurons in the network is crucial for the emergence and the post-learning consolidation of the modular structures. Indeed networks made of purely excitatory neurons or of neurons not respecting Dale's principle are unable to form or to maintain the modular architecture induced by the stimuli. We also demonstrate that the number of inhibitory neurons in the network is directly related to the maximal number of neural assemblies that can be consolidated, supporting the idea that inhibition has a direct impact on the memory capacity of the neural network.
Collapse
Affiliation(s)
- Raphaël Bergoin
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France.
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain.
| | - Alessandro Torcini
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, 2 Av. Adolphe Chauvin, 95032, Cergy-Pontoise, France
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010, Barcelona, Spain
| | - Mathias Quoy
- ETIS, UMR 8051, ENSEA, CY Cergy Paris Université, CNRS, 6 Av. du Ponceau, 95000, Cergy-Pontoise, France
- IPAL, CNRS, 1 Fusionopolis Way #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Gorka Zamora-López
- Center for Brain and Cognition, Department of Information and Communications Technologies, Pompeu Fabra University, Carrer Ramón Trias i Fargas 25-27, 08005, Barcelona, Spain
| |
Collapse
|
12
|
Tanim MMH, Templin Z, Zhao F. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems. MICROMACHINES 2023; 14:235. [PMID: 36837935 PMCID: PMC9963886 DOI: 10.3390/mi14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Natural organic materials such as protein and carbohydrates are abundant in nature, renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging neuromorphic computing systems with energy efficient operation and environmentally friendly disposal. These artificial synaptic devices are based on memristors or transistors with the memristive layer or gate dielectric formed by natural organic materials. The fundamental requirement for these synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses. This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based on natural organic materials and provides a useful guidance for testing and investigating more of such devices.
Collapse
|
13
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
14
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Cheng X, Yan Z, Su Z, Liu J. The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:962974. [PMID: 36385772 PMCID: PMC9650414 DOI: 10.3389/fnmol.2022.962974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Deciphering the physiological function of TGF-β (the transforming growth factor beta) family ligands is import for understanding the role of TGF-β in animals' development and aging. Here, we investigate the function of TIG-2, one of the ligands in Caenorhabditis elegans TGF-β family, in animals' behavioral modulation. Our results show that a loss-of-function mutation in tig-2 gene result in slower locomotion speed in the early adulthood and an increased density of cholinergic synapses, but a decreased neurotransmitter release at neuromuscular junctions (NMJs). Further tissue-specific rescue results reveal that neuronal and intestinal TIG-2 are essential for the formation of cholinergic synapses at NMJs. Interestingly, tig-2(ok3416) mutant is characterized with reduced muscle mitochondria content and adenosine triphosphate (ATP) production, although the function of muscle acetylcholine receptors and the morphology muscle fibers in the mutant are comparable to that in wild-type animals. Our result suggests that TIG-2 from different neuron and intestine regulates worm locomotion by modulating synaptogenesis and neurotransmission at NMJs, as well as energy metabolism in postsynaptic muscle cells.
Collapse
Affiliation(s)
- Xinran Cheng
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Zhenzhen Yan
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zexiong Su
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, Thoumine O, Letellier M. miR
‐124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J 2022; 41:e109012. [PMID: 35875872 PMCID: PMC9574720 DOI: 10.15252/embj.2021109012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse‐specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine‐apparatus protein synaptopodin under the regulation of miR‐124. Using genetic manipulations to alter synaptopodin expression or regulation by miR‐124, we show that synaptopodin behaves as a “postsynaptic tag” whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input‐specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Anaïs Soula
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Sébastien Benquet
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Béatrice Tessier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Christel Poujol
- University of Bordeaux CNRS INSERM Bordeaux Imaging Center BIC UMS 3420, US 4 Bordeaux France
| | - Alexandre Favereaux
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Olivier Thoumine
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Mathieu Letellier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| |
Collapse
|
17
|
Moorjani S, Walvekar S, Fetz EE, Perlmutter SI. Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proc Natl Acad Sci U S A 2022; 119:e2116321119. [PMID: 35759657 PMCID: PMC9271159 DOI: 10.1073/pnas.2116321119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/29/2022] [Indexed: 12/30/2022] Open
Abstract
Correlated activity of neurons can lead to long-term strengthening or weakening of the connections between them. In addition, the behavioral context, imparted by execution of physical movements or the presence of a reward, can modulate the plasticity induced by Hebbian mechanisms. In the present study, we have combined behavior and induced neuronal correlations to strengthen connections in the motor cortex of adult behaving monkeys. Correlated activity was induced using an electrical-conditioning protocol in which stimuli gated by voluntary movements were used to produce coactivation of neurons at motor-cortical sites involved in those movements. Delivery of movement-dependent stimulation resulted in small increases in the strength of associated cortical connections immediately after conditioning. Remarkably, when paired with further repetition of the movements that gated the conditioning stimuli, there were substantially larger gains in the strength of cortical connections, which occurred in a use-dependent manner, without delivery of additional conditioning stimulation. In the absence of such movements, little change was observed in the strength of motor-cortical connections. Performance of the motor behavior in the absence of conditioning also did not produce any changes in connectivity. Our results show that combining movement-gated stimulation with further natural use of the "conditioned" pathways after stimulation ends can produce use-dependent strengthening of connections in adult primates, highlighting an important role for behavior in cortical plasticity. Our data also provide strong support for combining movement-gated stimulation with use-dependent physical rehabilitation for strengthening connections weakened by a stroke or spinal cord injury.
Collapse
Affiliation(s)
- Samira Moorjani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Sarita Walvekar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Eberhard E Fetz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| | - Steve I Perlmutter
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
- Center for Neurotechnology, University of Washington, Seattle, WA 98195
| |
Collapse
|
18
|
Boutin ME, Strong CE, Van Hese B, Hu X, Itkin Z, Chen YC, LaCroix A, Gordon R, Guicherit O, Carromeu C, Kundu S, Lee E, Ferrer M. A multiparametric calcium signal screening platform using iPSC-derived cortical neural spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:209-218. [PMID: 35092840 PMCID: PMC9177534 DOI: 10.1016/j.slasd.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Discovery of therapeutics for neurological diseases is hampered by the lack of predictive in vitro and in vivo models. Traditionally, in vitro assays rely on engineered cell lines grown two-dimensionally (2D) outside a physiological tissue context, which makes them very amenable for large scale drug screening but reduces their relevance to in vivo neurophysiology. In recent years, three-dimensional (3D) neural cell culture models derived from human induced pluripotent stem cells (iPSCs) have been developed as an in vitro assay platform to investigate brain development, neurological diseases, and for drug screening. iPSC-derived neural spheroids or organoids can be developed to include complex neuronal and glial cell populations and display spontaneous, synchronous activity, which is a hallmark of in vivo neural communication. In this report we present a proof-of-concept study evaluating 3D iPSC-derived cortical neural spheroids as a physiologically- and pharmacologically-relevant high-throughput screening (HTS) platform and investigate their potential for use for therapeutic development. To this end, a library of 687 neuroactive compounds were tested in a phenotypic screening paradigm which measured calcium activity as a functional biomarker for neural modulation through fluctuations in calcium fluorescence. Pharmacological responses of cortical neural spheroids were analyzed using a multi-parametric approach, whereby seven peak characteristics from the calcium activity in each well were quantified and incorporated into principal component analysis and Sammon mapping to measure compound response. Here, we describe the implementation of the 687-compound library screen and data analysis demonstrating that iPSC-derived cortical spheroids are a robust and information-rich assay platform for HTS.
Collapse
Affiliation(s)
- Molly E Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA; Ecovative Design, 70 Cohoes Avenue, Green Island, NY, USA
| | - Caroline E Strong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | | | | | | | - Srikanya Kundu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Emily Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
19
|
Rho-Rho-Kinase Regulates Ras-ERK Signaling Through SynGAP1 for Dendritic Spine Morphology. Neurochem Res 2022; 47:2757-2772. [PMID: 35624196 DOI: 10.1007/s11064-022-03623-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The structural plasticity of dendritic spines plays a critical role in NMDA-induced long-term potentiation (LTP) in the brain. The small GTPases RhoA and Ras are considered key regulators of spine morphology and enlargement. However, the regulatory interaction between RhoA and Ras underlying NMDA-induced spine enlargement is largely unknown. In this study, we found that Rho-kinase/ROCK, an effector of RhoA, phosphorylated SynGAP1 (a synaptic Ras-GTPase activating protein) at Ser842 and increased its interaction with 14-3-3ζ, thereby activating Ras-ERK signaling in a reconstitution system in HeLa cells. We also found that the stimulation of NMDA receptor by glycine treatment for LTP induction stimulated SynGAP1 phosphorylation, Ras-ERK activation, spine enlargement and SynGAP1 delocalization from the spines in striatal neurons, and these effects were prevented by Rho-kinase inhibition. Rho-kinase-mediated phosphorylation of SynGAP1 appeared to increase its dissociation from PSD95, a postsynaptic scaffolding protein located at postsynaptic density, by forming a complex with 14-3-3ζ. These results suggest that Rho-kinase phosphorylates SynGAP1 at Ser842, thereby activating the Ras-ERK pathway for NMDA-induced morphological changes in dendritic spines.
Collapse
|
20
|
Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease. Prog Neurobiol 2022; 214:102280. [PMID: 35525373 DOI: 10.1016/j.pneurobio.2022.102280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the old adult and characterized by progressive cognitive decline and neuronal damage. The mammalian Ste20-like kinase1/2 (MST1/2) is a core component in Hippo signaling, which regulates neural stem cell proliferation, neuronal death and neuroinflammation. However, whether MST1/2 is involved in the occurrence and development of AD remains unknown. In this study we reported that the activity of MST1 was increased with Aβ accumulation in the hippocampus of 5xFAD mice. Overexpression of MST1 induced AD-like phenotype in normal mice and accelerated cognitive decline, synaptic plasticity damage and neuronal apoptosis in 2-month-old 5xFAD mice, but did not significantly affect Aβ levels. Mechanistically, MST1 associated with p53 and promoted neuronal apoptosis by phosphorylation and activation of p53, while p53 knockout largely reversed MST1-induced AD-like cognitive deficits. Importantly, either genetic knockdown or chemical inactivation of MST1 could significantly improve cognitive deficits and neuronal apoptosis in 7-month-old 5xFAD mice. Our results support the idea that MST1-mediated neuronal apoptosis is an essential mechanism of cognitive deficits and neuronal loss for AD, and manipulating the MST1 activity as a potential strategy will shed light on clinical treatment for AD or other diseases caused by neuronal injury.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Yingchun Shang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Enlin Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Xinxin Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Qiyue Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Chenxi Qian
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China.
| | - Shian Wu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
21
|
Grasso P. Harnessing the Power of Leptin: The Biochemical Link Connecting Obesity, Diabetes, and Cognitive Decline. Front Aging Neurosci 2022; 14:861350. [PMID: 35527735 PMCID: PMC9072663 DOI: 10.3389/fnagi.2022.861350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this review, the current understanding of leptin’s role in energy balance, glycemic regulation, and cognitive function is examined, and its involvement in maintaining the homeostatic “harmony” of these physiologies is explored. The effects of exercise on circulating leptin levels are summarized, and the results of clinical application of leptin to metabolic disease and neurologic dysfunction are reviewed. Finally, pre-clinical evidence is presented which suggests that synthetic peptide leptin mimetics may be useful in resolving not only the leptin resistance associated with common obesity and other elements of metabolic syndrome, but also the peripheral insulin resistance characterizing type 2 diabetes mellitus, and the central insulin resistance associated with certain neurologic deficits in humans.
Collapse
Affiliation(s)
- Patricia Grasso
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Patricia Grasso,
| |
Collapse
|
22
|
Chen H, Xie L, Wang Y, Zhang H. Postsynaptic Potential Energy as Determinant of Synaptic Plasticity. Front Comput Neurosci 2022; 16:804604. [PMID: 35250524 PMCID: PMC8891168 DOI: 10.3389/fncom.2022.804604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic energy can be used as a unifying principle to control neuronal activity. However, whether and how metabolic energy alone can determine the outcome of synaptic plasticity remains unclear. This study proposes a computational model of synaptic plasticity that is completely determined by energy. A simple quantitative relationship between synaptic plasticity and postsynaptic potential energy is established. Synaptic weight is directly proportional to the difference between the baseline potential energy and the suprathreshold potential energy and is constrained by the maximum energy supply. Results show that the energy constraint improves the performance of synaptic plasticity and avoids setting the hard boundary of synaptic weights. With the same set of model parameters, our model can reproduce several classical experiments in homo- and heterosynaptic plasticity. The proposed model can explain the interaction mechanism of Hebbian and homeostatic plasticity at the cellular level. Homeostatic synaptic plasticity at different time scales coexists. Homeostatic plasticity operating on a long time scale is caused by heterosynaptic plasticity and, on the same time scale as Hebbian synaptic plasticity, is caused by the constraint of energy supply.
Collapse
Affiliation(s)
- Huanwen Chen
- School of Automation, Central South University, Changsha, China
- *Correspondence: Huanwen Chen
| | - Lijuan Xie
- Institute of Physiology and Psychology, School of Marxism, Changsha University of Science and Technology, Changsha, China
| | - Yijun Wang
- School of Automation, Central South University, Changsha, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha, China
| |
Collapse
|
23
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
24
|
Taylor HBC, Jeans AF. Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease. Front Cell Neurosci 2021; 15:782768. [PMID: 34955753 PMCID: PMC8702499 DOI: 10.3389/fncel.2021.782768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) regulates synaptic strength both pre- and postsynaptically to ensure stability and efficient information transfer in neural networks. A number of neurological diseases have been associated with deficits in HSP, particularly diseases characterised by episodic network instability such as migraine and epilepsy. Recently, it has become apparent that HSP also plays a role in many neurodegenerative diseases. In this mini review, we present an overview of the evidence linking HSP to each of the major neurodegenerative diseases, finding that HSP changes in each disease appear to belong to one of three broad functional categories: (1) deficits in HSP at degenerating synapses that contribute to pathogenesis or progression; (2) HSP induced in a heterosynaptic or cell non-autonomous manner to support the function of networks of which the degenerating synapses or cells are part; and (3) induction of HSP within the degenerating population of synapses to preserve function and to resist the impact of synapse loss. Understanding the varied manifestations of HSP in neurodegeneration will not only aid understanding mechanisms of disease but could also inspire much-needed novel approaches to therapy.
Collapse
Affiliation(s)
| | - Alexander F. Jeans
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Srinivasan B, Samaddar S, Mylavarapu SVS, Clement JP, Banerjee S. Homeostatic scaling is driven by a translation-dependent degradation axis that recruits miRISC remodeling. PLoS Biol 2021; 19:e3001432. [PMID: 34813590 PMCID: PMC8610276 DOI: 10.1371/journal.pbio.3001432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic scaling in neurons has been attributed to the individual contribution of either translation or degradation; however, there remains limited insight toward understanding how the interplay between the two processes effectuates synaptic homeostasis. Here, we report that a codependence between protein synthesis and degradation mechanisms drives synaptic homeostasis, whereas abrogation of either prevents it. Coordination between the two processes is achieved through the formation of a tripartite complex between translation regulators, the 26S proteasome, and the miRNA-induced silencing complex (miRISC) components such as Argonaute, MOV10, and Trim32 on actively translating transcripts or polysomes. The components of this ternary complex directly interact with each other in an RNA-dependent manner. Disruption of polysomes abolishes this ternary interaction, suggesting that translating RNAs facilitate the combinatorial action of the proteasome and the translational apparatus. We identify that synaptic downscaling involves miRISC remodeling, which entails the mTORC1-dependent translation of Trim32, an E3 ligase, and the subsequent degradation of its target, MOV10 via the phosphorylation of p70 S6 kinase. We find that the E3 ligase Trim32 specifically polyubiquitinates MOV10 for its degradation during synaptic downscaling. MOV10 degradation alone is sufficient to invoke downscaling by enhancing Arc translation through its 3' UTR and causing the subsequent removal of postsynaptic AMPA receptors. Synaptic scaling was occluded when we depleted Trim32 and overexpressed MOV10 in neurons, suggesting that the Trim32-MOV10 axis is necessary for synaptic downscaling. We propose a mechanism that exploits a translation-driven protein degradation paradigm to invoke miRISC remodeling and induce homeostatic scaling during chronic network activity.
Collapse
Affiliation(s)
| | | | | | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | |
Collapse
|
26
|
Chipman PH, Fung CCA, Pazo Fernandez A, Sawant A, Tedoldi A, Kawai A, Ghimire Gautam S, Kurosawa M, Abe M, Sakimura K, Fukai T, Goda Y. Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. eLife 2021; 10:70818. [PMID: 34693906 PMCID: PMC8594917 DOI: 10.7554/elife.70818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Experience-dependent plasticity is a key feature of brain synapses for which neuronal N-Methyl-D-Aspartate receptors (NMDARs) play a major role, from developmental circuit refinement to learning and memory. Astrocytes also express NMDARs, although their exact function has remained controversial. Here, we identify in mouse hippocampus, a circuit function for GluN2C NMDAR, a subtype highly expressed in astrocytes, in layer-specific tuning of synaptic strengths in CA1 pyramidal neurons. Interfering with astrocyte NMDAR or GluN2C NMDAR activity reduces the range of presynaptic strength distribution specifically in the stratum radiatum inputs without an appreciable change in the mean presynaptic strength. Mathematical modeling shows that narrowing of the width of presynaptic release probability distribution compromises the expression of long-term synaptic plasticity. Our findings suggest a novel feedback signaling system that uses astrocyte GluN2C NMDARs to adjust basal synaptic weight distribution of Schaffer collateral inputs, which in turn impacts computations performed by the CA1 pyramidal neuron.
Collapse
Affiliation(s)
| | - Chi Chung Alan Fung
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | | | - Angelo Tedoldi
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Kawai
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | | | | | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoki Fukai
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| |
Collapse
|
27
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
28
|
Urrieta E, Escobar ML. Metaplastic regulation of neocortical long-term depression in vivo is sensitive to distinct phases of conditioned taste aversion. Neurobiol Learn Mem 2021; 182:107449. [PMID: 33915300 DOI: 10.1016/j.nlm.2021.107449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Accumulated evidence has proposed that metaplasticity contributes to network function and cognitive processes such as learning and memory. In this regard, it has been observed that training in several behavioral tasks modifies the possibility to induce subsequent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). For instance, our previous studies have shown that conditioned taste aversion (CTA) training prevents the induction of in vivo LTP in the projection from the basolateral nucleus of the amygdala to the insular cortex (BLA-IC). Likewise, we reported that extinction of CTA allows induction but not maintenance of LTP in the same pathway. Besides, we showed that it is possible to express in vivo low-frequency stimulation LTD in the BLA-IC projection and that its induction prior to CTA training facilitates the extinction of this task. However, until now, little is known about the participation of LTD on metaplastic processes. The present study aimed to analyze whether CTA training modifies the expression of in vivo LTD in the BLA-IC projection. To do so, animals received low-frequency stimulation to induce IC-LTD 48 h after CTA training. Our results show that CTA training occludes the subsequent induction of LTD in the BLA-IC pathway in a retrieval-dependent manner. These findings reveal that CTA elicits a metaplastic regulation of long-lasting changes in the IC synaptic strength, as well as that specific phases of learning differentially take part in adjusting the expression of synaptic plasticity in neocortical regions.
Collapse
Affiliation(s)
- Esteban Urrieta
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico
| | - Martha L Escobar
- División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, Mexico.
| |
Collapse
|
29
|
Goel P, Dickman D. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cell Mol Life Sci 2021; 78:3159-3179. [PMID: 33449150 PMCID: PMC8044042 DOI: 10.1007/s00018-020-03732-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
30
|
Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells 2021; 10:cells10030694. [PMID: 33800981 PMCID: PMC8004021 DOI: 10.3390/cells10030694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.
Collapse
|
31
|
Wang H, Xu X, Pan YC, Yan Y, Hu XY, Chen R, Ravoo BJ, Guo DS, Zhang T. Recognition and Removal of Amyloid-β by a Heteromultivalent Macrocyclic Coassembly: A Potential Strategy for the Treatment of Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006483. [PMID: 33325586 DOI: 10.1002/adma.202006483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The imbalance of amyloid-β (Aβ) production and clearance causes aggregation of Aβ1-42 monomers to form fibrils and amyloid plaques, which is an indispensable process in the pathogenesis of Alzheimer's disease (AD), and eventually leads to pathological changes and cognitive impairment. Consequently, Aβ1-42 is the most important target for the treatment of AD. However, developing a single treatment method that can recognize Aβ1-42 , inhibit Aβ1-42 fibrillation, eliminate amyloid plaques, improve cognitive impairments, and alleviate AD-like pathology is challenging. Here, a coassembly composed of cyclodextrin (CD) and calixarene (CA) is designed, and it is used as an anti-Aβ therapy agent. The CD-CA coassembly is based on the previously reported heteromultivalent recognition strategy and is able to successfully eliminate amyloid plaques and degrade Aβ1-42 monomers in 5xFAD mice. More importantly, the coassembly improves recognition and spatial cognition deficits, and synaptic plasticity impairment in the 5xFAD mice. In addition, the coassembly ameliorates AD-like pathology including prevention of neuronal apoptosis and oxidant stress, and alteration of M1/M2 microglial polarization states. This supramolecular approach makes full use of both molecular recognition and self-assembly of macrocyclic amphiphiles, and is a promising novel strategy for AD treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - XinXin Xu
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - YuXing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - RunWen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, Münster, 48149, Germany
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin, 300071, P. R. China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Rivera DS, Lindsay CB, Oliva CA, Codocedo JF, Bozinovic F, Inestrosa NC. Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Sci Rep 2020; 10:18315. [PMID: 33110163 PMCID: PMC7591540 DOI: 10.1038/s41598-020-75026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile.
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Francisco Codocedo
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
33
|
The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci Rep 2020; 10:18041. [PMID: 33093500 PMCID: PMC7582164 DOI: 10.1038/s41598-020-75047-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1β ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1β ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1β:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1β ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.
Collapse
|
34
|
Abstract
Hebbian plasticity is a key mechanism for higher brain functions, such as learning and memory. This form of synaptic plasticity primarily involves the regulation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) abundance and properties, whereby AMPARs are inserted into synapses during long-term potentiation (LTP) or removed during long-term depression (LTD). The molecular mechanisms underlying AMPAR trafficking remain elusive, however. Here we show that glutamate receptor interacting protein 1 (GRIP1), an AMPAR-binding protein shown to regulate the trafficking and synaptic targeting of AMPARs, is required for LTP and learning and memory. GRIP1 is recruited into synapses during LTP, and deletion of Grip1 in neurons blocks synaptic AMPAR accumulation induced by glycine-mediated depolarization. In addition, Grip1 knockout mice exhibit impaired hippocampal LTP, as well as deficits in learning and memory. Mechanistically, we find that phosphorylation of serine-880 of the GluA2 AMPAR subunit (GluA2-S880) is decreased while phosphorylation of tyrosine-876 on GluA2 (GluA2-Y876) is elevated during chemically induced LTP. This enhances the strength of the GRIP1-AMPAR association and, subsequently, the insertion of AMPARs into the postsynaptic membrane. Together, these results demonstrate an essential role of GRIP1 in regulating AMPAR trafficking during synaptic plasticity and learning and memory.
Collapse
|
35
|
Ve H, Cabana VC, Gouspillou G, Lussier MP. Quantitative Immunoblotting Analyses Reveal that the Abundance of Actin, Tubulin, Synaptophysin and EEA1 Proteins is Altered in the Brains of Aged Mice. Neuroscience 2020; 442:100-113. [PMID: 32652177 DOI: 10.1016/j.neuroscience.2020.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/21/2023]
Abstract
Optimal synaptic activity is essential for cognitive function, including memory and learning. Evidence indicates that cognitive decline in elderly individuals is associated with altered synaptic function. However, the impact of aging on the expression of neurotransmitter receptors and accessory proteins in brain synapses remains unclear. To fill this knowledge gap, we investigated the effect of aging on the mouse brain by utilizing a subcellular brain tissue fractionation procedure to measure protein abundance using quantitative Western Blotting. Comparing 7-month- (control) and 22-month- (aged) old mouse tissue, no significant differences were identified in the levels of AMPA receptor subunits between the experimental groups. The abundance of GluN2B NMDA receptor subunits decreased in aged mice, whereas the levels of GluN2A did not change. The analysis of cytoskeletal proteins showed an altered level of actin and tubulin in aged mice while PSD-95 protein did not change. Vesicle protein analysis revealed that synaptophysin abundance is decreased in older brains whereas EEA1 was significantly increased. Thus, our results suggest that physiological aging profoundly impacts the abundance of molecules associated with neurotransmitter release and vesicle cycling, proteins implicated in cognitive function.
Collapse
Affiliation(s)
- Hou Ve
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Valérie C Cabana
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activité Physique, Groupe de Recherche en Activité Physique Adaptée, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada
| | - Marc P Lussier
- Département de Chimie, Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines, Fondation Courtois (CERMO-FC), Faculté des sciences, Université du Québec à Montréal, Montréal, QC, Canada.
| |
Collapse
|
36
|
Bachmann C, Tetzlaff T, Duarte R, Morrison A. Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease. PLoS Comput Biol 2020; 16:e1007790. [PMID: 32841234 PMCID: PMC7505475 DOI: 10.1371/journal.pcbi.1007790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/21/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
The impairment of cognitive function in Alzheimer's disease is clearly correlated to synapse loss. However, the mechanisms underlying this correlation are only poorly understood. Here, we investigate how the loss of excitatory synapses in sparsely connected random networks of spiking excitatory and inhibitory neurons alters their dynamical characteristics. Beyond the effects on the activity statistics, we find that the loss of excitatory synapses on excitatory neurons reduces the network's sensitivity to small perturbations. This decrease in sensitivity can be considered as an indication of a reduction of computational capacity. A full recovery of the network's dynamical characteristics and sensitivity can be achieved by firing rate homeostasis, here implemented by an up-scaling of the remaining excitatory-excitatory synapses. Mean-field analysis reveals that the stability of the linearised network dynamics is, in good approximation, uniquely determined by the firing rate, and thereby explains why firing rate homeostasis preserves not only the firing rate but also the network's sensitivity to small perturbations.
Collapse
Affiliation(s)
- Claudia Bachmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Renato Duarte
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Abigail Morrison
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Goel P, Nishimura S, Chetlapalli K, Li X, Chen C, Dickman D. Distinct Target-Specific Mechanisms Homeostatically Stabilize Transmission at Pre- and Post-synaptic Compartments. Front Cell Neurosci 2020; 14:196. [PMID: 32676010 PMCID: PMC7333441 DOI: 10.3389/fncel.2020.00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022] Open
Abstract
Neurons must establish and stabilize connections made with diverse targets, each with distinct demands and functional characteristics. At Drosophila neuromuscular junctions (NMJs), synaptic strength remains stable in a manipulation that simultaneously induces hypo-innervation on one target and hyper-innervation on the other. However, the expression mechanisms that achieve this exquisite target-specific homeostatic control remain enigmatic. Here, we identify the distinct target-specific homeostatic expression mechanisms. On the hypo-innervated target, an increase in postsynaptic glutamate receptor (GluR) abundance is sufficient to compensate for reduced innervation, without any apparent presynaptic adaptations. In contrast, a target-specific reduction in presynaptic neurotransmitter release probability is reflected by a decrease in active zone components restricted to terminals of hyper-innervated targets. Finally, loss of postsynaptic GluRs on one target induces a compartmentalized, homeostatic enhancement of presynaptic neurotransmitter release called presynaptic homeostatic potentiation (PHP) that can be precisely balanced with the adaptations required for both hypo- and hyper-innervation to maintain stable synaptic strength. Thus, distinct anterograde and retrograde signaling systems operate at pre- and post-synaptic compartments to enable target-specific, homeostatic control of neurotransmission.
Collapse
|
38
|
Glial ATP and Large Pore Channels Modulate Synaptic Strength in Response to Chronic Inactivity. Mol Neurobiol 2020; 57:2856-2869. [PMID: 32388797 DOI: 10.1007/s12035-020-01919-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
A key feature of neurotransmission is its ability to adapt to changes in neuronal environment, which is essential for many brain functions. Homeostatic synaptic plasticity (HSP) emerges as a compensatory mechanism used by neurons to adjust their excitability in response to changes in synaptic activity. Recently, glial cells emerged as modulators for neurotransmission by releasing gliotransmitters into the synaptic cleft through pathways that include P2X7 receptors (P2X7R), connexons, and pannexons. However, the role of gliotransmission in the activity-dependent adjustment of presynaptic strength is still an open question. Here, we investigated whether glial cells participate in HSP upon chronic inactivity and the role of adenosine triphosphate (ATP), connexin43 hemichannels (Cx43HCs), and pannexin1 (Panx1) channels in this process. We used immunocytochemistry against vesicular glutamate transporter 1 (vGlut1) to estimate changes in synaptic strength in hippocampal dissociated cultures. Pharmacological manipulations indicate that glial-derived ATP and P2X7R are required for HSP. In addition, inhibition of Cx43 and Panx1 channels reveals a pivotal role for these channels in the compensatory adjustment of synaptic strength, emerging as new pathways for ATP release upon inactivity. The involvement of Panx1 channels was confirmed by using Panx1-deficient animals. Lacking Panx1 in neurons is sufficient to prevent the P2X7R-dependent upregulation of presynaptic strength; however, the P2X7R-dependent compensatory adjustment of synapse density requires both neuronal and glial Panx1. Together, our data supports an essential role for glial ATP signaling and Cx43HCs and Panx1 channels in the homeostatic adjustment of synaptic strength in hippocampal cultures upon chronic inactivity.
Collapse
|
39
|
Differential Scaling of Synaptic Molecules within Functional Zones of an Excitatory Synapse during Homeostatic Plasticity. eNeuro 2020; 7:ENEURO.0407-19.2020. [PMID: 32184300 PMCID: PMC7189482 DOI: 10.1523/eneuro.0407-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/29/2022] Open
Abstract
Homeostatic scaling is a form of synaptic plasticity where individual synapses scale their strengths to compensate for global suppression or elevation of neuronal activity. This process can be studied by measuring miniature EPSP (mEPSP) amplitudes and frequencies following the regulation of activity in neuronal cultures. Here, we demonstrate a quantitative approach to characterize multiplicative synaptic scaling using immunolabelling of hippocampal neuronal cultures treated with tetrodotoxin (TTX) or bicuculline to extract scaling factors for various synaptic proteins. This approach allowed us to directly examine the scaling of presynaptic and postsynaptic scaffolding molecules along with neurotransmitter receptors in primary cultures from mouse and rat hippocampal neurons. We show robust multiplicative scaling of synaptic scaffolding molecules namely, Shank2, PSD95, Bassoon, and AMPA receptor subunits and quantify their scaling factors. We use super-resolution microscopy to calculate scaling factors of surface expressed GluA2 within functional zones of the synapse and show that there is differential and correlated scaling of GluA2 levels within the spine, the postsynaptic density (PSD), and the perisynaptic regions. Our method opens a novel paradigm to quantify relative molecular changes of synaptic proteins within distinct subsynaptic compartments from a large number of synapses in response to alteration of neuronal activity, providing anatomic insights into the intricacies of variability in strength of individual synapses.
Collapse
|
40
|
Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures. J Neurosci 2020; 40:4090-4102. [PMID: 32312887 DOI: 10.1523/jneurosci.1393-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons can respond to decreased network activity with a homeostatic increase in the amplitudes of miniature EPSCs (mEPSCs). The prevailing view is that mEPSC amplitudes are uniformly multiplied by a single factor, termed "synaptic scaling." Deviations from purely multiplicative scaling have been attributed to biological differences, or to a distortion imposed by a detection threshold limit. Here, we demonstrate in neurons dissociated from cortices of male and female mice that the shift in mEPSC amplitudes observed in the experimental data cannot be reproduced by simulation of uniform multiplicative scaling, with or without the distortion caused by applying a detection threshold. Furthermore, we demonstrate explicitly that the scaling factor is not uniform but is close to 1 for small mEPSCs, and increases with increasing mEPSC amplitude across a substantial portion of the data. This pattern was also observed for previously published data from dissociated mouse hippocampal neurons and dissociated rat cortical neurons. The finding of "divergent scaling" shifts the current view of homeostatic plasticity as a process that alters all synapses on a neuron equally to one that must accommodate the differential effect observed for small versus large mEPSCs. Divergent scaling still accomplishes the essential homeostatic task of modifying synaptic strengths in the opposite direction of the activity change, but the consequences are greatest for those synapses which individually are more likely to bring a neuron to threshold.SIGNIFICANCE STATEMENT In homeostatic plasticity, the responses to chronic increases or decreases in network activity act in the opposite direction to restore normal activity levels. Homeostatic plasticity is likely to play a role in diseases associated with long-term changes in brain function, such as epilepsy and neuropsychiatric illnesses. One homeostatic response is the increase in synaptic strength following a chronic block of activity. Research is focused on finding a globally expressed signaling pathway, because it has been proposed that the plasticity is uniformly expressed across all synapses. Here, we show that the plasticity is not uniform. Our work suggests that homeostatic signaling molecules are likely to be differentially expressed across synapses.
Collapse
|
41
|
Galanis C, Vlachos A. Hebbian and Homeostatic Synaptic Plasticity-Do Alterations of One Reflect Enhancement of the Other? Front Cell Neurosci 2020; 14:50. [PMID: 32256317 PMCID: PMC7093376 DOI: 10.3389/fncel.2020.00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
During the past 50 years, the cellular and molecular mechanisms of synaptic plasticity have been studied in great detail. A plethora of signaling pathways have been identified that account for synaptic changes based on positive and negative feedback mechanisms. Yet, the biological significance of Hebbian synaptic plasticity (= positive feedback) and homeostatic synaptic plasticity (= negative feedback) remains a matter of debate. Specifically, it is unclear how these opposing forms of plasticity, which share common downstream mechanisms, operate in the same networks, neurons, and synapses. Based on the observation that rapid and input-specific homeostatic mechanisms exist, we here discuss a model that is based on signaling pathways that may adjust a balance between Hebbian and homeostatic synaptic plasticity. Hence, “alterations” in Hebbian plasticity may, in fact, resemble “enhanced” homeostasis, which rapidly returns synaptic strength to baseline. In turn, long-lasting experience-dependent synaptic changes may require attenuation of homeostatic mechanisms or the adjustment of homeostatic setpoints at the single-synapse level. In this context, we propose a role for the proteolytic processing of the amyloid precursor protein (APP) in setting a balance between the ability of neurons to express Hebbian and homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Christos Galanis
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
42
|
Dubes S, Favereaux A, Thoumine O, Letellier M. miRNA-Dependent Control of Homeostatic Plasticity in Neurons. Front Cell Neurosci 2019; 13:536. [PMID: 31866828 PMCID: PMC6906196 DOI: 10.3389/fncel.2019.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Homeostatic plasticity is a form of plasticity in which neurons compensate for changes in neuronal activity through the control of key physiological parameters such as the number and the strength of their synaptic inputs and intrinsic excitability. Recent studies revealed that miRNAs, which are small non-coding RNAs repressing mRNA translation, participate in this process by controlling the translation of multiple effectors such as glutamate transporters, receptors, signaling molecules and voltage-gated ion channels. In this review, we present and discuss the role of miRNAs in both cell-wide and compartmentalized forms of homeostatic plasticity as well as their implication in pathological processes associated with homeostatic failure.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Alexandre Favereaux
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| |
Collapse
|
43
|
Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse. Proc Natl Acad Sci U S A 2019; 116:23783-23789. [PMID: 31685637 PMCID: PMC6876255 DOI: 10.1073/pnas.1909675116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Homeostatic mechanisms stabilize neural activity, and there are genetic links between homeostatic plasticity and neural disease. While homeostatic plasticity in the central nervous system (CNS) operates on relatively slow time scales of hours to days, activity-dependent forms of synaptic plasticity alter neural activity on much faster time scales. It is unclear if homeostatic plasticity stabilizes CNS synapses on rapid time scales. Here, we uncovered that cerebellar synapses stabilize transmission within minutes upon activity perturbation. This is achieved through homeostatic control of presynaptic exocytosis. We show that synergistic modulation of distinct presynaptic mechanisms not only maintains synaptic efficacy on rapid, but also on prolonged time scales. Homeostatic control of presynaptic exocytosis may be a general mechanism for stabilizing CNS function. Animal behavior is remarkably robust despite constant changes in neural activity. Homeostatic plasticity stabilizes central nervous system (CNS) function on time scales of hours to days. If and how CNS function is stabilized on more rapid time scales remains unknown. Here, we discovered that mossy fiber synapses in the mouse cerebellum homeostatically control synaptic efficacy within minutes after pharmacological glutamate receptor impairment. This rapid form of homeostatic plasticity is expressed presynaptically. We show that modulations of readily releasable vesicle pool size and release probability normalize synaptic strength in a hierarchical fashion upon acute pharmacological and prolonged genetic receptor perturbation. Presynaptic membrane capacitance measurements directly demonstrate regulation of vesicle pool size upon receptor impairment. Moreover, presynaptic voltage-clamp analysis revealed increased Ca2+-current density under specific experimental conditions. Thus, homeostatic modulation of presynaptic exocytosis through specific mechanisms stabilizes synaptic transmission in a CNS circuit on time scales ranging from minutes to months. Rapid presynaptic homeostatic plasticity may ensure stable neural circuit function in light of rapid activity-dependent plasticity.
Collapse
|
44
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
45
|
Sandvig A, Sandvig I. Connectomics of Morphogenetically Engineered Neurons as a Predictor of Functional Integration in the Ischemic Brain. Front Neurol 2019; 10:630. [PMID: 31249553 PMCID: PMC6582372 DOI: 10.3389/fneur.2019.00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Recent advances in cell reprogramming technologies enable the in vitro generation of theoretically unlimited numbers of cells, including cells of neural lineage and specific neuronal subtypes from human, including patient-specific, somatic cells. Similarly, as demonstrated in recent animal studies, by applying morphogenetic neuroengineering principles in situ, it is possible to reprogram resident brain cells to the desired phenotype. These developments open new exciting possibilities for cell replacement therapy in stroke, albeit not without caveats. Main challenges include the successful integration of engineered cells in the ischemic brain to promote functional restoration as well as the fact that the underlying mechanisms of action are not fully understood. In this review, we aim to provide new insights to the above in the context of connectomics of morphogenetically engineered neural networks. Specifically, we discuss the relevance of combining advanced interdisciplinary approaches to: validate the functionality of engineered neurons by studying their self-organizing behavior into neural networks as well as responses to stroke-related pathology in vitro; derive structural and functional connectomes from these networks in healthy and perturbed conditions; and identify and extract key elements regulating neural network dynamics, which might predict the behavior of grafted engineered neurons post-transplantation in the stroke-injured brain.
Collapse
Affiliation(s)
- Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, Umeå University Hospital, Umeå, Sweden
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
46
|
Letellier M, Levet F, Thoumine O, Goda Y. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. PLoS Biol 2019; 17:e2006223. [PMID: 31166943 PMCID: PMC6576792 DOI: 10.1371/journal.pbio.2006223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/17/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Neurons receive a large number of active synaptic inputs from their many presynaptic partners across their dendritic tree. However, little is known about how the strengths of individual synapses are controlled in balance with other synapses to effectively encode information while maintaining network homeostasis. This is in part due to the difficulty in assessing the activity of individual synapses with identified afferent and efferent connections for a synapse population in the brain. Here, to gain insights into the basic cellular rules that drive the activity-dependent spatial distribution of pre- and postsynaptic strengths across incoming axons and dendrites, we combine patch-clamp recordings with live-cell imaging of hippocampal pyramidal neurons in dissociated cultures and organotypic slices. Under basal conditions, both pre- and postsynaptic strengths cluster on single dendritic branches according to the identity of the presynaptic neurons, thus highlighting the ability of single dendritic branches to exhibit input specificity. Stimulating a single presynaptic neuron induces input-specific and dendritic branchwise spatial clustering of presynaptic strengths, which accompanies a widespread multiplicative scaling of postsynaptic strengths in dissociated cultures and heterosynaptic plasticity at distant synapses in organotypic slices. Our study provides evidence for a potential homeostatic mechanism by which the rapid changes in global or distant postsynaptic strengths compensate for input-specific presynaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Letellier
- RIKEN Brain Science Institute, Wako, Saitama, Japan
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- * E-mail: (ML); (YG)
| | - Florian Levet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
- Bordeaux Imaging Center, University of Bordeaux, Bordeaux, France
- Bordeaux Imaging Center, CNRS UMS 3420, Bordeaux, France
- Bordeaux Imaging Center, INSERM US04, Bordeaux, France
| | - Olivier Thoumine
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
| | - Yukiko Goda
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- * E-mail: (ML); (YG)
| |
Collapse
|
47
|
Ponzoni L, Sala C, Verpelli C, Sala M, Braida D. Different attentional dysfunctions in
eEF2K
−/−
, IL1RAPL1
−/−
and
SHANK3Δ11
−/−
mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12563. [DOI: 10.1111/gbb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Luisa Ponzoni
- CNR, Neuroscience Institute Milan Italy
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| | | | | | | | - Daniela Braida
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di Milano Milan Italy
| |
Collapse
|
48
|
A Screen for Synaptic Growth Mutants Reveals Mechanisms That Stabilize Synaptic Strength. J Neurosci 2019; 39:4051-4065. [PMID: 30902873 DOI: 10.1523/jneurosci.2601-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023] Open
Abstract
Synapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains stable throughout life, implying that adaptive countermeasures exist that maintain neurotransmission within proper physiological ranges. Aberrant synaptic structure and function have been associated with a variety of neural diseases, including Fragile X syndrome, autism, and intellectual disability. We have screened 300 mutants in Drosophila larvae of both sexes for defects in synaptic growth at the neuromuscular junction, identifying 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed that synaptic strength was unchanged in all but one of these mutants compared with WT. We used a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength despite major disparities in synaptic growth. These include compensatory changes in (1) postsynaptic neurotransmitter receptor abundance, (2) presynaptic morphology, and (3) active zone structure. Together, this characterization identifies new mutants with defects in synaptic growth and the adaptive strategies used by synapses to homeostatically stabilize neurotransmission in response.SIGNIFICANCE STATEMENT This study reveals compensatory mechanisms used by synapses to ensure stable functionality during severe alterations in synaptic growth using the neuromuscular junction of Drosophila melanogaster as a model system. Through a forward genetic screen, we identify mutants that exhibit dramatic undergrown or overgrown synapses yet express stable levels of synaptic strength, with three specific compensatory mechanisms discovered. Thus, this study reveals novel insights into the adaptive strategies that constrain neurotransmission within narrow physiological ranges while allowing considerable flexibility in overall synapse number. More broadly, these findings provide insights into how stable synaptic function may be maintained in the nervous system during periods of intensive synaptic growth, pruning, and remodeling.
Collapse
|
49
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
50
|
MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 2019; 116:5727-5736. [PMID: 30808806 DOI: 10.1073/pnas.1900338116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3'UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.
Collapse
|