1
|
Lobato AG, Ortiz-Vega N, Canic T, Tao X, Bucan N, Ruan K, Rebelo AP, Schule R, Zuchner S, Syed S, Zhai RG. Loss of Fic causes progressive neurodegeneration in a Drosophila model of hereditary spastic paraplegia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167348. [PMID: 38986817 PMCID: PMC11549967 DOI: 10.1016/j.bbadis.2024.167348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Hereditary Spastic Paraplegia (HSP) is a group of rare inherited disorders characterized by progressive weakness and spasticity of the legs. Recent newly discovered biallelic variants in the gene FICD were found in patients with a highly similar phenotype to early onset HSP. FICD encodes filamentation induced by cAMP domain protein. FICD is involved in the AMPylation and deAMPylation protein modifications of the endoplasmic reticulum (ER) chaperone BIP, a major constituent of the ER that regulates the unfolded protein response. Although several biochemical properties of FICD have been characterized, the neurological function of FICD and the pathological mechanism underlying HSP are unknown. We established a Drosophila model to gain mechanistic understanding of the function of FICD in HSP pathogenesis, and specifically the role of BIP in neuromuscular physiology. Our studies on Drosophila Fic null mutants uncovered that loss of Fic resulted in locomotor impairment and reduced levels of BIP in the motor neuron circuitry, as well as increased reactive oxygen species (ROS) in the ventral nerve cord of Fic null mutants. Finally, feeding Drosophila Fic null mutants with chemical chaperones PBA or TUDCA, or treatment of patient fibroblasts with PBA, reduced the ROS accumulation. The neuronal phenotypes of Fic null mutants recapitulate several clinical features of HSP patients and further reveal cellular patho-mechanisms. By modeling FICD in Drosophila, we provide potential targets for intervention for HSP, and advance fundamental biology that is important for understanding related rare and common neuromuscular diseases.
Collapse
Affiliation(s)
- Amanda G Lobato
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Natalie Ortiz-Vega
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Tijana Canic
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA; Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Xianzun Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nika Bucan
- Undergraduate Program in Neuroscience, University of Miami, Coral Gables, FL, USA
| | - Kai Ruan
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rebecca Schule
- Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, USA
| | - R Grace Zhai
- Department of Neurology, University of Chicago, Chicago, IL, USA; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Fusi F, Saponara S, Brimble MA, Rennison D, Hopkins B, Bova S. The Enigma of Norbormide, a Rattus-Selective Toxicant. Cells 2024; 13:788. [PMID: 38727324 PMCID: PMC11083043 DOI: 10.3390/cells13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Norbormide (NRB) is a Rattus-selective toxicant, which was serendipitously discovered in 1964 and formerly marketed as an eco-friendly rodenticide that was deemed harmless to non-Rattus species. However, due to inconsistent efficacy and the emergence of second-generation anticoagulants, its usage declined, with registration lapsing in 2003. NRBs' lethal action in rats entails irreversible vasoconstriction of peripheral arteries, likely inducing cardiac damage: however, the precise chain of events leading to fatality and the target organs involved remain elusive. This unique contractile effect is exclusive to rat arteries and is induced solely by the endo isomers of NRB, hinting at a specific receptor involvement. Understanding NRB's mechanism of action is crucial for developing species-selective toxicants as alternatives to the broad-spectrum ones currently in use. Recent research efforts have focused on elucidating its cellular mechanisms and sites of action using novel NRB derivatives. The key findings are as follows: NRB selectively opens the rat mitochondrial permeability transition pore, which may be a factor that contributes to its lethal effect; it inhibits rat vascular KATP channels, which potentially controls its Rattus-selective vasoconstricting activity; and it possesses intracellular binding sites in both sensitive and insensitive cells, as revealed by fluorescent derivatives. These studies have led to the development of a prodrug with enhanced pharmacokinetic and toxicological profiles, which is currently undergoing registration as a novel efficacious eco-sustainable Rattus-selective toxicant. The NRB-fluorescent derivatives also show promise as non-toxic probes for intracellular organelle labelling. This review documents in more detail these developments and their implications.
Collapse
Affiliation(s)
- Fabio Fusi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy;
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Margaret A. Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (M.A.B.); (D.R.)
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (M.A.B.); (D.R.)
| | - Brian Hopkins
- Manaaki-Whenua–Landcare Research, Canterbury Agriculture and Science Centre, 76 Gerald Street, Lincoln 7608, New Zealand;
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via 8 Febbraio 2, 35122 Padova, Italy;
| |
Collapse
|
3
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
4
|
Naón D, Hernández-Alvarez MI, Shinjo S, Wieczor M, Ivanova S, Martins de Brito O, Quintana A, Hidalgo J, Palacín M, Aparicio P, Castellanos J, Lores L, Sebastián D, Fernández-Veledo S, Vendrell J, Joven J, Orozco M, Zorzano A, Scorrano L. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. Science 2023; 380:eadh9351. [PMID: 37347868 DOI: 10.1126/science.adh9351] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.
Collapse
Affiliation(s)
- Déborah Naón
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- IBUB, Universitat de Barcelona, Barcelona, Spain
| | - Satoko Shinjo
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Milosz Wieczor
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Saska Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Albert Quintana
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Juan Hidalgo
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Aparicio
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Juan Castellanos
- Department of Orthopaedics and Trauma Surgery, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Luis Lores
- Pneumology Department, Hospital General Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
| | - Jorge Joven
- Medicine School, Universitat Rovira i Virgili, Tarragona and Reus, Spain
- Unitat de Recerca Biomèdica, Institut d'Investigació Sanitària Pere Virgili, Hospital Universitari de Sant Joan, Reus, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Luca Scorrano
- Department of Biology, University of Padua, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
5
|
Mauri S, Bernardo G, Martinez A, Favaro M, Trevisan M, Cobraiville G, Fillet M, Caicci F, Whitworth AJ, Ziviani E. USP8 Down-Regulation Promotes Parkin-Independent Mitophagy in the Drosophila Brain and in Human Neurons. Cells 2023; 12:cells12081143. [PMID: 37190052 DOI: 10.3390/cells12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.
Collapse
Affiliation(s)
- Sofia Mauri
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Aitor Martinez
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Marta Trevisan
- Department of Molecular Medicine (DMM), University of Padova, 35121 Padova, Italy
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
6
|
Hu Z, Shi S, Ou Y, Hu F, Long D. Mitochondria-associated endoplasmic reticulum membranes: A promising toxicity regulation target. Acta Histochem 2023; 125:152000. [PMID: 36696877 DOI: 10.1016/j.acthis.2023.152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic suborganelle membranes that physically couple endoplasmic reticulum (ER) and mitochondria to provide a platform for exchange of intracellular molecules and crosstalk between the two organelles. Dysfunctions of mitochondria and ER and imbalance of intracellular homeostasis have been discovered in the research of toxics. Cellular activities such as oxidative stress, ER stress, Ca2+ transport, autophagy, mitochondrial fusion and fission, and apoptosis mediated by MAMs are closely related to the toxicological effects of various toxicants. These cellular activities mediated by MAMs crosstalk with each other. Regulating the structure and function of MAMs can alleviate the damage caused by toxicants to some extent. In this review, we discuss the relationships between MAMs and the mechanisms of toxicological effects, and highlight MAMs as a potential target for protection against toxicants.
Collapse
Affiliation(s)
- Zehui Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Shengyuan Shi
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yiquan Ou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Fangyan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
7
|
Kasture AS, Fischer FP, Kunert L, Burger ML, Burgstaller AC, El-Kasaby A, Hummel T, Sucic S. Drosophila melanogaster as a model for unraveling unique molecular features of epilepsy elicited by human GABA transporter 1 variants. Front Neurosci 2023; 16:1074427. [PMID: 36741049 PMCID: PMC9893286 DOI: 10.3389/fnins.2022.1074427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Mutations in the human γ-aminobutyric acid (GABA) transporter 1 (hGAT-1) can instigate myoclonic-atonic and other generalized epilepsies in the afflicted individuals. We systematically examined fifteen hGAT-1 disease variants, all of which dramatically reduced or completely abolished GABA uptake activity. Many of these loss-of-function variants were absent from their regular site of action at the cell surface, due to protein misfolding and/or impaired trafficking machinery (as verified by confocal microscopy and de-glycosylation experiments). A modest fraction of the mutants displayed correct targeting to the plasma membrane, but nonetheless rendered the mutated proteins devoid of GABA transport, possibly due to structural alterations in the GABA binding site/translocation pathway. We here focused on a folding-deficient A288V variant. In flies, A288V reiterated its impeded expression pattern, closely mimicking the ER-retention demonstrated in transfected HEK293 cells. Functionally, A288V presented a temperature-sensitive seizure phenotype in fruit flies. We employed diverse small molecules to restore the expression and activity of folding-deficient hGAT-1 epilepsy variants, in vitro (in HEK293 cells) and in vivo (in flies). We identified three compounds (chemical and pharmacological chaperones) conferring moderate rescue capacity for several variants. Our data grant crucial new insights into: (i) the molecular basis of epilepsy in patients harboring hGAT-1 mutations, and (ii) a proof-of-principle that protein folding deficits in disease-associated hGAT-1 variants can be corrected using the pharmacochaperoning approach. Such innovative pharmaco-therapeutic prospects inspire the rational design of novel drugs for alleviating the clinical symptoms triggered by the numerous emerging pathogenic mutations in hGAT-1.
Collapse
Affiliation(s)
- Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,Department of Epileptology and Neurology, University of Aachen, Aachen, Germany
| | - Lisa Kunert
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Melanie L. Burger
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Ali El-Kasaby
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria,*Correspondence: Sonja Sucic,
| |
Collapse
|
8
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Chakrabarti L, Chaerkady R, Wang J, Weng SHS, Wang C, Qian C, Cazares L, Hess S, Amaya P, Zhu J, Hatton D. Mitochondrial membrane potential-enriched CHO host: a novel and powerful tool for improving biomanufacturing capability. MAbs 2022; 14:2020081. [PMID: 35030984 PMCID: PMC8765075 DOI: 10.1080/19420862.2021.2020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the aim of increasing protein productivity of Chinese hamster ovary (CHO) cells, we sought to generate new CHO hosts with favorable biomanufacturing phenotypes and improved functionality. Here, we present an innovative approach of enriching the CHO host cells with a high mitochondrial membrane potential (MMP). Stable transfectant pools and clonal cell lines expressing difficult-to-express bispecific molecules generated from the MMP-enriched host outperformed the parental host by displaying (1) improved fed-batch productivity; (2) enhanced long-term cell viability of pools; (3) more favorable lactate metabolism; and (4) improved cell cloning efficiency during monoclonal cell line generation. Proteomic analysis together with Western blot validation were used to investigate the underlying mechanisms by which high MMP influenced production performance. The MMP-enriched host exhibited multifaceted protection against mitochondrial dysfunction and endoplasmic reticulum stress. Our findings indicate that the MMP-enriched host achieved an overall “fitter” phenotype that contributes to the significant improvement in biomanufacturing capability.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Junmin Wang
- Dynamic Omics, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Chunlei Wang
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chen Qian
- Analytical Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lisa Cazares
- Dynamic Omics, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Sonja Hess
- Dynamic Omics, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Peter Amaya
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jie Zhu
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Diane Hatton
- Cell Culture & Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
10
|
Fidelis KR, Dos Santos Nunes RG, da Silva CS, Oliveira CVB, Costa AR, de Lima Silva JR, Dos Santos LB, de Oliveira EES, Pereira PS, de Menezes IRA, Kamdem JP, Duarte AE, Pinho AI, Barros LM. Evaluation of the neuroprotective effect of rutin on Drosophila melanogaster about behavioral and biochemical aspects induced by mercury chloride (HgCl 2). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109119. [PMID: 34182094 DOI: 10.1016/j.cbpc.2021.109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Mercury chloride (HgCl2) acts as a bioaccumulator capable of causing numerous neurological and physiological changes in organisms in a negative way. However, rutin has been considered a very effective antioxidant compound in the treatment of neurodegenerative diseases, as it can neutralize radicals capable of damaging neuronal cells. In this context, this study aimed to evaluate rutin as a neoprotective agent against the damage induced by HgCl2 in Drosophila melanogaster. The exposure of the flies to the agents was carried out in triplicate, and about 150 adult flies were evaluated. To assess the antioxidant action of rutin, MTT, phenanthroline, nitric oxide, total thiols and NPSH tests were carried out in the following concentrations: Control (1500 μL of distilled water), 1 mg/g of HgCl2, 0.5 mg/g of Rutin + HgCl2, 1 mg/g of Rutin + HgCl2, 2 mg/g of Rutin + HgCl2. The locomotion test was verified by negative geotaxis, the result of which showed that flies exposed to HgCl2 had difficulties in flight. The group treated with HgCl2 alone had a high mortality rate, while in combination with different concentrations of rutin, it heard a moderate reduction in the number of deaths, as well as in the negative geotaxis data in which the rutin had a positive effect. An increase in iron (II) levels was observed at the highest concentrations of rutin, while at low concentrations, rutin significantly decreased nitric oxide levels. The HgCl2 + R group (2 mg/g) showed a significant increase in the total thiols content, while for the NPSH all rutin concentrations showed a significant increase in the levels of non-protein thiols. Our results demonstrate that mercury chloride can cause oxidative stress in D. melanogaster. However, the results suggest that rutin has antioxidant and protective effects against the damage caused by HgCl2.
Collapse
Affiliation(s)
- Kleber Ribeiro Fidelis
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ricardo Gomes Dos Santos Nunes
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Postgraduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | - Adrielle Rodrigues Costa
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | | | | | - Pedro Silvino Pereira
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | | | - Jean Paul Kamdem
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Biology and Toxicology Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil
| | - Antônia Eliene Duarte
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil
| | | | - Luiz Marivando Barros
- Plant Ecophysiolgy Laboratory, Regional University of Cariri (URCA), Crato, CE, Brazil; Department of Biological Sciences, University of Regional Cariri, Crato, CE, Brazil.
| |
Collapse
|
11
|
Sun D, Zhu H, Ai L, Wu H, Wu Y, Jin J. Mitochondrial fusion protein 2 regulates endoplasmic reticulum stress in preeclampsia. J Zhejiang Univ Sci B 2021; 22:165-170. [PMID: 33615757 DOI: 10.1631/jzus.b2000557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dandan Sun
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China.,Department of Obstetrics, Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314051, China.,Department of Obstetrics, Jiaxing Women and Children Hospital Affiliated to Wenzhou Medical University, Jiaxing 314051, China
| | - Hui Zhu
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China
| | - Ling Ai
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China
| | - Hanbing Wu
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China
| | - Yanting Wu
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China
| | - Jihua Jin
- Department of Obstetrics, Jiaxing Municipal Maternal and Child Health Care Hospital, Jiaxing 314051, China.
| |
Collapse
|
12
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
13
|
Manganelli V, Matarrese P, Antonioli M, Gambardella L, Vescovo T, Gretzmeier C, Longo A, Capozzi A, Recalchi S, Riitano G, Misasi R, Dengjel J, Malorni W, Fimia GM, Sorice M, Garofalo T. Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy 2020; 17:2528-2548. [PMID: 33034545 DOI: 10.1080/15548627.2020.1834207] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the "integrity" of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes.Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/β-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1.
Collapse
Affiliation(s)
| | - Paola Matarrese
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Antonioli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Lucrezia Gambardella
- Oncology Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Tiziana Vescovo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Agostina Longo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Joern Dengjel
- Department of Dermatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Suisse, Germany
| | - Walter Malorni
- School of Pharmacy, University of Tor Vergata, Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
15
|
Adames TR, Rondeau NC, Kabir MT, Johnston BA, Truong H, Snow JW. The IRE1 pathway regulates honey bee Unfolded Protein Response gene expression. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103368. [PMID: 32229172 DOI: 10.1016/j.ibmb.2020.103368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
Our molecular understanding of honey bee cellular stress responses is incomplete. Previously, we sought to identify and began functional characterization of the components of the Unfolded Protein Response (UPR) in honey bees. We observed that UPR stimulation resulted in induction of target genes upon IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA. However, we were not able to determine the relative role of the various UPR pathways in gene activation. Our understanding of honey bee signal transduction and transcriptional regulation has been hampered by a lack of tools. After using RNA-seq to expand the known UPR targets in the honey bee, we used the Drosophila melanogaster S2 cell line and honey bee trans and cis elements to investigate the role of the IRE1 pathway in the transcriptional activation of one of these targets, the honey bee Hsc70-3 gene. Using a luciferase reporter, we show that honey bee Hsc70 promoter activity is inducible by UPR activation. In addition, we show that this activation is IRE1-dependent and relies on specific cis regulatory elements. Experiments using exogenous honey bee or fruit fly XBP1S proteins demonstrate that both factors can activate the Hsc70-3 promoter and further support a role for the IRE1 pathway in control of Hsc70-3 expression in the honey bee. By providing foundational knowledge about the UPR in the honey bee and demonstrating the usefulness of a heterologous cell line for molecular characterization of honey bee pathways, this work stands to improve our understanding of this critical species.
Collapse
Affiliation(s)
| | | | | | - Brittany A Johnston
- Biology Department, The City College of New York - CUNY, New York, NY, 10031, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
16
|
Restelli LM, Oettinghaus B, Halliday M, Agca C, Licci M, Sironi L, Savoia C, Hench J, Tolnay M, Neutzner A, Schmidt A, Eckert A, Mallucci G, Scorrano L, Frank S. Neuronal Mitochondrial Dysfunction Activates the Integrated Stress Response to Induce Fibroblast Growth Factor 21. Cell Rep 2020; 24:1407-1414. [PMID: 30089252 PMCID: PMC6092266 DOI: 10.1016/j.celrep.2018.07.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/23/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Stress adaptation is essential for neuronal health. While the fundamental role of mitochondria in neuronal development has been demonstrated, it is still not clear how adult neurons respond to alterations in mitochondrial function and how neurons sense, signal, and respond to dysfunction of mitochondria and their interacting organelles. Here, we show that neuron-specific, inducible in vivo ablation of the mitochondrial fission protein Drp1 causes ER stress, resulting in activation of the integrated stress response to culminate in neuronal expression of the cytokine Fgf21. Neuron-derived Fgf21 induction occurs also in murine models of tauopathy and prion disease, highlighting the potential of this cytokine as an early biomarker for latent neurodegenerative conditions. Neuronal Drp1 ablation is sensed by branches of the integrated stress response (ISR) Activation of the ISR induces catabolic cytokine Fgf21 in the brain Brain Fgf21 induced in neurodegeneration models may be a potential biomarker
Collapse
Affiliation(s)
- Lisa Michelle Restelli
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; University of Basel, Basel 4001, Switzerland
| | - Björn Oettinghaus
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Mark Halliday
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Cavit Agca
- Departments of Biomedicine and Ophthalmology, University Hospital Basel, Basel 4031, Switzerland
| | - Maria Licci
- Department of Neurosurgery, University Hospital Basel, Basel 4031, Switzerland
| | - Lara Sironi
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland; University of Basel, Basel 4001, Switzerland
| | - Claudia Savoia
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Jürgen Hench
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Markus Tolnay
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland
| | - Albert Neutzner
- Departments of Biomedicine and Ophthalmology, University Hospital Basel, Basel 4031, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Anne Eckert
- University Psychiatric Clinics, Basel 4025, Switzerland
| | - Giovanna Mallucci
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua 35121, Italy; Venetian Institute of Molecular Medicine, Padua 35129, Italy
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel 4031, Switzerland.
| |
Collapse
|
17
|
Trevisan T, Pendin D, Montagna A, Bova S, Ghelli AM, Daga A. Manipulation of Mitochondria Dynamics Reveals Separate Roles for Form and Function in Mitochondria Distribution. Cell Rep 2019; 23:1742-1753. [PMID: 29742430 DOI: 10.1016/j.celrep.2018.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria shape is controlled by membrane fusion and fission mediated by mitofusins, Opa1, and Drp1, whereas mitochondrial motility relies on microtubule motors. These processes govern mitochondria subcellular distribution, whose defects are emphasized in neurons because of their polarized structure. We have studied how perturbation of the fusion/fission balance affects mitochondria distribution in Drosophila axons. Knockdown of Marf or Opa1 resulted in progressive loss of distal mitochondria and in a distinct oxidative phosphorylation and membrane potential deficit. Downregulation of Drp1 rescued the lethality and bioenergetic defect caused by neuronal Marf RNAi, but induced only a modest restoration of axonal mitochondria distribution. Surprisingly, Drp1 knockdown rescued fragmentation and fully restored aberrant distribution of axonal mitochondria produced by Opa1 RNAi; however, Drp1 knockdown did not improve viability or mitochondria function. Our data show that proper morphology is critical for proper axonal mitochondria distribution independent of bioenergetic efficiency. The health of neurons largely depends on mitochondria function, but does not depend on shape or distribution.
Collapse
Affiliation(s)
- Tatiana Trevisan
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Diana Pendin
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Aldo Montagna
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
18
|
Sunderhaus ER, Law AD, Kretzschmar D. ER responses play a key role in Swiss-Cheese/Neuropathy Target Esterase-associated neurodegeneration. Neurobiol Dis 2019; 130:104520. [PMID: 31233884 DOI: 10.1016/j.nbd.2019.104520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023] Open
Abstract
Swiss Cheese (SWS) is the Drosophila orthologue of Neuropathy Target Esterase (NTE), a phospholipase that when mutated has been shown to cause a spectrum of disorders in humans that range from intellectual disabilities to ataxia. Loss of SWS in Drosophila also causes locomotion deficits, age-dependent neurodegeneration, and an increase in lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). SWS is localized to the Endoplasmic Reticulum (ER), and recently, it has been shown that perturbing the membrane lipid composition of the ER can lead to the activation of ER stress responses through the inhibition of the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA). To investigate whether ER stress induction occurs in NTE-associated disorders, we used the fly sws null mutant as a model. sws flies showed an activated ER stress response as determined by elevated levels of the chaperone GRP78 and by increased splicing of XBP, an ER transcription factor that activates transcriptional ER stress responses. To address whether ER stress plays a role in the degenerative and behavioral phenotypes detected in sws1, we overexpressed XBP1, or treated the flies with tauroursodeoxycholic acid (TUDCA), a chemical known to attenuate ER stress-mediated cell death. Both manipulations suppressed the locomotor deficits and neurodegeneration of sws1. In addition, sws1 flies showed reduced SERCA levels and expressing additional SERCA also suppressed the sws1-related phenotypes. This suggests that the disruption in lipid compositions and its effect on SERCA are inducing ER stress, aimed to ameliorate the deleterious effects of sws1. This includes the effects on lipid composition because XBP1 and SERCA expression also reduced the LPC levels in sws1. Promoting cytoprotective ER stress pathways may therefore provide a therapeutic approach to alleviate the neurodegeneration and motor symptoms seen in NTE-associated disorders.
Collapse
Affiliation(s)
- Elizabeth R Sunderhaus
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America
| | - Alexander D Law
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, United States of America.
| |
Collapse
|
19
|
DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10:2576. [PMID: 31189900 PMCID: PMC6561930 DOI: 10.1038/s41467-019-10226-9] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial quality control is essential in highly structured cells such as neurons and muscles. In skeletal muscle the mitochondrial fission proteins are reduced in different physiopathological conditions including ageing sarcopenia, cancer cachexia and chemotherapy-induced muscle wasting. However, whether mitochondrial fission is essential for muscle homeostasis is still unclear. Here we show that muscle-specific loss of the pro-fission dynamin related protein (DRP) 1 induces muscle wasting and weakness. Constitutive Drp1 ablation in muscles reduces growth and causes animal death while inducible deletion results in atrophy and degeneration. Drp1 deficient mitochondria are morphologically bigger and functionally abnormal. The dysfunctional mitochondria signals to the nucleus to induce the ubiquitin-proteasome system and an Unfolded Protein Response while the change of mitochondrial volume results in an increase of mitochondrial Ca2+ uptake and myofiber death. Our findings reveal that morphology of mitochondrial network is critical for several biological processes that control nuclear programs and Ca2+ handling.
Collapse
|
20
|
Gumeni S, Evangelakou Z, Tsakiri EN, Scorrano L, Trougakos IP. Functional wiring of proteostatic and mitostatic modules ensures transient organismal survival during imbalanced mitochondrial dynamics. Redox Biol 2019; 24:101219. [PMID: 31132524 PMCID: PMC6536731 DOI: 10.1016/j.redox.2019.101219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Being an assembly of protein machines, cells depend on adequate supply of energetic molecules for retaining their homeodynamics. Consequently, mitochondria functionality is ensured by quality control systems and mitochondrial dynamics (fusion/fission). Similarly, proteome stability is maintained by the machineries of the proteostasis network. We report here that reduced mitochondrial fusion rates in Drosophila caused developmental lethality or if induced in the adult accelerated aging. Imbalanced mitochondrial dynamics were tolerable for various periods in young flies, where they caused oxidative stress and proteome instability that mobilized Nrf2 and foxo to upregulate cytoprotective antioxidant/proteostatic modules. Consistently, proteasome inhibition or Nrf2, foxo knock down in young flies exaggerated perturbed mitochondrial dynamics toxicity. Neither Nrf2 overexpression (with concomitant proteasome activation) nor Atg8a upregulation suppressed the deregulated mitochondrial dynamics toxicity, which was mildly mitigated by antioxidants. Thus, despite extensive functional wiring of mitostatic and antioxidant/proteostatic modules, sustained loss-of mitostasis exhausts adaptation responses triggering premature aging. Reduced mitochondrial fusion rates cause severe organismal toxicity and progeria. Perturbed mitostasis activates cytoprotective antioxidant and proteostatic modules. Nrf2 or Foxo KD exaggerates the imbalanced mitochondrial dynamics induced toxicity. Antioxidants mildly alleviate loss-of mitochondrial dynamics-mediated progeria.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua, Padova, 35129, Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece.
| |
Collapse
|
21
|
Tsakiri EN, Gumeni S, Vougas K, Pendin D, Papassideri I, Daga A, Gorgoulis V, Juhász G, Scorrano L, Trougakos IP. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy. Autophagy 2019; 15:1757-1773. [PMID: 31002009 PMCID: PMC6735541 DOI: 10.1080/15548627.2019.1596477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is central to proteostasis network (PN) functionality and proteome quality control. Yet, the functional implication of the UPP in tissue homeodynamics at the whole organism level and its potential cross-talk with other proteostatic or mitostatic modules are not well understood. We show here that knock down (KD) of proteasome subunits in Drosophila flies, induced, for most subunits, developmental lethality. Ubiquitous or tissue specific proteasome dysfunction triggered systemic proteome instability and activation of PN modules, including macroautophagy/autophagy, molecular chaperones and the antioxidant cncC (the fly ortholog of NFE2L2/Nrf2) pathway. Also, proteasome KD increased genomic instability, altered metabolic pathways and severely disrupted mitochondrial functionality, triggering a cncC-dependent upregulation of mitostatic genes and enhanced rates of mitophagy. Whereas, overexpression of key regulators of antioxidant responses (e.g., cncC or foxo) could not suppress the deleterious effects of proteasome dysfunction; these were alleviated in both larvae and adult flies by modulating mitochondrial dynamics towards increased fusion or by enhancing autophagy. Our findings reveal the extensive functional wiring of genomic, proteostatic and mitostatic modules in higher metazoans. Also, they support the notion that age-related increase of proteotoxic stress due to decreased UPP activity deregulates all aspects of cellular functionality being thus a driving force for most age-related diseases. Abbreviations: ALP: autophagy-lysosome pathway; ARE: antioxidant response element; Atg8a: autophagy-related 8a; ATPsynβ: ATP synthase, β subunit; C-L: caspase-like proteasomal activity; cncC: cap-n-collar isoform-C; CT-L: chymotrypsin-like proteasomal activity; Drp1: dynamin related protein 1; ER: endoplasmic reticulum; foxo: forkhead box, sub-group O; GLU: glucose; GFP: green fluorescent protein; GLY: glycogen; Hsf: heat shock factor; Hsp: Heat shock protein; Keap1: kelch-like ECH-associated protein 1; Marf: mitochondrial assembly regulatory factor; NFE2L2/Nrf2: nuclear factor, erythroid 2 like 2; Opa1: optic atrophy 1; PN: proteostasis network; RNAi: RNA interference; ROS: reactive oxygen species; ref(2)P: refractory to sigma P; SQSTM1: sequestosome 1; SdhA: succinate dehydrogenase, subunit A; T-L: trypsin-like proteasomal activity; TREH: trehalose; UAS: upstream activation sequence; Ub: ubiquitin; UPR: unfolded protein response; UPP: ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Konstantinos Vougas
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padova , Padova , Italy
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| | - Andrea Daga
- Laboratory of Molecular Biology, Scientific Institute, IRCCS E. Medea , Lecco , Italy
| | - Vassilis Gorgoulis
- Genomics and Proteomics Research Units, Center of Basic Research II, Biomedical Research Foundation, Academy of Athens , Athens , Greece.,Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens , Athens , Greece.,Faculty of Biology, Medicine and Health, University of Manchester , Manchester , UK
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary and Biological Research Centre, Hungarian Academy of Sciences , Szeged , Hungary
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua , Padova , Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
22
|
von Stockum S, Sanchez-Martinez A, Corrà S, Chakraborty J, Marchesan E, Locatello L, Da Rè C, Cusumano P, Caicci F, Ferrari V, Costa R, Bubacco L, Rasotto MB, Szabo I, Whitworth AJ, Scorrano L, Ziviani E. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2019; 2:2/2/e201900392. [PMID: 30988163 PMCID: PMC6467245 DOI: 10.26508/lsa.201900392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | | | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy
| | - Caterina Da Rè
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | - Vanni Ferrari
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy,Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy,Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elena Ziviani
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy,Department of Biology, University of Padova, Padova, Italy,Correspondence:
| |
Collapse
|
23
|
Forgiarini A, Wang Z, D’Amore C, Jay-Smith M, Li FF, Hopkins B, Brimble MA, Pagetta A, Bersani S, De Martin S, Napoli B, Bova S, Rennison D, Orso G. Live applications of norbormide-based fluorescent probes in Drosophila melanogaster. PLoS One 2019; 14:e0211169. [PMID: 30958824 PMCID: PMC6453474 DOI: 10.1371/journal.pone.0211169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in live cell imaging confocal microscopy. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 highly performing fluorescent probes for live cell microscopy studies and food intake assays in Drosophila.
Collapse
Affiliation(s)
- Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Zifei Wang
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Claudio D’Amore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Morgan Jay-Smith
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Freda Fan Li
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | | | | | - Andrea Pagetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara Bersani
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Barbara Napoli
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - David Rennison
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Garrido-Maraver J, Celardo I, Costa AC, Lehmann S, Loh SHY, Martins LM. Enhancing folic acid metabolism suppresses defects associated with loss of Drosophila mitofusin. Cell Death Dis 2019; 10:288. [PMID: 30911005 PMCID: PMC6433915 DOI: 10.1038/s41419-019-1496-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the mitochondrial GTPase mitofusin 2 (MFN2) cause Charcot-Marie-Tooth disease type 2 (CMT2A), a form of peripheral neuropathy that compromises axonal function. Mitofusins promote mitochondrial fusion and regulate mitochondrial dynamics. They are also reported to be involved in forming contacts between mitochondria and the endoplasmic reticulum. The fruit fly, Drosophila melanogaster, is a powerful tool to model human neurodegenerative diseases, including CMT2A. Here, we have downregulated the expression of the Drosophila mitofusin (dMfn RNAi) in adult flies and showed that this activates mitochondrial retrograde signalling and is associated with an upregulation of genes involved in folic acid (FA) metabolism. Additionally, we demonstrated that pharmacological and genetic interventions designed to increase the FA metabolism pathway suppresses the phenotype of the dMfn RNAi flies. We conclude that strategies to increase FA metabolism may ameliorate diseases, such as peripheral neuropathies, that are associated with loss of mitochondrial function. A video abstract for this article is available at https://youtu.be/fs1G-QRo6xI.
Collapse
Affiliation(s)
- Juan Garrido-Maraver
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK
| | - Ana C Costa
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK
| | - Susann Lehmann
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK.
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
25
|
Allegra A, Innao V, Allegra AG, Musolino C. Relationship between mitofusin 2 and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:209-236. [PMID: 31036292 DOI: 10.1016/bs.apcsb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles whose actions are fundamental for cell viability. Within the cell, the mitochondrial system is incessantly modified via the balance between fusion and fission processes. Among other proteins, mitofusin 2 is a central protagonist in all these mitochondrial events (fusion, trafficking, contacts with other organelles), the balance of which causes the correct mitochondrial action, shape, and distribution within the cell. Here we examine the structural and functional characteristics of mitofusin 2, underlining its essential role in numerous intracellular pathways, as well as in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
26
|
Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, Pegoraro V, Angelini C, Antonini A, Bertoli A, Brini M, Ziviani E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 2018; 138:43-56. [PMID: 30219582 DOI: 10.1016/j.phrs.2018.09.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Parkin, an E3 ubiquitin ligase and a Parkinson's disease (PD) related gene, translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy. Mitochondrial pro-fusion protein Mitofusins (Mfn1 and Mfn2) were found to be a target for Parkin mediated ubiquitination. Mfns are transmembrane GTPase embedded in the outer membrane of mitochondria, which are required on adjacent mitochondria to mediate fusion. In mammals, Mfn2 also forms complexes that are capable of tethering mitochondria to endoplasmic reticulum (ER), a structural feature essential for mitochondrial energy metabolism, calcium (Ca2+) transfer between the organelles and Ca2+ dependent cell death. Despite its fundamental physiological role, the molecular mechanisms that control ER-mitochondria cross talk are obscure. Ubiquitination has recently emerged as a powerful tool to modulate protein function, via regulation of protein subcellular localization and protein ability to interact with other proteins. Ubiquitination is also a reversible mechanism, which can be actively controlled by opposing ubiquitination-deubiquitination events. In this work we found that in Parkin deficient cells and parkin mutant human fibroblasts, the tether between ER and mitochondria is decreased. We identified the site of Parkin dependent ubiquitination and showed that the non-ubiquitinatable Mfn2 mutant fails to restore ER-mitochondria physical and functional interaction. Finally, we took advantage of an established in vivo model of PD to demonstrate that manipulation of ER-mitochondria tethering by expressing an ER-mitochondria synthetic linker is sufficient to rescue the locomotor deficit associated to an in vivo Drosophila model of PD.
Collapse
Affiliation(s)
- Valentina Basso
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Elena Marchesan
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Caterina Peggion
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | | | - Denis Ottolini
- Department of Biology, University of Padova, Padova, Italy
| | - Valentina Debattisti
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Elisabetta Tasca
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | - Corrado Angelini
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy.
| |
Collapse
|
27
|
Cantó C. Mitochondrial Dynamics: Shaping Metabolic Adaptation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:129-167. [PMID: 30072090 DOI: 10.1016/bs.ircmb.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite their classic bean-shaped depiction, mitochondria have very different aspects in each cell type. From long filamentous structures to punctuated small round organelles. These shapes can dynamically change in response to nutrients and in situations of metabolic disease. However, why do mitochondria adapt different shapes and how is this determined? In this review, we will aim to understand different visions on how metabolic cues influence mitochondrial shape and vice-versa. This response can be dramatically different between tissues and cells, as illustrated by a large array of genetically engineered mouse models reported to date. We will use these models to understand the role of different mitochondrial dynamics-related proteins and processes.
Collapse
Affiliation(s)
- Carles Cantó
- Nestle Institute of Health Sciences NIHS, Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
28
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
29
|
Mateus D, Marini ES, Progida C, Bakke O. Rab7a modulates ER stress and ER morphology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:781-793. [DOI: 10.1016/j.bbamcr.2018.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023]
|
30
|
Bagli E, Zikou AK, Agnantis N, Kitsos G. Mitochondrial Membrane Dynamics and Inherited Optic Neuropathies. ACTA ACUST UNITED AC 2018; 31:511-525. [PMID: 28652416 DOI: 10.21873/invivo.11090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Abstract
Inherited optic neuropathies are a genetically diverse group of disorders mainly characterized by visual loss and optic atrophy. Since the first recognition of Leber's hereditary optic neuropathy, several genetic defects altering primary mitochondrial respiration have been proposed to contribute to the development of syndromic and non-syndromic optic neuropathies. Moreover, the genomics and imaging revolution in the past decade has increased diagnostic efficiency and accuracy, allowing recognition of a link between mitochondrial dynamics machinery and a broad range of inherited neurodegenerative diseases involving the optic nerve. Mutations of novel genes modifying mainly the balance between mitochondrial fusion and fission have been shown to lead to overlapping clinical phenotypes ranging from isolated optic atrophy to severe, sometimes lethal multisystem disorders, and are reviewed herein. Given the particular vulnerability of retinal ganglion cells to mitochondrial dysfunction, the accessibility of the eye as a part of the central nervous system and improvements in technical imaging concerning assessment of the retinal nerve fiber layer, optic nerve evaluation becomes critical - even in asymptomatic patients - for correct diagnosis, understanding and early treatment of these complex and enigmatic clinical entities.
Collapse
Affiliation(s)
- Eleni Bagli
- Institute of Molecular Biology and Biotechnology-FORTH, Division of Biomedical Research, Ioannina, Greece.,Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | - Anastasia K Zikou
- Department of Clinical Radiology, University of Ioannina, Ioannina, Greece
| | - Niki Agnantis
- Department of Pathology, University of Ioannina, Ioannina, Greece
| | - Georgios Kitsos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Mitofusin 2: from functions to disease. Cell Death Dis 2018; 9:330. [PMID: 29491355 PMCID: PMC5832425 DOI: 10.1038/s41419-017-0023-6] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Mitochondria are highly dynamic organelles whose functions are essential for cell viability. Within the cell, the mitochondrial network is continuously remodeled through the balance between fusion and fission events. Moreover, it dynamically contacts other organelles, particularly the endoplasmic reticulum, with which it enterprises an important functional relationship able to modulate several cellular pathways. Being mitochondria key bioenergetics organelles, they have to be transported to all the specific high-energy demanding sites within the cell and, when damaged, they have to be efficiently removed. Among other proteins, Mitofusin 2 represents a key player in all these mitochondrial activities (fusion, trafficking, turnover, contacts with other organelles), the balance of which results in the appropriate mitochondrial shape, function, and distribution within the cell. Here we review the structural and functional properties of Mitofusin 2, highlighting its crucial role in several cell pathways, as well as in the pathogenesis of neurodegenerative diseases, metabolic disorders, cardiomyopathies, and cancer.
Collapse
|
33
|
Mortiboys H, Macdonald R, Payne T, Sassani M, Jenkins T, Bandmann O. Translational approaches to restoring mitochondrial function in Parkinson's disease. FEBS Lett 2017; 592:776-792. [PMID: 29178330 DOI: 10.1002/1873-3468.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022]
Abstract
There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents have been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarise previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients.
Collapse
Affiliation(s)
- Heather Mortiboys
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Ruby Macdonald
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Payne
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Thomas Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, UK
| |
Collapse
|
34
|
Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Curr Opin Genet Dev 2017; 44:61-73. [PMID: 28213160 DOI: 10.1016/j.gde.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Peripheral neuropathies are characterized by degeneration of peripheral motor, sensory and/or autonomic axons, leading to progressive distal muscle weakness, sensory deficits and/or autonomic dysfunction. Acquired peripheral neuropathies, e.g., as a side effect of chemotherapy, are distinguished from inherited peripheral neuropathies (IPNs). Drosophila models for chemotherapy-induced peripheral neuropathy and several IPNs have provided novel insight into the molecular mechanisms underlying axonal degeneration. Forward genetic screens have predictive value for discovery of human IPN genes, and the pathogenicity of novel mutations in known IPN genes can be evaluated in Drosophila. Future screens for genes and compounds that modify Drosophila IPN phenotypes promise to make valuable contributions to unraveling the molecular pathogenesis and identification of therapeutic targets for these incurable diseases.
Collapse
|
35
|
Abstract
Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.
Collapse
|
36
|
Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci U S A 2016; 113:11249-11254. [PMID: 27647893 DOI: 10.1073/pnas.1606786113] [Citation(s) in RCA: 377] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The discovery of the multiple roles of mitochondria-endoplasmic reticulum (ER) juxtaposition in cell biology often relied upon the exploitation of Mitofusin (Mfn) 2 as an ER-mitochondria tether. However, this established Mfn2 function was recently questioned, calling for a critical re-evaluation of Mfn2's role in ER-mitochondria cross-talk. Electron microscopy and fluorescence-based probes of organelle proximity confirmed that ER-mitochondria juxtaposition was reduced by constitutive or acute Mfn2 deletion. Functionally, mitochondrial uptake of Ca2+ released from the ER was reduced following acute Mfn2 ablation, as well as in Mfn2-/- cells overexpressing the mitochondrial calcium uniporter. Mitochondrial Ca2+ uptake rate and extent were normal in isolated Mfn2-/- liver mitochondria, consistent with the finding that acute or chronic Mfn2 ablation or overexpression did not alter mitochondrial calcium uniporter complex component levels. Hence, Mfn2 stands as a bona fide ER-mitochondria tether whose ablation decreases interorganellar juxtaposition and communication.
Collapse
|
37
|
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9057593. [PMID: 27630760 PMCID: PMC5007348 DOI: 10.1155/2016/9057593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/30/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.
Collapse
|
38
|
Bioenergetic roles of mitochondrial fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1277-1283. [DOI: 10.1016/j.bbabio.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
|
39
|
Celardo I, Costa AC, Lehmann S, Jones C, Wood N, Mencacci NE, Mallucci GR, Loh SHY, Martins LM. Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease. Cell Death Dis 2016; 7:e2271. [PMID: 27336715 PMCID: PMC5143399 DOI: 10.1038/cddis.2016.173] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information
Collapse
Affiliation(s)
- I Celardo
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - A C Costa
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - S Lehmann
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - C Jones
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - N Wood
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - N E Mencacci
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - G R Mallucci
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.,Department of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge CB1 0HN, UK
| | - S H Y Loh
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| | - L M Martins
- MRC Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
40
|
Abstract
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453]
Collapse
Affiliation(s)
- Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
41
|
Wang ZH, Clark C, Geisbrecht ER. Drosophila clueless is involved in Parkin-dependent mitophagy by promoting VCP-mediated Marf degradation. Hum Mol Genet 2016; 25:1946-1964. [PMID: 26931463 PMCID: PMC5062585 DOI: 10.1093/hmg/ddw067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 12/31/2022] Open
Abstract
PINK1/Parkin-mediated mitochondrial quality control (MQC) requires valosin-containing protein (VCP)-dependent Mitofusin/Marf degradation to prevent damaged organelles from fusing with the healthy mitochondrial pool, facilitating mitochondrial clearance by autophagy. Drosophila clueless (clu) was found to interact genetically with PINK1 and parkin to regulate mitochondrial clustering in germ cells. However, whether Clu acts in MQC has not been investigated. Here, we show that overexpression of Drosophila Clu complements PINK1, but not parkin, mutant muscles. Loss of clu leads to the recruitment of Parkin, VCP/p97, p62/Ref(2)P and Atg8a to depolarized swollen mitochondria. However, clearance of damaged mitochondria is impeded. This paradox is resolved by the findings that excessive mitochondrial fission or inhibition of fusion alleviates mitochondrial defects and impaired mitophagy caused by clu depletion. Furthermore, Clu is upstream of and binds to VCP in vivo and promotes VCP-dependent Marf degradation in vitro Marf accumulates in whole muscle lysates of clu-deficient flies and is destabilized upon Clu overexpression. Thus, Clu is essential for mitochondrial homeostasis and functions in concert with Parkin and VCP for Marf degradation to promote damaged mitochondrial clearance.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA and Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
42
|
Abstract
Mitochondria of adult cardiomyocytes appear hypo-dynamic, lacking interconnected reticular networks and the continual fission and fusion observed in many other cell types. Nevertheless, proteins essential to mitochondrial network remodeling are abundant in adult hearts. Recent findings from cardiac-specific ablation of mitochondrial fission and fusion protein genes have revealed unexpected roles for mitochondrial dynamics factors in mitophagic mitochondrial quality control. This overview examines the clinical and experimental evidence for and against a meaningful role for the mitochondrial dynamism-quality control interactome in normal and diseased hearts. Newly discovered functions of mitochondrial dynamics factors in maintaining optimal cardiac mitochondrial fitness suggest that deep interrogation of clinical cardiomyopathy is likely to reveal genetic variants that cause or modify cardiac disease through their effects on mitochondrial fission, fusion, and mitophagy.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
43
|
Wang ZH, Clark C, Geisbrecht ER. Analysis of mitochondrial structure and function in the Drosophila larval musculature. Mitochondrion 2015; 26:33-42. [PMID: 26611999 DOI: 10.1016/j.mito.2015.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022]
Abstract
Mitochondria are dynamic organelles that change their architecture in normal physiological conditions. Mutations in genes that control mitochondrial fission or fusion, such as dynamin-related protein (Drp1), Mitofusins 1 (Mfn1) and 2 (Mfn2), and Optic atrophy 1 (Opa1), result in neuropathies or neurodegenerative diseases. It is increasingly clear that altered mitochondrial dynamics also underlie the pathology of other degenerative diseases, including Parkinson's disease (PD). Thus, understanding mitochondrial distribution, shape, and dynamics in all cell types is a prerequisite for developing and defining treatment regimens that may differentially affect tissues. The majority of Drosophila genes implicated in mitochondrial dynamics have been studied in the adult indirect flight muscle (IFM). Here, we discuss the utility of Drosophila third instar larvae (L3) as an alternative model to analyze and quantify mitochondrial behaviors. Advantages include large muscle cell size, a stereotyped arrangement of mitochondria that is conserved in mammalian muscles, and the ability to analyze muscle-specific gene function in mutants that are lethal prior to adult stages. In particular, we highlight methods for sample preparation and analysis of mitochondrial morphological features.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States
| | - Cheryl Clark
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
44
|
Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnauné-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 2015; 90:3-19. [PMID: 26494254 DOI: 10.1016/j.nbd.2015.10.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are dynamic organelles that continually move, fuse and divide. The dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs, keeps mitochondria in good health by restoring or removing damaged organelles or precipitates cells in apoptosis in cases of severe defects. Mitochondrial fusion and fission are essential in mammals and their disturbances are associated with several diseases. However, while mitochondrial fusion/fission dynamics, and the proteins that control these processes, are ubiquitous, associated diseases are primarily neurological disorders. Accordingly, inactivation of the main actors of mitochondrial fusion/fission dynamics is associated with defects in neuronal development, plasticity and functioning, both ex vivo and in vivo. Here, we present the central actors of mitochondrial fusion and fission and review the role of mitochondrial dynamics in neuronal physiology and pathophysiology. Particular emphasis is placed on the three main actors of these processes i.e. DRP1,MFN1-2, and OPA1 as well as on GDAP1, a protein of the mitochondrial outer membrane preferentially expressed in neurons. This article is part of a Special Issue entitled: Mitochondria & Brain.
Collapse
Affiliation(s)
- A M Bertholet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - T Delerue
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - A M Millet
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M F Moulis
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - C David
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France
| | - M Daloyau
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - L Arnauné-Pelloquin
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - N Davezac
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - V Mils
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M C Miquel
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France
| | - M Rojo
- CNRS, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires (IBGC), UMR5095, Bordeaux, France.
| | - P Belenguer
- Université de Toulouse, Centre de Biologie du Développement, CNRS, UMR5547/Université Paul Sabatier, Toulouse, France; CNRS, Centre de Biologie du Développement, UMR5547/Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
45
|
Wang ZH, Rabouille C, Geisbrecht ER. Loss of a Clueless-dGRASP complex results in ER stress and blocks Integrin exit from the perinuclear endoplasmic reticulum in Drosophila larval muscle. Biol Open 2015; 4:636-48. [PMID: 25862246 PMCID: PMC4434815 DOI: 10.1242/bio.201511551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drosophila Clueless (Clu) and its conserved orthologs are known for their role in the prevention of mitochondrial clustering. Here, we uncover a new role for Clu in the delivery of integrin subunits in muscle tissue. In clu mutants, αPS2 integrin, but not βPS integrin, abnormally accumulates in a perinuclear endoplasmic reticulum (ER) subdomain, a site that mirrors the endogenous localization of Clu. Loss of components essential for mitochondrial distribution do not phenocopy the clu mutant αPS2 phenotype. Conversely, RNAi knockdown of the DrosophilaGolgi reassembly and stacking protein GRASP55/65 (dGRASP) recapitulates clu defects, including the abnormal accumulation of αPS2 and larval locomotor activity. Both Clu and dGRASP proteins physically interact and loss of Clu displaces dGRASP from ER exit sites, suggesting that Clu cooperates with dGRASP for the exit of αPS2 from a perinuclear subdomain in the ER. We also found that Clu and dGRASP loss of function leads to ER stress and that the stability of the ER exit site protein Sec16 is severely compromised in the clu mutants, thus explaining the ER accumulation of αPS2. Remarkably, exposure of clu RNAi larvae to chemical chaperones restores both αPS2 delivery and functional ER exit sites. We propose that Clu together with dGRASP prevents ER stress and therefore maintains Sec16 stability essential for the functional organization of perinuclear early secretory pathway. This, in turn, is essential for integrin subunit αPS2 ER exit in Drosophila larval myofibers.
Collapse
Affiliation(s)
- Zong-Heng Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands The Department of Cell Biology, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | - Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
46
|
Sun N, Finkel T. Cardiac mitochondria: a surprise about size. J Mol Cell Cardiol 2015; 82:213-5. [PMID: 25626176 DOI: 10.1016/j.yjmcc.2015.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Affiliation(s)
- Nuo Sun
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Bhandari P, Song M, Dorn GW. Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects. J Mol Cell Cardiol 2014; 80:71-80. [PMID: 25555803 DOI: 10.1016/j.yjmcc.2014.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial dynamism (fusion and fission) is responsible for remodeling interconnected mitochondrial networks in some cell types. Adult cardiac myocytes lack mitochondrial networks, and their mitochondria are inherently "fragmented". Mitochondrial fusion/fission is so infrequent in cardiomyocytes as to not be observable under normal conditions, suggesting that mitochondrial dynamism may be dispensable in this cell type. However, we previously observed that cardiomyocyte-specific genetic suppression of mitochondrial fusion factors optic atrophy 1 (Opa1) and mitofusin/MARF evokes cardiomyopathy in Drosophila hearts. We posited that fusion-mediated remodeling of mitochondria may be critical for cardiac homeostasis, although never directly observed. Alternately, we considered that inner membrane Opa1 and outer membrane mitofusin/MARF might have other as-yet poorly described roles that affect mitochondrial and cardiac function. Here we compared heart tube function in three models of mitochondrial fragmentation in Drosophila cardiomyocytes: Drp1 expression, Opa1 RNAi, and mitofusin MARF RNA1. Mitochondrial fragmentation evoked by enhanced Drp1-mediated fission did not adversely impact heart tube function. In contrast, RNAi-mediated suppression of either Opa1 or mitofusin/MARF induced cardiac dysfunction associated with mitochondrial depolarization and ROS production. Inhibiting ROS by overexpressing superoxide dismutase (SOD) or suppressing ROMO1 prevented mitochondrial and heart tube dysfunction provoked by Opa1 RNAi, but not by mitofusin/MARF RNAi. In contrast, enhancing the ability of endoplasmic/sarcoplasmic reticulum to handle stress by expressing Xbp1 rescued the cardiomyopathy of mitofusin/MARF insufficiency without improving that caused by Opa1 deficiency. We conclude that decreased mitochondrial size is not inherently detrimental to cardiomyocytes. Rather, preservation of mitochondrial function by Opa1 located on the inner mitochondrial membrane, and prevention of ER stress by mitofusin/MARF located on the outer mitochondrial membrane, are central functions of these "mitochondrial fusion proteins".
Collapse
Affiliation(s)
- Poonam Bhandari
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Moshi Song
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
48
|
Sandoval H, Yao CK, Chen K, Jaiswal M, Donti T, Lin YQ, Bayat V, Xiong B, Zhang K, David G, Charng WL, Yamamoto S, Duraine L, Graham BH, Bellen HJ. Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. eLife 2014; 3. [PMID: 25313867 PMCID: PMC4215535 DOI: 10.7554/elife.03558] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial fusion and fission affect the distribution and quality control of mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion of mitochondria in neuromuscular junctions (NMJs). Marf mutants also fail to maintain proper synaptic transmission at NMJs upon repetitive stimulation, similar to Drp1 fission mutants. However, unlike Drp1, loss of Marf leads to NMJ morphology defects and extended larval lifespan. Marf is required to form contacts between the endoplasmic reticulum and/or lipid droplets (LDs) and for proper storage of cholesterol and ecdysone synthesis in ring glands. Interestingly, human Mitofusin-2 rescues the loss of LD but both Mitofusin-1 and Mitofusin-2 are required for steroid-hormone synthesis. Our data show that Marf and Mitofusins share an evolutionarily conserved role in mitochondrial transport, cholesterol ester storage and steroid-hormone synthesis. DOI:http://dx.doi.org/10.7554/eLife.03558.001 Mitochondria are the main source of energy for cells. These vital and highly dynamic organelles continually change shape by fusing with each other and splitting apart to create new mitochondria, repairing and replacing those damaged by cell stress. For nerve impulses to be transmitted across the gaps (called synapses) between nerve cells, mitochondria need to supply the very ends of the nerve fibers with energy. To do this, the mitochondria must be transported from the main body of the nerve cell to the tips of the nerve fibers. This may not happen if mitochondria are the wrong shape, size or damaged. While searching for genetic mutations that disrupt nerve function in the fruit fly Drosophila, Sandoval et al. spotted mutations in a gene called Marf. Further investigations revealed that flies with mutant versions of Marf have small, round mitochondria, and their nerves cannot transmit signals to muscles when they are highly stimulated. This is because the mutant mitochondria are not easily transported along nerve fibers, and so not enough energy is supplied to the synapses. The synapses of the Marf mutants are also abnormally shaped. Sandoval et al. found that this is not because Marf is lost in the neurons themselves, but because it is lost from a hormone-producing tissue called the ring gland. Another problem found in flies with mutated Marf genes is that they stop developing while in their larval stage. Sandoval et al. established that this could also be related to the loss of Marf from the ring gland. The Marf protein has two different functions in the ring gland: forming and storing droplets of fatty molecules used in hormone production, and synthesising a hormone that controls when a fly larva matures into the adult fly. This suggests that the lower levels of this hormone produced by Marf mutant flies underlies their prolonged larval stages and synapse defects. Vertebrates (animals with backbones, such as humans) have two genes that are related to the fly's Marf gene. When the human forms of these genes were introduced into mutant flies that lack a working copy of Marf, hormone production was only restored if both genes were introduced together. This indicates that these genes have separate roles in vertebrates, but that these roles are both performed by the single fly gene. The role of Marf in tethering mitochondria in the ring gland may allow us to better understand how this process affects hormone production and how the different parts of the cell communicate. DOI:http://dx.doi.org/10.7554/eLife.03558.002
Collapse
Affiliation(s)
- Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Chi-Kuang Yao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Yong Qi Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Vafa Bayat
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Bo Xiong
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, United States
| | - Gabriela David
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
49
|
Functional implications of mitofusin 2-mediated mitochondrial-SR tethering. J Mol Cell Cardiol 2014; 78:123-8. [PMID: 25252175 DOI: 10.1016/j.yjmcc.2014.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/23/2022]
Abstract
Cardiomyocyte mitochondria have an intimate physical and functional relationship with sarcoplasmic reticulum (SR). Under normal conditions mitochondrial ATP is essential to power SR calcium cycling that drives phasic contraction/relaxation, and changes in SR calcium release are sensed by mitochondria and used to modulate oxidative phosphorylation according to metabolic need. When perturbed, mitochondrial-SR calcium crosstalk can evoke programmed cell death. Physical proximity and functional interplay between mitochondria and SR are maintained in part through tethering of these two organelles by the membrane protein mitofusin 2 (Mfn2). Here we review and discuss findings from our two laboratories that derive from genetic manipulation of Mfn2 and closely related Mfn1 in mouse hearts and other experimental systems. By comparing the findings of our two independent research efforts we arrive at several conclusions that appear to be strongly supported, and describe a few areas of incomplete understanding that will require further study. In so doing we hope to clarify some misconceptions regarding the many varied roles of Mfn2 as both physical trans-organelle tether and mitochondrial fusion protein. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease."
Collapse
|
50
|
Naon D, Scorrano L. At the right distance: ER-mitochondria juxtaposition in cell life and death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2184-94. [PMID: 24875902 DOI: 10.1016/j.bbamcr.2014.05.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022]
Abstract
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
Affiliation(s)
- Deborah Naon
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy; Department of Biology, University of Padua, Via G. Colombo 3, 35121 Padua, Italy.
| |
Collapse
|