1
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell 2024; 187:7621-7636.e19. [PMID: 39672162 DOI: 10.1016/j.cell.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/21/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues and functions as a decoy receptor that potently inhibits interferon signaling, including in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David M Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lily L Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cody J Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Liliana D Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara L Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
2
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
3
|
Caveney NA, Rodriguez GE, Pollmann C, Meyer T, Borowska MT, Wilson SC, Wang N, Xiang X, Householder KD, Tao P, Su LL, Saxton RA, Piehler J, Garcia KC. Structure of the interleukin-5 receptor complex exemplifies the organizing principle of common beta cytokine signaling. Mol Cell 2024; 84:1995-2005.e7. [PMID: 38614096 PMCID: PMC11102305 DOI: 10.1016/j.molcel.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cytokines regulate immune responses by binding to cell surface receptors, including the common subunit beta (βc), which mediates signaling for GM-CSF, IL-3, and IL-5. Despite known roles in inflammation, the structural basis of IL-5 receptor activation remains unclear. We present the cryo-EM structure of the human IL-5 ternary receptor complex, revealing architectural principles for IL-5, GM-CSF, and IL-3. In mammalian cell culture, single-molecule imaging confirms hexameric IL-5 complex formation on cell surfaces. Engineered chimeric receptors show that IL-5 signaling, as well as IL-3 and GM-CSF, can occur through receptor heterodimerization, obviating the need for higher-order assemblies of βc dimers. These findings provide insights into IL-5 and βc receptor family signaling mechanisms, aiding in the development of therapies for diseases involving deranged βc signaling.
Collapse
Affiliation(s)
- Nathanael A Caveney
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| | - Grayson E Rodriguez
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Marta T Borowska
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven C Wilson
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nan Wang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xinyu Xiang
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biophysics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karsten D Householder
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pingdong Tao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen L, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557241. [PMID: 37745311 PMCID: PMC10515820 DOI: 10.1101/2023.09.11.557241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.
Collapse
Affiliation(s)
- Giulia Irene Maria Pasquesi
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| | - Holly Allen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Olivia Joyner
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Keala Gapin
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Isabella Horton
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Lily Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Qing Yang
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Cody J. Warren
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210
| | - Liliana D. Florea
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Sara L. Sawyer
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303
| |
Collapse
|
5
|
Zanin N, Viaris de Lesegno C, Podkalicka J, Meyer T, Gonzalez Troncoso P, Bun P, Danglot L, Chmiest D, Urbé S, Piehler J, Blouin CM, Lamaze C. STAM and Hrs interact sequentially with IFN-α Receptor to control spatiotemporal JAK-STAT endosomal activation. Nat Cell Biol 2023; 25:425-438. [PMID: 36797476 DOI: 10.1038/s41556-022-01085-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -β receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/β-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-β, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-β.
Collapse
Affiliation(s)
- Natacha Zanin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Namur Research Institute for Life Sciences (NARILIS), URBC, University of Namur, Namur, Belgium
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Joanna Podkalicka
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, Paris, France.,Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Thomas Meyer
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Pamela Gonzalez Troncoso
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Bun
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Lydia Danglot
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Daniela Chmiest
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Department of Biochemistry, CIIL Biomedical Research Center, University of Lausanne, Epalinges, Switzerland
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Cédric M Blouin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
6
|
Philippi M, Richter CP, Kappen M, Watrinet I, Miao Y, Runge M, Jorde L, Korneev S, Holtmannspötter M, Kurre R, Holthuis JCM, Garcia KC, Plückthun A, Steinhart M, Piehler J, You C. Biofunctional Nanodot Arrays in Living Cells Uncover Synergistic Co-Condensation of Wnt Signalodroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203723. [PMID: 36266931 DOI: 10.1002/smll.202203723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Qualitative and quantitative analysis of transient signaling platforms in the plasma membrane has remained a key experimental challenge. Here, biofunctional nanodot arrays (bNDAs) are developed to spatially control dimerization and clustering of cell surface receptors at the nanoscale. High-contrast bNDAs with spot diameters of ≈300 nm are obtained by capillary nanostamping of bovine serum albumin bioconjugates, which are subsequently biofunctionalized by reaction with tandem anti-green fluorescence protein (GFP) clamp fusions. Spatially controlled assembly of active Wnt signalosomes is achieved at the nanoscale in the plasma membrane of live cells by capturing the co-receptor Lrp6 into bNDAs via an extracellular GFP tag. Strikingly, co-recruitment is observed of co-receptor Frizzled-8 as well as the cytosolic scaffold proteins Axin-1 and Disheveled-2 into Lrp6 nanodots in the absence of ligand. Density variation and the high dynamics of effector proteins uncover highly cooperative liquid-liquid phase separation (LLPS)-driven assembly of Wnt "signalodroplets" at the plasma membrane, pinpointing the synergistic effects of LLPS for Wnt signaling amplification. These insights highlight the potential of bNDAs for systematically interrogating nanoscale signaling platforms and condensation at the plasma membrane of live cells.
Collapse
Affiliation(s)
- Michael Philippi
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Isabelle Watrinet
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mercedes Runge
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Lara Jorde
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Sergej Korneev
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Joost C M Holthuis
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, Zurich, 8057, Switzerland
| | - Martin Steinhart
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| |
Collapse
|
7
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
8
|
Naesens L, Nemegeer J, Roelens F, Vallaeys L, Meuwissen M, Janssens K, Verloo P, Ogunjimi B, Hemelsoet D, Hoste L, Roels L, De Bruyne M, De Baere E, Van Dorpe J, Dendooven A, Sieben A, Rice GI, Kerre T, Beyaert R, Uggenti C, Crow YJ, Tavernier SJ, Maelfait J, Haerynck F. Mutations in RNU7-1 Weaken Secondary RNA Structure, Induce MCP-1 and CXCL10 in CSF, and Result in Aicardi-Goutières Syndrome with Severe End-Organ Involvement. J Clin Immunol 2022; 42:962-974. [PMID: 35320431 PMCID: PMC9402729 DOI: 10.1007/s10875-022-01209-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Josephine Nemegeer
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Filip Roelens
- Department of Pediatrics, Algemeen Ziekenhuis Delta, 8800, Roeselare, Belgium
| | - Lore Vallaeys
- Department of Pediatrics, Algemeen Ziekenhuis Groeninge, 8500, Kortrijk, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, 2000, Antwerp, Belgium
- Department of Medical Genetics, Antwerp University Hospital, 2650, Antwerp, Belgium
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, 2000, Antwerp, Belgium
- Department of Medical Genetics, Antwerp University Hospital, 2650, Antwerp, Belgium
| | - Patrick Verloo
- Department of Pediatrics, Division of Pediatric Neurology, University Hospital Ghent, 9000, Ghent, Belgium
| | - Benson Ogunjimi
- Department of Pediatrics, Antwerp University Hospital, 2650, Edegem, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610, Antwerp, Belgium
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Levi Hoste
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Lisa Roels
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Pathology, Antwerp University Hospital, 9000, Ghent, Belgium
| | - Anne Sieben
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Pathology, Antwerp University Hospital, 9000, Ghent, Belgium
| | - Gillian I Rice
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tessa Kerre
- Department of Hematology, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, 9052, Ghent, Belgium
| | - Carolina Uggenti
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, University of Paris, Imagine Institute, Paris, France
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, 9052, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium.
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium.
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium.
| |
Collapse
|
9
|
CHEN W, YOUNIS MH, ZHAO Z, CAI W. Recent biomedical advances enabled by HaloTag technology. BIOCELL 2022; 46:1789-1801. [PMID: 35601815 PMCID: PMC9119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The knowledge of interactions among functional proteins helps researchers understand disease mechanisms and design potential strategies for treatment. As a general approach, the fluorescent and affinity tags were employed for exploring this field by labeling the Protein of Interest (POI). However, the autofluorescence and weak binding strength significantly reduce the accuracy and specificity of these tags. Conversely, HaloTag, a novel self-labeling enzyme (SLE) tag, could quickly form a covalent bond with its ligand, enabling fast and specific labeling of POI. These desirable features greatly increase the accuracy and specificity, making the HaloTag a valuable system for various applications ranging from imaging to immobilization of POI. Notably, the HaloTag technique has already been successfully employed in a series of studies with excellent efficiency. In this review, we summarize the development of HaloTag and recent advanced investigations associated with HaloTag, including in vitro imaging (e.g., POI imaging, cellular condition monitoring, microorganism imaging, system development), in vivo imaging, biomolecule immobilization (e.g., POI collection, protein/nuclear acid interaction and protein structure analysis), targeted degradation (e.g., L-AdPROM), and more. We also present a systematic discussion regarding the future direction and challenges of the HaloTag technique.
Collapse
Affiliation(s)
- Weiyu CHEN
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Muhsin H. YOUNIS
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA
| | - Zhongkuo ZHAO
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| | - Weibo CAI
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, WI, 53705, USA,Address correspondence to: Zhongkuo Zhao, ; Weibo Cai,
| |
Collapse
|
10
|
Lan C, Stulz A, Barthes NPF, Lauw S, Salavei P, Jung M, Heerklotz H, Ulbrich MH. Designed membrane protein heterodimers and control of their affinity by binding domain and membrane linker properties. NANOSCALE 2021; 13:20692-20702. [PMID: 34878479 DOI: 10.1039/d1nr06574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many membrane proteins utilize dimerization to transmit signals across the cell membrane via regulation of the lateral binding affinity. The complexity of natural membrane proteins hampers the understanding of this regulation on a biophysical level. We designed simplified membrane proteins from well-defined soluble dimerization domains with tunable affinities, flexible linkers, and an inert membrane anchor. Live-cell single-molecule imaging demonstrates that their dimerization affinity indeed depends on the strength of their binding domains. We confirm that as predicted, the 2-dimensional affinity increases with the 3-dimensional binding affinity of the binding domains and decreases with linker lengths. Models of extended and coiled linkers delineate an expected range of 2-dimensional affinities, and our observations for proteins with medium binding strength agree well with the models. Our work helps in understanding the function of membrane proteins and has important implications for the design of synthetic receptors.
Collapse
Affiliation(s)
- Chenyang Lan
- Faculty of Biology, University of Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| | - Anja Stulz
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | | | - Susan Lauw
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
- Core Facility Signalling Factory & Robotics, University of Freiburg, Germany
| | - Pavel Salavei
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
- Core Facility Signalling Factory & Robotics, University of Freiburg, Germany
| | - Manfred Jung
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Heiko Heerklotz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Germany
| | - Maximilian H Ulbrich
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
- Internal Medicine IV, University of Freiburg Medical Center and Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
11
|
Hager R, Müller U, Ollinger N, Weghuber J, Lanzerstorfer P. Subcellular Dynamic Immunopatterning of Cytosolic Protein Complexes on Microstructured Polymer Substrates. ACS Sens 2021; 6:4076-4088. [PMID: 34652152 PMCID: PMC8630788 DOI: 10.1021/acssensors.1c01574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Analysis of protein–protein
interactions in living cells
by protein micropatterning is currently limited to the spatial arrangement
of transmembrane proteins and their corresponding downstream molecules.
Here, we present a robust and straightforward method for dynamic immunopatterning
of cytosolic protein complexes by use of an artificial transmembrane
bait construct in combination with microstructured antibody arrays
on cyclic olefin polymer substrates. As a proof, the method was used
to characterize Grb2-mediated signaling pathways downstream of the
epidermal growth factor receptor (EGFR). Ternary protein complexes
(Shc1:Grb2:SOS1 and Grb2:Gab1:PI3K) were identified, and we found
that EGFR downstream signaling is based on constitutively bound (Grb2:SOS1
and Grb2:Gab1) as well as on agonist-dependent protein associations
with transient interaction properties (Grb2:Shc1 and Grb2:PI3K). Spatiotemporal
analysis further revealed significant differences in stability and
exchange kinetics of protein interactions. Furthermore, we could show
that this approach is well suited to study the efficacy and specificity
of SH2 and SH3 protein domain inhibitors in a live cell context. Altogether,
this method represents a significant enhancement of quantitative subcellular
micropatterning approaches as an alternative to standard biochemical
analyses.
Collapse
Affiliation(s)
- Roland Hager
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Ulrike Müller
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| | - Nicole Ollinger
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Head Office: FFoQSI GmbH, Technopark 1C, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, School of Engineering, 4600 Wels, Austria
| |
Collapse
|
12
|
Shemesh M, Lochte S, Piehler J, Schreiber G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci Signal 2021; 14:eabe4627. [PMID: 34813358 DOI: 10.1126/scisignal.abe4627] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Lochte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Duncan CJA, Hambleton S. Human Disease Phenotypes Associated with Loss and Gain of Function Mutations in STAT2: Viral Susceptibility and Type I Interferonopathy. J Clin Immunol 2021; 41:1446-1456. [PMID: 34448086 PMCID: PMC8390117 DOI: 10.1007/s10875-021-01118-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
STAT2 is distinguished from other STAT family members by its exclusive involvement in type I and III interferon (IFN-I/III) signaling pathways, and its unique behavior as both positive and negative regulator of IFN-I signaling. The clinical relevance of these opposing STAT2 functions is exemplified by monogenic diseases of STAT2. Autosomal recessive STAT2 deficiency results in heightened susceptibility to severe and/or recurrent viral disease, whereas homozygous missense substitution of the STAT2-R148 residue is associated with severe type I interferonopathy due to loss of STAT2 negative regulation. Here we review the clinical presentation, pathogenesis, and management of these disorders of STAT2.
Collapse
Affiliation(s)
- Christopher James Arthur Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Royal Victoria Infirmary, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK.
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Great North Children's Hospital, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, NE1 4LP, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Flesch J, Bettenhausen M, Kazmierczak M, Klesse WM, Skibitzki O, Psathaki OE, Kurre R, Capellini G, Guha S, Schroeder T, Witzigmann B, You C, Piehler J. Three-Dimensional Interfacing of Cells with Hierarchical Silicon Nano/Microstructures for Midinfrared Interrogation of In Situ Captured Proteins. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8049-8059. [PMID: 33570931 DOI: 10.1021/acsami.0c22421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Label-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding. Based on spatially resolved surface functionalization, we demonstrate controlled three-dimensional interfacing of mammalian cells with Si-MPAs. Spatially controlled surface functionalization for site-specific protein immobilization enabled efficient targeting of soluble and membrane proteins into sensing hotspots directly from cells cultured on Si-MPAs. Protein binding to Si-MPA hotspots at submonolayer level was unambiguously detected by conventional Fourier transform IR spectroscopy. The compatibility with cost-effective CMOS-based microfabrication techniques readily allows integration of this novel IR transducer into fully fledged bioanalytical microdevices for selective and sensitive protein sensing.
Collapse
Affiliation(s)
- Julia Flesch
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
| | - Maximilian Bettenhausen
- Department of Electrical Engineering/Computer Science and CINSaT, University of Kassel, Kassel 34121, Germany
| | - Marcin Kazmierczak
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Wolfgang M Klesse
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Oliver Skibitzki
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Olympia E Psathaki
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Rainer Kurre
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Giovanni Capellini
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
- Dipartimento di Scienze, Università Roma Tre, Roma 00146, Italy
| | - Subhajit Guha
- IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder) 15236, Germany
| | - Thomas Schroeder
- Leibniz-Institut für Kristallzüchtung (IKZ), Berlin 12489, Germany
| | - Bernd Witzigmann
- Department of Electrical Engineering/Computer Science and CINSaT, University of Kassel, Kassel 34121, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Osnabrück 49076, Germany
- Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück 49076, Germany
| |
Collapse
|
15
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
16
|
Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells. Biomolecules 2020; 10:biom10040540. [PMID: 32252486 PMCID: PMC7225972 DOI: 10.3390/biom10040540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
Collapse
|
17
|
Flesch J, Kappen M, Drees C, You C, Piehler J. Self-assembly of robust gold nanoparticle monolayer architectures for quantitative protein interaction analysis by LSPR spectroscopy. Anal Bioanal Chem 2020; 412:3413-3422. [PMID: 32198532 PMCID: PMC7214499 DOI: 10.1007/s00216-020-02551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Localized surface plasmon resonance (LSPR) detection offers highly sensitive label-free detection of biomolecular interactions. Simple and robust surface architectures compatible with real-time detection in a flow-through system are required for broad application in quantitative interaction analysis. Here, we established self-assembly of a functionalized gold nanoparticle (AuNP) monolayer on a glass substrate for stable, yet reversible immobilization of Histidine-tagged proteins. To this end, one-step coating of glass substrates with poly-L-lysine graft poly(ethylene glycol) functionalized with ortho-pyridyl disulfide (PLL-PEG-OPSS) was employed as a reactive, yet biocompatible monolayer to self-assemble AuNP into a LSPR active monolayer. Site-specific, reversible immobilization of His-tagged proteins was accomplished by coating the AuNP monolayer with tris-nitrilotriacetic acid (trisNTA) PEG disulfide. LSPR spectroscopy detection of protein binding on these biocompatible functionalized AuNP monolayers confirms high stability under various harsh analytical conditions. These features were successfully employed to demonstrate unbiased kinetic analysis of cytokine-receptor interactions. Graphical abstract ![]()
Collapse
Affiliation(s)
- Julia Flesch
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Christoph Drees
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| | - Jacob Piehler
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| |
Collapse
|
18
|
Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, Löchte S, Stanly TA, Pulgar Prieto KD, Poojari C, Sharma V, Richter CP, Kurre R, Hubbard SR, Garcia KC, Moraga I, Vattulainen I, Hitchcock IS, Piehler J. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 2020; 367:643-652. [PMID: 32029621 PMCID: PMC8117407 DOI: 10.1126/science.aaw3242] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/08/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maximillian Hafer
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tess A Stanly
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Katiuska D Pulgar Prieto
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chetan Poojari
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christian P Richter
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Rainer Kurre
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stevan R Hubbard
- Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ignacio Moraga
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
- Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Ian S Hitchcock
- York Biomedical Research Institute and Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
| |
Collapse
|
19
|
Fabrication, Characterization and Application of Biomolecule Micropatterns on Cyclic Olefin Polymer (COP) Surfaces with Adjustable Contrast. BIOSENSORS-BASEL 2019; 10:bios10010003. [PMID: 31905666 PMCID: PMC7168193 DOI: 10.3390/bios10010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 01/08/2023]
Abstract
Peptide and protein micropatterns are powerful tools for the investigation of various cellular processes, including protein–protein interactions (PPIs). Within recent years, various approaches for the production of functional surfaces have been developed. Most of these systems use glass as a substrate, which has several drawbacks, including high fragility and costs, especially if implemented for fluorescence microscopy. In addition, conventional fabrication technologies such as microcontact printing (µCP) are frequently used for the transfer of biomolecules to the glass surface. In this case, it is challenging to adjust the biomolecule density. Here, we show that cyclic olefin polymer (COP) foils, with their encouraging properties, including the ease of manufacturing, chemical resistance, biocompatibility, low water absorption, and optical clarity, are a promising alternative to glass substrates for the fabrication of micropatterns. Using a photolithography-based approach, we generated streptavidin/biotinylated antibody patterns on COPs with the possibility of adjusting the pattern contrast by varying plasma activation parameters. Our experimental setup was finally successfully implemented for the analysis of PPIs in the membranes of live cells via total internal reflection fluorescence (TIRF) microscopy.
Collapse
|
20
|
Motsch V, Brameshuber M, Baumgart F, Schütz GJ, Sevcsik E. A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci Rep 2019; 9:3288. [PMID: 30824760 PMCID: PMC6397226 DOI: 10.1038/s41598-019-39865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
A complete understanding of signaling processes at the plasma membrane depends on a quantitative characterization of the interactions of the involved proteins. Fluorescence recovery after photobleaching (FRAP) is a widely used and convenient technique to obtain kinetic parameters on protein interactions in living cells. FRAP experiments to determine unbinding time constants for proteins at the plasma membrane, however, are often hampered by non-specific contributions to the fluorescence recovery signal. On the example of the interaction between the T cell receptor (TCR) and the Syk kinase ZAP70, we present here an approach based on protein micropatterning that allows the elimination of such non-specific contributions and considerably simplifies analysis of FRAP data. Specifically, detection and reference areas are created within single cells, each being either enriched or depleted in TCR, which permits the isolation of ZAP70-TCR binding in a straight-forward manner. We demonstrate the applicability of our method by comparing it to a conventional FRAP approach.
Collapse
Affiliation(s)
- Viktoria Motsch
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Florian Baumgart
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, 1040, Vienna, Austria.
| |
Collapse
|
21
|
Lindner M, Tresztenyak A, Fülöp G, Jahr W, Prinz A, Prinz I, Danzl JG, Schütz GJ, Sevcsik E. A Fast and Simple Contact Printing Approach to Generate 2D Protein Nanopatterns. Front Chem 2019; 6:655. [PMID: 30733939 PMCID: PMC6353799 DOI: 10.3389/fchem.2018.00655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
Protein micropatterning has become an important tool for many biomedical applications as well as in academic research. Current techniques that allow to reduce the feature size of patterns below 1 μm are, however, often costly and require sophisticated equipment. We present here a straightforward and convenient method to generate highly condensed nanopatterns of proteins without the need for clean room facilities or expensive equipment. Our approach is based on nanocontact printing and allows for the fabrication of protein patterns with feature sizes of 80 nm and periodicities down to 140 nm. This was made possible by the use of the material X-poly(dimethylsiloxane) (X-PDMS) in a two-layer stamp layout for protein printing. In a proof of principle, different proteins at various scales were printed and the pattern quality was evaluated by atomic force microscopy (AFM) and super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Marco Lindner
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Stratec Consumables GmbH, Anif, Austria
| | | | - Gergö Fülöp
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Wiebke Jahr
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | | - Johann G. Danzl
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, Vienna, Austria
| |
Collapse
|
22
|
USP18 - a multifunctional component in the interferon response. Biosci Rep 2018; 38:BSR20180250. [PMID: 30126853 PMCID: PMC6240716 DOI: 10.1042/bsr20180250] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) represent the largest family of deubiquitinating enzymes (DUB). These proteases cleave the isopeptide bond between ubiquitin and a lysine residue of a ubiquitin-modified protein. USP18 is a special member of the USP family as it only deconjugates the ubiquitin-like protein ISG15 (interferon-stimulated gene (ISG) 15) from target proteins but is not active towards ubiquitin. Independent of its protease activity, USP18 functions as a major negative regulator of the type I interferon response showing that USP18 is – at least – a bifunctional protein. In this review, we summarise our current knowledge of protease-dependent and -independent functions of USP18 and discuss the structural basis of its dual activity.
Collapse
|
23
|
Dirscherl C, Hein Z, Ramnarayan VR, Jacob-Dolan C, Springer S. A two-hybrid antibody micropattern assay reveals specific in cis interactions of MHC I heavy chains at the cell surface. eLife 2018; 7:e34150. [PMID: 30180933 PMCID: PMC6125123 DOI: 10.7554/elife.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | - Zeynep Hein
- Department of Life Sciences and ChemistryJacobs UniversityBremenGermany
| | | | | | | |
Collapse
|
24
|
Hodgkinson A, Uzé G, Radulescu O, Trucu D. Signal Propagation in Sensing and Reciprocating Cellular Systems with Spatial and Structural Heterogeneity. Bull Math Biol 2018; 80:1900-1936. [PMID: 29721746 DOI: 10.1007/s11538-018-0439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Sensing and reciprocating cellular systems (SARs) are important for the operation of many biological systems. Production in interferon (IFN) SARs is achieved through activation of the Jak-Stat pathway, and downstream upregulation of IFN regulatory factor (IRF)-7 and IFN transcription, but the role that high- and low-affinity IFNs play in this process remains unclear. We present a comparative between a minimal spatio-temporal partial differential equation model and a novel spatio-structural-temporal (SST) model for the consideration of receptor, binding, and metabolic aspects of SAR behaviour. Using the SST framework, we simulate single- and multi-cluster paradigms of IFN communication. Simulations reveal a cyclic process between the binding of IFN to the receptor, and the consequent increase in metabolism, decreasing the propensity for binding due to the internal feedback mechanism. One observes the effect of heterogeneity between cellular clusters, allowing them to individualise and increase local production, and within clusters, where we observe 'subpopular quiescence'; a process whereby intra-cluster subpopulations reduce their binding and metabolism such that other such subpopulations may augment their production. Finally, we observe the ability for low-affinity IFN to communicate a long range signal, where high affinity cannot, and the breakdown of this relationship through the introduction of cell motility. Biological systems may utilise cell motility where environments are unrestrictive and may use fixed system, with low-affinity communication, where a localised response is desirable.
Collapse
Affiliation(s)
- Arran Hodgkinson
- DIMNP - UMR 5235, Université de Montpellier, Pl. E. Bataillon, 34095, Montpellier, France.
| | - Gilles Uzé
- DIMNP - UMR 5235, Université de Montpellier, Pl. E. Bataillon, 34095, Montpellier, France
| | - Ovidiu Radulescu
- DIMNP - UMR 5235, Université de Montpellier, Pl. E. Bataillon, 34095, Montpellier, France
| | - Dumitru Trucu
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, Scotland, UK
| |
Collapse
|
25
|
Izuta S, Yamaguchi S, Misawa R, Yamahira S, Tan M, Kawahara M, Suzuki T, Takagi T, Sato K, Nakamura M, Nagamune T, Okamoto A. Microfluidic preparation of anchored cell membrane sheets for in vitro analyses and manipulation of the cytoplasmic face. Sci Rep 2017; 7:14962. [PMID: 29097751 PMCID: PMC5668413 DOI: 10.1038/s41598-017-14737-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Molecular networks on the cytoplasmic faces of cellular plasma membranes are critical research topics in biological sciences and medicinal chemistry. However, the selective permeability of the cell membrane restricts the researchers from accessing to the intact intracellular factors on the membrane from the outside. Here, a microfluidic method to prepare cell membrane sheets was developed as a promising tool for direct examination of the cytoplasmic faces of cell membranes. Mammalian cells immobilized on a poly(ethylene glycol)-lipid coated substrate were rapidly and efficiently fractured, with the sheer stress of laminar flow in microchannels, resulting in isolation of the bottom cell membrane sheets with exposed intact cytoplasmic faces. On these faces of the cell membrane sheets, both ligand-induced phosphorylation of receptor tyrosine kinases and selective enzymatic modification of a G-protein coupling receptor were directly observed. Thus, the present cell membrane sheet should serve as a unique platform for studies providing new insights into juxta-membrane molecular networks and drug discovery.
Collapse
Affiliation(s)
- Shin Izuta
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan.
| | - Ryuji Misawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinya Yamahira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Modong Tan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoko Suzuki
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Kae Sato
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Motonao Nakamura
- Department of Life Science, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
| |
Collapse
|
26
|
Dirscherl C, Springer S. Protein micropatterns printed on glass: Novel tools for protein-ligand binding assays in live cells. Eng Life Sci 2017; 18:124-131. [PMID: 32624894 DOI: 10.1002/elsc.201700010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Micrometer-sized patterns of proteins on glass or silica surfaces are in widespread use as protein arrays for probing with ligands or recombinant proteins. More recently, they have been used to capture the surface proteins of mammalian cells seeded onto them, and to arrange these surface proteins into pattern structures. Binding of small molecule ligands or of other proteins, transmembrane or intracellular, to these captured surface proteins can then be quantified. However, reproducible production of protein micropatterns on surfaces can be technically difficult. In this review, we outline the wide potential and the current practical uses of printed protein micropatterns in a historical overview, and we detail some potential pitfalls and difficulties from our own experience, as well as ways to circumvent them.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry Jacobs University Bremen Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry Jacobs University Bremen Germany
| |
Collapse
|
27
|
Fernandez A, Bautista M, Stanciauskas R, Chung T, Pinaud F. Cell-Shaping Micropatterns for Quantitative Super-Resolution Microscopy Imaging of Membrane Mechanosensing Proteins. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27575-27586. [PMID: 28766344 DOI: 10.1021/acsami.7b09743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Patterning cells on microcontact-printed substrates is a powerful approach to control cell morphology and introduce specific mechanical cues on a cell's molecular organization. Although global changes in cellular architectures caused by micropatterns can easily be probed with diffraction-limited optical microscopy, studying molecular reorganizations at the nanoscale demands micropatterned substrates that accommodate the optical requirements of single molecule microscopy techniques. Here, we developed a simple micropatterning strategy that provides control of cellular architectures and is optimized for nanometer accuracy single molecule tracking and three-dimensional super-resolution imaging of plasma and nuclear membrane proteins in cells. This approach, based on fibronectin microcontact printing on hydrophobic organosilane monolayers, allows evanescent wave and light-sheet microscopy of cells whilst fulfilling the stringent optical demands of point reconstruction optical microscopy. By imposing steady-state mechanical cues on cells grown in these micropatterns, we reveal nanoscale remodeling in the dynamics and the structural organizations of the nuclear envelope mechanotransducing protein emerin and of the plasma membrane mechanosensing protein caveolin-1 using single particle tracking photoactivated localization microscopy and direct stochastic optical reconstruction microscopy imaging. In addition to allowing quantitative biophysical studies of mechanoresponsive membrane proteins, this approach provides an easy means to probe mechanical regulations in cellular membranes with high optical resolution and nanometer precision.
Collapse
Affiliation(s)
- Anthony Fernandez
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Markville Bautista
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Ramunas Stanciauskas
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Taerin Chung
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Fabien Pinaud
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
28
|
Abstract
Type I interferons (IFN-1) are cytokines that affect the expression of thousands of genes, resulting in profound cellular changes. IFN-1 activates the cell by dimerizing its two-receptor chains, IFNAR1 and IFNAR2, which are expressed on all nucleated cells. Despite a similar mode of binding, the different IFN-1s activate a spectrum of activities. The causes for differential activation may stem from differences in IFN-1-binding affinity, duration of binding, number of surface receptors, induction of feedbacks, and cell type-specific variations. All together these will alter the signal that is transmitted from the extracellular domain inward. The intracellular domain binds, directly or indirectly, different effector proteins that transmit signals. The composition of effector molecules deviates between different cell types and tissues, inserting an additional level of complexity to the system. Moreover, IFN-1s do not act on their own, and clearly there is much cross-talk between the activated effector molecules by IFN-1 and other cytokines. The outcome generated by all of these factors (processing step) is an observed phenotype, which can be the transformation of the cell to an antiviral state, differentiation of the cell to a specific immune cell, senescence, apoptosis, and many more. IFN-1 activities can be divided into robust and tunable. Antiviral activity, which is stimulated by minute amounts of IFN-1 and is common to all cells, is termed robust. The other activities, which we term tunable, are cell type-specific and often require more stringent modes of activation. In this review, I summarize the current knowledge on the mode of activation and processing that is initiated by IFN-1, in perspective of the resulting phenotypes.
Collapse
Affiliation(s)
- Gideon Schreiber
- From the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
29
|
Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545:234-237. [PMID: 28467818 PMCID: PMC5815871 DOI: 10.1038/nature22306] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic β-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.
Collapse
|
30
|
Dirscherl C, Palankar R, Delcea M, Kolesnikova TA, Springer S. Specific Capture of Peptide-Receptive Major Histocompatibility Complex Class I Molecules by Antibody Micropatterns Allows for a Novel Peptide-Binding Assay in Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602974. [PMID: 28151581 DOI: 10.1002/smll.201602974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/22/2016] [Indexed: 05/21/2023]
Abstract
Binding assays with fluorescently labeled ligands and recombinant receptor proteins are commonly performed in 2D arrays. But many cell surface receptors only function in their native membrane environment and/or in a specific conformation, such as they appear on the surface of live cells. Thus, receptors on live cells should be used for ligand binding assays. Here, it is shown that antibodies preprinted on a glass surface can be used to specifically array a peptide receptor of the immune system, i.e., the major histocompatibility complex class I molecule H-2Kb , into a defined pattern on the surface of live cells. Monoclonal antibodies make it feasible to capture a distinct subpopulation of H-2Kb and hold it at the cell surface. This patterned receptor enables a novel peptide-binding assay, in which the specific binding of a fluorescently labeled index peptide is visualized by microscopy. Measurements of ligand binding to captured cell surface receptors in defined confirmations apply to many problems in cell biology and thus represent a promising tool in the field of biosensors.
Collapse
Affiliation(s)
- Cindy Dirscherl
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Raghavendra Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Nanostructure Group, ZIK HIKE, University of Greifswald, Fleischmannstraße 42-44, 17489, Greifswald, Germany
| | - Tatiana A Kolesnikova
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
31
|
STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol 2017; 24:279-289. [PMID: 28165510 PMCID: PMC5365074 DOI: 10.1038/nsmb.3378] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn may interfere with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus, thus resulting in alterations in gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized, crucial component of the USP18-mediated negative-feedback control in both human and mouse cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2-binding site. This mechanistic coupling of effector and negative-feedback functions of STAT2 may provide novel strategies for treatment of IFN-signaling-related human diseases.
Collapse
|
32
|
You C, Marquez-Lago TT, Richter CP, Wilmes S, Moraga I, Garcia KC, Leier A, Piehler J. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling. SCIENCE ADVANCES 2016; 2:e1600452. [PMID: 27957535 PMCID: PMC5135388 DOI: 10.1126/sciadv.1600452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Changjiang You
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | | | | | - Stephan Wilmes
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - André Leier
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, U.K
- Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
33
|
Arnold AM, Sevcsik E, Schütz GJ. Monte Carlo simulations of protein micropatterning in biomembranes: effects of immobile sticky obstacles. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2016; 49:10.1088/0022-3727/49/36/364002. [PMID: 30880837 PMCID: PMC6417683 DOI: 10.1088/0022-3727/49/36/364002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single molecule trajectories of lipids and proteins can yield valuable information about the nanoscopic organization of the plasma membrane itself. The interpretation of such trajectories, however, is complicated, as the mobility of molecules can be affected by the presence of immobile obstacles, and the transient binding of the tracers to these obstacles. We have previously developed a micropatterning approach that allows for immobilizing a plasma membrane protein and probing the diffusional behavior of a putative interaction partner in living cells. Here, we provide guidelines on how this micropatterning approach can be extended to quantify interaction parameters between plasma membrane constituents in their natural environment. We simulated a patterned membrane system and evaluated the effect of different surface densities of patterned immobile obstacles on the relative mobility as well as the surface density of diffusing tracers. In the case of inert obstacles, the size of the obstacle can be assessed from its surface density at the percolation threshold, which in turn can be extracted from the diffusion behavior of the tracer. For sticky obstacles, two-dimensional dissociation constants can be determined from the tracer diffusion or surface density.
Collapse
Affiliation(s)
- Andreas M Arnold
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| |
Collapse
|
34
|
Ren Y, Zhao Y, Lin D, Xu X, Zhu Q, Yao J, Shu HB, Zhong B. The Type I Interferon-IRF7 Axis Mediates Transcriptional Expression of Usp25 Gene. J Biol Chem 2016; 291:13206-15. [PMID: 27129230 PMCID: PMC4933234 DOI: 10.1074/jbc.m116.718080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/07/2016] [Indexed: 11/06/2022] Open
Abstract
Viral infection or lipopolysaccharide (LPS) treatment induces expression of a large array of genes, the products of which play a critical role in host antipathogen immunity and inflammation. We have previously reported that the expression of ubiquitin-specific protease 25 (USP25) is significantly up-regulated after viral infection or LPS treatment, and this is essential for innate immune signaling. However, the mechanism behind this phenomenon is unclear. In this study, we found that viral infection-induced up-regulation of Usp25 is diminished in cells lacking interferon regulatory factor 7 (IRF7) or interferon α receptor 1 (IFNAR1) but not p65. Sendai virus- or type I interferon-induced up-regulation of Usp25 requires de novo protein synthesis of IRF7. Furthermore, IRF7 directly binds to the two conserved IRF binding sites on the USP25 promoter to drive transcription of Usp25, and mutation of these two sites abolished Sendai virus-induced IRF7-mediated activation of the USP25 promoter. Our study has uncovered a previously unknown mechanism by which viral infection or LPS induces up-regulation of USP25.
Collapse
Affiliation(s)
- Yujie Ren
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yin Zhao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China, and
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China, and
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jing Yao
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Bo Zhong
- From the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China, Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China,
| |
Collapse
|
35
|
ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun 2016; 7:11496. [PMID: 27193971 PMCID: PMC4873964 DOI: 10.1038/ncomms11496] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
ISG15 is an interferon (IFN)-α/β-induced ubiquitin-like protein. It exists as a free molecule, intracellularly and extracellularly, and conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human ISG15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular ISG15 is crucial in IFN-γ-dependent antimycobacterial immunity, while free intracellular ISG15 is crucial for USP18-mediated downregulation of IFN-α/β signalling. Here we describe ISG15-deficient patients who display no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from ISG15-deficient patients display enhanced antiviral protection, and expression of ISG15 attenuates viral resistance to WT control levels. The species-specific gain-of-function in antiviral immunity observed in ISG15 deficiency is explained by the requirement of ISG15 to sustain USP18 levels in humans, a mechanism not operating in mice. ISG15 is a ubiquitin-like protein which has important immune-related functions in mice and humans. Here the authors demonstrate that, unlike in mice, human ISG15 stabilizes UPS18 and that ISG15-deficient human cells are more resistant to viral infection.
Collapse
|
36
|
Sharma N, Longjam G, Schreiber G. Type I Interferon Signaling Is Decoupled from Specific Receptor Orientation through Lenient Requirements of the Transmembrane Domain. J Biol Chem 2015; 291:3371-84. [PMID: 26679999 DOI: 10.1074/jbc.m115.686071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Indexed: 01/09/2023] Open
Abstract
Type I interferons serve as the first line of defense against pathogen invasion. Binding of IFNs to its receptors, IFNAR1 and IFNAR2, is leading to activation of the IFN response. To determine whether structural perturbations observed during binding are propagated to the cytoplasmic domain, multiple mutations were introduced into the transmembrane helix and its surroundings. Insertion of one to five alanine residues near either the N or C terminus of the transmembrane domain (TMD) likely promotes a rotation of 100° and a translation of 1.5 Å per added residue. Surprisingly, the added alanines had little effect on the binding affinity of IFN to the cell surface receptors, STAT phosphorylation, or gene induction. Similarly, substitution of the juxtamembrane residues of the TMD with alanines, or replacement of the TMD of IFNAR1 with that of IFNAR2, did not affect IFN binding or activity. Finally, only the addition of 10 serine residues (but not 2 or 4) between the extracellular domain of IFNAR1 and the TMD had some effect on signaling. Bioinformatic analysis shows a correlation between high sequence conservation of TMDs of cytokine receptors and the ability to transmit structural signals. Sequence conservation near the TMD of IFNAR1 is low, suggesting limited functional importance for this region. Our results suggest that IFN binding to the extracellular domains of IFNAR1 and IFNAR2 promotes proximity between the intracellular domains and that differential signaling is a function of duration of activation and affinity of binding rather than specific conformational changes transmitted from the outside to the inside of the cell.
Collapse
Affiliation(s)
- Nanaocha Sharma
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Geeta Longjam
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- From the Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
37
|
Abstract
INTRODUCTION The past decade has witnessed tremendous progress in surface micropatterning techniques for generating arrays of various types of biomolecules. Multiplexed protein micropatterning has tremendous potential for drug discovery providing versatile means for high throughput assays required for target and lead identification as well as diagnostics and functional screening for personalized medicine. However, ensuring the functional integrity of proteins on surfaces has remained challenging, in particular in the case of membrane proteins, the most important class of drug targets. Yet, generic strategies to control functional organization of proteins into micropatterns are emerging. AREAS COVERED This review includes an overview introducing the most common approaches for surface modification and functional protein immobilization. The authors present the key photo and soft lithography techniques with respect to compatibility with functional protein micropatterning and multiplexing capabilities. In the second part, the authors present the key applications of protein micropatterning techniques in drug discovery with a focus on membrane protein interactions and cellular signaling. EXPERT OPINION With the growing importance of target discovery as well as protein-based therapeutics and personalized medicine, the application of protein arrays can play a fundamental role in drug discovery. Yet, important technical breakthroughs are still required for broad application of these approaches, which will include in vitro "copying" of proteins from cDNA arrays into micropatterns, direct protein capturing from single cells as well as protein microarrays in living cells.
Collapse
Affiliation(s)
- Changjiang You
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| | - Jacob Piehler
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| |
Collapse
|
38
|
Neuman MG, Malnick S, Maor Y, Nanau RM, Melzer E, Ferenci P, Seitz HK, Mueller S, Mell H, Samuel D, Cohen LB, Kharbanda KK, Osna NA, Ganesan M, Thompson KJ, McKillop IH, Bautista A, Bataller R, French SW. Alcoholic liver disease: Clinical and translational research. Exp Mol Pathol 2015; 99:596-610. [PMID: 26342547 DOI: 10.1016/j.yexmp.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 02/05/2023]
Abstract
The present review spans a broad spectrum of topics dealing with alcoholic liver disease (ALD), including clinical research, translational research, pathogenesis and therapies. A special accent is placed on alcohol misuse, as alcohol is a legally commercialized and taxable product. Drinking alcohol, particularly from a young age, is a major health problem. Alcoholism is known to contribute to morbidity and mortality. A systematic literature search was performed in order to obtain updated data (2008-2015). The review is focused on genetic polymorphisms of alcohol metabolizing enzymes and the role of cytochrome p450 2E1 and iron in ALD. Alcohol-mediated hepatocarcinogenesis is also discussed in the presence or absence of co-morbidities such as viral hepatitis C as well as therapeutic the role of innate immunity in ALD-HCV. Moreover, emphasis was placed on alcohol and drug interactions, as well as liver transplantation for end-stage ALD. Finally, the time came to eradicate alcohol-induced liver and intestinal damage by using betaine.
Collapse
Affiliation(s)
- Manuela G Neuman
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Stephen Malnick
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Yaakov Maor
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | - Radu M Nanau
- In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | - Ehud Melzer
- Division of Gastroenterology, Kaplan Health Sciences Centre, Department of Medicine, Faculty of Medicine, Hebrew University, Rehovot, Israel
| | | | - Helmut K Seitz
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Sebastian Mueller
- University of Heidelberg, Heidelberg, Germany; Department of Medicine, Gastroenterology and Hepatology, Centre for Alcohol Research, Salem Medical Centre, Heidelberg, Germany
| | - Haim Mell
- Israel Antidrug and Alcohol Authority, Jerusalem, Israel
| | - Didier Samuel
- Liver Transplant Unit, Research Inserm-Paris XI Unit 785, Centre Hepatobiliaire, Hopital Paul Brousse, Villejuif, Paris, France
| | - Lawrence B Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Internal Medicine, University of Toronto, Toronto, Canada
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Internal Medicine, Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Abraham Bautista
- Office of Extramural Activities, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
39
|
Wedeking T, Löchte S, Birkholz O, Wallenstein A, Trahe J, Klingauf J, Piehler J, You C. Spatiotemporally Controlled Reorganization of Signaling Complexes in the Plasma Membrane of Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5912-5918. [PMID: 26421417 DOI: 10.1002/smll.201502132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Triggered immobilization of proteins in the plasma membrane of living cells into functional micropatterns is established by using an adaptor protein, which is comprised of an antiGFP nanobody fused to the HaloTag protein. Efficient in situ reorganization of the type I interferon receptor subunits as well as intact, fully functional signaling complexes in living cells are achieved by this method.
Collapse
Affiliation(s)
- Tim Wedeking
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Sara Löchte
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Oliver Birkholz
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Alexander Wallenstein
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Julia Trahe
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jacob Piehler
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Changjiang You
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| |
Collapse
|
40
|
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin 2015; 36:1219-27. [PMID: 26388155 PMCID: PMC4648179 DOI: 10.1038/aps.2015.92] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/06/2015] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies.
Collapse
|
41
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
42
|
Lipp AM, Ji B, Hager R, Haas S, Schweiggl S, Sonnleitner A, Haselgrübler T. Micro-structured peptide surfaces for the detection of high-affinity peptide-receptor interactions in living cells. Biosens Bioelectron 2015. [PMID: 26210593 DOI: 10.1016/j.bios.2015.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Peptide ligands have great potential as selective agents for diagnostic imaging and therapeutic targeting of human cancers. A number of high-throughput assays for screening potential candidate peptides have been developed. Although these screening assays are indispensable for the identification of peptide ligands at a large scale, it is crucial to validate peptide binding and selectivity for targeted receptors in a live-cell context. For testing high-affinity peptide-receptor interactions in the plasma membrane of living cells, we developed cell-resistant, micro-structured glass surfaces with high-density and high-contrast peptide features. Cell adhesion and recruitment of fluorescent receptors to micro-patterned peptides in the live-cell membrane were evaluated by reflection interference contrast (RIC) and total internal reflection (TIRF) microscopy, respectively. To demonstrate both the specificity and modularity of the assay, co-patterning of fluorescent receptors with three different immobilized micro-structured ligands was shown: first, interaction of green fluorescent protein (GFP)-tagged epidermal growth factor (EGF) receptor expressed in Jurkat cells with immobilized EGF was detected and quantified. Second, using Jurkat cells, we demonstrated specific interaction of yellow fluorescent protein (YFP)-tagged β3 integrin with c(RGDfK) peptide. Third, we identified indirect recruitment of GFP-tagged α5 integrin to an 11-mer peptide. In summary, our results show that the developed micro-structured surfaces are a useful tool for the validation and quantification of peptide-receptor interactions in their natural cellular environment.
Collapse
Affiliation(s)
- Anna-Maria Lipp
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | - Bozhi Ji
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | - Roland Hager
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | - Sandra Haas
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | - Simone Schweiggl
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | - Alois Sonnleitner
- Center for Advanced Bioanalysis GmbH, Gruberstrasse 40, 4020 Linz, Austria.
| | | |
Collapse
|
43
|
Short B. Dimerization dictates the message. J Biophys Biochem Cytol 2015. [PMCID: PMC4442818 DOI: 10.1083/jcb.2094if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Feedback regulation of receptor dimerization determines the cell’s response to different interferons.
Collapse
|
44
|
Abstract
![]()
Exploration of protein function and
interaction is critical for
discovering links among genomics, proteomics, and disease state; yet,
the immense complexity of proteomics found in biological systems currently
limits our investigational capacity. Although affinity and autofluorescent
tags are widely employed for protein analysis, these methods have
been met with limited success because they lack specificity and require
multiple fusion tags and genetic constructs. As an alternative approach,
the innovative HaloTag protein fusion platform allows protein function
and interaction to be comprehensively analyzed using a single genetic
construct with multiple capabilities. This is accomplished using a
simplified process, in which a variable HaloTag ligand binds rapidly
to the HaloTag protein (usually linked to the protein of interest)
with high affinity and specificity. In this review, we examine all
current applications of the HaloTag technology platform for biomedical
applications, such as the study of protein isolation and purification,
protein function, protein–protein and protein–DNA interactions,
biological assays, in vitro cellular imaging, and in vivo molecular imaging. In addition, novel uses of the
HaloTag platform are briefly discussed along with potential future
applications.
Collapse
Affiliation(s)
- Christopher G England
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Haiming Luo
- ‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- †Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,‡Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,§University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
45
|
Wedeking T, Löchte S, Richter CP, Bhagawati M, Piehler J, You C. Single Cell GFP-Trap Reveals Stoichiometry and Dynamics of Cytosolic Protein Complexes. NANO LETTERS 2015; 15:3610-3615. [PMID: 25901412 DOI: 10.1021/acs.nanolett.5b01153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We developed in situ single cell pull-down (SiCPull) of GFP-tagged protein complexes based on micropatterned functionalized surface architectures. Cells cultured on these supports are lysed by mild detergents and protein complexes captured to the surface are probed in situ by total internal reflection fluorescence microscopy. Using SiCPull, we quantitatively mapped the lifetimes of various signal transducer and activator of transcription complexes by monitoring dissociation from the surface and defined their stoichiometry on the single molecule level.
Collapse
Affiliation(s)
- Tim Wedeking
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | | | - Maniraj Bhagawati
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
46
|
Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A, Schütz GJ. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun 2015; 6:6969. [PMID: 25897971 PMCID: PMC4430820 DOI: 10.1038/ncomms7969] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023] Open
Abstract
The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.
Collapse
Affiliation(s)
- Eva Sevcsik
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Martin Fölser
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Julian Weghuber
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels 4600, Austria
| | - Alf Honigmann
- Department of NanoBiophotonics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| |
Collapse
|
47
|
The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 2015; 36:139-49. [DOI: 10.1016/j.it.2015.01.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/16/2023]
|
48
|
Lanzerstorfer P, Yoneyama Y, Hakuno F, Müller U, Höglinger O, Takahashi SI, Weghuber J. Analysis of insulin receptor substrate signaling dynamics on microstructured surfaces. FEBS J 2015; 282:987-1005. [PMID: 25627174 DOI: 10.1111/febs.13213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrates (IRS) are phosphorylated by activated insulin/insulin-like growth factor I receptor tyrosine kinases, with this comprising an initial key event for downstream signaling and bioactivities. Despite the structural similarities, increasing evidence shows that IRS family proteins have nonredundant functions. Although the specificity of insulin/insulin-like growth factor signaling and biological responses partly reflects which IRS proteins are dominantly phosphorylated by the receptors, the precise properties of the respective IRS interaction with the receptors remain elusive. In the present study, we utilized a technique that combines micropatterned surfaces and total internal reflection fluorescence microscopy for the quantitative analysis of the interaction between IRS proteins and insulin/insulin-like growth factor in living cells. Our experimental set-up enabled the measurement of equilibrium associations and interaction dynamics of these molecules with high specificity. We revealed that several domains of IRS including pleckstrin homology and phosphotyrosine binding domains critically determine the turnover rate of the receptors. Furthermore, we found significant differences among IRS proteins in the strength and kinetic stability of the interaction with the receptors, suggesting that these interaction properties could account for the diverse functions of IRS. In addition, our analyses using fluorescent recovery after photobleaching revealed that kinases such as c-Jun N-terminal kinase and IκB kinase β, which phosphorylate serine/threonine residues of IRS and contribute to insulin resistance, altered the interaction kinetics of IRS with insulin receptor. Collectively, our experimental set-up is a valuable system for quantitifying the physiological interaction of IRS with the receptors in insulin/insulin-like growth factor signaling.
Collapse
Affiliation(s)
- Peter Lanzerstorfer
- School of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, Wels, Austria
| | | | | | | | | | | | | |
Collapse
|