1
|
Ninagawa S, Matsuo M, Ying D, Oshita S, Aso S, Matsushita K, Taniguchi M, Fueki A, Yamashiro M, Sugasawa K, Saito S, Imami K, Kizuka Y, Sakuma T, Yamamoto T, Yagi H, Kato K, Mori K. UGGT1-mediated reglucosylation of N-glycan competes with ER-associated degradation of unstable and misfolded glycoproteins. eLife 2024; 12:RP93117. [PMID: 39654396 PMCID: PMC11630818 DOI: 10.7554/elife.93117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
How the fate (folding versus degradation) of glycoproteins is determined in the endoplasmic reticulum (ER) is an intriguing question. Monoglucosylated glycoproteins are recognized by lectin chaperones to facilitate their folding, whereas glycoproteins exposing well-trimmed mannoses are subjected to glycoprotein ER-associated degradation (gpERAD); we have elucidated how mannoses are sequentially trimmed by EDEM family members (George et al., 2020; 2021 eLife). Although reglucosylation by UGGT was previously reported to have no effect on substrate degradation, here we directly tested this notion using cells with genetically disrupted UGGT1/2. Strikingly, the results showed that UGGT1 delayed the degradation of misfolded substrates and unstable glycoproteins including ATF6α. An experiment with a point mutant of UGGT1 indicated that the glucosylation activity of UGGT1 was required for the inhibition of early glycoprotein degradation. These and overexpression-based competition experiments suggested that the fate of glycoproteins is determined by a tug-of-war between structure formation by UGGT1 and degradation by EDEMs. We further demonstrated the physiological importance of UGGT1, since ATF6α cannot function properly without UGGT1. Thus, our work strongly suggests that UGGT1 is a central factor in ER protein quality control via the regulation of both glycoprotein folding and degradation.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Masaki Matsuo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Deng Ying
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Shuichiro Oshita
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Shinya Aso
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Mai Taniguchi
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Akane Fueki
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Moe Yamashiro
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe UniversityKobeJapan
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe UniversityKobeJapan
- Graduate School of Science, Kobe UniversityKobeJapan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yasuhiko Kizuka
- Laboratory of Glycobiochemistry, Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima UniversityHiroshimaJapan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
- Institute for Molecular Science (IMS), National Institutes of Natural SciencesOkazakiJapan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto UniversityKyotoJapan
- Institute for Advanced Study, Kyoto UniversityKyotoJapan
| |
Collapse
|
2
|
Zhu Q, Chen S, Funcke JB, Straub LG, Lin Q, Zhao S, Joung C, Zhang Z, Kim DS, Li N, Gliniak CM, Lee C, Cebrian-Serrano A, Pedersen L, Halberg N, Gordillo R, Kusminski CM, Scherer PE. PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels. Nat Metab 2024; 6:1347-1366. [PMID: 38961186 DOI: 10.1038/s42255-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Qingzhang Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leon G Straub
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Lin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shangang Zhao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chanmin Joung
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dae-Seok Kim
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Na Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Line Pedersen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Pontisso I, Ornelas-Guevara R, Chevet E, Combettes L, Dupont G. Gradual ER calcium depletion induces a progressive and reversible UPR signaling. PNAS NEXUS 2024; 3:pgae229. [PMID: 38933930 PMCID: PMC11200134 DOI: 10.1093/pnasnexus/pgae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.
Collapse
Affiliation(s)
- Ilaria Pontisso
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Eric Chevet
- Inserm U1242 Université de Rennes, 35000 Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Laurent Combettes
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
4
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Fung C, Wilding B, Schittenhelm RB, Bryson-Richardson RJ, Bird PI. Expression of the Z Variant of α1-Antitrypsin Suppresses Hepatic Cholesterol Biosynthesis in Transgenic Zebrafish. Int J Mol Sci 2023; 24:ijms24032475. [PMID: 36768797 PMCID: PMC9917206 DOI: 10.3390/ijms24032475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.
Collapse
Affiliation(s)
- Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Ralf B. Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Melbourne 3800, Australia
| | | | - Phillip I. Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
- Correspondence: (C.F.); (P.I.B.)
| |
Collapse
|
6
|
Chung HL, Rump P, Lu D, Glassford MR, Mok JW, Fatih J, Basal A, Marcogliese PC, Kanca O, Rapp M, Fock JM, Kamsteeg EJ, Lupski JR, Larson A, Haninbal MC, Bellen H, Harel T. De novo variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration and affect glial function in Drosophila. Hum Mol Genet 2022; 31:3231-3244. [PMID: 35234901 PMCID: PMC9523557 DOI: 10.1093/hmg/ddac053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.
Collapse
Affiliation(s)
- Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen 9700 RB, The Netherlands
| | - Di Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Megan R Glassford
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jung-Wan Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jawid Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adily Basal
- Department of Genetics, Hadassah Medical Organization, Jerusalem 9112001, Israel
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michele Rapp
- University of Colorado Anschutz Medical Campus, Aurora, CO 60045, USA
| | - Johanna M Fock
- University of Groningen, University Medical Centre Groningen, Department of Neurology, Groningen 9700 RB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA,Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Austin Larson
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 60045, United States
| | - Mark C Haninbal
- Division of Pediatric Genetics, Metabolism & Genomic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hugo Bellen
- To whom correspondence should be addressed at: Department of Genetics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 9112001, Israel. Tel: +(972)-2-6776329; Fax: +(972)-2-6777618; ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Tel: +1 832824-8750; Fax: +1832825-1240;
| | - Tamar Harel
- To whom correspondence should be addressed at: Department of Genetics, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem 9112001, Israel. Tel: +(972)-2-6776329; Fax: +(972)-2-6777618; ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Tel: +1 832824-8750; Fax: +1832825-1240;
| |
Collapse
|
7
|
Ghenea S, Chiritoiu M, Tacutu R, Miranda-Vizuete A, Petrescu SM. Targeting EDEM protects against ER stress and improves development and survival in C. elegans. PLoS Genet 2022; 18:e1010069. [PMID: 35192599 PMCID: PMC8912907 DOI: 10.1371/journal.pgen.1010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 03/10/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
EDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations. We found that EDEM-2 has a major role in the clearance of misfolded proteins from ER under physiological conditions, whereas EDEM-1 and EDEM-3 roles become prominent under acute ER stress. In contrast to SEL-1 loss, the loss of EDEMs in an intact organism induces only a modest ER stress under physiological conditions. In addition, chronic impairment of EDEM functioning attenuated both XBP-1 activation and up-regulation of the stress chaperone GRP78/BiP, in response to acute ER stress. We also show that pre-conditioning to EDEM loss in acute ER stress restores ER homeostasis and promotes survival by activating ER hormesis. We propose a novel role for EDEM in fine-tuning the ER stress responsiveness that affects ER homeostasis and survival. ER stress and UPRER malfunctions have been implicated in the pathogenesis of neurodegeneration, metabolic and inflammatory diseases as well as tumor progression and diabetes, whereby disturbed ER homeostasis negatively influences the pathology of the disease. Under ER stress conditions, the cells either activate UPRER-dependent cytoprotective mechanisms when ER stress is at subtoxic levels or, in case of an excessive ER stress, the cytotoxic response stimulates cell death. Here, we used Caenorhabditis elegans to study the cellular responses to ER stress at organismal level. We show that EDEMs respond differently to ER stress stimuli, and moreover, EDEMs deficiencies activate an XBP-1 independent adaptive program to promote organism survival under acute ER stress. Corroborated with the fact that loss of EDEM-2 and EDEM-3 induces resistance to acute ER stress in an intact organism, our data implicate EDEM proteins in a broader response to ER stress than previously established, which opens a new avenue for understanding the regulation of ER stress with implications for clinical and therapeutic investigations.
Collapse
Affiliation(s)
- Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| | - Marioara Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Romanian Academy, Bucharest, Romania
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Stefana Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| |
Collapse
|
8
|
George G, Ninagawa S, Yagi H, Furukawa JI, Hashii N, Ishii-Watabe A, Deng Y, Matsushita K, Ishikawa T, Mamahit YP, Maki Y, Kajihara Y, Kato K, Okada T, Mori K. Purified EDEM3 or EDEM1 alone produces determinant oligosaccharide structures from M8B in mammalian glycoprotein ERAD. eLife 2021; 10:70357. [PMID: 34698634 PMCID: PMC8570694 DOI: 10.7554/elife.70357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the α1,6-linked mannosyl residue (M7A, M6, and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6, and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major α1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other α1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.
Collapse
Affiliation(s)
- Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Ying Deng
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Matsushita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yugoviandi P Mamahit
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yuta Maki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuhiro Kajihara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.,Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Mule SN, Rosa-Fernandes L, Coutinho JVP, Gomes VDM, Macedo-da-Silva J, Santiago VF, Quina D, de Oliveira GS, Thaysen-Andersen M, Larsen MR, Labriola L, Palmisano G. Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. J Proteomics 2021; 248:104355. [PMID: 34450331 DOI: 10.1016/j.jprot.2021.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Verônica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
10
|
Evers F, Cabrera-Orefice A, Elurbe DM, Kea-Te Lindert M, Boltryk SD, Voss TS, Huynen MA, Brandt U, Kooij TWA. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun 2021; 12:3820. [PMID: 34155201 PMCID: PMC8217502 DOI: 10.1038/s41467-021-23919-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Our current understanding of mitochondrial functioning is largely restricted to traditional model organisms, which only represent a fraction of eukaryotic diversity. The unusual mitochondrion of malaria parasites is a validated drug target but remains poorly understood. Here, we apply complexome profiling to map the inventory of protein complexes across the pathogenic asexual blood stages and the transmissible gametocyte stages of Plasmodium falciparum. We identify remarkably divergent composition and clade-specific additions of all respiratory chain complexes. Furthermore, we show that respiratory chain complex components and linked metabolic pathways are up to 40-fold more prevalent in gametocytes, while glycolytic enzymes are substantially reduced. Underlining this functional switch, we find that cristae are exclusively present in gametocytes. Leveraging these divergent properties and stage dynamics for drug development presents an attractive opportunity to discover novel classes of antimalarials and increase our repertoire of gametocytocidal drugs.
Collapse
Affiliation(s)
- Felix Evers
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariska Kea-Te Lindert
- Electron Microscopy Center, RTC Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sylwia D Boltryk
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
11
|
Mule SN, Gomes VDM, Wailemann RAM, Macedo-da-Silva J, Rosa-Fernandes L, Larsen MR, Labriola L, Palmisano G. HSPB1 influences mitochondrial respiration in ER-stressed beta cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140680. [PMID: 34051341 DOI: 10.1016/j.bbapap.2021.140680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
Beta-cell death and dysfunction are involved in the development of type 1 and 2 diabetes. ER-stress impairs beta-cells function resulting in pro-apoptotic stimuli that promote cell death. Hence, the identification of protective mechanisms in response to ER-stress could lead to novel therapeutic targets and insight in the pathology of these diseases. Here, we report the identification of proteins involved in dysregulated pathways upon thapsigargin treatment of MIN6 cells. Utilizing quantitative proteomics we identified upregulation of proteins involved in protein folding, unfolded protein response, redox homeostasis, proteasome processes associated with endoplasmic reticulum and downregulation of TCA cycle, cellular respiration, lipid metabolism and ribosome assembly processes associated to mitochondria and eukaryotic initiation translation factor components. Subsequently, pro-inflammatory cytokine treatment was performed to mimic pathological changes observed in beta-cells during diabetes. Cytokines induced ER stress and impaired mitochondrial function in beta-cells corroborating the results obtained with the proteomic approach. HSPB1 levels are increased by prolactin on pancreatic beta-cells and this protein is a key factor for cytoprotection although its role has not been fully elucidated. Here we show that while up-regulation of HSPB1 was able to restore the mitochondrial dysfunction induced by beta-cells' exposure to inflammatory cytokines, silencing of this chaperone abrogated the beneficial effects promoted by PRL. Taken together, our results outline the importance of HSPB1 to mitigate beta-cell dysfunction. Further studies are needed to elucidate its role in diabetes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosangela A M Wailemann
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | - Giuseppe Palmisano
- GlycoProteomics laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Wang P, Jiang LN, Wang C, Li Y, Yin M, Du HB, Zhang H, Fan ZH, Liu YX, Zhao M, Kang AL, Feng DY, Li SG, Niu CY, Zhao ZG. Estradiol-induced inhibition of endoplasmic reticulum stress normalizes splenic CD4 + T lymphocytes following hemorrhagic shock. Sci Rep 2021; 11:7508. [PMID: 33820957 PMCID: PMC8021564 DOI: 10.1038/s41598-021-87159-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
The aim is to investigate that 17β-estradiol (E2)/estrogen receptors (ERs) activation normalizes splenic CD4 + T lymphocytes proliferation and cytokine production through inhibition of endoplasmic reticulum stress (ERS) following hemorrhage. The results showed that hemorrhagic shock (hemorrhage through femoral artery, 38–42 mmHg for 90 min followed by resuscitation of 30 min and subsequent observation period of 180 min) decreased the CD4+ T lymphocytes proliferation and cytokine production after isolation and incubation with Concanavalin A (5 μg/mL) for 48 h, induced the splenic injury with evidences of missed contours of the white pulp, irregular cellular structure, and typical inflammatory cell infiltration, upregulated the expressions of ERS biomarkers 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6). Either E2, ER-α agonist propyl pyrazole triol (PPT) or ERS inhibitor 4-Phenylbutyric acid administration normalized these parameters, while ER-β agonist diarylpropionitrile administration had no effect. In contrast, administrations of either ERs antagonist ICI 182,780 or G15 abolished the salutary effects of E2. Likewise, ERS inducer tunicamycin induced an adverse effect similarly to that of hemorrhagic shock in sham rats, and aggravated shock-induced effects, also abolished the beneficial effects of E2 and PPT, respectively. Together, the data suggest that E2 produces salutary effects on CD4+ T lymphocytes function, and these effects are mediated by ER-α and GPR30, but not ER-β, and associated with the attenuation of hemorrhagic shock-induced ERS.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Chen Wang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ying Li
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Meng Yin
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ze-Hua Fan
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Yan-Xu Liu
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Meng Zhao
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - An-Ling Kang
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Ding-Ya Feng
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China
| | - Shu-Guang Li
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China.,Department of Gastrointestinal Oncological Surgery, the First Affiliated Hospital of Hebei North University, Zhangjiakou, People's Republic of China
| | - Chun-Yu Niu
- Basic Medical College, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang, Hebei, 075000, People's Republic of China. .,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei Province, Shijiazhuang and Zhangjiakou, People's Republic of China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Diamond South Road 11, Zhangjiakou, Hebei, 075000, People's Republic of China. .,Pathophysiology Experimental Teaching Center of Basic Medical College, Hebei North University, Zhangjiakou, People's Republic of China. .,Key Laboratory of Critical Disease Mechanism and Intervention in Hebei Province, Shijiazhuang and Zhangjiakou, People's Republic of China.
| |
Collapse
|
13
|
Kuribara T, Usui R, Totani K. Glycan structure-based perspectives on the entry and release of glycoproteins in the calnexin/calreticulin cycle. Carbohydr Res 2021; 502:108273. [PMID: 33713911 DOI: 10.1016/j.carres.2021.108273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
N-glycans are attached to newly synthesised polypeptides and are involved in the folding, secretion, and degradation of N-linked glycoproteins. In particular, the calnexin/calreticulin cycle, which is the central mechanism of the entry and release of N-linked glycoproteins depending on the folding sates, has been well studied. In addition to biological studies on the calnexin/calreticulin cycle, several studies have revealed complementary roles of in vitro chemistry-based research in the structure-based understanding of the cycle. In this mini-review, we summarise chemistry-based results and highlight their importance for further understanding of the cycle.
Collapse
Affiliation(s)
- Taiki Kuribara
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Ruchio Usui
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan
| | - Kiichiro Totani
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachiMusashino-shi, Tokyo, 180-8633, Japan.
| |
Collapse
|
14
|
Otsuka-Yamasaki Y, Inanami O, Shino H, Sato R, Yamasaki M. Characterization of a novel nicotinamide adenine dinucleotide-cytochrome b5 reductase mutation associated with canine hereditary methemoglobinemia. J Vet Med Sci 2020; 83:315-321. [PMID: 33342963 PMCID: PMC7972884 DOI: 10.1292/jvms.20-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hereditary methemoglobinemia associated with nicotinamide adenine dinucleotide-cytochrome b5 reductase (b5R) deficiency is a rare autosomal recessive disorder in animals. Recently, nonsynonymous b5R gene (CYB5R3) variants have been reported to be associated with canine and feline hereditary methemoglobinemia. However, the underlying molecular mechanisms of canine and feline methemoglobinemia caused by these nonsynonymous variants have not yet been reported. Previously, we reported a Pomeranian dog family with hereditary methemoglobinemia, carrying CYB5R3 mutation of an A>C transition at codon 194 in exon 7, replacing an isoleucine residue with leucine (p.Ile194Leu). In this study, we investigated the enzymatic and structural properties of the soluble form of wild-type and Ile194Leu canine b5Rs to characterize the effects of this missense mutation. Our results showed that the kinetic properties of the mutant enzyme were not affected by this amino acid substitution. The secondary structure of the wild-type and Ile194Leu b5Rs detected by circular dichroism showed a similar pattern. However, the mutant enzyme exhibited decreased heat stability and increased susceptibility to trypsin hydrolysis. Moreover, the thermostability and unfolding measurements indicated that the mutant enzyme was more sensitive to temperature-dependent denaturation than the wild-type b5R. We concluded from these results that unstable mutant enzyme properties with normal enzymatic activity would be associated with hereditary methemoglobinemia in the Pomeranian dog family.
Collapse
Affiliation(s)
- Yayoi Otsuka-Yamasaki
- Cooperative of Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Osamu Inanami
- Department of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Haruka Shino
- Cooperative of Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Reeko Sato
- Cooperative of Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Masahiro Yamasaki
- Cooperative of Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
15
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
16
|
Ninagawa S, Tada S, Okumura M, Inoguchi K, Kinoshita M, Kanemura S, Imami K, Umezawa H, Ishikawa T, Mackin RB, Torii S, Ishihama Y, Inaba K, Anazawa T, Nagamine T, Mori K. Antipsychotic olanzapine-induced misfolding of proinsulin in the endoplasmic reticulum accounts for atypical development of diabetes. eLife 2020; 9:60970. [PMID: 33198886 PMCID: PMC7671685 DOI: 10.7554/elife.60970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Second-generation antipsychotics are widely used to medicate patients with schizophrenia, but may cause metabolic side effects such as diabetes, which has been considered to result from obesity-associated insulin resistance. Olanzapine is particularly well known for this effect. However, clinical studies have suggested that olanzapine-induced hyperglycemia in certain patients cannot be explained by such a generalized mechanism. Here, we focused on the effects of olanzapine on insulin biosynthesis and secretion by mouse insulinoma MIN6 cells. Olanzapine reduced maturation of proinsulin, and thereby inhibited secretion of insulin; and specifically shifted the primary localization of proinsulin from insulin granules to the endoplasmic reticulum. This was due to olanzapine's impairment of proper disulfide bond formation in proinsulin, although direct targets of olanzapine remain undetermined. Olanzapine-induced proinsulin misfolding and subsequent decrease also occurred at the mouse level. This mechanism of olanzapine-induced β-cell dysfunction should be considered, together with weight gain, when patients are administered olanzapine.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Seiichiro Tada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Kenta Inoguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Shingo Kanemura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Koshi Imami
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hajime Umezawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Robert B Mackin
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, United States
| | - Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Takayuki Anazawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Alhaidan Y, Christesen HT, Højlund K, Al Balwi MA, Brusgaard K. A novel gene in early childhood diabetes: EDEM2 silencing decreases SLC2A2 and PXD1 expression, leading to impaired insulin secretion. Mol Genet Genomics 2020; 295:1253-1262. [PMID: 32556999 DOI: 10.1007/s00438-020-01695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Monogenic diabetes is a rare type of diabetes resulting from mutations in a single gene. To date, most cases remain genetically unexplained, posing a challenge for accurate diabetes treatment, which leads to on a molecular diagnosis. Therefore, a trio exome scan was performed in a lean, nonsyndromic Caucasian girl with diabetes onset at 2½ years who was negative for autoantibodies. The lean father had diabetes from age 11 years. A novel heterozygous mutation in EDEM2, c.1271G > A; p.Arg424His, was found in the proband and father. Downregulation of Edem2 in rat RIN-m β-cells resulted in a decrease in insulin genes Ins1 to 67.9% (p = 0.006) and Ins2 to 16.8% (p < 0.001) and reduced insulin secretion by 60.4% (p = 0.0003). Real-time PCR revealed a major disruption of endocrine pancreas-specific genes, including Glut2 and Pxd1, with mRNA suppression to 54% (p < 0.001) and 85.7% (p = 0.01), respectively. No other expression changes related to stress or apoptotic genes were observed. Extended clinical follow-up involving ten family members showed that two healthy individuals carried the same mutation with no sign of diabetes in the clinical screen except for a slight increase in IA-2 antibody in one of them, suggesting incomplete penetrance. In conclusion, we describe EDEM2 as a likely/potential novel diabetes gene, in which inhibition in vitro reduces the expression of β-cell genes involved in the glucose-stimulated insulin secretion (GSIS) pathway, leading to an overall suppression of insulin secretion but not apoptosis.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark. .,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark. .,Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, 5000, Odense C, Denmark.,Odense Pancreases Center, Odense C, Denmark
| | - Kurt Højlund
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, 5000, Odense, Denmark
| | - Mohammed A Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Near East University, Nicosia, Cyprus
| |
Collapse
|
18
|
Volkmar N, Christianson JC. Squaring the EMC - how promoting membrane protein biogenesis impacts cellular functions and organismal homeostasis. J Cell Sci 2020; 133:133/8/jcs243519. [PMID: 32332093 PMCID: PMC7188443 DOI: 10.1242/jcs.243519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Integral membrane proteins play key functional roles at organelles and the plasma membrane, necessitating their efficient and accurate biogenesis to ensure appropriate targeting and activity. The endoplasmic reticulum membrane protein complex (EMC) has recently emerged as an important eukaryotic complex for biogenesis of integral membrane proteins by promoting insertion and stability of atypical and sub-optimal transmembrane domains (TMDs). Although confirmed as a bona fide complex almost a decade ago, light is just now being shed on the mechanism and selectivity underlying the cellular responsibilities of the EMC. In this Review, we revisit the myriad of functions attributed the EMC through the lens of these new mechanistic insights, to address questions of the cellular and organismal roles the EMC has evolved to undertake. Summary: The EMC is an important factor facilitating membrane protein biogenesis. Here we discuss the broad cellular and organismal responsibilities overseen by client proteins requiring the EMC for maturation.
Collapse
Affiliation(s)
- Norbert Volkmar
- Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - John C Christianson
- Oxford Centre for Translational Myeloma Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| |
Collapse
|
19
|
Cabet S, Lesca G, Labalme A, Des Portes V, Guibaud L, Sanlaville D, Pons L. Novel truncating and missense variants extending the spectrum of EMC1-related phenotypes, causing autism spectrum disorder, severe global development delay and visual impairment. Eur J Med Genet 2020; 63:103897. [PMID: 32092440 DOI: 10.1016/j.ejmg.2020.103897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/15/2022]
Abstract
The EMC1 gene, located on 1p36.13, encodes the subunit 1 of the endoplasmic reticulum-membrane protein complex, a highly conserved and ubiquitous multiprotein transmembrane complex. Pathogenic monoallelic and biallelic variants in EMC1 in humans have been reported only in six families, causing isolated visual impairment or in association with psychomotor retardation and cerebellar atrophy. We report a ten-year-old boy, born to unrelated parents, with early-onset severe global development delay due to novel EMC1 biallelic pathogenic variants. A truncating variant, p.(Tyr378*) and a missense variant, p.(Phe953Ser), located in exon 11 and 23 of EMC1 gene respectively, have been found by reanalysis of exome sequencing data. The proband's phenotype included several signs that overlap with the phenotype of previously reported patients, associating severe global developmental delay, abnormal ophthalmological examination, and postnatal slow-down of the head circumference growth. Some distinguishing clinical signs were observed in comparison to patients from literature, such as autism spectrum disorder, absence of seizures, scoliosis or facial dysmorphic features, thus extending the spectrum of EMC1-related phenotypes. Similarly, brain MRI, performed at 2 years, showed normal cerebellar volume and structure, whereas cerebellar atrophy was described in literature. Moreover, difficulties of clinical differential diagnosis between EMC1-associated disease and other etiologies of global development delay support the importance of large-scale genetic investigations. Our diagnostic approach, through reanalysis of exome sequencing data, highlights the importance of reconsidering initial negative results for patients with a strong suspicion of genetic disease, and to update analytic pipelines in order to improve the diagnostic yield of exome sequencing.
Collapse
Affiliation(s)
- Sara Cabet
- Department of Genetics, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Department of Radiology, Hospices Civils de Lyon, Groupement Hospitalier Est, France
| | - Gaetan Lesca
- Department of Genetics, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Claude Bernard Lyon 1 University, France; Claude Bernard Lyon 1 University, France
| | - Audrey Labalme
- Department of Genetics, Hospices Civils de Lyon, Groupement Hospitalier Est, France
| | - Vincent Des Portes
- Department of Pediatric Neurology, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Claude Bernard Lyon 1 University, France
| | - Laurent Guibaud
- Department of Radiology, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Claude Bernard Lyon 1 University, France
| | - Damien Sanlaville
- Department of Genetics, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Claude Bernard Lyon 1 University, France; Claude Bernard Lyon 1 University, France
| | - Linda Pons
- Department of Genetics, Hospices Civils de Lyon, Groupement Hospitalier Est, France; Claude Bernard Lyon 1 University, France.
| |
Collapse
|
20
|
George G, Ninagawa S, Yagi H, Saito T, Ishikawa T, Sakuma T, Yamamoto T, Imami K, Ishihama Y, Kato K, Okada T, Mori K. EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD. eLife 2020; 9:53455. [PMID: 32065582 PMCID: PMC7039678 DOI: 10.7554/elife.53455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 01/05/2023] Open
Abstract
Sequential mannose trimming of N-glycan (Man9GlcNAc2 -> Man8GlcNAc2 -> Man7GlcNAc2) facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). Our gene knockout experiments in human HCT116 cells have revealed that EDEM2 is required for the first step. However, it was previously shown that purified EDEM2 exhibited no α1,2-mannosidase activity toward Man9GlcNAc2 in vitro. Here, we found that EDEM2 was stably disulfide-bonded to TXNDC11, an endoplasmic reticulum protein containing five thioredoxin (Trx)-like domains. C558 present outside of the mannosidase homology domain of EDEM2 was linked to C692 in Trx5, which solely contains the CXXC motif in TXNDC11. This covalent bonding was essential for mannose trimming and subsequent gpERAD in HCT116 cells. Furthermore, EDEM2-TXNDC11 complex purified from transfected HCT116 cells converted Man9GlcNAc2 to Man8GlcNAc2(isomerB) in vitro. Our results establish the role of EDEM2 as an initiator of gpERAD, and represent the first clear demonstration of in vitro mannosidase activity of EDEM family proteins.
Collapse
Affiliation(s)
- Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Taiki Saito
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koshi Imami
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. eLife 2020; 9:e50986. [PMID: 32053105 PMCID: PMC7062474 DOI: 10.7554/elife.50986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The intracellular trafficking of growth factor receptors determines the activity of their downstream signaling pathways. Here, we show that the putative HSP-90 co-chaperone CHP-1 acts as a regulator of EGFR trafficking in C. elegans. Loss of chp-1 causes the retention of the EGFR in the ER and decreases MAPK signaling. CHP-1 is specifically required for EGFR trafficking, as the localization of other transmembrane receptors is unaltered in chp-1(lf) mutants, and the inhibition of hsp-90 or other co-chaperones does not affect EGFR localization. The role of the CHP-1 homolog CHORDC1 during EGFR trafficking is conserved in human cells. Analogous to C. elegans, the response of CHORDC1-deficient A431 cells to EGF stimulation is attenuated, the EGFR accumulates in the ER and ERK2 activity decreases. Although CHP-1 has been proposed to act as a co-chaperone for HSP90, our data indicate that CHP-1 plays an HSP90-independent function in controlling EGFR trafficking through the ER.
Collapse
Affiliation(s)
- Andrea Haag
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
- Molecular Life Science Zürich PhD ProgramZürichSwitzerland
| | - Michael Walser
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Adrian Henggeler
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of ZürichWinterthurerstrasseSwitzerland
| |
Collapse
|
22
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
23
|
Papaioannou A, Higa A, Jégou G, Jouan F, Pineau R, Saas L, Avril T, Pluquet O, Chevet E. Alterations of
EDEM
1 functions enhance
ATF
6 pro‐survival signaling. FEBS J 2018; 285:4146-4164. [DOI: 10.1111/febs.14669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Alexandra Papaioannou
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
| | - Arisa Higa
- INSERM U1242 Université de Rennes France
| | - Gwénaële Jégou
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
| | - Florence Jouan
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
| | - Raphael Pineau
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
| | - Laure Saas
- CNRS Institut Pasteur de Lille UMR8161 – M3T – Mechanisms of Tumorigenesis and Targeted Therapies Univ. Lille France
| | - Tony Avril
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
| | - Olivier Pluquet
- CNRS Institut Pasteur de Lille UMR8161 – M3T – Mechanisms of Tumorigenesis and Targeted Therapies Univ. Lille France
| | - Eric Chevet
- INSERM U1242 Université de Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis Rennes France
- CNRS Institut Pasteur de Lille UMR8161 – M3T – Mechanisms of Tumorigenesis and Targeted Therapies Univ. Lille France
| |
Collapse
|
24
|
Lamriben L, Oster ME, Tamura T, Tian W, Yang Z, Clausen H, Hebert DN. EDEM1's mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. J Biol Chem 2018; 293:13932-13945. [PMID: 30021839 DOI: 10.1074/jbc.ra118.004183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/26/2018] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) degradation-enhancing α-mannosidase-like 1 protein (EDEM1) is a protein quality control factor that was initially proposed to recognize N-linked glycans on misfolded proteins through its mannosidase-like domain (MLD). However, recent studies have demonstrated that EDEM1 binds to some misfolded proteins in a glycan-independent manner, suggesting a more complex binding landscape for EDEM1. In this study, we have identified a thiol-dependent substrate interaction between EDEM1 and the α1-antitrypsin ER-associated protein degradation (ERAD) clients Z and NHK, specifically through the single Cys residue on Z/NHK (Cys256), required for binding under stringent detergent conditions. In addition to the thiol-dependent interaction, the presence of weaker protein-protein interactions was confirmed, suggestive of bipartite client-binding properties. About four reactive thiols on EDEM1 were identified and were not directly responsible for the observed redox-sensitive binding by EDEM1. Moreover, a protein construct comprising the EDEM1 MLD had thiol-dependent binding properties along with its active glycan-trimming activities. Lastly, we identified an additional intrinsically disordered region (IDR) located at the C terminus of EDEM1 in addition to its previously identified N-terminal IDR. We also determined that both IDRs are required for binding to the ERAD component ERdj5 as an interaction with ERdj5 was not observed with the MLD alone. Together, our findings indicate that EDEM1 employs different binding modalities to interact with ERAD clients and ER quality control (ERQC) machinery partners and that some of these properties are shared with its homologues EDEM2 and EDEM3.
Collapse
Affiliation(s)
- Lydia Lamriben
- From the Department of Biochemistry and Molecular Biology and.,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| | - Michela E Oster
- From the Department of Biochemistry and Molecular Biology and
| | - Taku Tamura
- From the Department of Biochemistry and Molecular Biology and
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel N Hebert
- From the Department of Biochemistry and Molecular Biology and .,Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 and
| |
Collapse
|
25
|
Kadowaki H, Nishitoh H. Endoplasmic reticulum quality control by garbage disposal. FEBS J 2018; 286:232-240. [PMID: 29923316 DOI: 10.1111/febs.14589] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
Abstract
Various types of intracellular and extracellular stresses disturb homeostasis in the endoplasmic reticulum (ER) and, thus, trigger the ER stress response. Unavoidable and/or prolonged ER stress causes cell toxicity and occasionally cell death. The malfunction or death of irreplaceable cells leads to conformational diseases, including diabetes mellitus, ischemic diseases, metabolic diseases, and neurodegenerative diseases. In the past several decades, many studies have revealed the molecular mechanisms of the ER quality control system. Cells resolve ER stress by promptly and accurately reducing the amount of malfolded proteins. Recent reports have revealed that cells possess several types of ER-related disposal systems, including mRNA decay, proteasomal degradation, and autophagy. The removal of dispensable RNAs, proteins, and organelle parts may enable the effective maintenance of a functional ER. Here, we provide a comprehensive understanding of the ER quality control system by focusing on ER-related garbage disposal systems.
Collapse
Affiliation(s)
- Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki, Japan
| |
Collapse
|
26
|
Sekiya M, Maruko-Otake A, Hearn S, Sakakibara Y, Fujisaki N, Suzuki E, Ando K, Iijima KM. EDEM Function in ERAD Protects against Chronic ER Proteinopathy and Age-Related Physiological Decline in Drosophila. Dev Cell 2017. [PMID: 28633019 DOI: 10.1016/j.devcel.2017.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The unfolded protein response (UPR), which protects cells against accumulation of misfolded proteins in the ER, is induced in several age-associated degenerative diseases. However, sustained UPR activation has negative effects on cellular functions and may worsen disease symptoms. It remains unknown whether and how UPR components can be utilized to counteract chronic ER proteinopathies. We found that promotion of ER-associated degradation (ERAD) through upregulation of ERAD-enhancing α-mannosidase-like proteins (EDEMs) protected against chronic ER proteinopathy without inducing toxicity in a Drosophila model. ERAD activity in the brain decreased with aging, and upregulation of EDEMs suppressed age-dependent behavioral decline and extended the lifespan without affecting the UPR gene expression network. Intriguingly, EDEM mannosidase activity was dispensable for these protective effects. Therefore, upregulation of EDEM function in the ERAD protects against ER proteinopathy in vivo and thus represents a potential therapeutic target for chronic diseases.
Collapse
Affiliation(s)
- Michiko Sekiya
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Stephen Hearn
- Microscopy Shared Resource, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yasufumi Sakakibara
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Naoki Fujisaki
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan
| | - Emiko Suzuki
- Structural Biology Center, National Institute of Genetics and Gene Network Laboratory, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kanae Ando
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-0027, Japan.
| |
Collapse
|
27
|
Kong J, Peng M, Ostrovsky J, Kwon YJ, Oretsky O, McCormick EM, He M, Argon Y, Falk MJ. Mitochondrial function requires NGLY1. Mitochondrion 2017; 38:6-16. [PMID: 28750948 DOI: 10.1016/j.mito.2017.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/05/2023]
Abstract
Mitochondrial respiratory chain (RC) diseases and congenital disorders of glycosylation (CDG) share extensive clinical overlap but are considered to have distinct cellular pathophysiology. Here, we demonstrate that an essential physiologic connection exists between cellular N-linked deglycosylation capacity and mitochondrial function. Following identification of altered muscle and liver mitochondrial amount and function in two children with a CDG subtype caused by NGLY1 deficiency, we evaluated mitochondrial physiology in NGLY1 disease human fibroblasts, and in NGLY1-knockout mouse embryonic fibroblasts and C. elegans. Across these distinct evolutionary models of cytosolic NGLY1 deficiency, a consistent disruption of mitochondrial physiology was present involving modestly reduced mitochondrial content with more pronounced impairment of mitochondrial membrane potential, increased mitochondrial matrix oxidant burden, and reduced cellular respiratory capacity. Lentiviral rescue restored NGLY1 expression and mitochondrial physiology in human and mouse fibroblasts, confirming that NGLY1 directly influences mitochondrial function. Overall, cellular deglycosylation capacity is shown to be a significant factor in mitochondrial RC disease pathogenesis across divergent evolutionary species.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Min Peng
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Young Joon Kwon
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Olga Oretsky
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth M McCormick
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miao He
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Butnaru CM, Chiritoiu MB, Chiritoiu GN, Petrescu SM, Petrescu AJ. Inhibition of N-glycan processing modulates the network of EDEM3 interactors. Biochem Biophys Res Commun 2017; 486:978-984. [PMID: 28366632 DOI: 10.1016/j.bbrc.2017.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 02/09/2023]
Abstract
We present here data on EDEM3 network of ER resident interactors and the changes induced upon this network by perturbing the early ER N-glycan processing with mannosidase and glucosidase inhibitors. By coupling immunoprecipitation with mass spectrometry we identified EDEM3 interactors and assigned statistical significance to those most abundant ER-residents that might form functional complexes with EDEM3. We further show that this ER interaction network changes in both content and abundance upon treatment with kifunensine (kif) and N-butyldeoxynojirimycin (NB-DNJ) which suggests that when interfering with the N-glycan processing pathway, the functional complexes involving EDEM3 adapt to maintain the cellular homeostasis. In order to increase the scope of EDEM3 network contenders, the set of MS identified species was further supplemented with putative interactors derived from in silico simulations performed with STRING. Finally, the most interesting candidates to this network were further validated by immunoprecipitation coupled with Western Blotting, which strengthened the confidence in the inferred interactions. The data corroborated herein suggest that besides ER residents, EDEM3 interacts also with proteins involved in the ERAD cargo recognition and targeting to degradation translocation into the cytosol, including UBA1 and UBA2 ubiquitinating enzymes. In addition, the results indicate that this network of EDEM3 interactors is highly sensitive to interfering with early ER N-glycan processing.
Collapse
Affiliation(s)
- Cristian M Butnaru
- Departament of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Marioara B Chiritoiu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Gabriela N Chiritoiu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Stefana-Maria Petrescu
- Departament of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| | - Andrei-Jose Petrescu
- Departament of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei, nr. 296, 060031, Bucharest 17, Romania.
| |
Collapse
|
29
|
Qi L, Tsai B, Arvan P. New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol 2017; 27:430-440. [PMID: 28131647 DOI: 10.1016/j.tcb.2016.12.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/04/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Many human diseases are associated with mutations causing protein misfolding and aggregation in the endoplasmic reticulum (ER). ER-associated degradation (ERAD) is a principal quality-control mechanism responsible for targeting misfolded ER proteins for cytosolic degradation. However, despite years of effort, the physiological role of ERAD in vivo remains largely unknown. Several recent studies have reported intriguing phenotypes of mice deficient for ERAD function in specific cell types. These studies highlight that mammalian ERAD has been designed to perform a wide-range of cell-type-specific functions in vivo in a substrate-dependent manner.
Collapse
Affiliation(s)
- Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Peter Arvan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
30
|
Yagi H, Kuo CW, Obayashi T, Ninagawa S, Khoo KH, Kato K. Direct Mapping of Additional Modifications on Phosphorylated O-glycans of α-Dystroglycan by Mass Spectrometry Analysis in Conjunction with Knocking Out of Causative Genes for Dystroglycanopathy. Mol Cell Proteomics 2016; 15:3424-3434. [PMID: 27601598 DOI: 10.1074/mcp.m116.062729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 11/06/2022] Open
Abstract
Dystroglycanopathy is a major class of congenital muscular dystrophy caused by a deficiency of functional glycans on α-dystroglycan (αDG) with laminin-binding activity. Recent advances have led to identification of several causative gene products of dystroglycanopathy and characterization of their in vitro enzymatic activities. However, the in vivo functional roles remain equivocal for enzymes such as ISPD, FKTN, FKRP, and TMEM5 that are supposed to be involved in post-phosphoryl modifications linking the GalNAc-β3-GlcNAc-β4-Man-6-phosphate core and the outer laminin-binding glycans. Herein, by direct nano-LC-MS2/MS3 analysis of tryptic glycopeptides derived from a truncated recombinant αDG expressed in the wild-type and a panel of mutated cells deficient in one of these enzymes, we sought to define the full extent of variable modifications on this phosphorylated core O-glycan at the functional Thr317/Thr319 sites. We showed that the most abundant glycoforms carried a phosphorylated core at each of the two sites, with and without a single ribitol phosphate (RboP) extending from terminal HexNAc. At much lower signal intensity, a novel substituent tentatively assigned as glycerol phosphate (GroP) was additionally detected. As expected, tandem RboP extended with a GlcA-Xyl unit was only identified in wild type, whereas knocking out of either ISPD or FKTN prevented formation of RboP. In the absence of FKRP, glycoforms with single but not tandem RboP accumulated, consistent with the suggested role of this enzyme in transferring the second RboP. Intriguingly, the single GroP modification also required functional FKTN whereas absence of TMEM5 significantly hindered only the addition of RboP. Our findings thus revealed additional levels of complexity associated with the core structures, suggesting functional interplay among these enzymes through their interactions. The simplified analytical workflow developed here should facilitate rapid mapping across a wider range of cell types to gain better insights into its physiological relevance.
Collapse
Affiliation(s)
- Hirokazu Yagi
- From the ‡Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Chu-Wei Kuo
- §Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Takayuki Obayashi
- From the ‡Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Satoshi Ninagawa
- ¶Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| | - Kay-Hooi Khoo
- §Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan;
| | - Koichi Kato
- From the ‡Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan; .,¶Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|
31
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Reprint of: Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1648:542-552. [PMID: 27362469 DOI: 10.1016/j.brainres.2016.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
32
|
Abstract
The endoplasmic reticulum is the port of entry for proteins into the secretory pathway and the site of synthesis for several important lipids, including cholesterol, triacylglycerol, and phospholipids. Protein production within the endoplasmic reticulum is tightly regulated by a cohort of resident machinery that coordinates the folding, modification, and deployment of secreted and integral membrane proteins. Proteins failing to attain their native conformation are degraded through the endoplasmic reticulum-associated degradation (ERAD) pathway via a series of tightly coupled steps: substrate recognition, dislocation, and ubiquitin-dependent proteasomal destruction. The same ERAD machinery also controls the flux through various metabolic pathways by coupling the turnover of metabolic enzymes to the levels of key metabolites. We review the current understanding and biological significance of ERAD-mediated regulation of lipid metabolism in mammalian cells.
Collapse
Affiliation(s)
- Julian Stevenson
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - Edmond Y Huang
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| | - James A Olzmann
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720;
| |
Collapse
|
33
|
Abstract
The Seventh International Congress of the Cell Stress Society International (CSSI) was held as a joint meeting with the newly organized committee of Stress Physiology, the Chinese Association for Physiological Sciences (CAPS). There were over 200 colleagues and their students in attendance from 22 different countries. The topics of the congress were core scientific areas in the field of stress and health. The keynote speakers were Fu-Chu He (China), E.R. (Ron) de Kloet (The Netherlands), and Kazuhiro Nagata (Japan). The CSSI Medallion for Career Achievement in the cell stress and chaperones field was awarded to Kazutoshi Mori (Japan). Twelve student post awards were given in recognition of a very high quality poster session. In the tradition of this series of congresses, cultural events were an important part of the program. In addition, participants became better acquainted during trips to the ancient shopping street, an evening at the Chinese opera, and a lesson in Tai Chi from a master. The first groups of CSSI Fellows and Senior Fellows were presented their rosettes and certificates during the congress.
Collapse
Affiliation(s)
- Lingjia Qian
- Department of Stress Medicine, Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Robert M Tanguay
- LGCD, IBIS, Dept Molecular Biology, Medical Biochemistry and Pathology, Québec, Canada, G1V 0A6
| | - Tangchun Wu
- School of Public Health, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 4300030, People's Republic of China
| | - Lawrence E Hightower
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT, 06269-3125, USA.
| |
Collapse
|
34
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1642:59-69. [PMID: 27016056 DOI: 10.1016/j.brainres.2016.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
35
|
Ninagawa S, Mori K. Trypsin Sensitivity Assay to Study the Folding Status of Proteins. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
36
|
Ninagawa S, Mori K. PNGase Sensitivity Assay to Study the Folding Status of Proteins. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|