1
|
Brown M, Sciascia E, Ning K, Adam W, Veraksa A. Regulation of Drosophila brain development and organ growth by the Minibrain/Rala signaling network. G3 (BETHESDA, MD.) 2024:jkae219. [PMID: 39271109 DOI: 10.1093/g3journal/jkae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The human dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) is implicated in the pathology of Down syndrome, microcephaly, and cancer, however the exact mechanism through which it functions is unknown. Here, we have studied the role of the Drosophila ortholog of DYRK1A, Minibrain (Mnb), in brain development and organ growth. The neuroblasts (neural stem cells) that eventually give rise to differentiated neurons in the adult brain are formed from a specialized tissue in the larval optic lobe called the neuroepithelium, in a tightly regulated process. Molecular marker analysis of mnb mutants revealed alterations in the neuroepithelium and neuroblast regions of developing larval brains. Using affinity purification-mass spectrometry (AP-MS), we identified the novel Mnb binding partners Ral interacting protein (Rlip) and RALBP1 associated Eps domain containing (Reps). Rlip and Reps physically and genetically interact with Mnb, and the three proteins may form a ternary complex. Mnb phosphorylates Reps, and human DYRK1A binds to the Reps orthologs REPS1 and REPS2. Mnb also promotes re-localization of Rlip from the nucleus to the cytoplasm in cultured cells. Furthermore, Mnb engages the small GTPase Ras-like protein A (Rala) to regulate brain and wing development. This work uncovers a previously unrecognized role of Mnb in the neuroepithelium and defines the functions of the Mnb/Reps/Rlip/Rala signaling network in organ growth and neurodevelopment.
Collapse
Affiliation(s)
- Melissa Brown
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Erika Sciascia
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Ken Ning
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Wesam Adam
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
2
|
Vanderleest TE, Xie Y, Budhathoki R, Linvill K, Hobson C, Heddleston J, Loerke D, Blankenship JT. Lattice light sheet microscopy reveals 4D force propagation dynamics and leading-edge behaviors in an embryonic epithelium in Drosophila. Curr Biol 2024; 34:3165-3177.e3. [PMID: 38959881 DOI: 10.1016/j.cub.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers "zippering" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.
Collapse
Affiliation(s)
- Timothy E Vanderleest
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA; Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Rashmi Budhathoki
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Katie Linvill
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA
| | - Chad Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Heddleston
- Cleveland Clinic Florida Research & Innovation Center, Port St. Lucie, FL, USA
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
3
|
Brown M, Sciascia E, Ning K, Adam W, Veraksa A. Regulation of brain development by the Minibrain/Rala signaling network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593605. [PMID: 38766038 PMCID: PMC11100804 DOI: 10.1101/2024.05.10.593605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The human dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) is implicated in the pathology of Down syndrome, microcephaly, and cancer, however the exact mechanism through which it functions is unknown. Here, we have studied the role of the Drosophila ortholog of DYRK1A, Minibrain (Mnb), in brain development. The neuroblasts (neural stem cells) that eventually give rise to differentiated neurons in the adult brain are formed from a specialized tissue in the larval optic lobe called the neuroepithelium, in a tightly regulated process. Molecular marker analysis of mnb mutants revealed alterations in the neuroepithelium and neuroblast regions of developing larval brains. Using affinity purification-mass spectrometry (AP-MS), we identified the novel Mnb binding partners Ral interacting protein (Rlip) and RALBP1 associated Eps domain containing (Reps). Rlip and Reps physically and genetically interact with Mnb, and the three proteins may form a ternary complex. Mnb phosphorylates Reps, and human DYRK1A binds to the Reps orthologs REPS1 and REPS2. Furthermore, Mnb engages the small GTPase Ras-like protein A (Rala) to regulate brain and wing development. This work uncovers a previously unrecognized early role of Mnb in the neuroepithelium and defines the functions of the Mnb/Reps/Rlip/Rala signaling network in brain development. Significance statement The kinase Minibrain(Mnb)/DYRK1A regulates the development of the brain and other tissues across many organisms. Here we show the critical importance of Mnb within the developing neuroepithelium. Advancing our understanding of Mnb function, we identified novel protein interactors of Mnb, Reps and Rlip, which function together with Mnb to regulate growth in Drosophila melanogaster . We also identify and characterize a role for the small GTPase Rala in Mnb-regulated growth and nervous system development. This work reveals an early role of Mnb in brain development and identifies a new Mnb/Reps/Rlip/Rala signaling axis.
Collapse
|
4
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
5
|
Balaghi N, Erdemci-Tandogan G, McFaul C, Fernandez-Gonzalez R. Myosin waves and a mechanical asymmetry guide the oscillatory migration of Drosophila cardiac progenitors. Dev Cell 2023:S1534-5807(23)00238-1. [PMID: 37295436 DOI: 10.1016/j.devcel.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Heart development begins with the formation of a tube as cardiac progenitors migrate from opposite sides of the embryo. Abnormal cardiac progenitor movements cause congenital heart defects. However, the mechanisms of cell migration during early heart development remain poorly understood. Using quantitative microscopy, we found that in Drosophila embryos, cardiac progenitors (cardioblasts) migrated through a sequence of forward and backward steps. Cardioblast steps were associated with oscillatory non-muscle myosin II waves that induced periodic shape changes and were necessary for timely heart tube formation. Mathematical modeling predicted that forward cardioblast migration required a stiff boundary at the trailing edge. Consistent with this, we found a supracellular actin cable at the trailing edge of the cardioblasts that limited the amplitude of the backward steps, thus biasing the direction of cell movement. Our results indicate that periodic shape changes coupled with a polarized actin cable produce asymmetrical forces that promote cardioblast migration.
Collapse
Affiliation(s)
- Negar Balaghi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Gonca Erdemci-Tandogan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Christopher McFaul
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
6
|
Baldwin A, Popov IK, Keller R, Wallingford J, Chang C. The RhoGEF protein Plekhg5 regulates medioapical and junctional actomyosin dynamics of apical constriction during Xenopus gastrulation. Mol Biol Cell 2023; 34:ar64. [PMID: 37043306 PMCID: PMC10295481 DOI: 10.1091/mbc.e22-09-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Apical constriction results in apical surface reduction in epithelial cells and is a widely used mechanism for epithelial morphogenesis. Both medioapical and junctional actomyosin remodeling are involved in apical constriction, but the deployment of medial versus junctional actomyosin and their genetic regulation in vertebrate embryonic development have not been fully described. In this study, we investigate actomyosin dynamics and their regulation by the RhoGEF protein Plekhg5 in Xenopus bottle cells. Using live imaging and quantitative image analysis, we show that bottle cells assume different shapes, with rounding bottle cells constricting earlier in small clusters followed by fusiform bottle cells forming between the clusters. Both medioapical and junctional actomyosin signals increase as surface area decreases, though correlation of apical constriction with medioapical actomyosin localization appears to be stronger. F-actin bundles perpendicular to the apical surface form in constricted cells, which may correspond to microvilli previously observed in the apical membrane. Knockdown of plekhg5 disrupts medioapical and junctional actomyosin activity and apical constriction but does not affect initial F-actin dynamics. Taking the results together, our study reveals distinct cell morphologies, uncovers actomyosin behaviors, and demonstrates the crucial role of a RhoGEF protein in controlling actomyosin dynamics during apical constriction of bottle cells in Xenopus gastrulation.
Collapse
Affiliation(s)
- Austin Baldwin
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Ivan K. Popov
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ray Keller
- Biology Department, University of Virginia, Charlottesville, VA 22903
| | - John Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
7
|
Francou A, Anderson KV, Hadjantonakis AK. A ratchet-like apical constriction drives cell ingression during the mouse gastrulation EMT. eLife 2023; 12:e84019. [PMID: 37162187 PMCID: PMC10171865 DOI: 10.7554/elife.84019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells acquire mesenchymal phenotypes and the ability to migrate. EMT is the hallmark of gastrulation, an evolutionarily conserved developmental process. In mammals, epiblast cells ingress at the primitive streak to form mesoderm. Cells ingress and exit the epiblast epithelial layer and the associated EMT is dynamically regulated and involves a stereotypical sequence of cell behaviors. 3D time-lapse imaging of gastrulating mouse embryos combined with cell and tissue scale data analyses revealed the asynchronous ingression of epiblast cells at the primitive streak. Ingressing cells constrict their apical surfaces in a pulsed ratchet-like fashion through asynchronous shrinkage of apical junctions. A quantitative analysis of the distribution of apical proteins revealed the anisotropic and reciprocal enrichment of members of the actomyosin network and Crumbs2 complexes, potential regulators of asynchronous shrinkage of cell junctions. Loss of function analyses demonstrated a requirement for Crumbs2 in myosin II localization and activity at apical junctions, and as a candidate regulator of actomyosin anisotropy.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
8
|
Serre JM, Slabodnick MM, Goldstein B, Hardin J. SRGP-1/srGAP and AFD-1/afadin stabilize HMP-1/⍺-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genet 2023; 19:e1010507. [PMID: 36867663 PMCID: PMC10016700 DOI: 10.1371/journal.pgen.1010507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/15/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
A hallmark of gastrulation is the establishment of germ layers by internalization of cells initially on the exterior. In C. elegans the end of gastrulation is marked by the closure of the ventral cleft, a structure formed as cells internalize during gastrulation, and the subsequent rearrangement of adjacent neuroblasts that remain on the surface. We found that a nonsense allele of srgp-1/srGAP leads to 10-15% cleft closure failure. Deletion of the SRGP-1/srGAP C-terminal domain led to a comparable rate of cleft closure failure, whereas deletion of the N-terminal F-BAR region resulted in milder defects. Loss of the SRGP-1/srGAP C-terminus or F-BAR domain results in defects in rosette formation and defective clustering of HMP-1/⍺-catenin in surface cells during cleft closure. A mutant form of HMP-1/⍺-catenin with an open M domain can suppress cleft closure defects in srgp-1 mutant backgrounds, suggesting that this mutation acts as a gain-of-function allele. Since SRGP-1 binding to HMP-1/⍺-catenin is not favored in this case, we sought another HMP-1 interactor that might be recruited when HMP-1/⍺-catenin is constitutively open. A good candidate is AFD-1/afadin, which genetically interacts with cadherin-based adhesion later during embryonic elongation. AFD-1/afadin is prominently expressed at the vertex of neuroblast rosettes in wildtype, and depletion of AFD-1/afadin increases cleft closure defects in srgp-1/srGAP and hmp-1R551/554A/⍺-catenin backgrounds. We propose that SRGP-1/srGAP promotes nascent junction formation in rosettes; as junctions mature and sustain higher levels of tension, the M domain of HMP-1/⍺-catenin opens, allowing maturing junctions to transition from recruitment of SRGP-1/srGAP to AFD-1/afadin. Our work identifies new roles for ⍺-catenin interactors during a process crucial to metazoan development.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
| | - Mark M. Slabodnick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Knox University, Galesburg, Illinois, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeff Hardin
- Program in Genetics University of Wisconsin-Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Sheppard L, Green DG, Lerchbaumer G, Rothenberg KE, Fernandez-Gonzalez R, Tepass U. The α-Catenin mechanosensing M region is required for cell adhesion during tissue morphogenesis. J Cell Biol 2023; 222:e202108091. [PMID: 36520419 PMCID: PMC9757846 DOI: 10.1083/jcb.202108091] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.
Collapse
Affiliation(s)
- Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David G. Green
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Katheryn E. Rothenberg
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
11
|
Simões S, Lerchbaumer G, Pellikka M, Giannatou P, Lam T, Kim D, Yu J, ter Stal D, Al Kakouni K, Fernandez-Gonzalez R, Tepass U. Crumbs complex-directed apical membrane dynamics in epithelial cell ingression. J Cell Biol 2022; 221:213229. [PMID: 35588693 PMCID: PMC9123285 DOI: 10.1083/jcb.202108076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023] Open
Abstract
Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.
Collapse
Affiliation(s)
- Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gerald Lerchbaumer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Paraskevi Giannatou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Lam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Dohyun Kim
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Yu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David ter Stal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Kenana Al Kakouni
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada,Correspondence to Ulrich Tepass:
| |
Collapse
|
12
|
ASC proneural factors are necessary for chromatin remodeling during neuroectodermal to neuroblast fate transition to ensure the timely initiation of the neural stem cell program. BMC Biol 2022; 20:107. [PMID: 35549704 PMCID: PMC9102361 DOI: 10.1186/s12915-022-01300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/20/2022] [Indexed: 11/11/2022] Open
Abstract
Background In both Drosophila and mammals, the achaete-scute (ASC/ASCL) proneural bHLH transcription factors are expressed in the developing central and peripheral nervous systems, where they function during specification and maintenance of the neural stem cells in opposition to Notch signaling. In addition to their role in nervous system development, ASC transcription factors are oncogenic and exhibit chromatin reprogramming activity; however, the impact of ASC on chromatin dynamics during neural stem cell generation remains elusive. Here, we investigate the chromatin changes accompanying neural commitment using an integrative genetics and genomics methodology. Results We found that ASC factors bind equally strongly to two distinct classes of cis-regulatory elements: open regions remodeled earlier during maternal to zygotic transition by Zelda and less accessible, Zelda-independent regions. Both classes of cis-elements exhibit enhanced chromatin accessibility during neural specification and correlate with transcriptional regulation of genes involved in a variety of biological processes necessary for neuroblast function/homeostasis. We identified an ASC-Notch regulated TF network that includes likely prime regulators of neuroblast function. Using a cohort of ASC target genes, we report that ASC null neuroblasts are defectively specified, remaining initially stalled, unable to divide, and lacking expression of many proneural targets. When mutant neuroblasts eventually start proliferating, they produce compromised progeny. Reporter lines driven by proneural-bound enhancers display ASC dependency, suggesting that the partial neuroblast identity seen in the absence of ASC genes is likely driven by other, proneural-independent, cis-elements. Neuroblast impairment and the late differentiation defects of ASC mutants are corrected by ectodermal induction of individual ASC genes but not by individual members of the TF network downstream of ASC. However, in wild-type embryos, the induction of individual members of this network induces CNS hyperplasia, suggesting that they synergize with the activating function of ASC to consolidate the chromatin dynamics that promote neural specification. Conclusions We demonstrate that ASC proneural transcription factors are indispensable for the timely initiation of the neural stem cell program at the chromatin level by regulating a large number of enhancers in the vicinity of neural genes. This early chromatin remodeling is crucial for both neuroblast homeostasis as well as future progeny fidelity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01300-8.
Collapse
|
13
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
14
|
Oon CH, Prehoda KE. Phases of cortical actomyosin dynamics coupled to the neuroblast polarity cycle. eLife 2021; 10:66574. [PMID: 34779402 PMCID: PMC8641948 DOI: 10.7554/elife.66574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Par complex dynamically polarizes to the apical cortex of asymmetrically dividing Drosophila neuroblasts where it directs fate determinant segregation. Previously, we showed that apically directed cortical movements that polarize the Par complex require F-actin (Oon and Prehoda, 2019). Here, we report the discovery of cortical actomyosin dynamics that begin in interphase when the Par complex is cytoplasmic but ultimately become tightly coupled to cortical Par dynamics. Interphase cortical actomyosin dynamics are unoriented and pulsatile but rapidly become sustained and apically-directed in early mitosis when the Par protein aPKC accumulates on the cortex. Apical actomyosin flows drive the coalescence of aPKC into an apical cap that depolarizes in anaphase when the flow reverses direction. Together with the previously characterized role of anaphase flows in specifying daughter cell size asymmetry, our results indicate that multiple phases of cortical actomyosin dynamics regulate asymmetric cell division.
Collapse
Affiliation(s)
- Chet Huan Oon
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| |
Collapse
|
15
|
Bhide S, Gombalova D, Mönke G, Stegmaier J, Zinchenko V, Kreshuk A, Belmonte JM, Leptin M. Mechanical competition alters the cellular interpretation of an endogenous genetic program. J Cell Biol 2021; 220:212605. [PMID: 34449835 PMCID: PMC8406609 DOI: 10.1083/jcb.202104107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
The intrinsic genetic program of a cell is not sufficient to explain all of the cell's activities. External mechanical stimuli are increasingly recognized as determinants of cell behavior. In the epithelial folding event that constitutes the beginning of gastrulation in Drosophila, the genetic program of the future mesoderm leads to the establishment of a contractile actomyosin network that triggers apical constriction of cells and thereby tissue folding. However, some cells do not constrict but instead stretch, even though they share the same genetic program as their constricting neighbors. We show here that tissue-wide interactions force these cells to expand even when an otherwise sufficient amount of apical, active actomyosin is present. Models based on contractile forces and linear stress-strain responses do not reproduce experimental observations, but simulations in which cells behave as ductile materials with nonlinear mechanical properties do. Our models show that this behavior is a general emergent property of actomyosin networks in a supracellular context, in accordance with our experimental observations of actin reorganization within stretching cells.
Collapse
Affiliation(s)
- Sourabh Bhide
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Denisa Gombalova
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Gregor Mönke
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Valentyna Zinchenko
- Collaboration for Joint PhD Degree between European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julio M Belmonte
- Department of Physics, North Carolina State University, Raleigh, NC.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC
| | - Maria Leptin
- Director's Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,European Molecular Biology Organization, Heidelberg, Germany
| |
Collapse
|
16
|
Zulueta-Coarasa T, Rosenblatt J. The role of tissue maturity and mechanical state in controlling cell extrusion. Curr Opin Genet Dev 2021; 72:1-7. [PMID: 34560388 PMCID: PMC8860846 DOI: 10.1016/j.gde.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/03/2022]
Abstract
Epithelia remove dying or excess cells by extrusion, a process that seamlessly squeezes cells out of the layer without disrupting their barrier function. New studies shed light into the intricate relationship between extrusion, tissue mechanics, and development. They emphasize the importance of whole tissue-mechanics, rather than single cell-mechanics in controlling extrusion. Tissue compaction, stiffness, and cell-cell adhesion can impact the efficiency of cell extrusion and mechanisms that drive it, to adapt to different conditions during development or disease.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| |
Collapse
|
17
|
Font-Noguera M, Montemurro M, Benassayag C, Monier B, Suzanne M. Getting started for migration: A focus on EMT cellular dynamics and mechanics in developmental models. Cells Dev 2021; 168:203717. [PMID: 34245942 DOI: 10.1016/j.cdev.2021.203717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
The conversion of epithelial cells into mesenchymal ones, through a process known as epithelial-mesenchymal transition (or EMT) is a reversible process involved in critical steps of animal development as early as gastrulation and throughout organogenesis. In pathological conditions such as aggressive cancers, EMT is often associated with increased drug resistance, motility and invasiveness. The characterisation of the upstream signals and main decision takers, such as the EMT-transcription factors, has led to the identification of a core molecular machinery controlling the specification towards EMT. However, the cellular execution steps of this fundamental shift are poorly described, especially in cancerous cells. Here we review our current knowledge regarding the stepwise nature of EMT in model organisms as diverse as sea urchin, Drosophila, zebrafish, mouse or chicken. We focus on the cellular dynamics and mechanics of the transitional stages by which epithelial cells progressively become mesenchymal and leave the epithelium. We gather the currently available pieces of the puzzle, including the overlooked property of EMT cells to produce mechanical forces along their apico-basal axis before detaching from their neighbours. We discuss the interplay between EMT and the surrounding tissue. Finally, we propose a conceptual framework of EMT cell dynamics from the very first hint of epithelial cell reorganisation to the successful exit from the epithelial sheet.
Collapse
Affiliation(s)
- Meritxell Font-Noguera
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
18
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Mitchell SJ, Rosenblatt J. Early mechanical selection of cell extrusion and extrusion signaling in cancer. Curr Opin Cell Biol 2021; 72:36-40. [PMID: 34034216 DOI: 10.1016/j.ceb.2021.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Epithelial cells use the process of extrusion to promote cell death while preserving a tight barrier. To extrude, a cell and its neighbors contract actin and myosin circumferentially and basolaterally to seamlessly squeeze it out of the epithelium. Recent research highlights how early apical pulsatile contractions within the extruding cell might orchestrate contraction in three dimensions so that a cell extrudes out apically. Along with apical constrictions, studies of ion channels and mathematical modeling reveal how differential contraction between cells helps select specific cells to extrude. In addition, several studies have offered new insights into pathways that use extrusion to eliminate transformed cells or cause an aberrant form of extrusion that promotes cell invasion.
Collapse
Affiliation(s)
- Saranne J Mitchell
- Biomedical Engineering Department, The University of Utah, Salt Lake City, UT, USA; The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, UK
| | - Jody Rosenblatt
- Biomedical Engineering Department, The University of Utah, Salt Lake City, UT, USA; The Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine, Schools of Basic & Medical Biosciences and Cancer & Pharmaceutical Sciences, UK.
| |
Collapse
|
20
|
The morphogenetic changes that lead to cell extrusion in development and cell competition. Dev Biol 2021; 477:1-10. [PMID: 33984304 DOI: 10.1016/j.ydbio.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.
Collapse
|
21
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
22
|
Atieh Y, Wyatt T, Zaske AM, Eisenhoffer GT. Pulsatile contractions promote apoptotic cell extrusion in epithelial tissues. Curr Biol 2021; 31:1129-1140.e4. [PMID: 33400921 DOI: 10.1016/j.cub.2020.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Extrusion is a mechanism used to eliminate unfit, excess, or dying cells from epithelial tissues. The initial events guiding which cells will be selectively extruded from the epithelium are not well understood. Here, we induced damage in a subset of epithelial cells in the developing zebrafish and used time-lapse imaging to examine cell and cytoskeletal dynamics leading to extrusion. We show that cell extrusion is preceded by actomyosin contractions that are pulsatile. Our data show that pulsatile contractions are induced by a junctional to medial re-localization of myosin. Analysis of cell area during contractions revealed that cells pulsing with the longest duration and highest amplitude undergo progressive area loss and extrude. Although pulses were driven by local increases in tension, damage to many cells promoted an overall decrease in the tensile state of the epithelium. We demonstrate that caspase activation leads to sphingosine-1-phosphate enrichment that controls both tissue tension and pulses to dictate areas of extrusion. These data suggest that the kinetics of pulsatile contractions define a key behavioral difference between extruding and non-extruding cells and are predictive of extrusion. Altogether, our study provides mechanistic insight into how localized changes in physical forces are coordinated to remove defective cells for homeostatic maintenance of living epithelial tissues.
Collapse
Affiliation(s)
- Youmna Atieh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Wyatt
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Ana Maria Zaske
- Atomic Force Microscopy Service Center, The University of Texas Health Science Center, Houston, TX, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
23
|
Zankoc C, Krajnc M. Elasticity, Stability, and Quasioscillations of Cell-Cell Junctions in Solid Confluent Epithelia. Biophys J 2020; 119:1706-1711. [PMID: 33086043 DOI: 10.1016/j.bpj.2020.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
Macroscopic properties and shapes of biological tissues depend on the remodeling of cell-cell junctions at the microscopic scale. We propose a theoretical framework that couples a vertex model of solid confluent tissues with the dynamics describing generation of local force dipoles in the junctional actomyosin. Depending on the myosin turnover rate, junctions either preserve stable length or collapse to initiate cell rearrangements. We find that noise can amplify and sustain transient oscillations to the fixed point, giving rise to quasiperiodic junctional dynamics. We also discover that junctional stability is affected by cell arrangements and junctional rest tensions, which may explain junctional collapse during convergence and extension in embryos.
Collapse
|
24
|
Ambrosini A, Röper K. "Neur"al brain wave: Coordinating epithelial-to-neural stem cell transition in the fly optic lobe. J Cell Biol 2020; 219:e202009040. [PMID: 33057636 PMCID: PMC7568446 DOI: 10.1083/jcb.202009040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the Drosophila larval optic lobe, the generation of neural stem cells involves an epithelial-to-mesenchymal-like transition of a continuous stripe of cells that sweeps across the neuroepithelium, but the dynamics at cell and tissue level were unknown until now. In this issue, Shard et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.202005035) identify that Neuralized controls a partial epithelial-to-mesenchymal transition through regulation of the apical Crumbs complex and through the coordination of cell behaviors such as apical constriction and cell alignment.
Collapse
Affiliation(s)
| | - Katja Röper
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
25
|
Arefin B, Parvin F, Bahrampour S, Stadler CB, Thor S. Drosophila Neuroblast Selection Is Gated by Notch, Snail, SoxB, and EMT Gene Interplay. Cell Rep 2020; 29:3636-3651.e3. [PMID: 31825841 DOI: 10.1016/j.celrep.2019.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
In the developing Drosophila central nervous system (CNS), neural progenitor (neuroblast [NB]) selection is gated by lateral inhibition, controlled by Notch signaling and proneural genes. However, proneural mutants still generate many NBs, indicating the existence of additional proneural genes. Moreover, recent studies reveal involvement of key epithelial-mesenchymal transition (EMT) genes in NB selection, but the regulatory interplay between Notch signaling and the EMT machinery is unclear. We find that SoxNeuro (SoxB family) and worniu (Snail family) are integrated with the Notch pathway, and constitute the missing proneural genes. Notch signaling, the proneural, SoxNeuro, and worniu genes regulate key EMT genes to orchestrate the NB selection process. Hence, we uncover an expanded lateral inhibition network for NB selection and demonstrate its link to key players in the EMT machinery. The evolutionary conservation of the genes involved suggests that the Notch-SoxB-Snail-EMT network may control neural progenitor selection in many other systems.
Collapse
Affiliation(s)
- Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Farjana Parvin
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Shahrzad Bahrampour
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, 58185 Linkoping, Sweden; School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Perez-Vale KZ, Peifer M. Orchestrating morphogenesis: building the body plan by cell shape changes and movements. Development 2020; 147:dev191049. [PMID: 32917667 PMCID: PMC7502592 DOI: 10.1242/dev.191049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.
Collapse
Affiliation(s)
- Kia Z Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Lin B, Luo J, Lehmann R. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nat Commun 2020; 11:4477. [PMID: 32901019 PMCID: PMC7479147 DOI: 10.1038/s41467-020-18185-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Individual cells detach from cohesive ensembles during development and can inappropriately separate in disease. Although much is known about how cells separate from epithelia, it remains unclear how cells disperse from clusters lacking apical-basal polarity, a hallmark of advanced epithelial cancers. Here, using live imaging of the developmental migration program of Drosophila primordial germ cells (PGCs), we show that cluster dispersal is accomplished by stabilizing and orienting migratory forces. PGCs utilize a G protein coupled receptor (GPCR), Tre1, to guide front-back migratory polarity radially from the cluster toward the endoderm. Posteriorly positioned myosin-dependent contractile forces pull on cell-cell contacts until cells release. Tre1 mutant cells migrate randomly with transient enrichment of the force machinery but fail to separate, indicating a temporal contractile force threshold for detachment. E-cadherin is retained on the cell surface during cell separation and augmenting cell-cell adhesion does not impede detachment. Notably, coordinated migration improves cluster dispersal efficiency by stabilizing cell-cell interfaces and facilitating symmetric pulling. We demonstrate that guidance of inherent migratory forces is sufficient to disperse cell clusters under physiological settings and present a paradigm for how such events could occur across development and disease.
Collapse
Affiliation(s)
- B Lin
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | - J Luo
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - R Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Miao H, Blankenship JT. The pulse of morphogenesis: actomyosin dynamics and regulation in epithelia. Development 2020; 147:dev186502. [PMID: 32878903 PMCID: PMC7490518 DOI: 10.1242/dev.186502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Actomyosin networks are some of the most crucial force-generating components present in developing tissues. The contractile forces generated by these networks are harnessed during morphogenesis to drive various cell and tissue reshaping events. Recent studies of these processes have advanced rapidly, providing us with insights into how these networks are initiated, positioned and regulated, and how they act via individual contractile pulses and/or the formation of supracellular cables. Here, we review these studies and discuss the mechanisms that underlie the construction and turnover of such networks and structures. Furthermore, we provide an overview of how ratcheted processivity emerges from pulsed events, and how tissue-level mechanics are the coordinated output of many individual cellular behaviors.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| | - J Todd Blankenship
- Department of Biological Sciences, Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
29
|
Dey B, Rikhy R. DE-cadherin and Myosin II balance regulates furrow length for onset of polygon shape in syncytial Drosophila embryos. J Cell Sci 2020; 133:jcs240168. [PMID: 32265269 DOI: 10.1242/jcs.240168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/26/2020] [Indexed: 08/31/2023] Open
Abstract
Cell shape morphogenesis, from spherical to polygonal, occurs in epithelial cell formation in metazoan embryogenesis. In syncytial Drosophila embryos, the plasma membrane incompletely surrounds each nucleus and is organized as a polygonal epithelial-like array. Each cortical syncytial division cycle shows a circular to polygonal plasma membrane transition along with furrow extension between adjacent nuclei from interphase to metaphase. In this study, we assess the relative contribution of DE-cadherin (also known as Shotgun) and Myosin II (comprising Zipper and Spaghetti squash in flies) at the furrow to polygonal shape transition. We show that polygonality initiates during each cortical syncytial division cycle when the furrow extends from 4.75 to 5.75 μm. Polygon plasma membrane organization correlates with increased junctional tension, increased DE-cadherin and decreased Myosin II mobility. DE-cadherin regulates furrow length and polygonality. Decreased Myosin II activity allows for polygonality to occur at a lower length than controls. Increased Myosin II activity leads to loss of lateral furrow formation and complete disruption of the polygonal shape transition. Our studies show that DE-cadherin-Myosin II balance regulates an optimal lateral membrane length during each syncytial cycle for polygonal shape transition.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bipasha Dey
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
30
|
Pulido Companys P, Norris A, Bischoff M. Coordination of cytoskeletal dynamics and cell behaviour during Drosophila abdominal morphogenesis. J Cell Sci 2020; 133:jcs235325. [PMID: 32229579 PMCID: PMC7132776 DOI: 10.1242/jcs.235325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
During morphogenesis, cells exhibit various behaviours, such as migration and constriction, which need to be coordinated. How this is achieved remains elusive. During morphogenesis of the Drosophila adult abdominal epidermis, larval epithelial cells (LECs) migrate directedly before constricting apically and undergoing apoptosis. Here, we study the mechanisms underlying the transition from migration to constriction. We show that LECs possess a pulsatile apical actomyosin network, and that a change in network polarity correlates with behavioural change. Exploring the properties of the contractile network, we find that cell contractility, as determined by myosin activity, has an impact on the behaviour of the network, as well as on cytoskeletal architecture and cell behaviour. Pulsed contractions occur only in cells with intermediate levels of contractility. Furthermore, increasing levels of the small Rho GTPase Rho1 disrupts pulsing, leading to cells that cycle between two states, characterised by a junctional cortical and an apicomedial actin network. Our results highlight that behavioural change relies on tightly controlled cellular contractility. Moreover, we show that constriction can occur without pulsing, raising questions why constricting cells pulse in some contexts but not in others.
Collapse
Affiliation(s)
- Pau Pulido Companys
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Anneliese Norris
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Marcus Bischoff
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| |
Collapse
|
31
|
Michel M, Dahmann C. Tissue mechanical properties modulate cell extrusion in the Drosophila abdominal epidermis. Development 2020; 147:147/5/dev179606. [DOI: 10.1242/dev.179606] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/28/2020] [Indexed: 01/22/2023]
Abstract
ABSTRACT
The replacement of cells is a common strategy during animal development. In the Drosophila pupal abdomen, larval epidermal cells (LECs) are replaced by adult progenitor cells (histoblasts). Previous work showed that interactions between histoblasts and LECs result in apoptotic extrusion of LECs during early pupal development. Extrusion of cells is closely preceded by caspase activation and is executed by contraction of a cortical actomyosin cable. Here, we identify a population of LECs that extrudes independently of the presence of histoblasts during late pupal development. Extrusion of these LECs is not closely preceded by caspase activation, involves a pulsatile medial actomyosin network, and correlates with a developmental time period when mechanical tension and E-cadherin turnover at adherens junctions is particularly high. Our work reveals a developmental switch in the cell extrusion mechanism that correlates with changes in tissue mechanical properties.
Collapse
Affiliation(s)
- Marcus Michel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
32
|
Abstract
Cell and tissue shape changes are the fundamental elements of morphogenesis that drive normal development of embryos into fully functional organisms. This requires a variety of cellular processes including establishment and maintenance of polarity, tissue growth and apoptosis, and cell differentiation, rearrangement, and migration. It is widely appreciated that the cytoskeletal networks play an important role in regulating many of these processes and, in particular, that pulsed actomyosin contractions are a core cellular mechanism driving cell shape changes and cell rearrangement. In this review, we discuss the role of pulsed actomyosin contractions during developmental morphogenesis, advances in our understanding of the mechanisms regulating actomyosin pulsing, and novel techniques to probe the role of pulsed actomyosin processes in
in vivo model systems.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
33
|
The Five Faces of Notch Signalling During Drosophila melanogaster Embryonic CNS Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:39-58. [PMID: 32060870 DOI: 10.1007/978-3-030-34436-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During central nervous system (CNS) development, a complex series of events play out, starting with the establishment of neural progenitor cells, followed by their asymmetric division and formation of lineages and the differentiation of neurons and glia. Studies in the Drosophila melanogaster embryonic CNS have revealed that the Notch signal transduction pathway plays at least five different and distinct roles during these events. Herein, we review these many faces of Notch signalling and discuss the mechanisms that ensure context-dependent and compartment-dependent signalling. We conclude by discussing some outstanding issues regarding Notch signalling in this system, which likely have bearing on Notch signalling in many species.
Collapse
|
34
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Loerke D, Blankenship JT. Viscoelastic voyages - Biophysical perspectives on cell intercalation during Drosophila gastrulation. Semin Cell Dev Biol 2019; 100:212-222. [PMID: 31784092 DOI: 10.1016/j.semcdb.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/11/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
Abstract
Developmental processes are driven by a combination of cytoplasmic, cortical, and surface-associated forces. However, teasing apart the contributions of these forces and how a viscoelastic cell responds has long been a key question in developmental biology. Recent advances in applying biophysical approaches to these questions is leading to a fundamentally new understanding of morphogenesis. In this review, we discuss how computational analysis of experimental findings and in silico modeling of Drosophila gastrulation processes has led to a deeper comprehension of the physical principles at work in the early embryo. We also summarize many of the emerging methodologies that permit biophysical analysis as well as those that provide direct and indirect measurements of force directions and magnitudes. Finally, we examine the multiple frameworks that have been used to model tissue and cellular behaviors.
Collapse
Affiliation(s)
- Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, CO 80208, USA.
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
| |
Collapse
|
36
|
Rotelli MD, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Calvi BR. An RNAi Screen for Genes Required for Growth of Drosophila Wing Tissue. G3 (BETHESDA, MD.) 2019; 9:3087-3100. [PMID: 31387856 PMCID: PMC6778782 DOI: 10.1534/g3.119.400581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
Collapse
Affiliation(s)
- Michael D Rotelli
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Anna M Bolling
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Andrew W Killion
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | | | - Michael J Dixon
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405 and
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
37
|
Finegan TM, Bergstralh DT. Division orientation: disentangling shape and mechanical forces. Cell Cycle 2019; 18:1187-1198. [PMID: 31068057 PMCID: PMC6592245 DOI: 10.1080/15384101.2019.1617006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Oriented cell divisions are essential for the generation of cell diversity and for tissue shaping during morphogenesis. Cells in tissues are mechanically linked to their neighbors, upon which they impose, and from which they experience, physical force. Recent work in multiple systems has revealed that tissue-level physical forces can influence the orientation of cell division. A long-standing question is whether forces are communicated to the spindle orienting machinery via cell shape or directly via mechanosensing intracellular machinery. In this article, we review the current evidence from diverse model systems that show spindles are oriented by tissue-level physical forces and evaluate current models and molecular mechanisms proposed to explain how the spindle orientation machinery responds to extrinsic force.
Collapse
Affiliation(s)
- Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
38
|
Okuda S, Kuranaga E, Sato K. Apical Junctional Fluctuations Lead to Cell Flow while Maintaining Epithelial Integrity. Biophys J 2019; 116:1159-1170. [PMID: 30799073 DOI: 10.1016/j.bpj.2019.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022] Open
Abstract
Epithelial sheet integrity is robustly maintained during morphogenesis, which is essential to shape organs and embryos. While maintaining the planar monolayer in three-dimensional space, cells dynamically flow via rearranging their connections between each other. However, little is known about how cells maintain the plane sheet integrity in three-dimensional space and provide cell flow in the in-plane sheet. In this study, using a three-dimensional vertex model, we demonstrate that apical junctional fluctuations allow stable cell rearrangements while ensuring monolayer integrity. In addition to the fluctuations, direction-dependent contraction on the apical cell boundaries, which corresponds to forces from adherens junctions, induces cell flow in a definite direction. We compared the kinematic behaviors of this apical-force-driven cell flow with those of typical cell flow that is driven by forces generated on basal regions and revealed the characteristic differences between them. These differences can be used to distinguish the mechanism of epithelial cell flow observed in experiments, i.e., whether it is apical- or basal-force-driven. Our numerical simulations suggest that cells actively generate fluctuations and use them to regulate both epithelial integrity and plasticity during morphogenesis.
Collapse
Affiliation(s)
- Satoru Okuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Katsuhiko Sato
- Research Institute for Electronic Science, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
39
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
40
|
Lancino M, Majello S, Herbert S, De Chaumont F, Tinevez JY, Olivo-Marin JC, Herbomel P, Schmidt A. Anisotropic organization of circumferential actomyosin characterizes hematopoietic stem cells emergence in the zebrafish. eLife 2018; 7:37355. [PMID: 30132756 PMCID: PMC6105311 DOI: 10.7554/elife.37355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow. As humans, we have two major types of blood cell: our red blood cells transport oxygen around the body, while our white blood cells fight disease. Both types of cell come from the same stem cells, which first appear early in embryonic development. These stem cells emerge from the walls of major blood vessels, including the aorta – which carries blood from the heart. Stem cells have not yet decided which adult cell to become. Given the right signals, blood stem cells can form red blood cells or any of the different types of white blood cell. Understanding this process could allow scientists to recreate it in the laboratory, making blood stem cells that can give rise to all blood cells found in the body. But, this is not yet possible because we do not know all the conditions needed to make the cells and ensure they survive. One crucial gap in our understanding concerns the importance of blood flow. As the main blood vessel leaving the heart, the aorta experiences mechanical stress every time the heart beats. Lancino et al. wanted to find out whether this influences the development of the blood stem cells. Zebrafish embryos are transparent, making it easy to see their bodies developing under a microscope. Like humans, they also produce both red blood cells and white blood cells meaning Lancino et al. could watch the birth of blood stem cells in these embryos from a part of the aorta called the aortic floor. A new software tool unwrapped pictures of the tube-shaped blood vessel into flat, two-dimensional maps, making it possible to see how the aorta changed over time. This revealed that, as blood stem cells leave the aortic floor, they bend and contract with the direction of the blood flow. Rings of actin and myosin proteins that formed around the stem cells as they are born helped the process along, while stopping the heartbeat changed the way the blood cells emerged. Without any blood flow, the actin proteins did not assemble properly; the stem cells also emerged in the wrong direction and some of them even died. These findings show that physical forces play a role in the formation of blood stem cells. Understanding this process brings scientists a step closer to recreating the conditions for making different kinds of blood cells outside of the body.
Collapse
Affiliation(s)
- Mylene Lancino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Sorbonne Université, UPMC Paris 06, Complexité du Vivant, Paris, France
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Sebastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | - Fabrice De Chaumont
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.,CNRS, UMR3691, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | | | - Philippe Herbomel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Anne Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| |
Collapse
|
41
|
Campbell K. Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis. Curr Opin Cell Biol 2018; 55:30-35. [PMID: 30006053 PMCID: PMC6284102 DOI: 10.1016/j.ceb.2018.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays crucial roles during development, and inappropriate activation of EMTs are associated with tumor progression and promoting metastasis. In recent years, increasing studies have identified developmental contexts where cells undergo an EMT and transition to a partial-state, downregulating just a subset of epithelial characteristics and increasing only some mesenchymal traits, such as invasive motility. In parallel, recent studies have shown that EMTs are rarely fully activated in tumor cells, generating a diverse array of transition states. As our appreciation of the full spectrum of intermediate phenotypes and the huge diversity in underlying mechanisms grows, cross-disciplinary collaborations investigating developmental-EMTs and cancer-EMTs will be fundamental in order to achieve a full mechanistic understanding of this complex cell process.
Collapse
Affiliation(s)
- Kyra Campbell
- Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, UK; Department of Biomedical Science, Firth Court, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
42
|
Vanderleest TE, Smits CM, Xie Y, Jewett CE, Blankenship JT, Loerke D. Vertex sliding drives intercalation by radial coupling of adhesion and actomyosin networks during Drosophila germband extension. eLife 2018; 7:34586. [PMID: 29985789 PMCID: PMC6037471 DOI: 10.7554/elife.34586] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Oriented cell intercalation is an essential developmental process that shapes tissue morphologies through the directional insertion of cells between their neighbors. Previous research has focused on properties of cell–cell interfaces, while the function of tricellular vertices has remained unaddressed. Here, we identify a highly novel mechanism in which vertices demonstrate independent sliding behaviors along cell peripheries to produce the topological deformations responsible for intercalation. Through systematic analysis, we find that the motion of vertices connected by contracting interfaces is not physically coupled, but instead possess strong radial coupling. E-cadherin and Myosin II exist in previously unstudied populations at cell vertices and undergo oscillatory cycles of accumulation and dispersion that are coordinated with changes in cell area. Additionally, peak enrichment of vertex E-cadherin/Myosin II coincides with interface length stabilization. Our results suggest a model in which asymmetric radial force balance directs the progressive, ratcheted motion of individual vertices to drive intercalation. Cells need to come together to form tissues of different shapes and sizes. Cells can move about in different ways to shape the tissues. For example, a process called cell intercalation is vital for creating elongated structures like the spinal cord and inner ear. In intercalation, a cell slots itself between neighboring cells to lengthen tissues in one direction. Most of the work to understand cell intercalation has examined the interfaces that form between two neighboring cells. But there are points called vertices where three cells make contact with each other. Vanderleest, Smits et al. have now used microscopy and computational analysis to examine these contact points, known as vertices, in fruit flies. It was thought that vertices that are connected by a single interface coordinate how they move. However, Vanderleest, Smits et al. now show that these connected vertices move independently of each other. Instead, the movements of unconnected vertices on opposite sides of the cell show coordination. Vanderleest, Smits et al. also found that two proteins build up at the vertices in the early stages of intercalation. One of these, called E-cadherin, enables cells to stick to each other. The other protein, called Myosin II, helps E-cadherin to localize to the vertices and also enables cells to contract. These results suggest that the vertices help to guide intercalation and changes in cell shape. Tracking the vertices over time revealed that they slide around the surface of the cells. During this sliding the total length of the interfaces that meet at the vertex remains the same – so as one becomes shorter, neighboring interfaces will become longer. This creates a zipper-like movement of the vertices that tugs the cells into line and suggests a new mechanism by which interconnected cells can change shape. Future work will focus on identifying the molecules that specify these unique vertex behaviors.
Collapse
Affiliation(s)
| | - Celia M Smits
- Department of Biological Sciences, University of Denver, Denver, United States
| | - Yi Xie
- Department of Biological Sciences, University of Denver, Denver, United States
| | - Cayla E Jewett
- Department of Biological Sciences, University of Denver, Denver, United States
| | - J Todd Blankenship
- Department of Biological Sciences, University of Denver, Denver, United States
| | - Dinah Loerke
- Department of Physics and Astronomy, University of Denver, Denver, United States
| |
Collapse
|
43
|
Fadul J, Rosenblatt J. The forces and fates of extruding cells. Curr Opin Cell Biol 2018; 54:66-71. [PMID: 29727745 DOI: 10.1016/j.ceb.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Cell extrusion drives most epithelial cell death while maintaining a functional epithelial barrier. To extrude, a cell produces a lipid signal that triggers the neighboring cells to reorganize actin and myosin basally to squeeze the extruding cell out apically from the barrier. More studies continue to reveal other signals and mechanisms controlling apical extrusion. New developmental studies are uncovering mechanisms controlling basal extrusion, or ingression, which occurs when apical extrusion is defective or during de-differentiation in development. Here, we review recent advances in epithelial extrusion, focusing particularly on forces exerted upon extruding cells and their various later fates ranging from cell death, normal development, and cancer.
Collapse
Affiliation(s)
- John Fadul
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA
| | - Jody Rosenblatt
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
A biochemical network controlling basal myosin oscillation. Nat Commun 2018; 9:1210. [PMID: 29572440 PMCID: PMC5865161 DOI: 10.1038/s41467-018-03574-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
The actomyosin cytoskeleton, a key stress-producing unit in epithelial cells, oscillates spontaneously in a wide variety of systems. Although much of the signal cascade regulating myosin activity has been characterized, the origin of such oscillatory behavior is still unclear. Here, we show that basal myosin II oscillation in Drosophila ovarian epithelium is not controlled by actomyosin cortical tension, but instead relies on a biochemical oscillator involving ROCK and myosin phosphatase. Key to this oscillation is a diffusive ROCK flow, linking junctional Rho1 to medial actomyosin cortex, and dynamically maintained by a self-activation loop reliant on ROCK kinase activity. In response to the resulting myosin II recruitment, myosin phosphatase is locally enriched and shuts off ROCK and myosin II signals. Coupling Drosophila genetics, live imaging, modeling, and optogenetics, we uncover an intrinsic biochemical oscillator at the core of myosin II regulatory network, shedding light on the spatio-temporal dynamics of force generation. The actomyosin cytoskeleton is known to spontaneously oscillate in many systems but the mechanism of this behavior is not clear. Here Qin et al. define a signaling network involving a ROCK-dependent self-activation loop and recruitment of myosin II to the cortex, followed by a local accumulation of myosin phosphatase that shuts off the signal.
Collapse
|
45
|
Das S, Knust E. A dual role of the extracellular domain of Drosophila Crumbs for morphogenesis of the embryonic neuroectoderm. Biol Open 2018; 7:7/1/bio031435. [PMID: 29374056 PMCID: PMC5829512 DOI: 10.1242/bio.031435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Epithelia are highly polarised tissues and several highly conserved polarity protein complexes serve to establish and maintain polarity. The transmembrane protein Crumbs (Crb), the central component of the Crb protein complex, is required, among others, for the maintenance of polarity in most epithelia in the Drosophila embryo. However, different epithelia exhibit different phenotypic severity upon loss of crb. Using a transgenomic approach allowed us to more accurately define the role of crb in different epithelia. In particular, we provide evidence that the loss of epithelial tissue integrity in the ventral epidermis of crb mutant embryos is due to impaired actomyosin activity and an excess number of neuroblasts. We demonstrate that the intracellular domain of Crb could only partially rescue this phenotype, while it is able to completely restore tissue integrity in other epithelia. Based on these results we suggest a dual role of the extracellular domain of Crb in the ventral neuroectoderm. First, it is required for apical enrichment of the Crb protein, which in turn regulates actomyosin activity and thereby ensures tissue integrity; and second, the extracellular domain of Crb stabilises the Notch receptor and thereby ensures proper Notch signalling and specification of the correct number of neuroblasts. Summary: Using a transgenomic approach we determine specific roles of the intra- and extracellular domain of the Crumbs protein for the maintenance of apico-basal epithelial polarity and epithelial morphogenesis in Drosophila embryos.
Collapse
Affiliation(s)
- Shradha Das
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
46
|
Pasiliao CC, Hopyan S. Cell ingression: Relevance to limb development and for adaptive evolution. Genesis 2017; 56. [PMID: 29280270 DOI: 10.1002/dvg.23086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/16/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Cell ingression is an out-of-plane type of cell intercalation that is essential for the formation of multiple embryonic structures including the limbs. In particular, cell ingression underlies epithelial-to-mesenchymal transition of lateral plate cells to initiate limb bud growth, delamination of neural crest cells to generate peripheral nerve sheaths, and emigration of myoblasts from somites to assemble muscles. Individual cells that ingress undergo apical constriction to generate bottle shaped cells, diminish adhesion to their epithelial cell neighbors, and generate protrusive blebs that likely facilitate their ingression into a subepithelial tissue layer. How signaling pathways regulate the progression of delamination is important for understanding numerous developmental events. In this review, we focus on cellular and molecular mechanisms that drive cell ingression and draw comparisons between different morphogenetic contexts in various model organisms. We speculate that cell behaviors that facilitated tissue invagination among diploblasts subsequently drove individual cell ingression and epithelial-to-mesenchymal transition. Future insights that link signalling pathways to biophysical mechanisms will likely advance our comprehension of this phenomenon.
Collapse
Affiliation(s)
- Clarissa C Pasiliao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, M5S 1A8, Canada.,Division of Orthopaedic Surgery, Hospital for Sick Children and University of, Toronto, M5G 1X8, Canada
| |
Collapse
|
47
|
Abstract
D'Arcy Thompson was a proponent of applying mathematical and physical principles to biological systems, an approach that is becoming increasingly common in developmental biology. Indeed, the recent integration of quantitative experimental data, force measurements and mathematical modeling has changed our understanding of morphogenesis - the shaping of an organism during development. Emerging evidence suggests that the subcellular organization of contractile cytoskeletal networks plays a key role in force generation, while on the tissue level the spatial organization of forces determines the morphogenetic output. Inspired by D'Arcy Thompson's On Growth and Form, we review our current understanding of how biological forms are created and maintained by the generation and organization of contractile forces at the cell and tissue levels. We focus on recent advances in our understanding of how cells actively sculpt tissues and how forces are involved in specific morphogenetic processes.
Collapse
Affiliation(s)
- Natalie C Heer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Viktorinová I, Henry I, Tomancak P. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations. PLoS Genet 2017; 13:e1007107. [PMID: 29176774 PMCID: PMC5720821 DOI: 10.1371/journal.pgen.1007107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 12/07/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022] Open
Abstract
Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. Movement of epithelial tissues is essential for organ and body formation as well as function. To facilitate epithelial movements, cells need an internal or external source of mechanical force and a collective decision in which direction to move. However, little is known about the underlying mechanism of collective cell movement in living and moving epithelial tissues. Using high-speed confocal imaging of rotating follicle epithelia in acinar-like Drosophila egg chambers, we find that individual cells polarize their actomyosin network, a potent force-generating source, at their basal surface. We show that the atypical cadherin Fat2, a key regulator of planar cell polarity in Drosophila oogenesis, unifies and amplifies the polarized non-muscle Myosin II of individual follicle cells to break the symmetry of actomyosin contractility at the epithelial level. We propose that this is essential to facilitate epithelial rotation, and thereby directed cell elongation, at the basal surface of follicle cells. In contrast, a lack of unidirectional actomyosin contractility results in disrupted non-muscle Myosin II polarity within follicle cells and causes asynchronous Myosin II pulses that deform follicle cells. This demonstrates the critical function of Fat2, in the planar symmetry breaking of actomyosin, in epithelial motility, and potentially in organ development.
Collapse
Affiliation(s)
- Ivana Viktorinová
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
49
|
Perez-Mockus G, Schweisguth F. Cell Polarity and Notch Signaling: Linked by the E3 Ubiquitin Ligase Neuralized? Bioessays 2017; 39. [DOI: 10.1002/bies.201700128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/17/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Gantas Perez-Mockus
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
- Univ. Pierre et Marie Curie; Cellule Pasteur UPMC; rue du Dr Roux 75015 Paris France
| | - Francois Schweisguth
- Institut Pasteur,; Dept of Developmental and Stem Cell Biology; F-75015 Paris France
- CNRS; UMR3738; F-75015 Paris France
| |
Collapse
|
50
|
Harris TJC. Sculpting epithelia with planar polarized actomyosin networks: Principles from Drosophila. Semin Cell Dev Biol 2017; 81:54-61. [PMID: 28760393 DOI: 10.1016/j.semcdb.2017.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/04/2023]
Abstract
Drosophila research has revealed how planar polarized actomyosin networks affect various types of tissue morphogenesis. The networks are positioned by both tissue-wide patterning factors (including Even-skipped, Runt, Engrailed, Invected, Hedgehog, Notch, Wingless, Epidermal Growth Factor, Jun N-terminal kinase, Sex combs reduced and Fork head) and local receptor complexes (including Echinoid, Crumbs and Toll receptors). Networks with differing super-structure and contractile output have been discovered. Their contractility can affect individual cells or can be coordinated across groups of cells, and such contractility can drive or resist physical change. For what seem to be simple tissue changes, multiple types of actomyosin networks can contribute, acting together as contractile elements or braces within the developing structure. This review discusses the positioning and effects of planar polarized actomyosin networks for a number of developmental events in Drosophila, including germband extension, dorsal closure, head involution, tracheal pit formation, salivary gland development, imaginal disc boundary formation, and tissue rotation of the male genitalia and the egg chamber.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|