1
|
Volpe E, Corda L, Tommaso ED, Pelliccia F, Ottalevi R, Licastro D, Guarracino A, Capulli M, Formenti G, Tassone E, Giunta S. The complete diploid reference genome of RPE-1 identifies human phased epigenetic landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565049. [PMID: 38168337 PMCID: PMC10760208 DOI: 10.1101/2023.11.01.565049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Comparative analysis of recent human genome assemblies highlights profound sequence divergence that peaks within polymorphic loci such as centromeres. This raises the question about the adequacy of relying on human reference genomes to accurately analyze sequencing data derived from experimental cell lines. Here, we generated the complete diploid genome assembly for the human retinal epithelial cells (RPE-1), a widely used non-cancer laboratory cell line with a stable karyotype, to use as matched reference for multi-omics sequencing data analysis. Our RPE1v1.0 assembly presents completely phased haplotypes and chromosome-level scaffolds that span centromeres with ultra-high base accuracy (>QV60). We mapped the haplotype-specific genomic variation specific to this cell line including t(Xq;10q), a stable 73.18 Mb duplication of chromosome 10 translocated onto the microdeleted chromosome X telomere t(Xq;10q). Polymorphisms between haplotypes of the same genome reveals genetic and epigenetic variation for all chromosomes, especially at centromeres. The RPE-1 assembly as matched reference genome improves mapping quality of multi-omics reads originating from RPE-1 cells with drastic reduction in alignments mismatches compared to using the most complete human reference to date (CHM13). Leveraging the accuracy achieved using a matched reference, we were able to identify the kinetochore sites at base pair resolution and show unprecedented variation between haplotypes. This work showcases the use of matched reference genomes for multiomics analyses and serves as the foundation for a call to comprehensively assemble experimentally relevant cell lines for widespread application.
Collapse
Affiliation(s)
- Emilia Volpe
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luca Corda
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Di Tommaso
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franca Pelliccia
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Ottalevi
- Department of Bioinformatic, Dante Genomics Corp Inc., 667 Madison Avenue, New York, NY 10065 USA and S.s.17, 67100, L’Aquila, Italy
| | | | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giulio Formenti
- The Rockefeller University, 1230 York Avenue, 10065 New York, USA
| | - Evelyne Tassone
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Giunta
- Giunta Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Super-resolution microscopy reveals the number and distribution of topoisomerase IIα and CENH3 molecules within barley metaphase chromosomes. Chromosoma 2023; 132:19-29. [PMID: 36719450 PMCID: PMC9981516 DOI: 10.1007/s00412-023-00785-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023]
Abstract
Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination, respectively. Consequently, they are required for proper chromosome segregation during cell divisions. We combined two super-resolution techniques, structured illumination microscopy (SIM) to co-localize Topo IIα and CENH3, and photoactivated localization microscopy (PALM) to determine their molecule numbers in barley metaphase chromosomes. We detected a dispersed Topo IIα distribution along chromosome arms but an accumulation at centromeres, telomeres, and nucleolus-organizing regions. With a precision of 10-50 nm, we counted ~ 20,000-40,000 Topo IIα molecules per chromosome, 28% of them within the (peri)centromere. With similar precision, we identified ~13,500 CENH3 molecules per centromere where Topo IIα proteins and CENH3-containing chromatin intermingle. In short, we demonstrate PALM as a useful method to count and localize single molecules with high precision within chromosomes. The ultrastructural distribution and the detected amount of Topo IIα and CENH3 are instrumental for a better understanding of their functions during chromatin condensation and centromere determination.
Collapse
|
3
|
Maheshwaram SK, Shet D, David SR, Lakshminarayana MB, Soni GV. Nanopore Sensing of DNA-Histone Complexes on Nucleosome Arrays. ACS Sens 2022; 7:3876-3884. [PMID: 36441954 DOI: 10.1021/acssensors.2c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The location of nucleosomes in DNA and their structural stability are critical in regulating DNA compaction, site accessibility, and epigenetic gene regulation. Here, we combine the nanopore platform-based fast and label-free single-molecule detection technique with a voltage-dependent force rupture assay to detect distinct structures on nucleosomal arrays and then to induce breakdown of individual nucleosome complexes. Specifically, we demonstrate direct measurement of distinct nucleosome structures present on individual 12-mer arrays. A detailed event analysis showed that nucleosomes are present as a combination of complete and partial structures, during translocation through the pore. By comparing with the voltage-dependent translocation of the mononucleosomes, we find that the partial nucleosomes result from voltage-dependent structural disintegration of nucleosomes. High signal-to-noise detection of heterogeneous levels in translocation of 12-mer array molecules quantifies the heterogeneity and nucleosomal substructure sizes on the arrays. These results facilitate the understanding of electrostatic interactions responsible for the integrity of the nucleosome structure and possible mechanisms of its unraveling by chromatin remodeling enzymes. This study also has potential applications in chromatin profiling.
Collapse
Affiliation(s)
| | - Divya Shet
- Raman Research Institute, Bangalore, Karnataka 560080, India
| | - Serene R David
- Raman Research Institute, Bangalore, Karnataka 560080, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka 560080, India
| |
Collapse
|
4
|
Boukaba A, Wu Q, Liu J, Chen C, Liang J, Li J, Strunnikov A. Mapping separase-mediated cleavage in situ. NAR Genom Bioinform 2022; 4:lqac085. [PMID: 36415827 PMCID: PMC9673495 DOI: 10.1093/nargab/lqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Separase is a protease that performs critical functions in the maintenance of genetic homeostasis. Among them, the cleavage of the meiotic cohesin during meiosis is a key step in producing gametes in eukaryotes. However, the exact chromosomal localization of this proteolytic cleavage was not addressed due to the lack of experimental tools. To this end, we developed a method based on monoclonal antibodies capable of recognizing the predicted neo-epitopes produced by separase-mediated proteolysis in the RAD21 and REC8 cohesin subunits. To validate the epigenomic strategy of mapping cohesin proteolysis, anti-RAD21 neo-epitopes antibodies were used in ChIP-On-ChEPseq analysis of human cells undergoing mitotic anaphase. Second, a similar analysis applied for mapping of REC8 cleavage in germline cells in Macaque showed a correlation with a subset of alpha-satellites and other repeats, directly demonstrating that the site-specific mei-cohesin proteolysis hotspots are coincident but not identical with centromeres. The sequences for the corresponding immunoglobulin genes show a convergence of antibodies with close specificity. This approach could be potentially used to investigate cohesin ring opening events in other chromosomal locations, if applied to single cells.
Collapse
Affiliation(s)
- Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jierong Liang
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| | - Alexander V Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health , Guangzhou , Guangdong , 510530 , China
| |
Collapse
|
5
|
The Roles of Histone Post-Translational Modifications in the Formation and Function of a Mitotic Chromosome. Int J Mol Sci 2022; 23:ijms23158704. [PMID: 35955838 PMCID: PMC9368973 DOI: 10.3390/ijms23158704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
During mitosis, many cellular structures are organized to segregate the replicated genome to the daughter cells. Chromatin is condensed to shape a mitotic chromosome. A multiprotein complex known as kinetochore is organized on a specific region of each chromosome, the centromere, which is defined by the presence of a histone H3 variant called CENP-A. The cytoskeleton is re-arranged to give rise to the mitotic spindle that binds to kinetochores and leads to the movement of chromosomes. How chromatin regulates different activities during mitosis is not well known. The role of histone post-translational modifications (HPTMs) in mitosis has been recently revealed. Specific HPTMs participate in local compaction during chromosome condensation. On the other hand, HPTMs are involved in CENP-A incorporation in the centromere region, an essential activity to maintain centromere identity. HPTMs also participate in the formation of regulatory protein complexes, such as the chromosomal passenger complex (CPC) and the spindle assembly checkpoint (SAC). Finally, we discuss how HPTMs can be modified by environmental factors and the possible consequences on chromosome segregation and genome stability.
Collapse
|
6
|
Sundararajan K, Straight AF. Centromere Identity and the Regulation of Chromosome Segregation. Front Cell Dev Biol 2022; 10:914249. [PMID: 35721504 PMCID: PMC9203049 DOI: 10.3389/fcell.2022.914249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes segregate their chromosomes during mitosis and meiosis by attaching chromosomes to the microtubules of the spindle so that they can be distributed into daughter cells. The complexity of centromeres ranges from the point centromeres of yeast that attach to a single microtubule to the more complex regional centromeres found in many metazoans or holocentric centromeres of some nematodes, arthropods and plants, that bind to dozens of microtubules per kinetochore. In vertebrates, the centromere is defined by a centromere specific histone variant termed Centromere Protein A (CENP-A) that replaces histone H3 in a subset of centromeric nucleosomes. These CENP-A nucleosomes are distributed on long stretches of highly repetitive DNA and interspersed with histone H3 containing nucleosomes. The mechanisms by which cells control the number and position of CENP-A nucleosomes is unknown but likely important for the organization of centromeric chromatin in mitosis so that the kinetochore is properly oriented for microtubule capture. CENP-A chromatin is epigenetically determined thus cells must correct errors in CENP-A organization to prevent centromere dysfunction and chromosome loss. Recent improvements in sequencing complex centromeres have paved the way for defining the organization of CENP-A nucleosomes in centromeres. Here we discuss the importance and challenges in understanding CENP-A organization and highlight new discoveries and advances enabled by recent improvements in the human genome assembly.
Collapse
|
7
|
Yatskevich S, Muir KW, Bellini D, Zhang Z, Yang J, Tischer T, Predin M, Dendooven T, McLaughlin SH, Barford D. Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science 2022; 376:844-852. [PMID: 35420891 PMCID: PMC7612757 DOI: 10.1126/science.abn3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Masa Predin
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
8
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
9
|
Shi X, Zhai Z, Chen Y, Li J, Nordenskiöld L. Recent Advances in Investigating Functional Dynamics of Chromatin. Front Genet 2022; 13:870640. [PMID: 35450211 PMCID: PMC9017861 DOI: 10.3389/fgene.2022.870640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Dynamics spanning the picosecond-minute time domain and the atomic-subcellular spatial window have been observed for chromatin in vitro and in vivo. The condensed organization of chromatin in eukaryotic cells prevents regulatory factors from accessing genomic DNA, which requires dynamic stabilization and destabilization of structure to initiate downstream DNA activities. Those processes are achieved through altering conformational and dynamic properties of nucleosomes and nucleosome–protein complexes, of which delineating the atomistic pictures is essential to understand the mechanisms of chromatin regulation. In this review, we summarize recent progress in determining chromatin dynamics and their modulations by a number of factors including post-translational modifications (PTMs), incorporation of histone variants, and binding of effector proteins. We focus on experimental observations obtained using high-resolution techniques, primarily including nuclear magnetic resonance (NMR) spectroscopy, Förster (or fluorescence) resonance energy transfer (FRET) microscopy, and molecular dynamics (MD) simulations, and discuss the elucidated dynamics in the context of functional response and relevance.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Chardon F, Japaridze A, Witt H, Velikovsky L, Chakraborty C, Wilhelm T, Dumont M, Yang W, Kikuti C, Gangnard S, Mace AS, Wuite G, Dekker C, Fachinetti D. CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Mol Cell 2022; 82:1751-1767.e8. [PMID: 35320753 DOI: 10.1016/j.molcel.2022.02.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022]
Abstract
Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.
Collapse
Affiliation(s)
- Florian Chardon
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Camellia Chakraborty
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Wayne Yang
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Carlos Kikuti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Stephane Gangnard
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Anne-Sophie Mace
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Gijs Wuite
- Department of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
11
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
12
|
Abstract
We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA; .,Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ivan A Alexandrov
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; .,Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199004, Russia.,Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
13
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|
14
|
Salinas-Luypaert C, Allu PK, Logsdon GA, Dawicki-McKenna JM, Gambogi CW, Fachinetti D, Black BE. Gene replacement strategies validate the use of functional tags on centromeric chromatin and invalidate an essential role for CENP-A K124ub. Cell Rep 2021; 37:109924. [PMID: 34731637 PMCID: PMC8643106 DOI: 10.1016/j.celrep.2021.109924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Functional tags are ubiquitous in cell biology, and for studies of one chromosomal locus, the centromere, tags have been remarkably useful. The centromere directs chromosome inheritance at cell division. The location of the centromere is defined by a histone H3 variant, CENP-A. The regulation of the chromatin assembly pathway essential for centromere inheritance and function includes posttranslational modification (PTM) of key components, including CENP-A itself. Others have recently called into question the use of functional tags, with the claim that at least two widely used tags obscured the essentiality of one particular PTM, CENP-AK124 ubiquitination (ub). Here, we employ three independent gene replacement strategies that eliminate large, lysine-containing tags to interrogate these claims. Using these approaches, we find no evidence to support an essential function of CENP-AK124ub. Our general methodology will be useful to validate discoveries permitted by powerful functional tagging schemes at the centromere and other cellular locations. Using three gene replacement strategies, Salinas-Luypaert et al. demonstrate that CENP-AK124ub is not essential for CENP-A function at centromeres. Thus, functional tags do not mask the role of K124 when it is mutated. These strategies can be employed to interrogate posttranslational modifications at the centromere and other cellular locations.
Collapse
Affiliation(s)
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniele Fachinetti
- Institut Curie, PSL University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| | - Ben E Black
- Department of Biochemistry and Biophysics, Penn Center for Genome Integrity, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line. Molecules 2021; 26:molecules26082151. [PMID: 33917969 PMCID: PMC8068389 DOI: 10.3390/molecules26082151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.
Collapse
|
16
|
Konrad SF, Vanderlinden W, Frederickx W, Brouns T, Menze BH, De Feyter S, Lipfert J. High-throughput AFM analysis reveals unwrapping pathways of H3 and CENP-A nucleosomes. NANOSCALE 2021; 13:5435-5447. [PMID: 33683227 DOI: 10.1039/d0nr08564b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleosomes, the fundamental units of chromatin, regulate readout and expression of eukaryotic genomes. Single-molecule experiments have revealed force-induced nucleosome accessibility, but a high-resolution unwrapping landscape in the absence of external forces is currently lacking. Here, we introduce a high-throughput pipeline for the analysis of nucleosome conformations based on atomic force microscopy and automated, multi-parameter image analysis. Our data set of ∼10 000 nucleosomes reveals multiple unwrapping states corresponding to steps of 5 bp DNA. For canonical H3 nucleosomes, we observe that dissociation from one side impedes unwrapping from the other side, but in contrast to force-induced unwrapping, we find only a weak sequence-dependent asymmetry. Notably, centromeric CENP-A nucleosomes do not unwrap anti-cooperatively, in stark contrast to H3 nucleosomes. Finally, our results reconcile previous conflicting findings about the differences in height between H3 and CENP-A nucleosomes. We expect our approach to enable critical insights into epigenetic regulation of nucleosome structure and stability and to facilitate future high-throughput AFM studies that involve heterogeneous nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F Konrad
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| | - Wout Frederickx
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Tine Brouns
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Björn H Menze
- Department of Informatics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany
| | - Steven De Feyter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany.
| |
Collapse
|
17
|
Hori T, Cao J, Nishimura K, Ariyoshi M, Arimura Y, Kurumizaka H, Fukagawa T. Essentiality of CENP-A Depends on Its Binding Mode to HJURP. Cell Rep 2020; 33:108388. [PMID: 33207191 DOI: 10.1016/j.celrep.2020.108388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022] Open
Abstract
CENP-A incorporation is critical for centromere specification and is mediated by the chaperone HJURP. The CENP-A-targeting domain (CATD) of CENP-A specifically binds to HJURP, and this binding is conserved. However, the binding interface of CENP-A-HJURP is yet to be understood. Here, we identify the critical residues for chicken CENP-A or HJURP. The A59Q mutation in the α1-helix of chicken CENP-A causes CENP-A mis-incorporation and subsequent cell death, whereas the corresponding mutation in human CENP-A does not. We also find that W53 of HJURP, which is a contact site of A59 in CENP-A, is also essential in chicken cells. Our comprehensive analyses reveal that the affinities of HJURP to CATD differ between chickens and humans. However, the introduction of two arginine residues to the chicken HJURP αA-helix suppresses CENP-A mis-incorporation in chicken cells expressing CENP-AA59Q. Our data explain the mechanisms and evolution of CENP-A essentiality by the CENP-A-HJURP interaction.
Collapse
Affiliation(s)
- Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
18
|
Ferrand J, Rondinelli B, Polo SE. Histone Variants: Guardians of Genome Integrity. Cells 2020; 9:E2424. [PMID: 33167489 PMCID: PMC7694513 DOI: 10.3390/cells9112424] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chromatin integrity is key for cell homeostasis and for preventing pathological development. Alterations in core chromatin components, histone proteins, recently came into the spotlight through the discovery of their driving role in cancer. Building on these findings, in this review, we discuss how histone variants and their associated chaperones safeguard genome stability and protect against tumorigenesis. Accumulating evidence supports the contribution of histone variants and their chaperones to the maintenance of chromosomal integrity and to various steps of the DNA damage response, including damaged chromatin dynamics, DNA damage repair, and damage-dependent transcription regulation. We present our current knowledge on these topics and review recent advances in deciphering how alterations in histone variant sequence, expression, and deposition into chromatin fuel oncogenic transformation by impacting cell proliferation and cell fate transitions. We also highlight open questions and upcoming challenges in this rapidly growing field.
Collapse
Affiliation(s)
| | | | - Sophie E. Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, 75013 Paris, France; (J.F.); (B.R.)
| |
Collapse
|
19
|
Kurumizaka H, Kujirai T, Takizawa Y. Contributions of Histone Variants in Nucleosome Structure and Function. J Mol Biol 2020; 433:166678. [PMID: 33065110 DOI: 10.1016/j.jmb.2020.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 11/19/2022]
Abstract
Chromatin compacts genomic DNA in eukaryotes. The primary chromatin unit is the nucleosome core particle, composed of four pairs of the core histones, H2A, H2B, H3, and H4, and 145-147 base pairs of DNA. Since replication, recombination, repair, and transcription take place in chromatin, the structure and dynamics of the nucleosome must be versatile. These nucleosome characteristics underlie the epigenetic regulation of genomic DNA. In higher eukaryotes, many histone variants have been identified as non-allelic isoforms, which confer nucleosome diversity. In this article, we review the manifold types of nucleosomes produced by histone variants, which play important roles in the epigenetic regulation of chromatin.
Collapse
Affiliation(s)
- Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
20
|
Mitra S, Srinivasan B, Jansen LE. Stable inheritance of CENP-A chromatin: Inner strength versus dynamic control. J Cell Biol 2020; 219:e202005099. [PMID: 32931551 PMCID: PMC7659725 DOI: 10.1083/jcb.202005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Chromosome segregation during cell division is driven by mitotic spindle attachment to the centromere region on each chromosome. Centromeres form a protein scaffold defined by chromatin featuring CENP-A, a conserved histone H3 variant, in a manner largely independent of local DNA cis elements. CENP-A nucleosomes fulfill two essential criteria to epigenetically identify the centromere. They undergo self-templated duplication to reestablish centromeric chromatin following DNA replication. More importantly, CENP-A incorporated into centromeric chromatin is stably transmitted through consecutive cell division cycles. CENP-A nucleosomes have unique structural properties and binding partners that potentially explain their long lifetime in vivo. However, rather than a static building block, centromeric chromatin is dynamically regulated throughout the cell cycle, indicating that CENP-A stability is also controlled by external factors. We discuss recent insights and identify the outstanding questions on how dynamic control of the long-term stability of CENP-A ensures epigenetic centromere inheritance.
Collapse
Affiliation(s)
- Sreyoshi Mitra
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
21
|
Hoffmann S, Izquierdo HM, Gamba R, Chardon F, Dumont M, Keizer V, Hervé S, McNulty SM, Sullivan BA, Manel N, Fachinetti D. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J 2020; 39:e105505. [PMID: 32945564 PMCID: PMC7560200 DOI: 10.15252/embj.2020105505] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Centromeres are built on repetitive DNA sequences (CenDNA) and a specific chromatin enriched with the histone H3 variant CENP‐A, the epigenetic mark that identifies centromere position. Here, we interrogate the importance of CenDNA in centromere specification by developing a system to rapidly remove and reactivate CENP‐A (CENP‐AOFF/ON). Using this system, we define the temporal cascade of events necessary to maintain centromere position. We unveil that CENP‐B bound to CenDNA provides memory for maintenance on human centromeres by promoting de novo CENP‐A deposition. Indeed, lack of CENP‐B favors neocentromere formation under selective pressure. Occasionally, CENP‐B triggers centromere re‐activation initiated by CENP‐C, but not CENP‐A, recruitment at both ectopic and native centromeres. This is then sufficient to initiate the CENP‐A‐based epigenetic loop. Finally, we identify a population of CENP‐A‐negative, CENP‐B/C‐positive resting CD4+ T cells capable to re‐express and reassembles CENP‐A upon cell cycle entry, demonstrating the physiological importance of the genetic memory.
Collapse
Affiliation(s)
| | | | - Riccardo Gamba
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Florian Chardon
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Marie Dumont
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Veer Keizer
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Solène Hervé
- Institut Curie, CNRS, UMR 144, PSL Research University, Paris, France
| | - Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | |
Collapse
|
22
|
Mahlke MA, Nechemia-Arbely Y. Guarding the Genome: CENP-A-Chromatin in Health and Cancer. Genes (Basel) 2020; 11:genes11070810. [PMID: 32708729 PMCID: PMC7397030 DOI: 10.3390/genes11070810] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Faithful chromosome segregation is essential for the maintenance of genomic integrity and requires functional centromeres. Centromeres are epigenetically defined by the histone H3 variant, centromere protein A (CENP-A). Here we highlight current knowledge regarding CENP-A-containing chromatin structure, specification of centromere identity, regulation of CENP-A deposition and possible contribution to cancer formation and/or progression. CENP-A overexpression is common among many cancers and predicts poor prognosis. Overexpression of CENP-A increases rates of CENP-A deposition ectopically at sites of high histone turnover, occluding CCCTC-binding factor (CTCF) binding. Ectopic CENP-A deposition leads to mitotic defects, centromere dysfunction and chromosomal instability (CIN), a hallmark of cancer. CENP-A overexpression is often accompanied by overexpression of its chaperone Holliday Junction Recognition Protein (HJURP), leading to epigenetic addiction in which increased levels of HJURP and CENP-A become necessary to support rapidly dividing p53 deficient cancer cells. Alterations in CENP-A posttranslational modifications are also linked to chromosome segregation errors and CIN. Collectively, CENP-A is pivotal to genomic stability through centromere maintenance, perturbation of which can lead to tumorigenesis.
Collapse
Affiliation(s)
- Megan A. Mahlke
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yael Nechemia-Arbely
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence: ; Tel.: +1-412-623-3228; Fax: +1-412-623-7828
| |
Collapse
|
23
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Centromere chromatin structure - Lessons from neocentromeres. Exp Cell Res 2020; 389:111899. [PMID: 32044308 DOI: 10.1016/j.yexcr.2020.111899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 11/22/2022]
Abstract
Centromeres are highly specialized genomic loci that function during mitosis to maintain genome stability. Formed primarily on repetitive α-satellite DNA sequence characterisation of native centromeric chromatin structure has remained challenging. Fortuitously, neocentromeres are formed on a unique DNA sequence and represent an excellent model to interrogate centromeric chromatin structure. This review uncovers the specific findings from independent neocentromere studies that have advanced our understanding of canonical centromere chromatin structure.
Collapse
|
25
|
Dumont M, Gamba R, Gestraud P, Klaasen S, Worrall JT, De Vries SG, Boudreau V, Salinas‐Luypaert C, Maddox PS, Lens SMA, Kops GJPL, McClelland SE, Miga KH, Fachinetti D. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J 2020; 39:e102924. [PMID: 31750958 PMCID: PMC6960447 DOI: 10.15252/embj.2019102924] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Intrinsic genomic features of individual chromosomes can contribute to chromosome-specific aneuploidy. Centromeres are key elements for the maintenance of chromosome segregation fidelity via a specialized chromatin marked by CENP-A wrapped by repetitive DNA. These long stretches of repetitive DNA vary in length among human chromosomes. Using CENP-A genetic inactivation in human cells, we directly interrogate if differences in the centromere length reflect the heterogeneity of centromeric DNA-dependent features and whether this, in turn, affects the genesis of chromosome-specific aneuploidy. Using three distinct approaches, we show that mis-segregation rates vary among different chromosomes under conditions that compromise centromere function. Whole-genome sequencing and centromere mapping combined with cytogenetic analysis, small molecule inhibitors, and genetic manipulation revealed that inter-chromosomal heterogeneity of centromeric features, but not centromere length, influences chromosome segregation fidelity. We conclude that faithful chromosome segregation for most of human chromosomes is biased in favor of centromeres with high abundance of DNA-dependent centromeric components. These inter-chromosomal differences in centromere features can translate into non-random aneuploidy, a hallmark of cancer and genetic diseases.
Collapse
Affiliation(s)
- Marie Dumont
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
| | - Riccardo Gamba
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
| | - Pierre Gestraud
- Institut CuriePSL Research UniversityCNRSUMR144ParisFrance
- PSL Research UniversityInstitut Curie Research CenterINSERM U900ParisFrance
- MINES ParisTechPSL Research UniversityCBIO‐Centre for Computational BiologyParisFrance
| | - Sjoerd Klaasen
- Oncode InstituteHubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences)UtrechtThe Netherlands
| | | | - Sippe G De Vries
- Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Vincent Boudreau
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | | - Paul S Maddox
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | - Susanne MA Lens
- Oncode InstituteCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Geert JPL Kops
- Oncode InstituteHubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences)UtrechtThe Netherlands
| | | | - Karen H Miga
- Center for Biomolecular Science & EngineeringUniversity of California Santa CruzSanta CruzCAUSA
| | | |
Collapse
|
26
|
Ali-Ahmad A, Bilokapić S, Schäfer IB, Halić M, Sekulić N. CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep 2019. [PMID: 31475439 DOI: 10.15252/embr.20194891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-CCR ), the main CENP-A binding module of human CENP-C. We establish that the short αN helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-CCR and CENP-Cmotif ) both bind exclusively to the CENP-A nucleosome. We find CENP-CCR to bind with high affinity due to an extended hydrophobic area made up of CENP-AV532 and CENP-AV533 . Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-CCR rigidifies the N-terminal tail of H4 in the conformation favoring H4K20 monomethylation, essential for a functional centromere.
Collapse
Affiliation(s)
- Ahmad Ali-Ahmad
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Silvija Bilokapić
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Mario Halić
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Ali‐Ahmad A, Bilokapić S, Schäfer IB, Halić M, Sekulić N. CENP-C unwraps the human CENP-A nucleosome through the H2A C-terminal tail. EMBO Rep 2019; 20:e48913. [PMID: 31475439 PMCID: PMC6776904 DOI: 10.15252/embr.201948913] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023] Open
Abstract
Centromeres are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A, upon which the constitutive centromere-associated network of proteins (CCAN) is built. CENP-C is considered to be a central organizer of the CCAN. We provide new molecular insights into the structure of human CENP-A nucleosomes, in isolation and in complex with the CENP-C central region (CENP-CCR ), the main CENP-A binding module of human CENP-C. We establish that the short αN helix of CENP-A promotes DNA flexibility at the nucleosome ends, independently of the sequence it wraps. Furthermore, we show that, in vitro, two regions of human CENP-C (CENP-CCR and CENP-Cmotif ) both bind exclusively to the CENP-A nucleosome. We find CENP-CCR to bind with high affinity due to an extended hydrophobic area made up of CENP-AV532 and CENP-AV533 . Importantly, we identify two key conformational changes within the CENP-A nucleosome upon CENP-C binding. First, the loose DNA wrapping of CENP-A nucleosomes is further exacerbated, through destabilization of the H2A C-terminal tail. Second, CENP-CCR rigidifies the N-terminal tail of H4 in the conformation favoring H4K20 monomethylation, essential for a functional centromere.
Collapse
Affiliation(s)
- Ahmad Ali‐Ahmad
- Centre for Molecular Medicine Norway (NCMM)Nordic EMBL PartnershipUniversity of OsloOsloNorway
| | - Silvija Bilokapić
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Ingmar B Schäfer
- Department of Structural Cell BiologyMax Planck Institute of BiochemistryMunichGermany
| | - Mario Halić
- Department of Structural BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM)Nordic EMBL PartnershipUniversity of OsloOsloNorway
- Department of ChemistryUniversity of OsloOsloNorway
| |
Collapse
|
28
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
29
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
30
|
Allu PK, Dawicki-McKenna JM, Van Eeuwen T, Slavin M, Braitbard M, Xu C, Kalisman N, Murakami K, Black BE. Structure of the Human Core Centromeric Nucleosome Complex. Curr Biol 2019; 29:2625-2639.e5. [PMID: 31353180 PMCID: PMC6702948 DOI: 10.1016/j.cub.2019.06.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM). CENP-CCD is part of the CCNC by virtue of its high specificity for CENP-A nucleosomes and ability to stabilize CENP-A at the centromere. CENP-CCM is thought to engage a neighboring nucleosome, either one containing conventional H3 or CENP-A, and a crystal structure of a nucleosome complex containing two copies of CENP-CCM was reported. Recent structures containing a single copy of CENP-NNT bound to the CENP-A nucleosome in the absence of CENP-C were reported. Here, we find that one copy of CENP-N is lost for every two copies of CENP-C on centromeric chromatin just prior to kinetochore formation. We present the structures of symmetric and asymmetric forms of the CCNC that vary in CENP-N stoichiometry. Our structures explain how the central domain of CENP-C achieves its high specificity for CENP-A nucleosomes and how CENP-C and CENP-N sandwich the histone H4 tail. The natural centromeric DNA path in our structures corresponds to symmetric surfaces for CCNC assembly, deviating from what is observed in prior structures using artificial sequences. At mitosis, we propose that CCNC asymmetry accommodates its asymmetric connections at the chromosome/kinetochore interface. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennine M Dawicki-McKenna
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor Van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moriya Slavin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Braitbard
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chen Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Lawrimore J, Bloom K. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol 2019; 54:352-370. [PMID: 31573359 PMCID: PMC6856439 DOI: 10.1080/10409238.2019.1670130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Biophysical studies of the yeast centromere have shown that the organization of the centromeric chromatin plays a crucial role in maintaining proper tension between sister kinetochores during mitosis. While centromeric chromatin has traditionally been considered a simple spring, recent work reveals the centromere as a multifaceted, tunable shock absorber. Centromeres can differ from other regions of the genome in their heterochromatin state, supercoiling state, and enrichment of structural maintenance of chromosomes (SMC) protein complexes. Each of these differences can be utilized to alter the effective stiffness of centromeric chromatin. In budding yeast, the SMC protein complexes condensin and cohesin stiffen chromatin by forming and cross-linking chromatin loops, respectively, into a fibrous structure resembling a bottlebrush. The high density of the loops compacts chromatin while spatially isolating the tension from spindle pulling forces to a subset of the chromatin. Paradoxically, the molecular crowding of chromatin via cohesin and condensin also causes an outward/poleward force. The structure allows the centromere to act as a shock absorber that buffers the variable forces generated by dynamic spindle microtubules. Based on the distribution of SMCs from bacteria to human and the conserved distance between sister kinetochores in a wide variety of organisms (0.4 to 1 micron), we propose that the bottlebrush mechanism is the foundational principle for centromere function in eukaryotes.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Korntner-Vetter M, Lefèvre S, Hu XW, George R, Singleton MR. Subunit interactions and arrangements in the fission yeast Mis16-Mis18-Mis19 complex. Life Sci Alliance 2019; 2:2/4/e201900408. [PMID: 31371524 PMCID: PMC6677171 DOI: 10.26508/lsa.201900408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Centromeric chromatin in fission yeast is distinguished by the presence of nucleosomes containing the histone H3 variant Cnp1CENP-A Cell cycle-specific deposition of Cnp1 requires the Mis16-Mis18-Mis19 complex, which is thought to direct recruitment of Scm3-chaperoned Cnp1/histone H4 dimers to DNA. Here, we present the structure of the essential Mis18 partner protein Mis19 and describe its interaction with Mis16, revealing a bipartite-binding site. We provide data on the stoichiometry and overall architecture of the complex and provide detailed insights into the Mis18-Mis19 interface.
Collapse
Affiliation(s)
- Melanie Korntner-Vetter
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Stéphane Lefèvre
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Xiao-Wen Hu
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Roger George
- Structural Biology Platform, The Francis Crick Institute, London, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
33
|
DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nat Cell Biol 2019; 21:743-754. [PMID: 31160708 DOI: 10.1038/s41556-019-0331-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Chromatin assembled with the histone H3 variant CENP-A is the heritable epigenetic determinant of human centromere identity. Using genome-wide mapping and reference models for 23 human centromeres, CENP-A binding sites are identified within the megabase-long, repetitive α-satellite DNAs at each centromere. CENP-A is shown in early G1 to be assembled into nucleosomes within each centromere and onto 11,390 transcriptionally active sites on the chromosome arms. DNA replication is demonstrated to remove ectopically loaded, non-centromeric CENP-A. In contrast, tethering of centromeric CENP-A to the sites of DNA replication through the constitutive centromere associated network (CCAN) is shown to enable precise reloading of centromere-bound CENP-A onto the same DNA sequences as in its initial prereplication loading. Thus, DNA replication acts as an error correction mechanism for maintaining centromere identity through its removal of non-centromeric CENP-A coupled with CCAN-mediated retention and precise reloading of centromeric CENP-A.
Collapse
|
34
|
Hamilton G, Dimitrova Y, Davis TN. Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Curr Opin Cell Biol 2019; 60:44-52. [PMID: 31078123 DOI: 10.1016/j.ceb.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 11/26/2022]
Abstract
This review highlights three recent trends in the field of kinetochore biology: the proliferation of structural data for kinetochore protein complexes (including CBF3, Dam1c, Mis12cMIND, and CENP-NLChl4/Iml3); the growing consensus that the kinetochore is a dynamic structure whose composition changes as the cell cycle progresses; and the mounting evidence of multiple pathways whereby the microtubule-binding elements of the outer kinetochore may be recruited by inner kinetochore proteins. Our focus is on the two best-studied systems in the field: human and budding yeast kinetochores. This review will demonstrate the remarkable similarity of these two systems, as well as their intriguing differences.
Collapse
Affiliation(s)
- Grace Hamilton
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA
| | - Yoana Dimitrova
- Genentech, Inc., 1 DNA Way, MS: 27, South San Francisco, CA 94080, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington Box 357350, 1705 NE Pacific St., Seattle, WA 98195-7350, USA.
| |
Collapse
|
35
|
Miga KH. Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population. Genes (Basel) 2019; 10:E352. [PMID: 31072070 PMCID: PMC6562703 DOI: 10.3390/genes10050352] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability, contemporary high-resolution disease association studies are unable to detect causal variants in these regions. Nevertheless, recently uncovered associations between satellite DNA variation and human disease support that these regions present a substantial and biologically important fraction of human sequence variation. Therefore, there is a pressing and unmet need to detect and incorporate this uncharacterized sequence variation into broad studies of human evolution and medical genomics. Here I discuss the current knowledge of satellite DNA variation in the human genome, focusing on centromeric satellites and their potential implications for disease.
Collapse
Affiliation(s)
- Karen H Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, CA 95064, USA.
| |
Collapse
|
36
|
Zhao H, Winogradoff D, Dalal Y, Papoian GA. The Oligomerization Landscape of Histones. Biophys J 2019; 116:1845-1855. [PMID: 31005236 DOI: 10.1016/j.bpj.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022] Open
Abstract
In eukaryotes, DNA is packaged within nucleosomes. The DNA of each nucleosome is typically centered around an octameric histone protein core: one central tetramer plus two separate dimers. Studying the assembly mechanisms of histones is essential for understanding the dynamics of entire nucleosomes and higher-order DNA packaging. Here, we investigate canonical histone assembly and that of the centromere-specific histone variant, centromere protein A (CENP-A), using molecular dynamics simulations. We quantitatively characterize their thermodynamical and dynamical features, showing that two H3/H4 dimers form a structurally floppy, weakly bound complex, the latter exhibiting large instability around the central interface manifested via a swiveling motion of two halves. This finding is consistent with the recently observed DNA handedness flipping of the tetrasome. In contrast, the variant CENP-A encodes distinctive stability to its tetramer with a rigid but twisted interface compared to the crystal structure, implying diverse structural possibilities of the histone variant. Interestingly, the observed tetramer dynamics alter significantly and appear to reach a new balance when H2A/H2B dimers are present. Furthermore, we found that the preferred structure for the (CENP-A/H4)2 tetramer is incongruent with the octameric structure, explaining many of the unusual dynamical behaviors of the CENP-A nucleosome. In all, these data reveal key mechanistic insights and structural details for the assembly of canonical and variant histone tetramers and octamers, providing theoretical quantifications and physical interpretations for longstanding and recent experimental observations. Based on these findings, we propose different chaperone-assisted binding and nucleosome assembly mechanisms for the canonical and CENP-A histone oligomers.
Collapse
Affiliation(s)
- Haiqing Zhao
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David Winogradoff
- Chemical Physics Program, Institute for Physical Science and Technology
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland; Chemical Physics Program, Institute for Physical Science and Technology; Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland.
| |
Collapse
|
37
|
Barra V, Logsdon GA, Scelfo A, Hoffmann S, Hervé S, Aslanian A, Nechemia-Arbely Y, Cleveland DW, Black BE, Fachinetti D. Phosphorylation of CENP-A on serine 7 does not control centromere function. Nat Commun 2019; 10:175. [PMID: 30635586 PMCID: PMC6329807 DOI: 10.1038/s41467-018-08073-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/12/2018] [Indexed: 01/16/2023] Open
Abstract
CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viability. Thus, we conclude that phosphorylation of CENP-A on serine 7 is dispensable to maintain correct centromere dynamics and function.
Collapse
Affiliation(s)
- Viviana Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
- Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France
| | - Glennis A Logsdon
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Sebastian Hoffmann
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Solène Hervé
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yael Nechemia-Arbely
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
38
|
Black EM, Giunta S. Repetitive Fragile Sites: Centromere Satellite DNA As a Source of Genome Instability in Human Diseases. Genes (Basel) 2018; 9:E615. [PMID: 30544645 PMCID: PMC6315641 DOI: 10.3390/genes9120615] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Maintenance of an intact genome is essential for cellular and organismal homeostasis. The centromere is a specialized chromosomal locus required for faithful genome inheritance at each round of cell division. Human centromeres are composed of large tandem arrays of repetitive alpha-satellite DNA, which are often sites of aberrant rearrangements that may lead to chromosome fusions and genetic abnormalities. While the centromere has an essential role in chromosome segregation during mitosis, the long and repetitive nature of the highly identical repeats has greatly hindered in-depth genetic studies, and complete annotation of all human centromeres is still lacking. Here, we review our current understanding of human centromere genetics and epigenetics as well as recent investigations into the role of centromere DNA in disease, with a special focus on cancer, aging, and human immunodeficiency⁻centromeric instability⁻facial anomalies (ICF) syndrome. We also highlight the causes and consequences of genomic instability at these large repetitive arrays and describe the possible sources of centromere fragility. The novel connection between alpha-satellite DNA instability and human pathological conditions emphasizes the importance of obtaining a truly complete human genome assembly and accelerating our understanding of centromere repeats' role in physiology and beyond.
Collapse
Affiliation(s)
- Elizabeth M Black
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
39
|
Yan K, Zhang Z, Yang J, McLaughlin SH, Barford D. Architecture of the CBF3-centromere complex of the budding yeast kinetochore. Nat Struct Mol Biol 2018; 25:1103-1110. [PMID: 30478265 PMCID: PMC6292502 DOI: 10.1038/s41594-018-0154-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
Kinetochores are multicomponent complexes responsible for coordinating the attachment of centromeric DNA to mitotic-spindle microtubules. The point centromeres of budding yeast are organized into three centromeric determining elements (CDEs), and are associated with the centromere-specific nucleosome Cse4. Deposition of Cse4 at CEN loci is dependent on the CBF3 complex that engages CDEIII to direct Cse4 nucleosomes to CDEII. To understand how CBF3 recognizes CDEIII and positions Cse4, we determined a cryo-EM structure of a CBF3-CEN complex. CBF3 interacts with CEN DNA as a head-to-head dimer that includes the whole of CDEIII and immediate 3' regions. Specific CEN-binding of CBF3 is mediated by a Cep3 subunit of one of the CBF3 protomers that forms major groove interactions with the conserved and essential CCG and TGT motifs of CDEIII. We propose a model for a CBF3-Cse4-CEN complex with implications for understanding CBF3-directed deposition of the Cse4 nucleosome at CEN loci.
Collapse
Affiliation(s)
- Kaige Yan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
40
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
41
|
Hoischen C, Yavas S, Wohland T, Diekmann S. CENP-C/H/I/K/M/T/W/N/L and hMis12 but not CENP-S/X participate in complex formation in the nucleoplasm of living human interphase cells outside centromeres. PLoS One 2018; 13:e0192572. [PMID: 29509805 PMCID: PMC5839545 DOI: 10.1371/journal.pone.0192572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.
Collapse
Affiliation(s)
- Christian Hoischen
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| | - Sibel Yavas
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry and Centre of Bioimaging Sciences, Lee Wee Kheng Buildung, National University of Singapore, Singapore, Singapore
| | - Stephan Diekmann
- Molecular Biology, Leibniz Institute on Aging-Friz-Lipmann-Institute (FLI), Jena, Germany
| |
Collapse
|
42
|
Thakur J, Henikoff S. Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev 2018; 32:20-25. [PMID: 29386331 PMCID: PMC5828391 DOI: 10.1101/gad.307736.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
We combined classical salt fractionation with chromatin immunoprecipitation to recover human centromeric chromatin under native conditions. We found that >85% of the total centromeric chromatin is insoluble under conditions typically used for native chromatin extraction. To map both soluble and insoluble chromatin in situ, we combined CUT&RUN (cleavage under targets and release using nuclease), a targeted nuclease method, with salt fractionation. Using this approach, we observed unexpected structural and conformational variations of centromere protein A (CENP-A)-containing complexes on different α-satellite dimeric units within highly homogenous arrays. Our results suggest that slight α-satellite sequence differences control the structure and occupancy of the associated centromeric chromatin complex.
Collapse
Affiliation(s)
- Jitendra Thakur
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
43
|
Shaping Chromatin in the Nucleus: The Bricks and the Architects. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:1-14. [PMID: 29208640 DOI: 10.1101/sqb.2017.82.033753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin organization in the nucleus provides a vast repertoire of information in addition to that encoded genetically. Understanding how this organization impacts genome stability and influences cell fate and tumorigenesis is an area of rapid progress. Considering the nucleosome, the fundamental unit of chromatin structure, the study of histone variants (the bricks) and their selective loading by histone chaperones (the architects) is particularly informative. Here, we report recent advances in understanding how relationships between histone variants and their chaperones contribute to tumorigenesis using cell lines and Xenopus development as model systems. In addition to their role in histone deposition, we also document interactions between histone chaperones and other chromatin factors that govern higher-order structure and control DNA metabolism. We highlight how a fine-tuned assembly line of bricks (H3.3 and CENP-A) and architects (HIRA, HJURP, and DAXX) is key in adaptation to developmental and pathological changes. An example of this conceptual advance is the exquisite sensitivity displayed by p53-null tumor cells to modulation of HJURP, the histone chaperone for CENP-A (CenH3 variant). We discuss how these findings open avenues for novel therapeutic paradigms in cancer care.
Collapse
|
44
|
Henikoff S, Thakur J, Kasinathan S, Talbert PB. Remarkable Evolutionary Plasticity of Centromeric Chromatin. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:71-82. [PMID: 29196559 DOI: 10.1101/sqb.2017.82.033605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the "regional" centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The "satellite" centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jitendra Thakur
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195
| | - Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
45
|
Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. Curr Biol 2017; 27:2365-2373.e8. [PMID: 28756949 DOI: 10.1016/j.cub.2017.06.069] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
Female meiosis provides an opportunity for selfish genetic elements to violate Mendel's law of segregation by increasing the chance of segregating to the egg [1]. Centromeres and other repetitive sequences can drive in meiosis by cheating the segregation process [2], but the underlying mechanisms are unknown. Here, we show that centromeres with more satellite repeats house more nucleosomes that confer centromere identity, containing the histone H3 variant CENP-A, and bias their segregation to the egg relative to centromeres with fewer repeats. CENP-A nucleosomes predominantly occupy a single site within the repeating unit that becomes limiting for centromere assembly on smaller centromeres. We propose that amplified repetitive sequences act as selfish elements by promoting expansion of CENP-A chromatin and increased transmission through the female germline.
Collapse
|
46
|
Fukagawa T. Critical histone post-translational modifications for centromere function and propagation. Cell Cycle 2017; 16:1259-1265. [PMID: 28598241 DOI: 10.1080/15384101.2017.1325044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The centromere is a critical genomic region that enables faithful chromosome segregation during mitosis, and must be distinguishable from other genomic regions to facilitate establishment of the kinetochore. The centromere-specific histone H3-variant CENP-A forms a special nucleosome that functions as a marker for centromere specification. In addition to the CENP-A nucleosomes, there are additional H3 nucleosomes that have been identified in centromeres, both of which are predicted to exhibit specific features. It is likely that the composite organization of CENP-A and H3 nucleosomes contributes to the formation of centromere-specific chromatin, termed 'centrochromatin'. Recent studies suggest that centrochromatin has specific histone modifications that mediate centromere specification and kinetochore assembly. We use chicken non-repetitive centromeres as a model of centromeric activities to characterize functional features of centrochromatin. This review discusses our recent progress, and that of various other research groups, in elucidating the functional roles of histone modifications in centrochromatin.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- a Graduate School of Frontier Biosciences , Osaka University , Suita , Osaka , Japan
| |
Collapse
|