1
|
Bond A, Morrissey MA. Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite. J Cell Sci 2025; 138:JCS263513. [PMID: 39749603 DOI: 10.1242/jcs.263513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris. Depending on the context, macrophages can increase their appetite for phagocytosis, to prioritize an effective immune response, or decrease their appetite, to avoid damage to healthy tissue during homeostasis. In this Review, we discuss the biochemical and biophysical mechanisms that macrophages employ to increase or decrease their sensitivity or capacity for phagocytosis. We discuss evidence that macrophages tune their sensitivity via several mechanisms, including altering the balance of activating and inhibitory receptor expression, altering the availability of activating receptors, as well as influencing their clustering and mobility, and modulating inhibitory receptor location. We also highlight how membrane availability limits the capacity of macrophages for phagocytosis and discuss potential mechanisms to promote membrane recycling and increase phagocytic capacity. Overall, this Review highlights recent work detailing the molecular toolkit that macrophages use to alter their appetite.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Mount HO, Urbanus ML, Zangari F, Gingras AC, Ensminger AW. The Legionella pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. mSphere 2024:e0089124. [PMID: 39699231 DOI: 10.1128/msphere.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of Legionella pneumophila, directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust in vitro inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner. Heterologous expression of PieF phenocopies knockout of the CNOT7 ortholog (POP2) in Saccharomyces cerevisiae, resulting in 6-azauracil sensitivity. In mammalian cells, expression of PieF leads to a variety of quantifiable phenotypes: PieF silences gene expression and reduces mRNA steady-state levels when artificially tethered to a reporter transcript, and its overexpression results in the nuclear exclusion of CNOT7. PieF expression also disrupts the association between CNOT6/6L EEP-type nucleases and CNOT7. Adding to the complexities of PieF activity in vivo, we identified a separate domain of PieF responsible for binding to eukaryotic kinases. Unlike what we observe for CNOT6/6L, we show that these interactions can occur concomitantly with PieF's binding to CNOT7. Collectively, this work reveals a new, highly conserved target of L. pneumophila effectors and suggests a mechanism by which the pathogen may be modulating host mRNA stability and expression during infection. IMPORTANCE The intracellular bacterial pathogen Legionella pneumophila targets conserved eukaryotic pathways to establish a replicative niche inside host cells. With a host range that spans billions of years of evolution (from protists to humans), the interaction between L. pneumophila and its hosts frequently involves conserved eukaryotic pathways (protein translation, ubiquitination, membrane trafficking, autophagy, and the cytoskeleton). Here, we present the identification of a new, highly conserved host target of L. pneumophila effectors: the CCR4-NOT complex. CCR4-NOT modulates mRNA stability in eukaryotes from yeast to humans, making it an attractive target for a generalist pathogen, such as L. pneumophila. We show that the uncharacterized L. pneumophila effector PieF specifically targets one component of this complex, the deadenylase subunit CNOT7/8. We show that the interaction between PieF and CNOT7 is direct, occurs with high affinity, and reshapes the catalytic activity, localization, and composition of the complex across evolutionarily diverse eukaryotic cells.
Collapse
Affiliation(s)
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Zangari
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexander W Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host clathrin suggests additional contributions for Sca4 during rickettsial infection. Infect Immun 2024; 92:e0026724. [PMID: 39535192 PMCID: PMC11629629 DOI: 10.1128/iai.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single function or interaction, there are a growing number of secreted effectors capable of interacting with multiple host factors. However, few effectors secreted by arthropod-borne obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin in donor cells to promote cell-to-cell spread in the model Rickettsia species R. parkeri. We discovered that Sca4 also binds the host cell protein clathrin heavy chain (CHC, CLTC) via a conserved segment in the Sca4 N-terminus. In mammalian host cells, ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread. Unexpectedly, the contribution of CHC to spread was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell type-specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
Affiliation(s)
- Cassandra J. Vondrak
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Torres-Escobar A, Wilkins A, Juárez-Rodríguez MD, Circu M, Latimer B, Dragoi AM, Ivanov SS. Iron-depleting nutritional immunity controls extracellular bacterial replication in Legionella pneumophila infections. Nat Commun 2024; 15:7848. [PMID: 39245746 PMCID: PMC11381550 DOI: 10.1038/s41467-024-52184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
The accidental human pathogen Legionella pneumophila (Lp) is the etiological agent for a severe atypical pneumonia known as Legionnaires' disease. In human infections and animal models of disease alveolar macrophages are the primary cellular niche that supports bacterial replication within a unique intracellular membrane-bound organelle. The Dot/Icm apparatus-a type IV secretion system that translocates ~300 bacterial proteins within the cytosol of the infected cell-is a central virulence factor required for intracellular growth. Mutant strains lacking functional Dot/Icm apparatus are transported to and degraded within the lysosomes of infected macrophages. The early foundational work from Dr. Horwitz's group unequivocally established that Legionella does not replicate extracellularly during infection-a phenomenon well supported by experimental evidence for four decades. Our data challenges this paradigm by demonstrating that macrophages and monocytes provide the necessary nutrients and support robust Legionella extracellular replication. We show that the previously reported lack of Lp extracellular replication is not a bacteria intrinsic feature but rather a result of robust restriction by serum-derived nutritional immunity factors. Specifically, the host iron-sequestering protein Transferrin is identified here as a critical suppressor of Lp extracellular replication in an iron-dependent manner. In iron-overload conditions or in the absence of Transferrin, Lp bypasses growth restriction by IFNγ-primed macrophages though extracellular replication. It is well established that certain risk factors associated with development of Legionnaires' disease, such as smoking, produce a chronic pulmonary environment of iron-overload. Our work indicates that iron-overload could be an important determinant of severe infection by allowing Lp to overcome nutritional immunity and replicate extracellularly, which in turn would circumvent intracellular cell intrinsic host defenses. Thus, we provide evidence for nutritional immunity as a key underappreciated host defense mechanism in Legionella pathogenesis.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ashley Wilkins
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Bacterial Physiology and Metabolism Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - María D Juárez-Rodríguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Brian Latimer
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Stanimir S Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
| |
Collapse
|
5
|
Wang L, Lin M, Hou L, Rikihisa Y. Anaplasma phagocytophilum effector EgeA facilitates infection by hijacking TANGO1 and SCFD1 from ER-Golgi exit sites to pathogen-occupied inclusions. Proc Natl Acad Sci U S A 2024; 121:e2405209121. [PMID: 39106308 PMCID: PMC11331065 DOI: 10.1073/pnas.2405209121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024] Open
Abstract
The obligatory intracellular bacterium Anaplasma phagocytophilum causes human granulocytic anaplasmosis, an emerging zoonosis. Anaplasma has limited biosynthetic and metabolic capacities, yet it effectively replicates inside of inclusions/vacuoles of eukaryotic host cells. Here, we describe a unique Type IV secretion system (T4SS) effector, ER-Golgi exit site protein of Anaplasma (EgeA). In cells infected by Anaplasma, secreted native EgeA, EgeA-GFP, and the C-terminal half of EgeA (EgeA-C)-GFP localized to Anaplasma-containing inclusions. In uninfected cells, EgeA-C-GFP localized to cis-Golgi, whereas the N-terminal half of EgeA-GFP localized to the ER. Pull-down assays identified EgeA-GFP binding to a transmembrane protein in the ER, Transport and Golgi organization protein 1 (TANGO1). By yeast two-hybrid analysis, EgeA-C directly bound Sec1 family domain-containing protein 1 (SCFD1), a host protein of the cis-Golgi network that binds TANGO1 at ER-Golgi exit sites (ERES). Both TANGO1 and SCFD1 localized to the Anaplasma inclusion surface. Furthermore, knockdown of Anaplasma EgeA or either host TANGO1 or SCFD1 significantly reduced Anaplasma infection. TANGO1 and SCFD1 prevent ER congestion and stress by facilitating transport of bulky or unfolded proteins at ERES. A bulky cargo collagen and the ER-resident chaperon BiP were transported into Anaplasma inclusions, and several ER stress marker genes were not up-regulated in Anaplasma-infected cells. Furthermore, EgeA transfection reduced collagen overexpression-induced BiP upregulation. These results suggest that by binding to the two ERES proteins, EgeA redirects the cargo-adapted ERES to pathogen-occupied inclusions and reduces ERES congestion, which facilitates Anaplasma nutrient acquisition and reduces ER stress for Anaplasma survival and proliferation.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Mingqun Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Libo Hou
- Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
6
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host endocytic machinery suggests additional roles for Sca4 during rickettsial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600492. [PMID: 38979345 PMCID: PMC11230260 DOI: 10.1101/2024.06.24.600492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single specific function or interaction, there are a growing number of secreted pathogen effectors capable of interacting with multiple host factors. However, few effectors secreted by obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin to promote cell-to-cell spread in the model Rickettsia species R. parkeri . We discovered that Sca4 also binds the host cell endocytic factor clathrin heavy chain (CHC, CLTC ) via a conserved segment in the Sca4 N-terminus. Ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread between mammalian cells. This activity was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction also regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell-type specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
|
7
|
Feng T, Tong H, Zhang F, Zhang Q, Zhang H, Zhou X, Ruan H, Wu Q, Dai J. Transcriptome study reveals tick immune genes restrict Babesia microti infection. INSECT SCIENCE 2024. [PMID: 38837613 DOI: 10.1111/1744-7917.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
A systems biology approach was employed to gain insight into tick biology and interactions between vectors and pathogens. Haemaphysalis longicornis serves as one of the primary vectors of Babesia microti, significantly impacting human and animal health. Obtaining more information about their relationship is crucial for a comprehensive understanding of tick and pathogen biology, pathogen transmission dynamics, and potential control strategies. RNA sequencing of uninfected and B. microti-infected ticks resulted in the identification of 15 056 unigenes. Among these, 1 051 were found to be differentially expressed, with 796 being upregulated and 255 downregulated (P < 0.05). Integrated transcriptomics datasets revealed the pivotal role of immune-related pathways, including the Toll, Janus kinase/signal transducer and activator of transcription (JAK-STAT), immunodeficiency, and RNA interference (RNAi) pathways, in response to infection. Consequently, 3 genes encoding critical transcriptional factor Dorsal, Relish, and STAT were selected for RNAi experiments. The knockdown of Dorsal, Relish, and STAT resulted in a substantial increase in Babesia infection levels compared to the respective controls. These findings significantly advanced our understanding of tick-Babesia molecular interactions and proposed novel tick antigens as potential vaccine targets against tick infestations and pathogen transmission.
Collapse
Affiliation(s)
- Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Feihu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qianqian Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Heng Zhang
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hang Ruan
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Wilkins AA, Schwarz B, Torres-Escobar A, Castore R, Landry L, Latimer B, Bohrnsen E, Bosio CM, Dragoi AM, Ivanov SS. The intracellular growth of the vacuolar pathogen Legionella pneumophila is dependent on the acyl chain composition of host membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567753. [PMID: 38045297 PMCID: PMC10690232 DOI: 10.1101/2023.11.19.567753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.
Collapse
|
9
|
Bányász B, Antal J, Dénes B. False Positives in Brucellosis Serology: Wrong Bait and Wrong Pond? Trop Med Infect Dis 2023; 8:tropicalmed8050274. [PMID: 37235322 DOI: 10.3390/tropicalmed8050274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review summarizes the status of resolving the problem of false positive serologic results (FPSR) in Brucella serology, compiles our knowledge on the molecular background of the problem, and highlights some prospects for its resolution. The molecular basis of the FPSRs is reviewed through analyzing the components of the cell wall of Gram-negative bacteria, especially the surface lipopolysaccharide (LPS) with details related to brucellae. After evaluating the efforts that have been made to solve target specificity problems of serologic tests, the following conclusions can be drawn: (i) resolving the FPSR problem requires a deeper understanding than we currently possess, both of Brucella immunology and of the current serology tests; (ii) the practical solutions will be as expensive as the related research; and (iii) the root cause of FPSRs is the application of the same type of antigen (S-type LPS) in the currently approved tests. Thus, new approaches are necessary to resolve the problems stemming from FPSR. Such approaches suggested by this paper are: (i) the application of antigens from R-type bacteria; or (ii) the further development of specific brucellin-based skin tests; or (iii) the application of microbial cell-free DNA as analyte, whose approach is detailed in this paper.
Collapse
Affiliation(s)
- Borbála Bányász
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
- Laboratory of Immunology, Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - József Antal
- Omixon Biocomputing Ltd., 1117 Budapest, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| |
Collapse
|
10
|
Pavkova I, Kopeckova M, Link M, Vlcak E, Filimonenko V, Lecova L, Zakova J, Laskova P, Sheshko V, Machacek M, Stulik J. Francisella tularensis Glyceraldehyde-3-Phosphate Dehydrogenase Is Relocalized during Intracellular Infection and Reveals Effect on Cytokine Gene Expression and Signaling. Cells 2023; 12:cells12040607. [PMID: 36831274 PMCID: PMC9954481 DOI: 10.3390/cells12040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-973-255-201
| | - Monika Kopeckova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Erik Vlcak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Electron Microscopy Core Facility, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Department of Biology of the Cell Nucleus, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lenka Lecova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jitka Zakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Pavlina Laskova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Kostow N, Welch MD. Manipulation of host cell plasma membranes by intracellular bacterial pathogens. Curr Opin Microbiol 2023; 71:102241. [PMID: 36442349 PMCID: PMC10074913 DOI: 10.1016/j.mib.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
Manipulation of the host cell plasma membrane is critical during infection by intracellular bacterial pathogens, particularly during bacterial entry into and exit from host cells. To manipulate host cells, bacteria deploy secreted proteins that modulate or modify host cell components. Here, we review recent advances that suggest common themes by which bacteria manipulate the host cell plasma membrane. One theme is that bacteria use diverse strategies to target or influence host cell plasma membrane composition and shape. A second theme is that bacteria take advantage of host cell plasma membrane-associated pathways such as signal transduction, endocytosis, and exocytosis. Future investigation into how bacterial and host factors contribute to plasma membrane manipulation by bacterial pathogens will reveal new insights into pathogenesis and fundamental principles of plasma membrane biology.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Yeom J, Shin D, Qiao Y. Editorial: Protein homeostasis in host-pathogen interactions. Front Microbiol 2023; 13:1115857. [PMID: 36687582 PMCID: PMC9846764 DOI: 10.3389/fmicb.2022.1115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jinki Yeom
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea,Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea,*Correspondence: Jinki Yeom ✉
| | - Donghyuk Shin
- Department of System Biology, College of Life Sciences and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yuan Qiao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Ondari E, Wilkins A, Latimer B, Dragoi AM, Ivanov SS. Cellular cholesterol licenses Legionella pneumophila intracellular replication in macrophages. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:1-17. [PMID: 36636491 PMCID: PMC9806796 DOI: 10.15698/mic2023.01.789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/03/2023]
Abstract
Host membranes are inherently critical for niche homeostasis of vacuolar pathogens. Thus, intracellular bacteria frequently encode the capacity to regulate host lipogenesis as well as to modulate the lipid composition of host membranes. One membrane component that is often subverted by vacuolar bacteria is cholesterol - an abundant lipid that mammalian cells produce de novo at the endoplasmic reticulum (ER) or acquire exogenously from serum-derived lipoprotein carriers. Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. From within a unique ER-derived vacuole L. pneumophila promotes host lipogenesis and experimental evidence indicates that cholesterol production might be one facet of this response. Here we investigated the link between cellular cholesterol and L. pneumophila intracellular replication and discovered that disruption of cholesterol biosynthesis or cholesterol trafficking lowered bacterial replication in infected cells. These growth defects were rescued by addition of exogenous cholesterol. Conversely, bacterial growth within cholesterol-leaden macrophages was enhanced. Importantly, the growth benefit of cholesterol was observed strictly in cellular infections and L. pneumophila growth kinetics in axenic cultures did not change in the presence of cholesterol. Microscopy analyses indicate that cholesterol regulates a step in L. pneumophila intracellular lifecycle that occurs after bacteria begin to replicate within an established intracellular niche. Collectively, we provide experimental evidence that cellular cholesterol promotes L. pneumophila replication within a membrane bound organelle in infected macrophages.
Collapse
Affiliation(s)
- Edna Ondari
- Department of Microbiology and Immunology, Louisiana State University Health - Shreveport, Shreveport, LA 71130
| | - Ashley Wilkins
- Department of Microbiology and Immunology, Louisiana State University Health - Shreveport, Shreveport, LA 71130
| | - Brian Latimer
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health - Shreveport, Shreveport, LA 71130
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health - Shreveport, Shreveport, LA 71130
- Innovative North Louisiana Experimental Therapeutics program (INLET), Feist-Weiller Cancer Center, Louisiana State University Health - Shreveport, Shreveport, LA 71130
| | - Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health - Shreveport, Shreveport, LA 71130
| |
Collapse
|
14
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
15
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Kinetic Tracking of Plasmodium falciparum Antigens on Infected Erythrocytes with a Novel Reporter of Protein Insertion and Surface Exposure. mBio 2022; 13:e0040422. [PMID: 35420481 PMCID: PMC9239273 DOI: 10.1128/mbio.00404-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracellular malaria parasites export many proteins into their host cell, inserting several into the erythrocyte plasma membrane to enable interactions with their external environment. While static techniques have identified some surface-exposed proteins, other candidates have eluded definitive localization and membrane topology determination. Moreover, both export kinetics and the mechanisms of membrane insertion remain largely unexplored. We introduce Reporter of Insertion and Surface Exposure (RISE), a method for continuous nondestructive tracking of antigen exposure on infected cells. RISE utilizes a small 11-amino acid (aa) HiBit fragment of NanoLuc inserted into a target protein and detects surface exposure through high-affinity complementation to produce luminescence. We tracked the export and surface exposure of CLAG3, a parasite protein linked to nutrient uptake, throughout the Plasmodiumfalciparum cycle in human erythrocytes. Our approach revealed key determinants of trafficking and surface exposure. Removal of a C-terminal transmembrane domain aborted export. Unexpectedly, certain increases in the exposed reporter size improved the luminescence signal, but other changes abolished the surface signal, revealing that both size and charge of the extracellular epitope influence membrane insertion. Marked cell-to-cell variation with larger inserts containing multiple HiBit epitopes suggests complex regulation of CLAG3 insertion at the host membrane. Quantitative, continuous tracking of CLAG3 surface exposure thus reveals multiple factors that determine this protein’s trafficking and insertion at the host erythrocyte membrane. The RISE assay will enable study of surface antigens from divergent intracellular pathogens.
Collapse
|
18
|
Arumugam P, Singla M, Lodha R, Rao V. Identification and characterization of novel infection associated transcripts in macrophages. RNA Biol 2021; 18:604-611. [PMID: 34747322 DOI: 10.1080/15476286.2021.1989217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By analysis of lncRNA expression profiles of macrophages in response to Mycobacterium tuberculosis (Mtb) infection, we identified novel highly expressed transcripts, unique in encompassing a protein coding transcript- Cytidine Monophosphate Kinase 2 (CMPK2) and a previously identified lncRNA- Negative Regulator of Interferon Response (NRIR). While these transcripts (TILT1, 2,3 - TLR4 and Infection induced Long Transcript) are induced by virulent Mtb as well as lipopolysaccharide (LPS) early, lack of/delayed expression in non-viable Mtb/BCG infected cells, respectively, suggest an important role in macrophage responses. The elevated expression by 3 hr in response to fast growing bacteria further emphasizes the importance of these RNAs in the macrophage infection response. Overall, we provide evidence for the presence of multiple transcripts that form a part of the early infection response programme of macrophages.Abbreviations: IFN: Interferon; NRIR: negative regulator of interferon response; CMPK2: cytidine/ uridine monophosphate kinase; LPS: lipopolysaccharide; LAM: Lipoarabinomannan; PIMs: Phosphatidylinositol Mannosides; TILT1, 2,3: TLR4 and Infection induced Long Transcript; TLR4: Toll-like receptor 4; Mtb: Mycobacterium tuberculosis; BCG: Mycobacterium bovis BCG; MDMs: human monocyte derived macrophages.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Cardio- Respiratory Disease Biology, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research, CSIR- HRDC campus, Sector 19, Kamla Nehru Nagar, Ghaziabad- 201002, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vivek Rao
- Department of Cardio- Respiratory Disease Biology, CSIR Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110025, India.,Department of Biological Sciences, Academy of Scientific and Innovative Research, CSIR- HRDC campus, Sector 19, Kamla Nehru Nagar, Ghaziabad- 201002, India
| |
Collapse
|
19
|
Osinski A, Black MH, Pawłowski K, Chen Z, Li Y, Tagliabracci VS. Structural and mechanistic basis for protein glutamylation by the kinase fold. Mol Cell 2021; 81:4527-4539.e8. [PMID: 34407442 DOI: 10.1016/j.molcel.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.
Collapse
Affiliation(s)
- Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miles H Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-787, Poland
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Jiang C, Huang X, Yao J, Yu L, Wei F, Yang A. The role of membrane contact sites at the bacteria-host interface. Crit Rev Microbiol 2021; 48:270-282. [PMID: 34403642 DOI: 10.1080/1040841x.2021.1961678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Membrane contact sites (MCSs) refer to the areas of close proximity between heterologous membranes. A growing body of evidence indicates that MCSs are involved in important cellular functions, such as cellular material transfer, organelle biogenesis, and cell growth. Importantly, the study of MCSs at the bacteria-host interface is an emerging popular research topic. Intracellular bacterial pathogens have evolved a variety of fascinating strategies to interfere with MCSs by injecting effectors into infected host cells. Bacteria-containing vacuoles establish direct physical contact with organelles within the host, ensuring vacuolar membrane integrity and energy supply from host organelles and protecting the vacuoles from the host endocytic pathway and lysosomal degradation. An increasing number of bacterial effectors from various bacterial pathogens hijack components of host MCSs to form the vacuole-organelle MCSs for material exchange. MCS-related events have been identified as new mechanisms of microbial pathogenesis to greatly improve bacterial survival and replication within host cells. In this review, we will discuss the recent advances in MCSs at the bacteria-host interface, focussing on the roles of MCSs mediated by bacterial effectors in microbial pathogenesis.
Collapse
Affiliation(s)
- Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Ofir-Birin Y, Ben Ami Pilo H, Cruz Camacho A, Rudik A, Rivkin A, Revach OY, Nir N, Block Tamin T, Abou Karam P, Kiper E, Peleg Y, Nevo R, Solomon A, Havkin-Solomon T, Rojas A, Rotkopf R, Porat Z, Avni D, Schwartz E, Zillinger T, Hartmann G, Di Pizio A, Quashie NB, Dikstein R, Gerlic M, Torrecilhas AC, Levy C, Nolte-'t Hoen ENM, Bowie AG, Regev-Rudzki N. Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nat Commun 2021; 12:4851. [PMID: 34381047 PMCID: PMC8357946 DOI: 10.1038/s41467-021-24997-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.
Collapse
Affiliation(s)
- Yifat Ofir-Birin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Ben Ami Pilo
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Abel Cruz Camacho
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ariel Rudik
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Rivkin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Or-Yam Revach
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Nir
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Block Tamin
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Abou Karam
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Peleg
- Structural Proteomics Unit, Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aryeh Solomon
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Havkin-Solomon
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alicia Rojas
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Avni
- The Institute of Geographic Medicine and Tropical Diseases and the Laboratory for Tropical Diseases Research, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Schwartz
- The Institute of Geographic Medicine and Tropical Diseases and the Laboratory for Tropical Diseases Research, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Technical University of Munich, Freising, Germany
| | - Neils Ben Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
- Centre for Tropical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana
| | - Rivka Dikstein
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Claudia Torrecilhas
- Department of Pharmaceutical Sciences, Federal University of São Paulo, UNIFESP, Diadema, Brazil
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Neta Regev-Rudzki
- Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Orientia tsutsugamushi Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. mBio 2021; 12:e0181621. [PMID: 34340535 PMCID: PMC8406279 DOI: 10.1128/mbio.01816-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orientia tsutsugamushi is the etiologic agent of scrub typhus, the deadliest of all diseases caused by obligate intracellular bacteria. Nucleomodulins, bacterial effectors that dysregulate eukaryotic transcription, are being increasingly recognized as key virulence factors. How they translocate into the nucleus and their functionally essential domains are poorly defined. We demonstrate that Ank13, an O. tsutsugamushi effector conserved among clinical isolates and expressed during infection, localizes to the nucleus in an importin β1-independent manner. Rather, Ank13 nucleotropism requires an isoleucine at the thirteenth position of its fourth ankyrin repeat, consistent with utilization of eukaryotic RaDAR (RanGDP-ankyrin repeats) nuclear import. RNA-seq analyses of cells expressing green fluorescent protein (GFP)-tagged Ank13, nucleotropism-deficient Ank13I127R, or Ank13ΔF-box, which lacks the F-box domain essential for interacting with SCF ubiquitin ligase, revealed Ank13 to be a nucleomodulin that predominantly downregulates transcription of more than 2,000 genes. Its ability to do so involves its nucleotropism and F-box in synergistic and mutually exclusive manners. Ank13 also acts in the cytoplasm to dysregulate smaller cohorts of genes. The effector’s toxicity in yeast heavily depends on its F-box and less so on its nucleotropism. Genes negatively regulated by Ank13 include those involved in the inflammatory response, transcriptional control, and epigenetics. Importantly, the majority of genes that GFP-Ank13 most strongly downregulates are quiescent or repressed in O. tsutsugamushi-infected cells when Ank13 expression is strongest. Ank13 is the first nucleomodulin identified to coopt RaDAR and a multifaceted effector that functions in the nucleus and cytoplasm via F-box-dependent and -independent mechanisms to globally reprogram host cell transcription.
Collapse
|
23
|
McCutcheon JP. The Genomics and Cell Biology of Host-Beneficial Intracellular Infections. Annu Rev Cell Dev Biol 2021; 37:115-142. [PMID: 34242059 DOI: 10.1146/annurev-cellbio-120219-024122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important-often required-beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- John P McCutcheon
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA;
| |
Collapse
|
24
|
Abstract
The Dot/Icm type IV secretion system (T4SS) of Legionella pneumophila is essential for lysosomal evasion and permissiveness of macrophages for intracellular proliferation of the pathogen. In contrast, we show that polymorphonuclear cells (PMNs) respond to a functional Dot/Icm system through rapid restriction of L. pneumophila. Specifically, we show that the L. pneumophila T4SS-injected amylase (LamA) effector catalyzes rapid glycogen degradation in the PMNs cytosol, leading to cytosolic hyperglucose. Neutrophils respond through immunometabolic reprogramming that includes upregulated aerobic glycolysis. The PMNs become activated with spatial generation of intracellular reactive oxygen species within the Legionella-containing phagosome (LCP) and fusion of specific and azurophilic granules to the LCP, leading to rapid restriction of L. pneumophila. We conclude that in contrast to macrophages, PMNs respond to a functional Dot/Icm system, and specifically to the effect of the injected amylase effector, through rapid engagement of major microbicidal processes and rapid restriction of the pathogen. IMPORTANCE Legionella pneumophila is commonly found in aquatic environments and resides within a wide variety of amoebal hosts. Upon aerosol transmission to humans, L. pneumophila invades and replicates with alveolar macrophages, causing pneumonia designated Legionnaires' disease. In addition to alveolar macrophages, neutrophils infiltrate into the lungs of infected patients. Unlike alveolar macrophages, neutrophils restrict and kill L. pneumophila, but the mechanisms were previously unclear. Here, we show that the pathogen secretes an amylase (LamA) enzyme that rapidly breakdowns glycogen stores within neutrophils, and this triggers increased glycolysis. Subsequently, the two major killing mechanisms of neutrophils, granule fusion and production of reactive oxygen species, are activated, resulting in rapid killing of L. pneumophila.
Collapse
|
25
|
Basil Polysaccharide Reverses Development of Experimental Model of Sepsis-Induced Secondary Staphylococcus aureus Pneumonia. Mediators Inflamm 2021; 2021:5596339. [PMID: 34054345 PMCID: PMC8149242 DOI: 10.1155/2021/5596339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Basil polysaccharide (BPS) represents a main active ingredient extracted from basil (Ocimum basilicum L.), which can regulate secondary bacterial pneumonia development in the process of sepsis-mediated immunosuppression. Methods In this study, a dual model of sepsis-induced secondary pneumonia with cecal ligation and puncture and intratracheal instillation of Staphylococcus aureus or Pseudomonas aeruginosa was constructed. Results The results indicated that BPS-treated mice undergoing CLP showed resistance to secondary S. aureus pneumonia. Compared with the IgG-treated group, BPS-treated mice exhibited better survival rate along with a higher bacterial clearance rate. Additionally, BPS treatment attenuated cell apoptosis, enhanced lymphocyte and macrophage recruitment to the lung, promoted pulmonary cytokine production, and significantly enhanced CC receptor ligand 4 (CCL4). Notably, recombinant CCL4 protein could enhance the protective effect on S. aureus-induced secondary pulmonary infection of septic mice, which indicated that BPS-induced CCL4 partially mediated resistance to secondary bacterial pneumonia. In addition, BPS priming markedly promoted the phagocytosis of alveolar macrophages while killing S. aureus in vitro, which was related to the enhanced p38MAPK signal transduction pathway activation. Moreover, BPS also played a protective role in sepsis-induced secondary S. aureus pneumonia by inducing Treg cell differentiation. Conclusions Collectively, these results shed novel lights on the BPS treatment mechanism in sepsis-induced secondary S. aureus pneumonia in mice.
Collapse
|
26
|
" Candidatus Liberibacter asiaticus" Secretes Nonclassically Secreted Proteins That Suppress Host Hypersensitive Cell Death and Induce Expression of Plant Pathogenesis-Related Proteins. Appl Environ Microbiol 2021; 87:AEM.00019-21. [PMID: 33579681 PMCID: PMC8091116 DOI: 10.1128/aem.00019-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although emerging evidence indicates that bacteria extracellularly export many cytoplasmic proteins referred to as non-classically secreted proteins (ncSecPs) for their own benefit, the mechanisms and functional significance of the ncSecPs in extracellular milieu remain elusive. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious Gram-negative bacterium that causes Huanglongbing (HLB), the most globally devastating citrus disease. In this study, using the SecretomeP program coupled with an Escherichia coli alkaline phosphatase assay, we identified 27 ncSecPs from the CLas genome. Further, we demonstrated that 10 of these exhibited significantly higher levels of gene expression in citrus than in psyllid hosts, and particularly suppressed hypersensitive response (HR)-based cell death and H2O2 overaccumulation in Nicotiana benthamiana, indicating their opposing effects on early plant defenses. However, these proteins also dramatically enhanced the gene expression of pathogenesis-related 1 protein (PR-1), PR-2, and PR-5, essential components of plant defense mechanisms. Additional experiments disclosed that the increased expression of these PR genes, in particular PR-1 and PR-5, could negatively regulate HR-based cell death development and H2O2 accumulation. Remarkably, CLas infection clearly induced gene expression of PR-1, PR-2, and PR-5 in both HLB-tolerant and HLB-susceptible species of citrus plants. Taken together, we hypothesized that CLas has evolved an arsenal of ncSecPs that function cooperatively to overwhelm the early plant defenses by inducing host PR genes.IMPORTANCE In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu. More importantly, these ncSecPs were found to suppress cell death presumably by utilizing host PR proteins. The data overall provide a novel clue to understand the CLas pathogenesis and also suggest a new way by which phytopathogens manipulate host cellular machinery to establish infection.
Collapse
|
27
|
Christopoulou N, Granneman S. The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. FEBS J 2021; 289:1746-1764. [PMID: 33690958 DOI: 10.1111/febs.15810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are constantly subjected to stressful conditions, such as antibiotic exposure, nutrient limitation and oxidative stress. For pathogenic bacteria, adapting to the host environment, escaping defence mechanisms and coping with antibiotic stress are crucial for their survival and the establishment of a successful infection. Stress adaptation relies heavily on the rate at which the organism can remodel its gene expression programme to counteract the stress. RNA-binding proteins mediating co- and post-transcriptional regulation have recently emerged as important players in regulating gene expression during adaptive responses. Most of the research on these layers of gene expression regulation has been done in Gram-negative model organisms where, thanks to a wide variety of global studies, large post-transcriptional regulatory networks have been uncovered. Unfortunately, our understanding of post-transcriptional regulation in Gram-positive bacteria is lagging behind. One possible explanation for this is that many proteins employed by Gram-negative bacteria are not well conserved in Gram-positives. And even if they are conserved, they do not always play similar roles as in Gram-negative bacteria. This raises the important question whether Gram-positive bacteria regulate gene expression in a significantly different way. The goal of this review was to discuss this in more detail by reviewing the role of well-known RNA-binding proteins in Gram-positive bacteria and by highlighting their different behaviours with respect to some of their Gram-negative counterparts. Finally, the second part of this review introduces several unusual RNA-binding proteins of Gram-positive species that we believe could also play an important role in adaptive responses.
Collapse
Affiliation(s)
- Niki Christopoulou
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| | - Sander Granneman
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, UK
| |
Collapse
|
28
|
Time-Resolved Transcriptional Profiling of Epithelial Cells Infected by Intracellular Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9020354. [PMID: 33670223 PMCID: PMC7916935 DOI: 10.3390/microorganisms9020354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.
Collapse
|
29
|
Buccini DF, Cardoso MH, Franco OL. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2021; 10:612931. [PMID: 33614528 PMCID: PMC7892433 DOI: 10.3389/fcimb.2020.612931] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have shown great potential to treat such infections by acting directly on the intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of the proposed mechanisms of action for these peptide classes and their conjugation with other antimicrobials.
Collapse
Affiliation(s)
- Danieli F Buccini
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
30
|
Xie R, Shao N, Zheng J. Integrated Co-functional Network Analysis on the Resistance and Virulence Features in Acinetobacter baumannii. Front Microbiol 2020; 11:598380. [PMID: 33224132 PMCID: PMC7667040 DOI: 10.3389/fmicb.2020.598380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is one of the most troublesome bacterial pathogens that pose major public health threats due to its rapidly increasing drug resistance property. It is not only derived from clinic setting but also emerges from aquaculture as a fish pathogen, which could pass the resistant genes in the food chain. Understanding the mechanism of antibiotic resistance development and pathogenesis will aid our battle with the infections caused by A. baumannii. In this study, we constructed a co-functional network by integrating multiple sources of data from A. baumannii and then used the k-shell decomposition to analyze the co-functional network. We found that genes involving in basic cellular physiological function, including genes for antibiotic resistance, tended to have high k-shell values and locate in the internal layer of our network. In contrast, the non-essential genes, such as genes associated with virulence, tended to have lower k-shell values and locate in the external layer. This finding allows us to fish out the potential antibiotic resistance factors and virulence factors. In addition, we constructed an online platform ABviresDB (https://acba.shinyapps.io/ABviresDB/) for visualization of the network and features of each gene in A. baumannii. The network analysis in this study will not only aid the study on A. baumannii but also could be referenced for the research of antibiotic resistance and pathogenesis in other bacteria.
Collapse
Affiliation(s)
- Ruiqiang Xie
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Ningyi Shao
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China
| |
Collapse
|
31
|
Carey KL, Paulus GLC, Wang L, Balce DR, Luo JW, Bergman P, Ferder IC, Kong L, Renaud N, Singh S, Kost-Alimova M, Nyfeler B, Lassen KG, Virgin HW, Xavier RJ. TFEB Transcriptional Responses Reveal Negative Feedback by BHLHE40 and BHLHE41. Cell Rep 2020; 33:108371. [PMID: 33176151 DOI: 10.1016/j.celrep.2020.108371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Transcription factor EB (TFEB) activates lysosomal biogenesis genes in response to environmental cues. Given implications of impaired TFEB signaling and lysosomal dysfunction in metabolic, neurological, and infectious diseases, we aim to systematically identify TFEB-directed circuits by examining transcriptional responses to TFEB subcellular localization and stimulation. We reveal that steady-state nuclear TFEB is sufficient to activate transcription of lysosomal, autophagy, and innate immunity genes, whereas other targets require higher thresholds of stimulation. Furthermore, we identify shared and distinct transcriptional signatures between mTOR inhibition and bacterial autophagy. Using a genome-wide CRISPR library, we find TFEB targets that protect cells from or sensitize cells to lysosomal cell death. BHLHE40 and BHLHE41, genes responsive to high, sustained levels of nuclear TFEB, act in opposition to TFEB upon lysosomal cell death induction. Further investigation identifies genes counter-regulated by TFEB and BHLHE40/41, adding this negative feedback to the current understanding of TFEB regulatory mechanisms.
Collapse
Affiliation(s)
- Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingfei Wang
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dale R Balce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica W Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Bergman
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Ianina C Ferder
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicole Renaud
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maria Kost-Alimova
- Center for the Science of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kara G Lassen
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Øynebråten I. Involvement of autophagy in MHC class I antigen presentation. Scand J Immunol 2020; 92:e12978. [PMID: 32969499 PMCID: PMC7685157 DOI: 10.1111/sji.12978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Abstract
MHC class I molecules on the cellular surface display peptides that either derive from endogenous proteins (self or viral), or from endocytosis of molecules, dying cells or pathogens. The conventional antigen‐processing pathway for MHC class I presentation depends on proteasome‐mediated degradation of the protein followed by transporter associated with antigen‐processing (TAP)‐mediated transport of the generated peptides into the endoplasmic reticulum (ER). Here, peptides are loaded onto MHC I molecules before transportation to the cell surface. However, several alternative mechanisms have emerged. These include TAP‐independent mechanisms, the vacuolar pathway and involvement of autophagy. Autophagy is a cell intrinsic recycling system. It also functions as a defence mechanism that removes pathogens and damaged endocytic compartments from the cytosol. Therefore, it appears likely that autophagy would intersect with the MHC class I presentation pathway to alarm CD8+ T cells of an ongoing intracellular infection. However, the importance of autophagy as a source of antigen for presentation on MHC I molecules remains to be defined. Here, original research papers which suggest involvement of autophagy in MHC I antigen presentation are reviewed. The antigens are from herpesvirus, cytomegalovirus and chlamydia. The studies point towards autophagy as important in MHC class I presentation of endogenous proteins during conditions of immune evasion. Because autophagy is a regulated process which is induced upon activation of, for example, pattern recognition receptors (PRRs), it will be crucial to use relevant stimulatory conditions together with primary cells when aiming to confirm the importance of autophagy in MHC class I antigen presentation in future studies.
Collapse
Affiliation(s)
- Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Mei L, Qiu X, Jiang C, Yang A. Host Delipidation Mediated by Bacterial Effectors. Trends Microbiol 2020; 29:238-250. [PMID: 33092951 DOI: 10.1016/j.tim.2020.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Protein lipidation, the covalent attachment of a lipid moiety to a target protein, plays a critical role in many cellular processes in eukaryotic cells. Bacterial pathogens secrete various effectors to subvert the host signaling pathway as a mechanism of microbial pathogenesis. An increasing number of effectors from diverse bacterial pathogens function as cysteine proteases to cause irreversible delipidation of host lipidated proteins. This in turn results in disruption of crucial lipidation-mediated host signal transduction, thereby enabling pathogen survival and replication. In this review, we discuss the role of the bacterial effectors in interactions with the host and highlight our knowledge of irreversible host delipidation, with a focus on the common concerted biochemical mechanisms of the bacterial effectors.
Collapse
Affiliation(s)
- Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaofeng Qiu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Ultrafast Transient Materials Science Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
34
|
Besic V, Habibolahi F, Noël B, Rupp S, Genovesio A, Lebreton A. Coordination of transcriptional and translational regulations in human epithelial cells infected by Listeria monocytogenes. RNA Biol 2020; 17:1492-1507. [PMID: 32584699 PMCID: PMC7549700 DOI: 10.1080/15476286.2020.1777380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The invasion of mammalian cells by intracellular bacterial pathogens reshuffles their gene expression and functions; however, we lack dynamic insight into the distinct control levels that shape the host response. Here, we have addressed the respective contribution of transcriptional and translational regulations during a time-course of infection of human intestinal epithelial cells by an epidemic strain of Listeria monocytogenes, using transcriptome analysis paralleled with ribosome profiling. Upregulations were dominated by early transcriptional activation of pro-inflammatory genes, whereas translation inhibition appeared as the major driver of downregulations. Instead of a widespread but transient shutoff, translation inhibition affected specifically and durably transcripts encoding components of the translation machinery harbouring a 5'-terminal oligopyrimidine motif. Pre-silencing the most repressed target gene (PABPC1) slowed down the intracellular multiplication of Listeria monocytogenes, suggesting that the infected host cell can benefit from the repression of genes involved in protein synthesis and thereby better control infection.
Collapse
Affiliation(s)
- Vinko Besic
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fatemeh Habibolahi
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Benoît Noël
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sebastian Rupp
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Auguste Genovesio
- Computational Biology and Bioinformatics Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Alice Lebreton
- Bacterial Infection & RNA Destiny Group, Institut de biologie de l’ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France
- INRAE, IBENS, Paris, France
| |
Collapse
|
35
|
de Castro TBR, Canesso MCC, Boroni M, Chame DF, Souza DDL, de Toledo NE, Tahara EB, Pena SD, Machado CR, Chiari E, Macedo A, Franco GR. Differential Modulation of Mouse Heart Gene Expression by Infection With Two Trypanosoma cruzi Strains: A Transcriptome Analysis. Front Genet 2020; 11:1031. [PMID: 33088283 PMCID: PMC7495023 DOI: 10.3389/fgene.2020.01031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
The protozoan Trypanosoma cruzi (T. cruzi) is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and T. cruzi are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system. Our group previously showed that distinct strains of T. cruzi (JG and Col1.7G2) acquired differential tissue distribution in the chronic stage in dually infected BALB/c mice. To investigate changes in the host triggered by the two distinct T. cruzi strains, we assessed the gene expression profiles of BALB/c mouse hearts infected with either JG, Col1.7G2 or an equivalent mixture of both parasites during the initial phase of infection. This study demonstrates the clear differences in modulation of host gene expression by both parasites. Col1.7G2 strongly activated Th1-polarized immune signature genes, whereas JG caused only minor activation of the host immune response. Moreover, JG strongly reduced the expression of genes encoding ribosomal proteins and mitochondrial proteins related to the electron transport chain. Interestingly, the evaluation of gene expression in mice inoculated with a mixture of the parasites produced expression profiles with both up- and downregulated genes, indicating the coexistence of both parasite strains in the heart during the acute phase. This study suggests that different strains of T. cruzi may be distinguished by their efficiency in activating the immune system, modulating host energy metabolism and reactive oxygen species production and decreasing protein synthesis during early infection, which may be crucial for parasite persistence in specific organs.
Collapse
Affiliation(s)
| | | | - Mariana Boroni
- Laboratório de Bioinformática e Biologia Computacional, Centro de Pesquisas, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Daniela Ferreira Chame
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Nayara Evelin de Toledo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Eric Birelli Tahara
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Sergio Danilo Pena
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Andrea Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| | - Gloria Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
37
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
38
|
Neveu E, Khalifeh D, Salamin N, Fasshauer D. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Curr Biol 2020; 30:2468-2480.e5. [PMID: 32442459 DOI: 10.1016/j.cub.2020.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
A defining feature of eukaryotic cells is the presence of numerous membrane-bound organelles that subdivide the intracellular space into distinct compartments. How the eukaryotic cell acquired its internal complexity is still poorly understood. Material exchange among most organelles occurs via vesicles that bud off from a source and specifically fuse with a target compartment. Central players in the vesicle fusion process are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. These small tail-anchored (TA) membrane proteins zipper into elongated four-helix bundles that pull membranes together. SNARE proteins are highly conserved among eukaryotes but are thought to be absent in prokaryotes. Here, we identified SNARE-like factors in the genomes of uncultured organisms of Asgard archaea of the Heimdallarchaeota clade, which are thought to be the closest living relatives of eukaryotes. Biochemical experiments show that the archaeal SNARE-like proteins can interact with eukaryotic SNARE proteins. We did not detect SNAREs in α-proteobacteria, the closest relatives of mitochondria, but identified several genes encoding for SNARE proteins in γ-proteobacteria of the order Legionellales, pathogens that live inside eukaryotic cells. Very probably, their SNAREs stem from lateral gene transfer from eukaryotes. Together, this suggests that the diverse set of eukaryotic SNAREs evolved from an archaeal precursor. However, whether Heimdallarchaeota actually have a simplified endomembrane system will only be seen when we succeed studying these organisms under the microscope.
Collapse
Affiliation(s)
- Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dany Khalifeh
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, Génopode, 1015 Lausanne, Switzerland.
| |
Collapse
|
39
|
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020; 8:286. [PMID: 32391321 PMCID: PMC7193053 DOI: 10.3389/fchem.2020.00286] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria infection is a major public health problem due to the high morbidity and mortality rates, as well as the increased expenditure on patient management. Although there are several options for antimicrobial therapy, their efficacy is limited because of the occurrence of drug-resistant bacteria. Many conventional antibiotics have failed to show significant amelioration in overall survival of infectious patients. Nanomedicine for delivering antibiotics provides an opportunity to improve the efficiency of the antibacterial regimen. Nanosystems used for antibiotic delivery and targeting to infection sites render some benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged antibiotic half-life, tissue targeting, and minimal adverse effects. The nanocarriers' sophisticated material engineering tailors the controllable physicochemical properties of the nanoparticles for bacterial targeting through passive or active targeting. In this review, we highlight the recent progress on the development of antibacterial nanoparticles loaded with antibiotics. We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for bacterial eradication. Passive targeting by modulating the nanoparticle structure and the physicochemical properties is an option for efficient drug delivery to the bacteria. In addition, active targeting, such as magnetic hyperthermia induced by iron oxide nanoparticles, is another efficient way to deliver the drugs to the targeted site. The nanoparticles are also designed to respond to the change in environment pH or enzymes to trigger the release of the antibiotics. This article offers an overview of the benefits of antibacterial nanosystems for treating infectious diseases.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung City, Taiwan
| | - Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jia-You Fang
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
40
|
Liu Y, Jia Y, Yang K, Wang Z. Heterogeneous Strategies to Eliminate Intracellular Bacterial Pathogens. Front Microbiol 2020; 11:563. [PMID: 32390959 PMCID: PMC7192003 DOI: 10.3389/fmicb.2020.00563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic tolerance in bacterial pathogens that are genetically susceptible, but phenotypically tolerant to treatment, represents a growing crisis for public health. In particular, the intracellular bacteria-mediated antibiotic tolerance by acting as “Trojan horses” play a critical and underappreciated role in the disease burden of bacterial infections. Thus, more intense efforts are required to tackle this problem. In this review, we firstly provide a brief overview of modes of action of bacteria invasion and survival in macrophage or non-professional phagocytic cells. Furthermore, we summarize our current knowledge about promising strategies to eliminate these intracellular bacterial pathogens, including direct bactericidal agents, antibiotic delivery to infection sites by various carriers, and activation of host immune functions. Finally, we succinctly discuss the challenges faced by bringing them into clinical trials and our constructive perspectives.
Collapse
Affiliation(s)
- Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuqian Jia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kangni Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
41
|
Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin Cell Dev Biol 2020; 99:163-171. [DOI: 10.1016/j.semcdb.2019.05.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
|
42
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
43
|
Goldberg DE, Zimmerberg J. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of Malaria Parasites. Trends Parasitol 2020; 36:138-146. [PMID: 31866184 PMCID: PMC6937376 DOI: 10.1016/j.pt.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022]
Abstract
When a malaria parasite invades a host erythrocyte it pushes itself in and invaginates a portion of the host membrane, thereby sealing itself inside and establishing itself in the resulting vacuole. The parasitophorous vacuolar membrane (PVM) that surrounds the parasite is modified by the parasite, using its secretory organelles. To survive within this enveloping membrane, the organism must take in nutrients, secrete wastes, export proteins into the host cell, and eventually egress. Here, we review current understanding of the unique solutions Plasmodium has evolved to these challenges and discuss the remaining questions.
Collapse
Affiliation(s)
- Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
45
|
Black MH, Osinski A, Gradowski M, Servage KA, Pawłowski K, Tomchick DR, Tagliabracci VS. Bacterial pseudokinase catalyzes protein polyglutamylation to inhibit the SidE-family ubiquitin ligases. Science 2019; 364:787-792. [PMID: 31123136 DOI: 10.1126/science.aaw7446] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.
Collapse
Affiliation(s)
- Miles H Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, Dallas, TX 75390, USA
| | - Krzysztof Pawłowski
- Warsaw University of Life Sciences, Warsaw, Poland.,Lund University, Lund, Sweden
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Sarshar M, Scribano D, Tranquilli G, Di Pietro M, Filardo S, Zagaglia C, Sessa R, Palamara AT, Ambrosi C. A simple, fast and reliable scan-based technique as a novel approach to quantify intracellular bacteria. BMC Microbiol 2019; 19:252. [PMID: 31718545 PMCID: PMC6849193 DOI: 10.1186/s12866-019-1625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background Quantification of intracellular bacteria is fundamental in many areas of cellular and clinical microbiology to study acute and chronic infections. Therefore, rapid, accurate and low-cost methods represent valuable tools in determining bacterial ability to persist and proliferate within eukaryotic cells. Results Herein, we present the first application of the immunofluorescence In-Cell Western (ICW) assay aimed at quantifying intracellular bacteria in in vitro infection models. The performance of this new approach was evaluated in cell culture infection models using three microorganisms with different lifestyles. Two facultative intracellular bacteria, the fast-growing Shigella flexneri and a persistent strain of Escherichia coli, as well as the obligate intracellular bacterium Chlamydia trachomatis were chosen as bacterial models. The ICW assay was performed in parallel with conventional quantification methods, i.e. colony forming units (CFUs) and inclusion forming units (IFUs). The fluorescence signal intensity values from the ICW assay were highly correlated to CFU/IFUs counting and showed coefficients of determination (R2), ranging from 0,92 to 0,99. Conclusions The ICW assay offers several advantages including sensitivity, reproducibility, high speed, operator-independent data acquisition and overtime stability of fluorescence signals. All these features, together with the simplicity in performance, make this assay particularly suitable for high-throughput screening and diagnostic approaches.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - Giulia Tranquilli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Cecilia Ambrosi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy. .,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy.
| |
Collapse
|
47
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
48
|
Antunes S, Couto J, Ferrolho J, Sanches GS, Merino Charrez JO, De la Cruz Hernández N, Mazuz M, Villar M, Shkap V, de la Fuente J, Domingos A. Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Front Physiol 2019; 10:318. [PMID: 31001128 PMCID: PMC6454348 DOI: 10.3389/fphys.2019.00318] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A system biology approach was used to gain insight into tick biology and interactions between vector and pathogen. Rhipicephalus annulatus is one of the main vectors of Babesia bigemina which has a massive impact on animal health. It is vital to obtain more information about this relationship, to better understand tick and pathogen biology, pathogen transmission dynamics, and new potential control approaches. In ticks, salivary glands (SGs) play a key role during pathogen infection and transmission. RNA sequencing obtained from uninfected and B. bigemina infected SGs obtained from fed female ticks resulted in 6823 and 6475 unigenes, respectively. From these, 360 unigenes were found to be differentially expressed (p < 0.05). Reversed phase liquid chromatography-mass spectrometry identified a total of 3679 tick proteins. Among them 406 were differently represented in response to Babesia infection. The omics data obtained suggested that Babesia infection lead to a reduction in the levels of mRNA and proteins (n = 237 transcripts, n = 212 proteins) when compared to uninfected controls. Integrated transcriptomics and proteomics datasets suggested a key role for stress response and apoptosis pathways in response to infection. Thus, six genes coding for GP80, death-associated protein kinase (DAPK-1), bax inhibitor-1 related (BI-1), heat shock protein (HSP), heat shock transcription factor (PHSTF), and queuine trna-ribosyltransferase (QtRibosyl) were selected and RNA interference (RNAi) performed. Gene silencing was obtained for all genes except phstf. Knockdown of gp80, dapk-1, and bi-1 led to a significant increase in Babesia infection levels while hsp and QtRibosyl knockdown resulted in a non-significant decrease of infection levels when compared to the respective controls. Gene knockdown did not affect tick survival, but engorged female weight and egg production were affected in the gp80, dapk-1, and QtRibosyl-silenced groups in comparison to controls. These results advanced our understanding of tick-Babesia molecular interactions, and suggested new tick antigens as putative targets for vaccination to control tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Ned De la Cruz Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Varda Shkap
- Kimron Veterinary Institute, Bet Dagan, Israel
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
49
|
Fattouh N, Cazevieille C, Landmann F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl Trop Dis 2019; 13:e0007218. [PMID: 30893296 PMCID: PMC6426186 DOI: 10.1371/journal.pntd.0007218] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
The reproductive parasites Wolbachia are the most common endosymbionts on earth, present in a plethora of arthropod species. They have been introduced into mosquitos to successfully prevent the spread of vector-borne diseases, yet the strategies of host cell subversion underlying their obligate intracellular lifestyle remain to be explored in depth in order to gain insights into the mechanisms of pathogen-blocking. Like some other intracellular bacteria, Wolbachia reside in a host-derived vacuole in order to replicate and escape the immune surveillance. Using here the pathogen-blocking Wolbachia strain from Drosophila melanogaster, introduced into two different Drosophila cell lines, we show that Wolbachia subvert the endoplasmic reticulum to acquire their vacuolar membrane and colonize the host cell at high density. Wolbachia redistribute the endoplasmic reticulum, and time lapse experiments reveal tight coupled dynamics suggesting important signalling events or nutrient uptake. Wolbachia infection however does not affect the tubular or cisternal morphologies. A fraction of endoplasmic reticulum becomes clustered, allowing the endosymbionts to reside in between the endoplasmic reticulum and the Golgi apparatus, possibly modulating the traffic between these two organelles. Gene expression analyses and immunostaining studies suggest that Wolbachia achieve persistent infections at very high titers without triggering endoplasmic reticulum stress or enhanced ERAD-driven proteolysis, suggesting that amino acid salvage is achieved through modulation of other signalling pathways. Wolbachia are a genus of intracellular bacteria living in symbiosis with millions of arthropod species. They have the ability to block the transmission of arboviruses when introduced into mosquito vectors, by interfering with the cellular resources exploited by these viruses. Despite the biomedical interest of this symbiosis, little is known about the mechanisms by which Wolbachia survive and replicate in the host cell. We show here that the membrane composing the Wolbachia vacuole is acquired from the endoplasmic reticulum, a central organelle required for protein and lipid synthesis, and from which originates a vesicular trafficking toward the Golgi apparatus and the secretory pathway. Wolbachia modify the distribution of this organelle which is a potential source of membrane and likely of nutrients as well. In contrast to some intracellular pathogenic bacteria, the effect of Wolbachia on the cell homeostasis does not induce a stress on the endoplasmic reticulum. One of the consequences of such a stress would be an increased proteolysis used to relieve the cell from an excess of misfolded proteins. Incidentally, this suggests that Wolbachia do not acquire amino acids from the host cell through this strategy.
Collapse
Affiliation(s)
| | - Chantal Cazevieille
- MRI-COMET, Plateau de microscopie électronique, U1051 INM, Hôpital Saint Eloi, Montpellier, France
| | | |
Collapse
|
50
|
Moss SM, Taylor IR, Ruggero D, Gestwicki JE, Shokat KM, Mukherjee S. A Legionella pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein Synthesis. Cell Host Microbe 2019; 25:454-462.e6. [PMID: 30827827 DOI: 10.1016/j.chom.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/10/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022]
Abstract
Legionella pneumophila (L.p.), the microbe responsible for Legionnaires' disease, secretes ∼300 bacterial proteins into the host cell cytosol. A subset of these proteins affects a wide range of post-translational modifications (PTMs) to disrupt host cellular pathways. L.p. has 5 conserved eukaryotic-like Ser/Thr effector kinases, LegK1-4 and LegK7, which are translocated during infection. Using a chemical genetic screen, we identified the Hsp70 chaperone family as a direct host target of LegK4. Phosphorylation of Hsp70s at T495 in the substrate-binding domain disrupted Hsp70's ATPase activity and greatly inhibited its protein folding capacity. Phosphorylation of cytosolic Hsp70 by LegK4 resulted in global translation inhibition and an increase in the amount of Hsp70 on highly translating polysomes. LegK4's ability to inhibit host translation via a single PTM uncovers a role for Hsp70 in protein synthesis and directly links it to the cellular translational machinery.
Collapse
Affiliation(s)
- Steven M Moss
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|