1
|
Wang X, Liu X, Song K, Du L. An insight into the roles of ubiquitin-specific proteases in plants: development and growth, morphogenesis, and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1396634. [PMID: 38993940 PMCID: PMC11236618 DOI: 10.3389/fpls.2024.1396634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024]
Abstract
Ubiquitination is a highly conserved and dynamic post-translational modification in which protein substrates are modified by ubiquitin to influence their activity, localization, or stability. Deubiquitination enzymes (DUBs) counter ubiquitin signaling by removing ubiquitin from the substrates. Ubiquitin-specific proteases (UBPs), the largest subfamily of DUBs, are conserved in plants, serving diverse functions across various cellular processes, although members within the same group often exhibit functional redundancy. Here, we briefly review recent advances in understanding the biological roles of UBPs, particularly the molecular mechanism by which UBPs regulate plant development and growth, morphogenesis, and stress response, which sheds light on the mechanistic roles of deubiquitination in plants.
Collapse
Affiliation(s)
- Xiuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaixuan Song
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
3
|
Stier A, Gilberto S, Mohamed WI, Royall LN, Helenius J, Mikicic I, Sajic T, Beli P, Müller DJ, Jessberger S, Peter M. The CUL4B-based E3 ubiquitin ligase regulates mitosis and brain development by recruiting phospho-specific DCAFs. EMBO J 2023; 42:e112847. [PMID: 37365982 PMCID: PMC10476281 DOI: 10.15252/embj.2022112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
The paralogs CUL4A and CUL4B assemble cullin-RING E3 ubiquitin ligase (CRL) complexes regulating multiple chromatin-associated cellular functions. Although they are structurally similar, we found that the unique N-terminal extension of CUL4B is heavily phosphorylated during mitosis, and the phosphorylation pattern is perturbed in the CUL4B-P50L mutation causing X-linked intellectual disability (XLID). Phenotypic characterization and mutational analysis revealed that CUL4B phosphorylation is required for efficient progression through mitosis, controlling spindle positioning and cortical tension. While CUL4B phosphorylation triggers chromatin exclusion, it promotes binding to actin regulators and to two previously unrecognized CUL4B-specific substrate receptors (DCAFs), LIS1 and WDR1. Indeed, co-immunoprecipitation experiments and biochemical analysis revealed that LIS1 and WDR1 interact with DDB1, and their binding is enhanced by the phosphorylated N-terminal domain of CUL4B. Finally, a human forebrain organoid model demonstrated that CUL4B is required to develop stable ventricular structures that correlate with onset of forebrain differentiation. Together, our study uncovers previously unrecognized DCAFs relevant for mitosis and brain development that specifically bind CUL4B, but not the CUL4B-P50L patient mutant, by a phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Anna Stier
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Samuel Gilberto
- Institute of BiochemistryETH ZurichZurichSwitzerland
- Present address:
Monte Rosa TherapeuticsBaselSwitzerland
| | | | - Lars N Royall
- Brain Research InstituteUniversity of ZurichZurichSwitzerland
| | - Jonne Helenius
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | - Tatjana Sajic
- Institute of Molecular Systems BiologyETH ZürichZürichSwitzerland
- Present address:
Faculty Unit of Toxicology, CURML, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Petra Beli
- Institute of Molecular BiologyMainzGermany
- Institute of Developmental Biology and Neurobiology (IDN)Johannes Gutenberg UniversityMainzGermany
| | - Daniel J Müller
- Department of Biosystems Science and EngineeringETH ZurichBaselSwitzerland
| | | | | |
Collapse
|
4
|
Yan D, He Q, Pei L, Yang M, Huang L, Kong J, He W, Liu H, Xu S, Qin H, Lin T, Huang J. The APC/C E3 ligase subunit ANAPC11 mediates FOXO3 protein degradation to promote cell proliferation and lymph node metastasis in urothelial bladder cancer. Cell Death Dis 2023; 14:516. [PMID: 37573356 PMCID: PMC10423259 DOI: 10.1038/s41419-023-06000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Urothelial bladder cancer (UBC) is one of the most prevalent malignancies worldwide, with striking tumor heterogeneity. Elucidating the molecular mechanisms that can be exploited for the treatment of aggressive UBC is a particularly relevant goal. Protein ubiquitination is a critical post-translational modification (PTM) that mediates the degradation of target protein via the proteasome. However, the roles of aberrant protein ubiquitination in UBC development and the underlying mechanisms by which it drives tumor progression remain unclear. In this study, taking advantage of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9 technology, we identified the ubiquitin E3 ligase ANAPC11, a critical subunit of the anaphase-promoting complex/cyclosome (APC/C), as a potential oncogenic molecule in UBC cells. Our clinical analysis showed that elevated expression of ANAPC11 was significantly correlated with high T stage, positive lymph node (LN) metastasis, and poor outcomes in UBC patients. By employing a series of in vitro experiments, we demonstrated that ANAPC11 enhanced the proliferation and invasiveness of UBC cells, while knockout of ANAPC11 inhibited the growth and LN metastasis of UBC cells in vivo. By conducting immunoprecipitation coupled with mass spectrometry, we confirmed that ANAPC11 increased the ubiquitination level of the Forkhead transcription factor FOXO3. The resulting decrease in FOXO3 protein stability led to the downregulation of the cell cycle regulator p21 and decreased expression of GULP1, a downstream effector of androgen receptor signaling. Taken together, these findings indicated that ANAPC11 plays an oncogenic role in UBC by modulating FOXO3 protein degradation. The ANAPC11-FOXO3 regulatory axis might serve as a novel therapeutic target for UBC.
Collapse
Affiliation(s)
- Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingqing He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Pei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meihua Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lifang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shizhong Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haide Qin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
High-Content RNAi Phenotypic Screening Unveils the Involvement of Human Ubiquitin-Related Enzymes in Late Cytokinesis. Cells 2022; 11:cells11233862. [PMID: 36497121 PMCID: PMC9737832 DOI: 10.3390/cells11233862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.
Collapse
|
6
|
Chandrasekaran AP, Tyagi A, Poondla N, Sarodaya N, Karapurkar JK, Kaushal K, Park CH, Hong SH, Kim KS, Ramakrishna S. Dual role of deubiquitinating enzyme USP19 regulates mitotic progression and tumorigenesis by stabilizing survivin. Mol Ther 2022; 30:3414-3429. [PMID: 35918893 PMCID: PMC9637645 DOI: 10.1016/j.ymthe.2022.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
Survivin is a component of the chromosomal passenger complex, which includes Aurora B, INCENP, and Borealin, and is required for chromosome segregation and cytokinesis. We performed a genome-wide screen of deubiquitinating enzymes for survivin. For the first time, we report that USP19 has a dual role in the modulation of mitosis and tumorigenesis by regulating survivin expression. Our results found that USP19 stabilizes and interacts with survivin in HCT116 cells. USP19 deubiquitinates survivin protein and extends its half-life. We also found that USP19 functions as a mitotic regulator by controlling the downstream signaling of survivin protein. Targeted genome knockout verified that USP19 depletion leads to several mitotic defects, including cytokinesis failure. In addition, USP19 depletion results in significant enrichment of apoptosis and reduces the growth of tumors in the mouse xenograft. We envision that simultaneous targeting of USP19 and survivin in oncologic drug development would increase therapeutic value and minimize redundancy.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Janardhan Keshav Karapurkar
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, 222 Wangsimni-ro, Seongdong, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
7
|
Banerjee M, Yaddanapudi K, States JC. Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure. Toxicol Appl Pharmacol 2022; 454:116255. [PMID: 36162444 PMCID: PMC9683715 DOI: 10.1016/j.taap.2022.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
9
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
10
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
11
|
USP13 modulates the stability of the APC/C adaptor CDH1. Mol Biol Rep 2022; 49:4079-4087. [DOI: 10.1007/s11033-022-07279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 01/23/2023]
|
12
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
13
|
The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice. J Nutr Biochem 2022; 105:108993. [DOI: 10.1016/j.jnutbio.2022.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/20/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
|
14
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Hong SY, Lu YC, Hsiao SH, Kao YR, Lee MH, Lin YP, Wang CY, Wu CW. Stabilization of AURKA by the E3 ubiquitin ligase CBLC in lung adenocarcinoma. Oncogene 2022; 41:1907-1917. [PMID: 35149839 DOI: 10.1038/s41388-022-02180-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Abstract
CBL family proteins (CBL, CBLB and CBLC in mammals) are E3 ubiquitin ligases of protein tyrosine kinases. CBL mediates the lysosomal degradation of activated EGFR through K63-linked ubiquitination, while CBLC has an oncogenic function by positively regulating EGFR activation through K6 and K11-linked ubiquitination in EGFR mutant lung adenocarcinoma (LAD). Here, we used immunoprecipitation and mass spectrometry to study the CBLC interactome, and found that CBLC is also involved in cell cycle regulation by stabilizing Aurora kinase A (AURKA). CBLC interacted with the kinase domain of AURKA and positively regulated the stability of AURKA by conjugating monoubiquitination and K11/K63-linked polyubiquitination, which are protective from degrading K11/K48 polyubiquitination. CBLC depletion markedly decreased the half-life of AURKA in cycloheximide-treated LAD cells. When LAD cells were synchronized with double thymidine block at the G1/S boundary and then released into mitotic arrest, CBLC depletion delayed the accumulation and activation of AURKA and prevented cancer cells from entering mitosis. CBLC deficiency significantly delayed cell cycle progression, reduced the mitotic population, and increased apoptosis of LAD cells. Targeting CBLC inhibited tumor growth of LAD cells and enhanced their sensitivity to paclitaxel in xenograft models. Immunohistochemical staining of the tissue microarray also revealed a positive correlation between the expression of CBLC and AURKA in normal and LAD tissues, further supporting the positive regulation of AURKA expression by CBLC. In summary, these findings indicate that the oncogenic E3 ligase CBLC plays a role in mitotic entry by stabilizing AURKA via ubiquitination in LAD. This work demonstrates that targeting CBLC combined with paclitaxel might be a potential option for the treatment of LAD patients who have no available targeted therapies.
Collapse
Affiliation(s)
- Shiao-Ya Hong
- Medical Research Center, Cardinal Tien Hospital, New Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chun Lu
- Medical Research Center, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Shih-Hsin Hsiao
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Hsuan Lee
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei, Taiwan. .,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
16
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
17
|
Huang J, Zhan Y, Jiang L, Gao Y, Zhao B, Zhang Y, Zhang W, Zheng J, Yu J. Identification of the Potential Prognosis Biomarkers in Hepatocellular Carcinoma: An Analysis Based on WGCNA and PPI. Int J Gen Med 2021; 14:9555-9565. [PMID: 34916837 PMCID: PMC8670864 DOI: 10.2147/ijgm.s338500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Aim This study was done to determine biomarkers for the prognostic prediction of hepatocellular carcinoma (HCC). Materials and Methods In the Gene Expression Omnibus, the gene expression profiles of HCC were downloaded. Biomarkers were identified by weighted gene co-expression network analysis and protein–protein interaction network analysis. Results There were 24 modules, which were characterized by the high correlation with HCC. Meanwhile, through enrichment analysis, differentially expressed genes were largely participated in the ubiquitination and autophagy processes. Moreover, PRC1, TOP2A and CKAP2L may be the hub genes involved in HCC tumorigenesis, and their biomarker roles were further demonstrated via Gene Expression Profiling Interactive Analysis (GEPIA) and Oncomine databases. In addition, the levels of PRC1, TOP2A and CKAP2L were obviously up-regulated in the sera of HCC patients. Conclusion PRC1, TOP2A and CKAP2L may serve as biomarkers for the prognostic prediction of HCC patients.
Collapse
Affiliation(s)
- Junting Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Lili Jiang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yuxiang Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Binyu Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yuxiao Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Wenjie Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jinglu Yu
- Department of Laboratory Medicine, Lishui Municipal Central Hospital, Lishui, People's Republic of China.,The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, People's Republic of China
| |
Collapse
|
18
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
19
|
Cao L, Wang S, Zhao L, Qin Y, Wang H, Cheng Y. The Inactivation of Arabidopsis UBC22 Results in Abnormal Chromosome Segregation in Female Meiosis, but Not in Male Meiosis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112418. [PMID: 34834780 PMCID: PMC8625819 DOI: 10.3390/plants10112418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Protein ubiquitination is important for the regulation of meiosis in eukaryotes, including plants. However, little is known about the involvement of E2 ubiquitin-conjugating enzymes in plant meiosis. Arabidopsis UBC22 is a unique E2 enzyme, able to catalyze the formation of ubiquitin dimers through lysine 11 (K11). Previous work has shown that ubc22 mutants are defective in megasporogenesis, with most ovules having no or abnormally functioning megaspores; furthermore, some mutant plants show distinct phenotypes in vegetative growth. In this study, we showed that chromosome segregation and callose deposition were abnormal in mutant female meiosis while male meiosis was not affected. The meiotic recombinase DMC1, required for homologous chromosome recombination, showed a dispersed distribution in mutant female meiocytes compared to the presence of strong foci in WT female meiocytes. Based on an analysis of F1 plants produced from crosses using a mutant as the female parent, about 24% of female mutant gametes had an abnormal content of DNA, resulting in frequent aneuploids among the mutant plants. These results show that UBC22 is critical for normal chromosome segregation in female meiosis but not for male meiosis, and they provide important leads for studying the role of UBC22 and K11-linked ubiquitination.
Collapse
Affiliation(s)
- Ling Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Lihua Zhao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.C.); (L.Z.); (Y.Q.)
| |
Collapse
|
20
|
MEKK1-dependent activation of the CRL4 complex is important for DNA damage-induced degradation of p21 and DDB2 and cell survival. Mol Cell Biol 2021; 41:e0008121. [PMID: 34251884 PMCID: PMC8462458 DOI: 10.1128/mcb.00081-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes including the global genome nucleotide excision repair (GG-NER) pathway. Here we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the Caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger auto-ubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation and cell survival. These data might have also implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide-derivatives.
Collapse
|
21
|
D'Amico F, Mukhopadhyay R, Ovaa H, Mulder MPC. Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. Chembiochem 2021; 22:2011-2031. [PMID: 33482040 PMCID: PMC8251876 DOI: 10.1002/cbic.202000787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitylation machinery regulates several fundamental biological processes from protein homeostasis to a wide variety of cellular signaling pathways. As a consequence, its dysregulation is linked to diseases including cancer, neurodegeneration, and autoimmunity. With this review, we aim to highlight the therapeutic potential of targeting E3 ligases, with a special focus on an emerging class of RING ligases, named tri-partite motif (TRIM) proteins, whose role as targets for drug development is currently gaining pharmaceutical attention. TRIM proteins exert their catalytic activity as scaffolds involved in many protein-protein interactions, whose multidomains and adapter-like nature make their druggability very challenging. Herein, we give an overview of the current understanding of this class of single polypeptide RING E3 ligases and discuss potential targeting options.
Collapse
Affiliation(s)
- Francesca D'Amico
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Rishov Mukhopadhyay
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333ZCLeidenThe Netherlands
| |
Collapse
|
22
|
Huber RJ, Kim WD, Mathavarajah S. Inhibiting Neddylation with MLN4924 Suppresses Growth and Delays Multicellular Development in Dictyostelium discoideum. Biomolecules 2021; 11:482. [PMID: 33807046 PMCID: PMC8005062 DOI: 10.3390/biom11030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Neddylation is a post-translational modification that is essential for a variety of cellular processes and is linked to many human diseases including cancer, neurodegeneration, and autoimmune disorders. Neddylation involves the conjugation of the ubiquitin-like modifier neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target proteins, and has been studied extensively in various eukaryotes including fungi, plants, and metazoans. Here, we examine the biological processes influenced by neddylation in the social amoeba, Dictyostelium discoideum, using a well-established inhibitor of neddylation, MLN4924 (pevonedistat). NEDD8, and the target of MLN4924 inhibition, NEDD8-activating enzyme E1 (NAE1), are highly conserved in D. discoideum (Nedd8 and Nae1, respectively). Treatment of D. discoideum cells with MLN4924 increased the amount of free Nedd8, suggesting that MLN4924 inhibited neddylation. During growth, MLN4924 suppressed cell proliferation and folic acid-mediated chemotaxis. During multicellular development, MLN4924 inhibited cyclic adenosine monophosphate (cAMP)-mediated chemotaxis, delayed aggregation, and suppressed fruiting body formation. Together, these findings indicate that neddylation plays an important role in regulating cellular and developmental events during the D. discoideum life cycle and that this organism can be used as a model system to better understand the essential roles of neddylation in eukaryotes, and consequently, its involvement in human disease.
Collapse
Affiliation(s)
- Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
| | - William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada;
| | | |
Collapse
|
23
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence-Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021; 60:7018-7023. [PMID: 33326152 PMCID: PMC8048552 DOI: 10.1002/anie.202013392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/13/2020] [Indexed: 12/15/2022]
Abstract
Development of modulators targeting specific interactions of ubiquitin-based conjugates with their partners is a formidable task since it requires a suitable screening assay and homogeneous ubiquitin conjugates. We developed a novel high-throughput strategy for screening ligands for Lys48-linked tetraubiquitin chain in a relatively simple, fast, and affordable manner. This approach combined with a state-of-the-art toolbox of chemical protein synthesis and a specially optimized Cys deprotection protocol enabled us to design highly potent, Lys48-linked tetraubiquitin chain selective "next generation" dimeric peptide modulators. The dimeric peptide exhibited cancer cell permeability and induced cell death with higher efficiency compared to its monocyclic analogue. These features make our dimeric peptide a promising candidate for further studies using in vivo models. Our assay can be adopted for other various ubiquitin chains in their free or anchored forms as well as conjugates for Ub-like modifiers.
Collapse
Affiliation(s)
- Ganga B. Vamisetti
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Roman Meledin
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Mickal Nawatha
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113-0033Japan
| | - Ashraf Brik
- SchulichFaculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
24
|
Vamisetti GB, Meledin R, Nawatha M, Suga H, Brik A. The Development of a Fluorescence‐Based Competitive Assay Enabled the Discovery of Dimeric Cyclic Peptide Modulators of Ubiquitin Chains. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ganga B. Vamisetti
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Roman Meledin
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Mickal Nawatha
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hiroaki Suga
- Department of Chemistry School of Science The University of Tokyo Tokyo 113-0033 Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
25
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
26
|
Shorstova T, Su J, Zhao T, Dahabieh M, Leibovitch M, De Sa Tavares Russo M, Avizonis D, Rajkumar S, Watson IR, Del Rincón SV, Miller WH, Foulkes WD, Witcher M. Reprogramming of Nucleotide Metabolism Mediates Synergy between Epigenetic Therapy and MAP Kinase Inhibition. Mol Cancer Ther 2021; 20:64-75. [PMID: 33087508 DOI: 10.1158/1535-7163.mct-20-0259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/31/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but often lethal cancer that is diagnosed at a median age of 24 years. Optimal management of patients is not well defined, and current treatment remains challenging, necessitating the discovery of novel therapeutic approaches. The identification of SMARCA4-inactivating mutations invariably characterizing this type of cancer provided insights facilitating diagnostic and therapeutic measures against this disease. We show here that the BET inhibitor OTX015 acts in synergy with the MEK inhibitor cobimetinib to repress the proliferation of SCCOHT in vivo Notably, this synergy is also observed in some SMARCA4-expressing ovarian adenocarcinoma models intrinsically resistant to BETi. Mass spectrometry, coupled with knockdown of newly found targets such as thymidylate synthase, revealed that the repression of a panel of proteins involved in nucleotide synthesis underlies this synergy both in vitro and in vivo, resulting in reduced pools of nucleotide metabolites and subsequent cell-cycle arrest. Overall, our data indicate that dual treatment with BETi and MEKi represents a rational combination therapy against SCCOHT and potentially additional ovarian cancer subtypes.
Collapse
Affiliation(s)
- Tatiana Shorstova
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jie Su
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tiejun Zhao
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Dahabieh
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Matthew Leibovitch
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Daina Avizonis
- Goodman Cancer Research Centre's (GCRC) Metabolomics Facility, McGill University, Montreal, Quebec, Canada
| | - Shivshankari Rajkumar
- Department of Biochemistry, Goodman Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ian R Watson
- Department of Biochemistry, Goodman Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sonia V Del Rincón
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Wilson H Miller
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - William D Foulkes
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
- Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael Witcher
- Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
28
|
Gao Y, Mo W, Zhong L, Jia H, Xu Y, Zhang J, Xu X, Shen W, Wang F, Li T, Liu P, Zhang S. Downregulation of Ubiquitin Inhibits the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820973282. [PMID: 33176591 PMCID: PMC7672754 DOI: 10.1177/1533033820973282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose: Esophageal cancer is one of the most common malignancies worldwide. Ubiquitin-dependent degradation of regulatory proteins reportedly plays a central role in diverse cellular processes. This study investigated the expression levels of ubiquitin in esophageal squamous cell carcinoma tissues and the functions of ubiquitin in the context of esophageal squamous cell carcinoma progression. Methods: The expression of ubiquitin in esophageal squamous cell carcinoma and normal esophageal samples was determined via immunohistochemistry. Serum ubiquitin levels were determined by enzyme-linked immunosorbent assay. The association between serum ubiquitin level and clinicopathological factors was analyzed. Real-time PCR analysis was employed to measure the mRNA levels of the ubiquitin coding genes ubiquitin B and ubiquitin C. Proliferation assays, colony formation assays, and Transwell-based assays were used to determine the influence of ubiquitin on cell growth and cell invasion. Proteomic analysis was performed to identify the proteins associated with ubiquitin. Results: Ubiquitin expression in esophageal squamous cell carcinoma tissues was markedly higher than that in normal and tumor adjacent tissues. The levels of ubiquitin in esophageal squamous cell carcinoma serum samples were significantly higher than those in healthy controls. Serum ubiquitin levels were correlated with tumor stage and lymph node metastasis. To silence the expression of ubiquitin, we knocked down the ubiquitin coding genes ubiquitin B and ubiquitin C in TE-1 and Eca-109 cells. Silencing ubiquitin resulted in the suppression of cell growth, chemoresistance, colony formation and cell migration in esophageal squamous cell carcinoma cells. Proteomic analysis in esophageal squamous cell carcinoma cells showed that knockdown of ubiquitin coding genes deregulated the expression of 159 proteins (92 were upregulated and 67 were downregulated) involved in multiple pathways. These proteins included ferritin light chain, ferritin heavy chain, cellular retinoic acid-binding protein 2, and DNA replication factor 1. Conclusion: Ubiquitin expression is upregulated in esophageal squamous cell carcinoma tissues and serum samples. Serum ubiquitin levels were correlated with tumor stage and lymph node metastasis. Downregulation of ubiquitin suppresses the aggressive phenotypes of esophageal squamous cell carcinoma cells by complex mechanisms; ubiquitin may represent a novel target for the treatment of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Yi Gao
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Wei Mo
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Li Zhong
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Huimin Jia
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yiren Xu
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Ji Zhang
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Weidong Shen
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Fangjun Wang
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Tengfei Li
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Pengfei Liu
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China.,Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, People's Republic of China
| |
Collapse
|
29
|
Hewitt CS, Krabill AD, Das C, Flaherty DP. Development of Ubiquitin Variants with Selectivity for Ubiquitin C-Terminal Hydrolase Deubiquitinases. Biochemistry 2020; 59:3447-3462. [PMID: 32865982 DOI: 10.1021/acs.biochem.9b01076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ubiquitin (Ub) is a highly conserved protein that is covalently attached to substrate proteins as a post-translational modification to regulate signaling pathways such as proteasomal degradation and cell cycle/transcriptional regulation in the eukaryotic cellular environment. Ub signaling is regulated by the homeostasis of substrate protein ubiquitination/deubiquitination by E3 ligases and deubiquitinating enzymes (DUBs) in healthy eukaryotic systems. One such DUB, ubiquitin C-terminal hydrolase L1 (UCHL1), is endogenously expressed in the central nervous system under normal physiological conditions, but overexpression and/or mutation has been linked to various cancers and neurodegenerative diseases. The lack of UCHL1 probing strategies suggests development of a selective Ub variant (UbV) for probing UCHL1's role in these disease states would be beneficial. We describe a computational design approach to investigate UbVs that lend selectivity, both binding and inhibition, to UCHL1 over the close structural homologue UCHL3 and members of other DUB families. A number of UbVs, mainly those containing Thr9 mutations, displayed appreciable binding and inhibition selectivity for UCHL1 over UCHL3, compared to wild-type Ub in in vitro assays. By appending reactive electrophiles to the C-terminus of the UbVs, we created the first activity-based probe (ABP) with demonstrated reaction selectivity for UCH family DUBs over other families in cell lysates. Further kinetic analysis of covalent inhibition by the UbV-ABP with UCHL1 and UCHL3 offers insight into the future design of UCHL1 selective UbV-ABP. These studies serve as a proof of concept of the viability of the in silico design of ubiquitin variants for UCH family DUBs as a step toward the development of macromolecular UCHL1 inhibitors.
Collapse
Affiliation(s)
- Chad S Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
31
|
Esposito M, Akman HB, Giron P, Ceregido MA, Schepers R, Ramos Paez LC, La Monaca E, De Greve J, Coux O, De Trez C, Lindon C, Gutierrez GJ. USP13 controls the stability of Aurora B impacting progression through the cell cycle. Oncogene 2020; 39:6009-6023. [PMID: 32772043 DOI: 10.1038/s41388-020-01396-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Aurora B kinase plays essential roles in mitosis. Its protein levels increase before the onset of mitosis and sharply decrease during mitosis exit. The latter decrease is due to a balance between the actions of the E3 ubiquitin ligase anaphase-promoting complex or cyclosome (activated by the Cdh1 adapter), and the deubiquitinating enzyme USP35. Aurora B also executes important functions in interphase. Abnormal modulation of Aurora B in interphase leads to cell cycle defects often linked to aberrant chromosomal condensation and segregation. Very little is however known about how Aurora B levels are regulated in interphase. Here we found that USP13-associates with and stabilizes Aurora B in cells, especially before their entry into mitosis. In order for USP13 to exert its stabilizing effect on Aurora B, their association is promoted by the Aurora B-mediated phosphorylation of USP13 at Serine 114. We also present evidence that USP13 instigates Aurora B deubiquitination and/or protect it from degradation in a non-catalytic manner. In addition, we report that genetic or chemical modulation of the cellular levels/activity of USP13 affects unperturbed cell-cycle progression. Overall our study unveils the molecular and cellular connections of the USP13-Aurora B axis, which potentially participates in the rewiring of the cell cycle happening in cancer cells.
Collapse
Affiliation(s)
- Mara Esposito
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - H Begum Akman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Philippe Giron
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Laboratory of Molecular and Medical Oncology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - M Angeles Ceregido
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,GlaxoSmithKline, Avenue Pascal, 2-4-6, 1300, Wavre, Belgium
| | - Rogier Schepers
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,VIB-KU Leuven Center for Cancer Biology, Campus Gasthuisberg, Herestraat, 49-B912, Leuven, Belgium
| | - Luis C Ramos Paez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Ablynx NV, Technologiepark 21, Zwijnaarde, 9052, Ghent, Belgium
| | - Esther La Monaca
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jacques De Greve
- Laboratory of Molecular and Medical Oncology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Olivier Coux
- CNRS-CRBM, 1919 Route de Mende, 34293, Montpellier, France
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Gustavo J Gutierrez
- Laboratory of Pathophysiological Cell Signaling, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Galapagos NV, Generaal De Wittelaan L11 A3, 2800, Mechelen, Belgium.
| |
Collapse
|
32
|
Structural insights into the activity and regulation of human Josephin-2. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 3:100011. [PMID: 32647816 PMCID: PMC7337049 DOI: 10.1016/j.yjsbx.2019.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Josephins-1 and -2 are low molecular-weight members of the MJD family of deubiquitinating enzymes. Josephin-2 was shown to cleave K11 ubiquitin linkages, in addition to K48, K63, and mixed linkages. The crystal structure of human Josephin-2 was determined. The structure suggests a potential mechanism for enzyme regulation via mono-ubiquitination.
The MJD family of human deubiquitinating enzymes contains four members: Ataxin-3, the ataxin-3-like protein (AT3L), Josephin-1, and Josephin-2. All share a conserved catalytic unit known as the Josephin domain. Ataxin-3 and AT3L also contain extensive regulatory regions that modulate their functions, whereas Josephins-1 and -2 are substantially smaller, containing only the Josephin domain. To gain insight into how these minimal Josephins differ from their larger relatives, we determined the 2.3 Å X-ray crystal structure of human Josephin-2 and probed the enzyme’s substrate specificity. Several large disordered loops are seen in the structure, suggesting a highly dynamic enzyme. Josephin-2 lacks several allosteric sites found in ataxin-3, but its structure suggests potential regulation via ubiquitination of a loop adjoining the active site. The enzyme preferentially recognizes substrates containing K11, K48, and K63 linkages, pointing toward a possible role in maintenance of protein quality control.
Collapse
|
33
|
Zhang P, Li C, Li H, Yuan L, Dai H, Peng Z, Deng Z, Chang Z, Cui CP, Zhang L. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ 2020; 27:3177-3195. [PMID: 32483383 DOI: 10.1038/s41418-020-0571-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Ovarian tumour domain-containing protein 3 (OTUD3), a key OTU (ovarian tumour protease) family deubiquitylase, plays context-dependent roles in cancers. It suppresses tumorigenesis in breast, colon, liver and cervical cancer through stabilizing PTEN (phosphatase and tension homologue deleted on chromosome 10) while promotes lung tumorigenesis through stabilizing GRP78 (The glucose-regulated protein 78 kDa). The regulation especially post-translational modification of OTUD3 remains unclear. Here, we report that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a ubiquitin ligase for OTUD3. CHIP interacts with, polyubiquitylates OTUD3 and promotes OTUD3 degradation. Knockdown of CHIP stabilizes OTUD3 which leads to elevated GRP78 levels in lung cancer cells. CHIP-knockdown lung cancer cells exhibit increased invasion in OTUD3 and GRP78 dependent manner. Further study demonstrates that CHIP-knockdown lung cancer cells are more prone to metastasize to mice lung when injected intravenously or subcutaneously. Moreover, the expression of CHIP is low in human lung cancer tissues and inversely correlates with OTUD3 expression and GRP78 expression. Furthermore, we identified CHIP mutations in human lung cancers, which reduce CHIP catalytic activity. These findings demonstrate that CHIP is a negative regulator of OTUD3 and CHIP suppresses lung cancer metastasis through inhibiting OTUD3-GRP78 signaling axis.
Collapse
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Chaonan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Lin Yuan
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Hongmiao Dai
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhiqiang Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhikang Deng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| |
Collapse
|
34
|
Bajaj R, Ambaru B, Gupta CM. Deciphering the role of UBA-like domains in intraflagellar distribution and functions of myosin XXI in Leishmania. PLoS One 2020; 15:e0232116. [PMID: 32343719 PMCID: PMC7188243 DOI: 10.1371/journal.pone.0232116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.
Collapse
Affiliation(s)
- Rani Bajaj
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu Ambaru
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chhitar M. Gupta
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
35
|
Pal D, Torres AE, Stromberg BR, Messina AL, Dickson AS, De K, Willard B, Venere M, Summers MK. Chk1-mediated phosphorylation of Cdh1 promotes the SCF βTRCP-dependent degradation of Cdh1 during S-phase and efficient cell-cycle progression. Cell Death Dis 2020; 11:298. [PMID: 32345958 PMCID: PMC7188793 DOI: 10.1038/s41419-020-2493-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/04/2022]
Abstract
APC/CCdh1 is a ubiquitin ligase with roles in numerous diverse processes, including control of cellular proliferation and multiple aspects of the DNA damage response. Precise regulation of APC/CCdh1 activity is central to efficient cell-cycle progression and cellular homeostasis. Here, we have identified Cdh1 as a direct substrate of the replication stress checkpoint effector kinase Chk1 and demonstrate that Chk1-mediated phosphorylation of Cdh1 contributes to its recognition by the SCFβTRCP ubiquitin ligase, promotes efficient S-phase entry, and is important for cellular proliferation during otherwise unperturbed cell cycles. We also find that prolonged Chk1 activity in late S/G2 inhibits Cdh1 accumulation. In addition to promoting control of APC/CCdh1 activity by facilitating Cdh1 destruction, we find that Chk1 also antagonizes activity of the ligase by perturbing the interaction between Cdh1 and the APC/C. Overall, these data suggest that the rise and fall of Chk1 activity contributes to the regulation of APC/CCdh1 activity that enhances the replication process.
Collapse
Affiliation(s)
- Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Abbey L Messina
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kuntal De
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Bioscience Division, Oak Ridge National Lab, Oak Ridge, TN, 37830, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Monica Venere
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
37
|
Jiang Q, Li F, Cheng Z, Kong Y, Chen C. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond. Cell Mol Life Sci 2020; 77:1483-1495. [PMID: 31637449 PMCID: PMC11105068 DOI: 10.1007/s00018-019-03339-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023]
Abstract
Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Fubing Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhuo Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanjie Kong
- Institute of Translation Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, 650204, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
38
|
Liu YZ, Du XX, Zhao QQ, Jiao Q, Jiang H. The expression change of OTUD3-PTEN signaling axis in glioma cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:490. [PMID: 32395534 PMCID: PMC7210146 DOI: 10.21037/atm.2020.03.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background OTU domain-containing protein 3 (OTUD3), as a deubiquitinase (DUB) belonging to the ovarian tumor protease (OTU) family, has been reported to suppress tumor via OTUD3-PTEN signaling axis. Glioma is the most common primary intracranial tumor with high invasiveness and poor prognosis. Although less than half of the patients have phosphatase and tension homologue deleted in chromosome 10 (PTEN) mutations or homozygous deletions, two-thirds of glioma possess diminished PTEN expression. Hence, it is conceivable that other obscure mechanisms may cause the decreased expression of the PTEN protein. Methods OTUD3 expression was assessed in human normal and glioma tissues at The Cancer Genome Atlas (TCGA) database (https://www.cancer.gov/) and Genotype-Tissue Expression (GTEx) database (https://commonfund.nih.gov/GTex). The mRNA levels of OTUD3 in C6 cells and primary astrocytes were detected using real-time fluorescence quantitative PCR. Western blot was performed to assay PTEN and OTUD3 protein expression in C6 cells and primary astrocytes. By generating Kaplan-Meier curves, we predicted the association between OTUD3 expression and prognosis in glioma patients. Results (I) OTUD3 transcription was markedly downregulated in glioma based on microarray data for gene expression between human gliomas and normal brain samples. (II) The mRNA levels of OTUD3 in C6 cells was significantly lower than that of in primary astrocytes. (III) The expressions of protein PTEN and OTUD3 in C6 cells were significantly decreased when compared with primary astrocytes. (IV) Glioma patients with high expression of OTUD3 had a longer survival time than patients with low expression. Conclusions Our present findings demonstrated that low expression of OTUD3 in glioma may be involved in PTEN related glioma and may contribute to patient survival.
Collapse
Affiliation(s)
- Yi-Zhen Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Xi-Xun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qi-Qi Zhao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Lotz C, Lamour V. The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:149-160. [PMID: 35582608 PMCID: PMC9090595 DOI: 10.20517/cdr.2019.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
Abstract
The type 2 DNA topoisomerases (Top2) are conserved enzymes and biomarkers for cell proliferation. The catalytic activities of the human isoform Top2α are essential for the regulation of DNA topology during DNA replication, transcription, and chromosome segregation. Top2α is a prominent target for anti-cancer drugs and is highly regulated by post-translational modifications (PTM). Despite an increasing number of proteomic studies, the extent of PTM in cancer cells and its importance in drug response remains largely uncharacterized. In this review, we highlight the different modifications affecting the human Top2α in healthy and cancer cells, taking advantage of the structure-function information accumulated in the past decades. We also overview the regulation of Top2α by PTM, the level of PTM in cancer cells, and the resistance to therapeutic compounds targeting the Top2 enzyme. Altogether, this review underlines the importance of future studies addressing more systematically the interplay between PTM and Top2 drug resistance.
Collapse
Affiliation(s)
- Christophe Lotz
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
| | - Valérie Lamour
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
40
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
41
|
Tan W, Murphy VJ, Charron A, van Twest S, Sharp M, Constantinou A, Parker MW, Crismani W, Bythell-Douglas R, Deans AJ. Preparation and purification of mono-ubiquitinated proteins using Avi-tagged ubiquitin. PLoS One 2020; 15:e0229000. [PMID: 32092106 PMCID: PMC7039436 DOI: 10.1371/journal.pone.0229000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Site-specific conjugation of ubiquitin onto a range of DNA repair proteins regulates their critical functions in the DNA damage response. Biochemical and structural characterization of these functions are limited by an absence of tools for the purification of DNA repair proteins in purely the ubiquitinated form. To overcome this barrier, we designed a ubiquitin fusion protein that is N-terminally biotinylated and can be conjugated by E3 RING ligases onto various substrates. Biotin affinity purification of modified proteins, followed by cleavage of the affinity tag leads to release of natively-mono-ubiquitinated substrates. As proof-of-principle, we applied this method to several substrates of mono-ubiquitination in the Fanconi anemia (FA)-BRCA pathway of DNA interstrand crosslink repair. These include the FANCI:FANCD2 complex, the PCNA trimer and BRCA1 modified nucleosomes. This method provides a simple approach to study the role of mono-ubiquitination in DNA repair or any other mono-ubiquitination signaling pathways.
Collapse
Affiliation(s)
- Winnie Tan
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Vincent J. Murphy
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Aude Charron
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- National Graduate School of Chemistry of Montpellier (ENSCM), Montpellier, France
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Michael Sharp
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Michael W. Parker
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), The University of Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Garcia-Barcena C, Osinalde N, Ramirez J, Mayor U. How to Inactivate Human Ubiquitin E3 Ligases by Mutation. Front Cell Dev Biol 2020; 8:39. [PMID: 32117970 PMCID: PMC7010608 DOI: 10.3389/fcell.2020.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases are the ultimate enzymes involved in the transfer of ubiquitin to substrate proteins, a process that determines the fate of the modified protein. Numerous diseases are caused by defects in the ubiquitin-proteasome machinery, including when the activity of a given E3 ligase is hampered. Thus, inactivation of E3 ligases and the resulting effects at molecular or cellular level have been the focus of many studies during the last few years. For this purpose, site-specific mutation of key residues involved in either protein interaction, substrate recognition or ubiquitin transfer have been reported to successfully inactivate E3 ligases. Nevertheless, it is not always trivial to predict which mutation(s) will block the catalytic activity of a ligase. Here we review over 250 site-specific inactivating mutations that have been carried out in 120 human E3 ubiquitin ligases. We foresee that the information gathered here will be helpful for the design of future experimental strategies.
Collapse
Affiliation(s)
- Cristina Garcia-Barcena
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
43
|
Pérez-Benavente B, Nasresfahani AF, Farràs R. Ubiquitin-Regulated Cell Proliferation and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:3-28. [PMID: 32274751 DOI: 10.1007/978-3-030-38266-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Rosa Farràs
- Oncogenic Signaling Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
44
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
45
|
Deubiquitinating Enzymes: A Critical Regulator of Mitosis. Int J Mol Sci 2019; 20:ijms20235997. [PMID: 31795161 PMCID: PMC6929034 DOI: 10.3390/ijms20235997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Mitosis is a complex and dynamic process that is tightly regulated by a large number of mitotic proteins. Dysregulation of these proteins can generate daughter cells that exhibit genomic instability and aneuploidy, and such cells can transform into tumorigenic cells. Thus, it is important for faithful mitotic progression to regulate mitotic proteins at specific locations in the cells at a given time in each phase of mitosis. Ubiquitin-dependent modifications play critical roles in this process by regulating the degradation, translocation, or signal transduction of mitotic proteins. Here, we review how ubiquitination and deubiquitination regulate the progression of mitosis. In addition, we summarize the substrates and roles of some deubiquitinating enzymes (DUBs) crucial for mitosis and describe how they contribute error correction during mitosis and control the transition between the mitotic phases.
Collapse
|
46
|
Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J 2019; 16:127. [PMID: 31694654 PMCID: PMC6833258 DOI: 10.1186/s12985-019-1238-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Capsid (C) protein plays an important role in the replication of classical swine fever virus (CSFV). The ubiquitin proteasome system (UPS) involves in replication of many viruses via modulation of viral proteins. The relationship of CSFV with UPS is poorly understood and the impact of 26S proteasome on C protein has never been reported before. METHODS In this study, fused C protein with an EGFP tag is expressed in PK-15 and 3D4/2 cells. MG132 and 3-methyladenine (3-MA) are used to detect the roles of 26S proteasome and autophagolysosome in expression levels of C protein. Truncated and mutant C proteins are used to find the exact residues responsible for the degradation of C protein. Immunoprecipitaion is performed to find whether C protein is ubiquitinated or not. RESULTS C-EGFP protein expresses in a cleaved form at a low level and is degraded by 26S proteasome which could be partly inhibited by MG132. C-terminal residues play more important roles in the degradation of C protein than N-terminal residues. Residues 260 to 267, especially M260 and L261, are crucial for the degradation. In addition, C-terminal residues 262 to 267 determine cleavage efficiency of C protein. CONCLUSIONS CSFV C protein is degraded by 26S proteasome in a ubiquitin-independent manner. Last 8 residues at C-terminus of immature C protein play a major role in proteasomal degradation of CSFV C protein and determine the cleavage efficiency of C protein by signal peptide peptidase (SPP). Our findings provide valuable help for fully understanding degradation process of C protein and contribute to fully understanding the role of C protein in CSFV replication.
Collapse
|
47
|
Khumukcham SS, Samanthapudi VSK, Penugurti V, Kumari A, Kesavan PS, Velatooru LR, Kotla SR, Mazumder A, Manavathi B. Hematopoietic PBX-interacting protein is a substrate and an inhibitor of the APC/C-Cdc20 complex and regulates mitosis by stabilizing cyclin B1. J Biol Chem 2019; 294:10236-10252. [PMID: 31101654 DOI: 10.1074/jbc.ra118.006733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/27/2019] [Indexed: 02/04/2023] Open
Abstract
Proper cell division relies on the coordinated regulation between a structural component, the mitotic spindle, and a regulatory component, anaphase-promoting complex/cyclosome (APC/C). Hematopoietic PBX-interacting protein (HPIP) is a microtubule-associated protein that plays a pivotal role in cell proliferation, cell migration, and tumor metastasis. Here, using HEK293T and HeLa cells, along with immunoprecipitation and immunoblotting, live-cell imaging, and protein-stability assays, we report that HPIP expression oscillates throughout the cell cycle and that its depletion delays cell division. We noted that by utilizing its D box and IR domain, HPIP plays a dual role both as a substrate and inhibitor, respectively, of the APC/C complex. We observed that HPIP enhances the G2/M transition of the cell cycle by transiently stabilizing cyclin B1 by preventing APC/C-Cdc20-mediated degradation, thereby ensuring timely mitotic entry. We also uncovered that HPIP associates with the mitotic spindle and that its depletion leads to the formation of multiple mitotic spindles and chromosomal abnormalities, results in defects in cytokinesis, and delays mitotic exit. Our findings uncover HPIP as both a substrate and an inhibitor of APC/C-Cdc20 that maintains the temporal stability of cyclin B1 during the G2/M transition and thereby controls mitosis and cell division.
Collapse
Affiliation(s)
| | | | - Vasudevarao Penugurti
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Anita Kumari
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - P S Kesavan
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Loka Reddy Velatooru
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Siva Reddy Kotla
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| | - Aprotim Mazumder
- the Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, Hyderabad 500107, Telangana, India
| | - Bramanandam Manavathi
- From the Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India and
| |
Collapse
|
48
|
Song L, Luo ZQ. Post-translational regulation of ubiquitin signaling. J Cell Biol 2019; 218:1776-1786. [PMID: 31000580 PMCID: PMC6548142 DOI: 10.1083/jcb.201902074] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
Song and Luo review the roles of post-translational modifications in ubiquitin signaling. Ubiquitination regulates many essential cellular processes in eukaryotes. This post-translational modification (PTM) is typically achieved by E1, E2, and E3 enzymes that sequentially catalyze activation, conjugation, and ligation reactions, respectively, leading to covalent attachment of ubiquitin, usually to lysine residues of substrate proteins. Ubiquitin can also be successively linked to one of the seven lysine residues on ubiquitin to form distinctive forms of polyubiquitin chains, which, depending upon the lysine used and the length of the chains, dictate the fate of substrate proteins. Recent discoveries revealed that this ubiquitin code is further expanded by PTMs such as phosphorylation, acetylation, deamidation, and ADP-ribosylation, on ubiquitin, components of the ubiquitination machinery, or both. These PTMs provide additional regulatory nodes to integrate development or insulting signals with cellular homeostasis. Understanding the precise roles of these PTMs in the regulation of ubiquitin signaling will provide new insights into the mechanisms and treatment of various human diseases linked to ubiquitination, including neurodegenerative diseases, cancer, infection, and immune disorders.
Collapse
Affiliation(s)
- Lei Song
- Department of Respiratory Medicine and Center of Infection and Immunity, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, The First Hospital of Jilin University, Changchun, China .,Purdue Institute for Inflammation, Immunology and Infectious Diseases and Department of Biological Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
49
|
Zanchetta ME, Meroni G. Emerging Roles of the TRIM E3 Ubiquitin Ligases MID1 and MID2 in Cytokinesis. Front Physiol 2019; 10:274. [PMID: 30941058 PMCID: PMC6433704 DOI: 10.3389/fphys.2019.00274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a post-translational modification that consists of ubiquitin attachment to target proteins through sequential steps catalysed by activating (E1), conjugating (E2), and ligase (E3) enzymes. Protein ubiquitination is crucial for the regulation of many cellular processes not only by promoting proteasomal degradation of substrates but also re-localisation of cellular factors and modulation of protein activity. Great importance in orchestrating ubiquitination relies on E3 ligases as these proteins recognise the substrate that needs to be modified at the right time and place. Here we focus on two members of the TRIpartite Motif (TRIM) family of RING E3 ligases, MID1, and MID2. We discuss the recent findings on these developmental disease-related proteins analysing the link between their activity on essential factors and the regulation of cytokinesis highlighting the possible consequence of alteration of this process in pathological conditions.
Collapse
Affiliation(s)
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
50
|
Qiu J, Luo ZQ. Methods to study phosphoribosylated ubiquitin ligation and removal. Methods Enzymol 2019; 618:149-166. [PMID: 30850050 DOI: 10.1016/bs.mie.2019.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ubiquitination is a prevalent protein modification catalyzed by E1, E2, and E3 enzymes that activate, conjugate, and ligate, respectively, the ubiquitin protein to substrate protein. In order to establish a mutualistic or parasitic relationship with their eukaryotic hosts, many microorganisms hijack different aspects of the ubiquitination machinery using bacterial proteins that function as E3 ligases or as enzymes that modify E2s or ubiquitin. Recently, the SidE family of effector proteins (SidEs) from the intracellular bacterial pathogen Legionella pneumophila was found to catalyze ubiquitination by a mechanism unrelated to the classical three-enzyme cascade. Instead of utilizing ATP, SidEs-catalyzed ubiquitination reactions are energized by nicotinamide adenine dinucleotide (NAD). Ubiquitin is first activated by ADP-ribosylation at residue Arg42 to form ADP-ribosylated ubiquitin (ADPR-Ub). ADPR-Ub is then cleaved by an activity conferred by a phosphodiesterase (PDE)-related domain also embedded in the SidE family proteins. ADPR-Ub cleavage is coupled to covalent attachment of phosphoribosylated ubiquitin to serine residues of target proteins and the release of AMP. Furthermore, SidE-induced ubiquitination can be reversed by SidJ, another virulence factor from L. pneumophila. Here, we describe the experimental details for SdeA-induced ubiquitination of the small GTPase Rab33b and its reversal by SidJ.
Collapse
Affiliation(s)
- Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|