1
|
Contreras A, Perea-Resa C. Transcriptional repression across mitosis: mechanisms and functions. Biochem Soc Trans 2024; 52:455-464. [PMID: 38372373 PMCID: PMC10903446 DOI: 10.1042/bst20231071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Transcription represents a central aspect of gene expression with RNA polymerase machineries (RNA Pol) driving the synthesis of RNA from DNA template molecules. In eukaryotes, a total of three RNA Pol enzymes generate the plethora of RNA species and RNA Pol II is the one transcribing all protein-coding genes. A high number of cis- and trans-acting factors orchestrates RNA Pol II-mediated transcription by influencing the chromatin recruitment, activation, elongation, and/or termination steps. The levels of DNA accessibility, defining open-euchromatin versus close-heterochromatin, delimits RNA Pol II activity as well as the encounter with other factors acting on chromatin such as the DNA replication or DNA repair machineries. The stage of the cell cycle highly influences RNA Pol II activity with mitosis representing the major challenge. In fact, there is a massive inhibition of transcription during the mitotic entry coupled with chromatin dissociation of most of the components of the transcriptional machinery. Mitosis, as a consequence, highly compromises the transcriptional memory and the perpetuation of cellular identity. Once mitosis ends, transcription levels immediately recover to define the cell fate and to safeguard the proper progression of daughter cells through the cell cycle. In this review, we evaluate our current understanding of the transcriptional repression associated with mitosis with a special focus on the molecular mechanisms involved, on the potential function behind the general repression, and on the transmission of the transcriptional machinery into the daughter cells. We finally discuss the contribution that errors in the inheritance of the transcriptional machinery across mitosis might play in stem cell aging.
Collapse
Affiliation(s)
- A. Contreras
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| | - C. Perea-Resa
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), C/Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
2
|
Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol 2024; 25:87-100. [PMID: 37903969 DOI: 10.1038/s41580-023-00662-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/01/2023]
Abstract
Hair follicles are essential appendages of the mammalian skin, as hair performs vital functions of protection, thermoregulation and sensation. Hair follicles harbour exceptional regenerative abilities as they contain multiple somatic stem cell populations such as hair follicle stem cells (HFSCs) and melanocyte stem cells. Surrounding the stem cells and their progeny, diverse groups of cells and extracellular matrix proteins are organized to form a microenvironment (called 'niche') that serves to promote and maintain the optimal functioning of these stem cell populations. Recent studies have shed light on the intricate nature of the HFSC niche and its crucial role in regulating hair follicle regeneration. In this Review, we describe how the niche serves as a signalling hub, communicating, deciphering and integrating both local signals within the skin and systemic inputs from the body and environment to modulate HFSC activity. We delve into the recent advancements in identifying the cellular and molecular nature of the niche, providing a holistic perspective on its essential functions in hair follicle morphogenesis, regeneration and ageing.
Collapse
Affiliation(s)
- Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Srinivasan G, Davis MJ, LeBoeuf MR, Fatemi M, Azher ZL, Lu Y, Diallo AB, Saldias Montivero MK, Kolling FW, Perrard L, Salas LA, Christensen BC, Palys TJ, Karagas MR, Palisoul SM, Tsongalis GJ, Vaickus LJ, Preum SM, Levy JJ. Potential to Enhance Large Scale Molecular Assessments of Skin Photoaging through Virtual Inference of Spatial Transcriptomics from Routine Staining. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:477-491. [PMID: 38160301 PMCID: PMC10813837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.
Collapse
Affiliation(s)
- Gokul Srinivasan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Srinivasan G, Davis M, LeBoeuf M, Fatemi M, Azher Z, Lu Y, Diallo A, Montivero MS, Kolling F, Perrard L, Salas L, Christensen B, Palisoul S, Tsongalis G, Vaickus L, Preum S, Levy J. Potential to Enhance Large Scale Molecular Assessments of Skin Photoaging through Virtual Inference of Spatial Transcriptomics from Routine Staining. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.551188. [PMID: 37577612 PMCID: PMC10418044 DOI: 10.1101/2023.07.30.551188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Current challenges, including limited focus on dermal elastosis variations and reliance on self-reported measures, can introduce subjectivity and inconsistency. Spatial transcriptomics offer an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene on photoaging and prevent cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and inter-patient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal and squamous keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.
Collapse
|
5
|
Ortiz GGR, Mohammadi Y, Nazari A, Ataeinaeini M, Kazemi P, Yasamineh S, Al-Naqeeb BZT, Zaidan HK, Gholizadeh O. A state-of-the-art review on the MicroRNAs roles in hematopoietic stem cell aging and longevity. Cell Commun Signal 2023; 21:85. [PMID: 37095512 PMCID: PMC10123996 DOI: 10.1186/s12964-023-01117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/25/2023] [Indexed: 04/26/2023] Open
Abstract
Aging is a biological process determined through time-related cellular and functional impairments, leading to a decreased standard of living for the organism. Recently, there has been an unprecedented advance in the aging investigation, especially the detection that the rate of senescence is at least somewhat regulated via evolutionarily preserved genetic pathways and biological processes. Hematopoietic stem cells (HSCs) maintain blood generation over the whole lifetime of an organism. The senescence process influences many of the natural features of HSC, leading to a decline in their capabilities, independently of their microenvironment. New studies show that HSCs are sensitive to age-dependent stress and gradually lose their self-renewal and regeneration potential with senescence. MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally inhibit translation or stimulate target mRNA cleavage of target transcripts via the sequence-particular connection. MiRNAs control various biological pathways and processes, such as senescence. Several miRNAs are differentially expressed in senescence, producing concern about their use as moderators of the senescence process. MiRNAs play an important role in the control of HSCs and can also modulate processes associated with tissue senescence in specific cell types. In this review, we display the contribution of age-dependent alterations, including DNA damage, epigenetic landscape, metabolism, and extrinsic factors, which affect HSCs function during aging. In addition, we investigate the particular miRNAs regulating HSCs senescence and age-associated diseases. Video Abstract.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Yasaman Mohammadi
- Faculty of Dentistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Saman Yasamineh
- Stem Cell Research Center at, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ramalingam P, Gutkin MC, Poulos MG, Tillery T, Doughty C, Winiarski A, Freire AG, Rafii S, Redmond D, Butler JM. Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response. Nat Commun 2023; 14:2018. [PMID: 37037837 PMCID: PMC10086043 DOI: 10.1038/s41467-023-37783-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Aging associated defects within stem cell-supportive niches contribute towards age-related decline in stem cell activity. However, mechanisms underlying age-related niche defects, and whether restoring niche function can improve stem cell fitness, remain unclear. Here, we sought to determine whether aged blood stem cell function can be restored by rejuvenating their supportive niches within the bone marrow (BM). We identify Netrin-1 as a critical regulator of BM niche cell aging. Niche-specific deletion of Netrin-1 induces premature aging phenotypes within the BM microenvironment, while supplementation of aged mice with Netrin-1 rejuvenates aged niche cells and restores competitive fitness of aged blood stem cells to youthful levels. We show that Netrin-1 plays an essential role in maintaining active DNA damage responses (DDR), and that aging-associated decline in niche-derived Netrin-1 results in DNA damage accumulation within the BM microenvironment. We show that Netrin-1 supplementation is sufficient to resolve DNA damage and restore regenerative potential of the aged BM niche and blood stem cells to endure serial chemotherapy regimens.
Collapse
Affiliation(s)
- Pradeep Ramalingam
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Michael C Gutkin
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA
| | - Michael G Poulos
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Taylor Tillery
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA
| | - Chelsea Doughty
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA
| | - Agatha Winiarski
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - David Redmond
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jason M Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA.
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA.
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Finger DS, Williams AE, Holt VV, Ables ET. Novel roles for RNA binding proteins squid, hephaesteus, and Hrb27C in Drosophila oogenesis. Dev Dyn 2023; 252:415-428. [PMID: 36308715 PMCID: PMC9991940 DOI: 10.1002/dvdy.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Reproductive capacity in many organisms is maintained by germline stem cells (GSCs). A complex regulatory network influences stem cell fate, including intrinsic factors, local signals, and hormonal and nutritional cues. Posttranscriptional regulatory mechanisms ensure proper cell fate transitions, promoting germ cell differentiation to oocytes. As essential RNA binding proteins with constitutive functions in RNA metabolism, heterogeneous nuclear ribonucleoproteins (hnRNPs) have been implicated in GSC function and axis specification during oocyte development. HnRNPs support biogenesis, localization, maturation, and translation of nascent transcripts. Whether and individual hnRNPs specifically regulate GSC function has yet to be explored. RESULTS We demonstrate that hnRNPs are expressed in distinct patterns in the Drosophila germarium. We show that three hnRNPs, squid, hephaestus, and Hrb27C are cell-autonomously required in GSCs for their maintenance. Although these hnRNPs do not impact adhesion of GSCs to adjacent cap cells, squid and hephaestus (but not Hrb27C) are necessary for proper bone morphogenetic protein signaling in GSCs. Moreover, Hrb27C promotes proper GSC proliferation, whereas hephaestus promotes cyst division. CONCLUSIONS We find that hnRNPs are independently and intrinsically required in GSCs for their maintenance in adults. Our results support the model that hnRNPs play unique roles in stem cells essential for their self-renewal and proliferation.
Collapse
Affiliation(s)
- Danielle S. Finger
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Anna E. Williams
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Vivian V. Holt
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T. Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
8
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
9
|
Sagaradze G, Monakova A, Basalova N, Popov V, Balabanyan V, Efimenko A. Regenerative medicine for male infertility: A focus on stem cell niche injury models. Biomed J 2022; 45:607-614. [PMID: 35123107 PMCID: PMC9486244 DOI: 10.1016/j.bj.2022.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/19/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023] Open
Abstract
Stem and progenitor cells located within stem cell niches maintain the renewal and regeneration of tissues and organs throughout the life of an adult organism. Stem cell niche component dysfunction might alter the activity of stem cells and ultimately lead to the development of difficult-to-treat chronic or acute disorders. Of note, some cases of idiopathic male infertility, a highly prevalent diagnosis with no specific treatment options, might be associated with a spermatogonial stem cell(SSC) niche disturbance. To overcome this disease entity, approaches aiming at launching the regeneration of an altered stem cell niche are worth considering. Particularly, mesenchymal stromal cells (MSCs) or their secretome might fulfill this task due to their promising contribution in recovering injured stem cell niches. However, the successful application of MSC-based treatment is limited by the uncovered mechanisms of action of MSCs and their secretome. Specific animal models should be developed or adapted to reveal the role of MSCs and their secretome in a stem cell niche recovery. In this review, in a bid to consider MSCs and their secretome as a therapeutic regenerative approach for idiopathic male infertility we focus on the rationale of SSC niche injury modeling.
Collapse
Affiliation(s)
- Georgy Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Monakova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Balabanyan
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
10
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
11
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
12
|
Lu Z, Singh G, Lesani P, Zreiqat H. Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:3133-3141. [PMID: 35771746 DOI: 10.1021/acsbiomaterials.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tissue engineering approach for repair and regeneration has achieved significant progress over the past decades. However, challenges remain in developing strategies to solve the declined or impaired innate cell and tissue regeneration capacity that occurs with aging. Cellular senescence is a key mechanism underlying organismal aging and is responsible for the declined tissue regeneration capacity in the aging population. Therefore, to promote the diminished tissue regeneration ability in the aged population, it is critical to developing a feasible and promising strategy to target senescent cells. Recent advances in nanomaterials have revolutionized biomedical applications ranging from biosensing to bioimaging and targeted drug delivery. In this perspective, we review and discuss the nature and influences of cell-intrinsic and cell-extrinsic factors on reduced regenerative abilities through aging and how nanotechnology can be a therapeutic avenue to sense, rejuvenate, and eliminate senescent cells, thereby improving the tissue regeneration capacity in the aging population.
Collapse
Affiliation(s)
- ZuFu Lu
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney New South Wales 2006, Australia
| | - Gurvinder Singh
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney New South Wales 2006, Australia
| | - Pooria Lesani
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney New South Wales 2006, Australia
| | - Hala Zreiqat
- Tissue Engineering & Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,ARC Training Centre for Innovative BioEngineering, The University of Sydney, Sydney New South Wales 2006, Australia
| |
Collapse
|
13
|
Omatsu-Kanbe M, Fukunaga R, Mi X, Matsuura H. Atypically Shaped Cardiomyocytes (ACMs): The Identification, Characterization and New Insights into a Subpopulation of Cardiomyocytes. Biomolecules 2022; 12:biom12070896. [PMID: 35883452 PMCID: PMC9313223 DOI: 10.3390/biom12070896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
In the adult mammalian heart, no data have yet shown the existence of cardiomyocyte-differentiable stem cells that can be used to practically repair the injured myocardium. Atypically shaped cardiomyocytes (ACMs) are found in cultures of the cardiomyocyte-removed fraction obtained from cardiac ventricles from neonatal to aged mice. ACMs are thought to be a subpopulation of cardiomyocytes or immature cardiomyocytes, most closely resembling cardiomyocytes due to their spontaneous beating, well-organized sarcomere and the expression of cardiac-specific proteins, including some fetal cardiac gene proteins. In this review, we focus on the characteristics of ACMs compared with ventricular myocytes and discuss whether these cells can be substitutes for damaged cardiomyocytes. ACMs reside in the interstitial spaces among ventricular myocytes and survive under severely hypoxic conditions fatal to ventricular myocytes. ACMs have not been observed to divide or proliferate, similar to cardiomyocytes, but they maintain their ability to fuse with each other. Thus, it is worthwhile to understand the role of ACMs and especially how these cells perform cell fusion or function independently in vivo. It may aid in the development of new approaches to cell therapy to protect the injured heart or the clarification of the pathogenesis underlying arrhythmia in the injured heart.
Collapse
|
14
|
Anillin governs mitotic rounding during early epidermal development. BMC Biol 2022; 20:145. [PMID: 35710398 PMCID: PMC9205045 DOI: 10.1186/s12915-022-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The establishment of tissue architecture requires coordination between distinct processes including basement membrane assembly, cell adhesion, and polarity; however, the underlying mechanisms remain poorly understood. The actin cytoskeleton is ideally situated to orchestrate tissue morphogenesis due to its roles in mechanical, structural, and regulatory processes. However, the function of many pivotal actin-binding proteins in mammalian development is poorly understood. Results Here, we identify a crucial role for anillin (ANLN), an actin-binding protein, in orchestrating epidermal morphogenesis. In utero RNAi-mediated silencing of Anln in mouse embryos disrupted epidermal architecture marked by adhesion, polarity, and basement membrane defects. Unexpectedly, these defects cannot explain the profoundly perturbed epidermis of Anln-depleted embryos. Indeed, even before these defects emerge, Anln-depleted epidermis exhibits abnormalities in mitotic rounding and its associated processes: chromosome segregation, spindle orientation, and mitotic progression, though not in cytokinesis that was disrupted only in Anln-depleted cultured keratinocytes. We further show that ANLN localizes to the cell cortex during mitotic rounding, where it regulates the distribution of active RhoA and the levels, activity, and structural organization of the cortical actomyosin proteins. Conclusions Our results demonstrate that ANLN is a major regulator of epidermal morphogenesis and identify a novel role for ANLN in mitotic rounding, a near-universal process that governs cell shape, fate, and tissue morphogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01345-9.
Collapse
|
15
|
Akamatsu H, Yamada T, Sanada A, Ishii Y, Iwata Y, Arima M, Hasegawa S, Sugiura K. Age-related decrease in responsiveness of CD271-positive skin stem cells to growth factors. Exp Dermatol 2022; 31:1264-1269. [PMID: 35524485 DOI: 10.1111/exd.14601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 05/01/2022] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that the numbers of interfollicular epidermal stem cells (IFE-SCs) and dermal stem cells (DSCs) decrease with age and that this decrease is attributed to the age-related deterioration of skin homeostatic functions and the delay in wound healing. Meanwhile, functional decline in the stem cells is also considered to be responsible for the deteriorated skin homeostatic functions and the delayed wound healing associated with aging. In the present study, we focused on epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) signaling and fibroblast growth factor-2/fibroblast growth factor receptor (FGF2/FGFR) signaling to analyze the age-related changes. Immunohistological analysis revealed that the expressions of EGFR and FGFR1 declined in IFE-SCs and DSCs with age, respectively. Additionally, IFE-SCs and DSCs isolated from the skin samples of elderly subjects exhibited lowered responsiveness to EGF and FGF2, respectively. These results suggest that the lowered responsiveness of the skin stem cells to growth factors may be a factor involved in the age-related deterioration of skin regenerative functions during wound healing and skin homeostatic functions. We hope that homeostatic and wound healing functions in the skin could be maintained if the decreased expressions of EGFR and FGFR1 in IFE-SCs and DSCs, respectively, can be suppressed.
Collapse
Affiliation(s)
- Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Takaaki Yamada
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Ayumi Sanada
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yoshie Ishii
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., 2-7 Torimi-cho, Nishi-ku, Nagoya, Aichi, Japan.,Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan.,Nagoya University-MENARD Collaborative Chair, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukakecho, Toyoake, Aichi, Japan
| |
Collapse
|
16
|
Pun FW, Leung GHD, Leung HW, Liu BHM, Long X, Ozerov IV, Wang J, Ren F, Aliper A, Izumchenko E, Moskalev A, de Magalhães JP, Zhavoronkov A. Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics AI-powered discovery engine. Aging (Albany NY) 2022; 14:2475-2506. [PMID: 35347083 PMCID: PMC9004567 DOI: 10.18632/aging.203960] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
Aging biology is a promising and burgeoning research area that can yield dual-purpose pathways and protein targets that may impact multiple diseases, while retarding or possibly even reversing age-associated processes. One widely used approach to classify a multiplicity of mechanisms driving the aging process is the hallmarks of aging. In addition to the classic nine hallmarks of aging, processes such as extracellular matrix stiffness, chronic inflammation and activation of retrotransposons are also often considered, given their strong association with aging. In this study, we used a variety of target identification and prioritization techniques offered by the AI-powered PandaOmics platform, to propose a list of promising novel aging-associated targets that may be used for drug discovery. We also propose a list of more classical targets that may be used for drug repurposing within each hallmark of aging. Most of the top targets generated by this comprehensive analysis play a role in inflammation and extracellular matrix stiffness, highlighting the relevance of these processes as therapeutic targets in aging and age-related diseases. Overall, our study reveals both high confidence and novel targets associated with multiple hallmarks of aging and demonstrates application of the PandaOmics platform to target discovery across multiple disease areas.
Collapse
Affiliation(s)
- Frank W. Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Geoffrey Ho Duen Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Hoi Wing Leung
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Bonnie Hei Man Liu
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Xi Long
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ivan V. Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Ju Wang
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Feng Ren
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Alexander Aliper
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Alexey Moskalev
- School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, New Territories, Hong Kong, China
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
17
|
A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. Int J Mol Sci 2022; 23:ijms23031748. [PMID: 35163665 PMCID: PMC8836154 DOI: 10.3390/ijms23031748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle harbors a pool of stem cells called muscle satellite cells (MuSCs) that are mainly responsible for its robust regenerative capacities. Adult satellite cells are mitotically quiescent in uninjured muscles under homeostasis, but they exit quiescence upon injury to re-enter the cell cycle to proliferate. While most of the expanded satellites cells differentiate and fuse to form new myofibers, some undergo self-renewal to replenish the stem cell pool. Specifically, quiescence exit describes the initial transition of MuSCs from quiescence to the first cell cycle, which takes much longer than the time required for subsequent cell cycles and involves drastic changes in cell size, epigenetic and transcriptomic profiles, and metabolic status. It is, therefore, an essential period indispensable for the success of muscle regeneration. Diverse mechanisms exist in MuSCs to regulate quiescence exit. In this review, we summarize key events that occur during quiescence exit in MuSCs and discuss the molecular regulation of this process with an emphasis on multiple levels of intrinsic regulatory mechanisms. A comprehensive understanding of how quiescence exit is regulated will facilitate satellite cell-based muscle regenerative therapies and advance their applications in various disease and aging conditions.
Collapse
|
18
|
Tuning up an aged clock: Circadian clock regulation in metabolism and aging. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Abstract
A simple, universal and fundamental definition of adult stem cell communities is proposed. Key principles of cell lineage methods for defining adult stem cell numbers, locations and behaviors are critically evaluated, emphasizing the imperatives of capturing the full spectrum of individual stem cell behaviors, examining a variety of experimental time periods and avoiding unwarranted assumptions. The focus is first on defining fundamentals and then addresses stem cell heterogeneity, potential hierarchies and how individual cells serve the function of a stem cell community.
Collapse
|
20
|
Takamatsu K, Tanaka J, Katada R, Azuma K, Takakura I, Aota K, Kamatani T, Shirota T, Inoue S, Mishima K. Aging-associated stem/progenitor cell dysfunction in the salivary glands of mice. Exp Cell Res 2021; 409:112889. [PMID: 34678306 DOI: 10.1016/j.yexcr.2021.112889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Although stem cell aging leads to a decline in tissue homeostasis and regenerative capacity, it remains unclear whether salivary gland stem cell function changes during this process. However, the salivary glands are gradually replaced by connective tissue during aging. Here, we show a decline in the stem cell ability of CD133-positive stem/progenitor cells in the salivary glands of aged mice. The CD133-positive cells were isolated from young, adult, and aged mice. The number of CD133-positive cells was significantly decreased in aged mice. They also showed a lower sphere formation capacity compared to young and adult mice. RNA sequencing revealed that CD133-positive cells in aged mice exhibited lower gene expression of several aging-related genes, including FoxO3a, than those in young and adult mice. Salivary gland cells infected with a recombinant lentivirus encoding the FoxO3a gene showed a reduction in oxidative stress induced by hydrogen peroxide compared with those infected with a control virus. Thus, FoxO3a may inhibit stem cell aging via oxidative stress.
Collapse
Affiliation(s)
- Koki Takamatsu
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryogo Katada
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ikuko Takakura
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Dentistry, Jikei University School of Medicine, Tokyo, Japan
| | - Keiko Aota
- Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takaaki Kamatani
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center of Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| |
Collapse
|
21
|
Audesse AJ, Karashchuk G, Gardell ZA, Lakis NS, Maybury-Lewis SY, Brown AK, Leeman DS, Teo YV, Neretti N, Anthony DC, Brodsky AS, Webb AE. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. AGING AND CANCER 2021; 2:137-159. [PMID: 36303712 PMCID: PMC9601604 DOI: 10.1002/aac2.12043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Background Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Zachary A. Gardell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nelli S. Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sun Y. Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Dena S. Leeman
- Department of Discovery Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
22
|
Lengefeld J, Cheng CW, Maretich P, Blair M, Hagen H, McReynolds MR, Sullivan E, Majors K, Roberts C, Kang JH, Steiner JD, Miettinen TP, Manalis SR, Antebi A, Morrison SJ, Lees JA, Boyer LA, Yilmaz ÖH, Amon A. Cell size is a determinant of stem cell potential during aging. SCIENCE ADVANCES 2021; 7:eabk0271. [PMID: 34767451 PMCID: PMC8589318 DOI: 10.1126/sciadv.abk0271] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 05/05/2023]
Abstract
Stem cells are remarkably small. Whether small size is important for stem cell function is unknown. We find that hematopoietic stem cells (HSCs) enlarge under conditions known to decrease stem cell function. This decreased fitness of large HSCs is due to reduced proliferation and was accompanied by altered metabolism. Preventing HSC enlargement or reducing large HSCs in size averts the loss of stem cell potential under conditions causing stem cell exhaustion. Last, we show that murine and human HSCs enlarge during aging. Preventing this age-dependent enlargement improves HSC function. We conclude that small cell size is important for stem cell function in vivo and propose that stem cell enlargement contributes to their functional decline during aging.
Collapse
Affiliation(s)
- Jette Lengefeld
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Chia-Wei Cheng
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pema Maretich
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerite Blair
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Hagen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melanie R. McReynolds
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Emily Sullivan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyra Majors
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Roberts
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Joon Ho Kang
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim D. Steiner
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Teemu P. Miettinen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Scott R. Manalis
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing and CECAD, University of Cologne, Cologne, Germany
| | - Sean J. Morrison
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacqueline A. Lees
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ömer H. Yilmaz
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Chen M, Li Y, Xiao L, Dai G, Lu P, Rui Y. Noncanonical Wnt5a signaling regulates tendon stem/progenitor cells senescence. Stem Cell Res Ther 2021; 12:544. [PMID: 34663475 PMCID: PMC8521898 DOI: 10.1186/s13287-021-02605-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background The structural and functional properties of tendon decline with age, and these changes contribute to tendon disorder. Tendon stem/progenitor cells (TSPCs) play a vital role in tendon repair, regeneration and homeostasis maintaining. Although studies have demonstrated that tendon aging is closely associated with the altered TSPCs function on senescence, the cellular and molecular mechanisms of TSPCs senescence remain largely unknown. This study was designed to investigate the role of Wnt5a in TSPCs senescence. Methods TSPCs were isolated from 2-month-old and 20-month-old male C57BL/6 mice. The expression of Wnt5a was determined by RNA sequencing, qRT-PCR and western blotting. TSPCs were then treated with Wnt5a shRNA or recombinant Wnt5a or AG490 or IFN-γ or Ror2-siRNA. Western blotting, β-gal staining, qRT-PCR, immunofluorescence staining and cell cycle analysis were used for confirming the role of Wnt5a in TSPCs senescence. Results We found a canonical to noncanonical Wnt signaling shift due to enhanced expression of Wnt5a in aged TSPCs. Functionally, we demonstrated that inhibition of Wnt5a attenuated TSPCs senescence, age-related cell polarity and the senescence-associated secretory phenotype (SASP) expression in aged TSPCs. Mechanistically, the JAK–STAT signaling pathway was activated in aged TSPCs, while Wnt5a knockdown inhibited the JAK–STAT signaling pathway, suggesting that Wnt5a modulates TSPCs senescence via JAK–STAT signaling pathway. Moreover, knockdown of Ror2 inhibited Wnt5a-induced activation of the JAK–STAT signaling pathway, which indicates that Wnt5a potentiates JAK–STAT signaling pathway through Ror2, and Ror2 acts as the functional receptor of Wnt5a in TSPCs senescence. Conclusion Our results demonstrate a critical role of noncanonical Wnt5a signaling in TSPCs senescence, and Wnt5a could be an attractive therapeutic target for antagonizing tendon aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02605-1.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Yingjuan Li
- China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China.,Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Longfei Xiao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China. .,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China. .,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China. .,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
24
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Yu Y, Zhang X, Liu F, Zhu P, Zhang L, Peng Y, Yan X, Li Y, Hua P, Liu C, Li Q, Zhang L. A stress-induced miR-31-CLOCK-ERK pathway is a key driver and therapeutic target for skin aging. NATURE AGING 2021; 1:795-809. [PMID: 37117623 DOI: 10.1038/s43587-021-00094-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/30/2021] [Indexed: 04/30/2023]
Abstract
Regressive changes in epithelial stem cells underlie mammalian skin aging, but the driving mechanisms are not well understood. Here, we report that mouse skin hair follicle stem cell (HFSC) aging is initiated by their intrinsic upregulation of miR-31, a microRNA that can be induced by physical injury or genotoxic stress and is also strongly upregulated in aged human skin epithelium. Using transgenic and conditional knockout mouse models plus a lineage-tracing technique, we show that miR-31 acts as a key driver of HFSC aging by directly targeting Clock, a core circadian clock gene whose deregulation activates a MAPK/ERK cascade to induce HFSC depletion via transepidermal elimination. Notably, blocking this pathway by either conditional miR-31 ablation or clinically approved MAPK/ERK inhibitors provides safe and effective protection against skin aging, enlightening a promising therapeutic avenue for treating skin aging and other genotoxic stress-induced skin conditions such as radiodermatitis.
Collapse
Affiliation(s)
- Yao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengzhen Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiying Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liping Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - You Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Hua
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caiyue Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Mohrin M, Jasper H. Exploring Human Skin Aging at the Single-Cell Level. Dev Cell 2021; 56:253-254. [PMID: 33561419 DOI: 10.1016/j.devcel.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this issue of Developmental Cell, Zou et al. utilize eyelid samples to examine human skin aging at the single-cell level. They discover photo- and inflammation-related changes already in middle age and find that restoring youthful expression of KLF6 and HES1 may dial back some age-associated changes.
Collapse
Affiliation(s)
- Mary Mohrin
- Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Heinrich Jasper
- Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
27
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
28
|
Sun H, Sun Y, Yu X, Gao X, Wang H, Zhang L, Shi Y, He X. Analysis of Age-Related Circular RNA Expression Profiles in Mesenchymal Stem Cells of Rat Bone Marrow. Front Genet 2021; 12:600632. [PMID: 34262589 PMCID: PMC8273880 DOI: 10.3389/fgene.2021.600632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 05/21/2021] [Indexed: 01/09/2023] Open
Abstract
As multicellular organisms age, they undergo a reduction in tissue and organ function. Researchers have put forward a theory that stem cell aging is the main factor responsible for decreased tissue and organ function. The adult stem cells guarantee the maintenance and repair of adult tissues and organs. Among adult stem cells, mesenchymal stem cells (MSCs) are emerging as hopeful candidates for cell-based therapy of numerous diseases. In recent years, high-throughput sequencing technologies have evolved to identify circular RNAs (circRNAs) associated with an increasing number of diseases, such as cancer and age-related diseases. It has been reported that circRNAs can compete with microRNAs (miRNAs) to affect the stability or translation of target RNAs and further regulate gene expression at the transcriptional level. However, the role of circRNAs expressed in MSCs in aging mechanisms has not yet been deciphered. The aim of this study was to explore and analyze the expression profiles of age-related circRNAs in MSCs. In this study, bone marrow MSCs were extracted from aged and young rats and analyzed using high-throughput sequencing and bioinformatics. The reliability of high-throughput RNA sequencing was verified by quantitative real-time polymerase chain reaction. The most important circRNA functions and pathways were further selected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) analysis. Age-related circRNAs were found in the circrNA-miRNA-mRNA interaction network. The results of high-throughput sequencing showed that 4,229 circRNAs were involved in age-related senescence of MSCs. Compared with the young group, there were 29 differentially expressed circRNAs in the aged group, of which four were upregulated and 25 were downregulated. GO analysis covered three domains: biological process (BP), cellular component (CC), and molecular function (MF). The terms assigned to the BP domain were cellular metabolic processes and cellular macromolecule metabolic processes. The identified CC terms were intracellular and intracellular part, and the identified MF terms were binding and protein binding. The top five KEGG pathways were mitophagy-animal-Rattus norvegicus, prostate cancer-Rattus norvegicus, pathways in cancer-Rattus norvegicus, lysosome-Rattus norvegicus, and autophagy-animal-Rattus norvegicus. Altogether, circRNAs may play a major role in age-related MSC senescence. This study provides new mechanistic insights into MSC senescence, possibly leading to novel therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lin Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
29
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
30
|
Wang C, Haas M, Yeo SK, Sebti S, Fernández ÁF, Zou Z, Levine B, Guan JL. Enhanced autophagy in Becn1F121A/F121A knockin mice counteracts aging-related neural stem cell exhaustion and dysfunction. Autophagy 2021; 18:409-422. [PMID: 34101533 DOI: 10.1080/15548627.2021.1936358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macroautophagy/autophagy is emerging as a major pathway that regulates both aging and stem cell function. Previous studies have demonstrated a positive correlation of autophagy with longevity; however, these studies did not directly address the consequence of altered autophagy in stem cells during aging. In this study, we used Becn1F121A/F121A knockin mice (designated as Becn1 KI mice) with the F121A allele in the autophagy gene Becn1 to investigate the consequences of enhanced autophagy in postnatal neural stem cells (NSCs) during aging. We found that increased autophagy protected NSCs from exhaustion and promoted neurogenesis in old (≥18-months-old) mice compared with age-matched wild-type (WT) mice, although it did not affect NSCs in young (3-months-old) mice. After pharmacologically-induced elimination of proliferative cells in the subventricular zone (SVZ), there was enhanced re-activation of quiescent NSCs in old Becn1 KI mice as compared to those in WT mice, with more efficient exit from quiescent status to generate proliferative cells and neuroblasts. Moreover, there was also improved maintenance and increased neuronal differentiation of NSCs isolated from the SVZ of old Becn1 KI mice in in vitro assays. Lastly, the increased neurogenesis in Becn1 KI mice was associated with better olfactory function in aged animals. Together, our results suggest a protective role of increased autophagy in aging NSCs, which may help the development of novel strategies to treat age-related neurodegeneration.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Salwa Sebti
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Álvaro F Fernández
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhongju Zou
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
31
|
Kimmel JC, Yi N, Roy M, Hendrickson DG, Kelley DR. Differentiation reveals latent features of aging and an energy barrier in murine myogenesis. Cell Rep 2021; 35:109046. [PMID: 33910007 DOI: 10.1016/j.celrep.2021.109046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/23/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle experiences a decline in lean mass and regenerative potential with age, in part due to intrinsic changes in progenitor cells. However, it remains unclear how age-related changes in progenitors manifest across a differentiation trajectory. Here, we perform single-cell RNA sequencing (RNA-seq) on muscle mononuclear cells from young and aged mice and profile muscle stem cells (MuSCs) and fibro-adipose progenitors (FAPs) after differentiation. Differentiation increases the magnitude of age-related change in MuSCs and FAPs, but it also masks a subset of age-related changes present in progenitors. Using a dynamical systems approach and RNA velocity, we find that aged MuSCs follow the same differentiation trajectory as young cells but stall in differentiation near a commitment decision. Our results suggest that differentiation reveals latent features of aging and that fate commitment decisions are delayed in aged myogenic cells in vitro.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA.
| | - Nelda Yi
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - Margaret Roy
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - David G Hendrickson
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA
| | - David R Kelley
- Calico Life Sciences, 1170 Veterans Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
32
|
Abstract
Quiescence is a cellular state in which a cell remains out of the cell cycle but retains the capacity to divide. The unique ability of adult stem cells to maintain quiescence is crucial for life-long tissue homeostasis and regenerative capacity. Quiescence has long been viewed as an inactive state but recent studies have shown that it is in fact an actively regulated process and that adult stem cells are highly reactive to extrinsic stimuli. This has fuelled hopes of boosting the reactivation potential of adult stem cells to improve tissue function during ageing. In this Review, we provide a perspective of the quiescent state and discuss how quiescent adult stem cells transition into the cell cycle. We also discuss current challenges in the field, highlighting recent technical advances that could help overcome some of these challenges.
Collapse
Affiliation(s)
- Noelia Urbán
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory of Molecular Neuroscience, and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, The Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China
| |
Collapse
|
33
|
Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 2021; 22:165-187. [PMID: 33502634 PMCID: PMC7838467 DOI: 10.1007/s10522-021-09910-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023]
Abstract
Aging is a physiological process mediated by numerous biological and genetic pathways, which are directly linked to lifespan and are a driving force for all age-related diseases. Human life expectancy has greatly increased in the past few decades, but this has not been accompanied by a similar increase in their healthspan. At present, research on aging biology has focused on elucidating the biochemical and genetic pathways that contribute to aging over time. Several aging mechanisms have been identified, primarily including genomic instability, telomere shortening, and cellular senescence. Aging is a driving factor of various age-related diseases, including neurodegenerative diseases, cardiovascular diseases, cancer, immune system disorders, and musculoskeletal disorders. Efforts to find drugs that improve the healthspan by targeting the pathogenesis of aging have now become a hot topic in this field. In the present review, the status of aging research and the development of potential drugs for aging-related diseases, such as metformin, rapamycin, resveratrol, senolytics, as well as caloric restriction, are summarized. The feasibility, side effects, and future potential of these treatments are also discussed, which will provide a basis to develop novel anti-aging therapeutics for improving the healthspan and preventing aging-related diseases.
Collapse
|
34
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
35
|
Sagaradze GD, Basalova NA, Efimenko AY, Tkachuk VA. Mesenchymal Stromal Cells as Critical Contributors to Tissue Regeneration. Front Cell Dev Biol 2020; 8:576176. [PMID: 33102483 PMCID: PMC7546871 DOI: 10.3389/fcell.2020.576176] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells that are tightly regulated by the specific microenvironment, or the stem cell niche, function to maintain tissue homeostasis and regeneration after damage. This demands the existence of specific niche components that can preserve the stem cell pool in injured tissues and restore the microenvironment for their subsequent appropriate functioning. This role may belong to mesenchymal stromal cells (MSCs) due to their resistance to damage signals and potency to be specifically activated in response to tissue injury and promote regeneration by different mechanisms. Increased amount of data indicate that activated MSCs are able to produce factors such as extracellular matrix components, growth factors, extracellular vesicles and organelles, which transiently substitute the regulatory signals from missing niche cells and restrict the injury-induced responses of them. MSCs may recruit functional cells into a niche or differentiate into missing cell components to endow a niche with ability to regulate stem cell fates. They may also promote the dedifferentiation of committed cells to re-establish a pool of functional stem cells after injury. Accumulated evidence indicates the therapeutic promise of MSCs for stimulating tissue regeneration, but the benefits of administered MSCs demonstrated in many injury models are less than expected in clinical studies. This emphasizes the importance of considering the mechanisms of endogenous MSC functioning for the development of effective approaches to their pharmacological activation or mimicking their effects. To achieve this goal, we integrate the current ideas on the contribution of MSCs in restoring the stem cell niches after damage and thereby tissue regeneration.
Collapse
Affiliation(s)
- Georgy D Sagaradze
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya A Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Yu Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Hu DJK, Jasper H. Control of Intestinal Cell Fate by Dynamic Mitotic Spindle Repositioning Influences Epithelial Homeostasis and Longevity. Cell Rep 2020; 28:2807-2823.e5. [PMID: 31509744 DOI: 10.1016/j.celrep.2019.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
Tissue homeostasis depends on precise yet plastic regulation of stem cell daughter fates. During growth, Drosophila intestinal stem cells (ISCs) adjust fates by switching from asymmetric to symmetric lineages to scale the size of the ISC population. Using a combination of long-term live imaging, lineage tracing, and genetic perturbations, we demonstrate that this switch is executed through the control of mitotic spindle orientation by Jun-N-terminal kinase (JNK) signaling. JNK interacts with the WD40-repeat protein Wdr62 at the spindle and transcriptionally represses the kinesin Kif1a to promote planar spindle orientation. In stress conditions, this function becomes deleterious, resulting in overabundance of symmetric fates and contributing to the loss of tissue homeostasis in the aging animal. Restoring normal ISC spindle orientation by perturbing the JNK/Wdr62/Kif1a axis is sufficient to improve intestinal physiology and extend lifespan. Our findings reveal a critical role for the dynamic control of SC spindle orientation in epithelial maintenance.
Collapse
Affiliation(s)
| | - Heinrich Jasper
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; The Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| |
Collapse
|
37
|
Abstract
Regeneration is the process by which organisms replace lost or damaged tissue, and regenerative capacity can vary greatly among species, tissues and life stages. Tissue regeneration shares certain hallmarks of embryonic development, in that lineage-specific factors can be repurposed upon injury to initiate morphogenesis; however, many differences exist between regeneration and embryogenesis. Recent studies of regenerating tissues in laboratory model organisms - such as acoel worms, frogs, fish and mice - have revealed that chromatin structure, dedicated enhancers and transcriptional networks are regulated in a context-specific manner to control key gene expression programmes. A deeper mechanistic understanding of the gene regulatory networks of regeneration pathways might ultimately enable their targeted reactivation as a means to treat human injuries and degenerative diseases. In this Review, we consider the regeneration of body parts across a range of tissues and species to explore common themes and potentially exploitable elements.
Collapse
Affiliation(s)
- Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA.
| | - Kenneth D Poss
- Regeneration Next, Duke University, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
38
|
Senescence and Longevity of Sea Urchins. Genes (Basel) 2020; 11:genes11050573. [PMID: 32443861 PMCID: PMC7288282 DOI: 10.3390/genes11050573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
Sea urchins are a minor class of marine invertebrates that share genetic similarities with humans. For example, the sea urchin species Strongylocentrotus purpuratus is estimated to have 23,300 genes in which the majority of vertebrate gene families are enveloped. Some of the sea urchin species can demonstrate extreme longevity, such as Mesocentrotus franciscanus, living for well over 100 years. Comparing human to sea urchin aging suggests that the latter do not fit within the classic understanding of biological aging, as both long- and short-lived sea urchin species demonstrate negligible senescence. Sea urchins are highly regenerative organisms. Adults can regenerate external appendages and can maintain their regenerative abilities throughout life. They grow indeterminately and reproduce throughout their entire adult life. Both long- and short-lived species do not exhibit age-associated telomere shortening and display telomerase activity in somatic tissues regardless of age. Aging S. purpuratus urchins show changes in expression patterns of protein coding genes that are involved in several fundamental cellular functions such as the ubiquitin-proteasome system, signaling pathways, translational regulation, and electron transport chain. Sea urchin longevity and senescence research is a new and promising field that holds promise for the understanding of aging in vertebrates and can increase our understanding of human longevity and of healthy aging.
Collapse
|
39
|
Abstract
Biotechnology uses microorganisms and/or enzymes to obtain specific products through fermentative processes and/or genetic engineering techniques. Examples of these products are active ingredients, such as hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are used in skin anti-aging products. In addition, certain growth factors, algae, stem cells, and peptides have been included in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely linked, through the production of high-quality active ingredients, which are more effective and safer. This work describes the most used active ingredients that are produced from biotechnological processes. Although there are a vast number of active ingredients, the number of biotechnological active ingredients reported in the literature is not significantly high.
Collapse
|
40
|
McKinley KL, Castillo-Azofeifa D, Klein OD. Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell 2020; 26:632-656. [PMID: 32386555 PMCID: PMC7250495 DOI: 10.1016/j.stem.2020.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Defining the mechanisms that generate specialized cell types and coordinate their functions is critical for understanding organ development and renewal. New tools and discoveries are challenging and refining our definitions of a cell type. A rapidly growing toolkit for single-cell analyses has expanded the number of markers that can be assigned to a cell simultaneously, revealing heterogeneity within cell types that were previously regarded as homogeneous populations. Additionally, cell types defined by specific molecular markers can exhibit distinct, context-dependent functions; for example, between tissues in homeostasis and those responding to damage. Here we review the current technologies used to identify and characterize cells, and we discuss how experimental and pathological perturbations are adding increasing complexity to our definitions of cell identity.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - David Castillo-Azofeifa
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Wang Y, Jiang Z, Yu M, Yang G. Roles of circular RNAs in regulating the self-renewal and differentiation of adult stem cells. Differentiation 2020; 113:10-18. [PMID: 32179373 DOI: 10.1016/j.diff.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
42
|
Abstract
Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.
Collapse
|
43
|
Oh E, Mark KG, Mocciaro A, Watson ER, Prabu JR, Cha DD, Kampmann M, Gamarra N, Zhou CY, Rape M. Gene expression and cell identity controlled by anaphase-promoting complex. Nature 2020; 579:136-140. [PMID: 32076268 PMCID: PMC7402266 DOI: 10.1038/s41586-020-2034-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/01/2020] [Indexed: 01/08/2023]
Abstract
Metazoan development requires robust proliferation of progenitor cells, whose identities are established by tightly controlled transcriptional networks 1. As gene expression is globally inhibited during mitosis, the transcriptional programs defining cell identity must be restarted in each cell cycle 2-5, yet how this is accomplished is poorly understood. Here, we identified a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters 6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites (TSS) during mitosis. This allows APC/C to decorate histones with K11/K48-branched ubiquitin chains that recruit p97/VCP and the proteasome and ensure rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and transcription re-initiation are thus controlled by the same regulator, APC/C, which provides a robust mechanism to maintain cell identity through cell division.
Collapse
Affiliation(s)
- Eugene Oh
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Kevin G Mark
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Annamaria Mocciaro
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Berkeley Lights, Emeryville, CA, USA
| | - Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - J Rajan Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denny D Cha
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.,Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Coral Y Zhou
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
44
|
Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res 2019; 29:2088-2103. [PMID: 31754020 PMCID: PMC6886498 DOI: 10.1101/gr.253880.119] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Aging is a pleiotropic process affecting many aspects of mammalian physiology. Mammals are composed of distinct cell type identities and tissue environments, but the influence of these cell identities and environments on the trajectory of aging in individual cells remains unclear. Here, we performed single-cell RNA-seq on >50,000 individual cells across three tissues in young and old mice to allow for direct comparison of aging phenotypes across cell types. We found transcriptional features of aging common across many cell types, as well as features of aging unique to each type. Leveraging matrix factorization and optimal transport methods, we found that both cell identities and tissue environments exert influence on the trajectory and magnitude of aging, with cell identity influence predominating. These results suggest that aging manifests with unique directionality and magnitude across the diverse cell identities in mammals.
Collapse
Affiliation(s)
- Jacob C Kimmel
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Lolita Penland
- Calico Life Sciences, South San Francisco, California 94080, USA
| | | | | | - David R Kelley
- Calico Life Sciences, South San Francisco, California 94080, USA
| | - Adam Z Rosenthal
- Calico Life Sciences, South San Francisco, California 94080, USA
| |
Collapse
|
45
|
CTGF Attenuates Tendon-Derived Stem/Progenitor Cell Aging. Stem Cells Int 2019; 2019:6257537. [PMID: 31827530 PMCID: PMC6881574 DOI: 10.1155/2019/6257537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Accepted: 09/28/2019] [Indexed: 01/18/2023] Open
Abstract
Aged tendon-derived stem/progenitor cells (TSPCs) lead to age-related tendon disorders and impair tendon healing. However, the underlying molecular mechanisms of TSPC aging remain largely unknown. Here, we investigated the role of connective tissue growth factor (CTGF) in TSPC aging. CTGF protein and mRNA levels were markedly decreased in the aged TSPCs. Moreover, recombinant CTGF attenuates TSPC aging and restores the age-associated reduction of self-renewal and differentiation of TSPCs. In addition, cell cycle distribution of aged TSPCs was arrested in the G1/S phase while recombinant CTGF treatment promoted G1/S transition. Recombinant CTGF also rescued decreased levels of cyclin D1 and CDK4 and reduced p27kip1 expression in aged TSPCs. Our results demonstrated that CTGF plays a vital role in TSPC aging and might be a potential target for molecular therapy of age-related tendon disorders.
Collapse
|
46
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|
47
|
Nicotinamide Metabolism Modulates the Proliferation/Differentiation Balance and Senescence of Human Primary Keratinocytes. J Invest Dermatol 2019; 139:1638-1647.e3. [DOI: 10.1016/j.jid.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
|
48
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
49
|
Abstract
Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4+ T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions.
Collapse
|
50
|
Identity Noise and Adipogenic Traits Characterize Dermal Fibroblast Aging. Cell 2018; 175:1575-1590.e22. [DOI: 10.1016/j.cell.2018.10.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|