1
|
Wernert F, Moparthi SB, Pelletier F, Lainé J, Simons E, Moulay G, Rueda F, Jullien N, Benkhelifa-Ziyyat S, Papandréou MJ, Leterrier C, Vassilopoulos S. The actin-spectrin submembrane scaffold restricts endocytosis along proximal axons. Science 2024; 385:eado2032. [PMID: 39172837 DOI: 10.1126/science.ado2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Clathrin-mediated endocytosis has characteristic features in neuronal dendrites and presynapses, but how membrane proteins are internalized along the axon shaft remains unclear. We focused on clathrin-coated structures and endocytosis along the axon initial segment (AIS) and their relationship to the periodic actin-spectrin scaffold that lines the axonal plasma membrane. A combination of super-resolution microscopy and platinum-replica electron microscopy on cultured neurons revealed that AIS clathrin-coated pits form within "clearings", circular areas devoid of actin-spectrin mesh. Actin-spectrin scaffold disorganization increased clathrin-coated pit formation. Cargo uptake and live-cell imaging showed that AIS clathrin-coated pits are particularly stable. Neuronal plasticity-inducing stimulation triggered internalization of the clathrin-coated pits through polymerization of branched actin around them. Thus, spectrin and actin regulate clathrin-coated pit formation and scission to control endocytosis at the AIS.
Collapse
Affiliation(s)
- Florian Wernert
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Satish Babu Moparthi
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Florence Pelletier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Jeanne Lainé
- Sorbonne Université, Department of Physiology, Faculty of Medicine Pitié-Salpêtrière, Paris, France
| | - Eline Simons
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Gilles Moulay
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | - Fanny Rueda
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Nicolas Jullien
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| | | | | | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
2
|
Nawara TJ, Yuan J, Seeley LD, Sztul E, Mattheyses AL. Fluidic shear stress alters clathrin dynamics and vesicle formation in endothelial cells. Biophys J 2024:S0006-3495(24)00390-4. [PMID: 38853434 DOI: 10.1016/j.bpj.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/26/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jie Yuan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Leslie D Seeley
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
3
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
4
|
Lukas F, Matthaeus C, López-Hernández T, Lahmann I, Schultz N, Lehmann M, Puchkov D, Pielage J, Haucke V, Maritzen T. Canonical and non-canonical integrin-based adhesions dynamically interconvert. Nat Commun 2024; 15:2093. [PMID: 38453931 PMCID: PMC10920918 DOI: 10.1038/s41467-024-46381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Adhesions are critical for anchoring cells in their environment, as signaling platforms and for cell migration. In line with these diverse functions different types of cell-matrix adhesions have been described. Best-studied are the canonical integrin-based focal adhesions. In addition, non-canonical integrin adhesions lacking focal adhesion proteins have been discovered. These include reticular adhesions also known as clathrin plaques or flat clathrin lattices, that are enriched in clathrin and other endocytic proteins, as well as extensive adhesion networks and retraction fibers. How these different adhesion types that share a common integrin backbone are related and whether they can interconvert is unknown. Here, we identify the protein stonin1 as a marker for non-canonical αVβ5 integrin-based adhesions and demonstrate by live cell imaging that canonical and non-canonical adhesions can reciprocally interconvert by the selective exchange of components on a stable αVβ5 integrin scaffold. Hence, non-canonical adhesions can serve as points of origin for the generation of canonical focal adhesions.
Collapse
Affiliation(s)
- Fabian Lukas
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
- Membrane Traffic and Cell Motility Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Tania López-Hernández
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Ines Lahmann
- Developmental Biology/Signal Transduction Group, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Nicole Schultz
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany
| | - Martin Lehmann
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Dmytro Puchkov
- Cellular Imaging Facility, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
| | - Jan Pielage
- Department for Zoology and Neurobiology, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Volker Haucke
- Department for Molecular Pharmacology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Tanja Maritzen
- Department for Nanophysiology, RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.
- Membrane Traffic and Cell Motility Group, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
5
|
Wiedner HJ, Blue RE, Sadovsky M, Mills CA, Wehrens XH, Herring LE, Giudice J. RBFOX2 regulated EYA3 isoforms partner with SIX4 or ZBTB1 to control transcription during myogenesis. iScience 2023; 26:108258. [PMID: 38026174 PMCID: PMC10665822 DOI: 10.1016/j.isci.2023.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matheus Sadovsky
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Cresens C, Solís-Fernández G, Tiwari A, Nuyts R, Hofkens J, Barderas R, Rocha S. Flat clathrin lattices are linked to metastatic potential in colorectal cancer. iScience 2023; 26:107327. [PMID: 37539031 PMCID: PMC10393769 DOI: 10.1016/j.isci.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin assembles at the cells' plasma membrane in a multitude of clathrin-coated structures (CCSs). Among these are flat clathrin lattices (FCLs), alternative clathrin structures that have been found in specific cell types, including cancer cells. Here we show that these structures are also present in different colorectal cancer (CRC) cell lines, and that they are extremely stable with lifetimes longer than 8 h. By combining cell models representative of CRC metastasis with advanced fluorescence imaging and analysis, we discovered that the metastatic potential of CRC is associated with an aberrant membranous clathrin distribution, resulting in a higher prevalence of FCLs in cells with a higher metastatic potential. These findings suggest that clathrin organization might play an important yet unexplored role in cancer metastasis.
Collapse
Affiliation(s)
- Charlotte Cresens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Astha Tiwari
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Rik Nuyts
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
7
|
Hakanpää L, Abouelezz A, Lenaerts AS, Culfa S, Algie M, Bärlund J, Katajisto P, McMahon H, Almeida-Souza L. Reticular adhesions are assembled at flat clathrin lattices and opposed by active integrin α5β1. J Cell Biol 2023; 222:e202303107. [PMID: 37233325 PMCID: PMC10225744 DOI: 10.1083/jcb.202303107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Reticular adhesions (RAs) consist of integrin αvβ5 and harbor flat clathrin lattices (FCLs), long-lasting structures with similar molecular composition as clathrin-mediated endocytosis (CME) carriers. Why FCLs and RAs colocalize is not known. Here, we show that RAs are assembled at FCLs in a process controlled by fibronectin (FN) and its receptor, integrin α5β1. We observed that cells on FN-rich matrices displayed fewer FCLs and RAs. CME machinery inhibition abolished RAs and live-cell imaging showed that RA establishment requires FCL coassembly. The inhibitory activity of FN was mediated by the activation of integrin α5β1 at Tensin1-positive fibrillar adhesions. Conventionally, endocytosis disassembles cellular adhesions by internalizing their components. Our results present a novel paradigm in the relationship between these two processes by showing that endocytic proteins can actively function in the assembly of cell adhesions. Furthermore, we show this novel adhesion assembly mechanism is coupled to cell migration via unique crosstalk between cell-matrix adhesions.
Collapse
Affiliation(s)
- Laura Hakanpää
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Amr Abouelezz
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - An-Sofie Lenaerts
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Seyda Culfa
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Michael Algie
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jenny Bärlund
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Leonardo Almeida-Souza
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Nawara TJ, Dean WF, Mattheyses AL. DrSTAR: Tracking real-time nanometer axial changes. Biophys J 2023; 122:595-602. [PMID: 36659851 PMCID: PMC9989936 DOI: 10.1016/j.bpj.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Protein interactions with the plasma membrane mediate processes critical for cell viability such as migration and endocytosis, yet our understanding of how recruitment of key proteins correlates with their ability to sense or induce energetically unfavorable plasma membrane shapes remains limited. Simultaneous two-wavelength axial ratiometry (STAR) microscopy provides millisecond time resolution and nanometer axial resolution of protein dynamics at the basal plasma membrane. However, STAR microscopy requires extensive and time-consuming quantitative data processing to access axial (Δz) information. Therefore, addressing questions about the influence of biological and biophysical factors on the interaction between the plasma membrane and protein of interest remains challenging. Here, we overcome the limitations in STAR data processing and present dynamic reference STAR (DrSTAR): a user-friendly, automated, open-source MATLAB-based package. DrSTAR enables processing multiple experimental conditions and biological replicates, employs a novel local background referencing algorithm, and accelerates processing time to facilitate broad adaptation of STAR for studying nanometer axial changes in protein distribution.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William F Dean
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
9
|
Mund M, Tschanz A, Wu YL, Frey F, Mehl JL, Kaksonen M, Avinoam O, Schwarz US, Ries J. Clathrin coats partially preassemble and subsequently bend during endocytosis. J Cell Biol 2023; 222:213855. [PMID: 36734980 PMCID: PMC9929656 DOI: 10.1083/jcb.202206038] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic cells use clathrin-mediated endocytosis to take up a large range of extracellular cargo. During endocytosis, a clathrin coat forms on the plasma membrane, but it remains controversial when and how it is remodeled into a spherical vesicle. Here, we use 3D superresolution microscopy to determine the precise geometry of the clathrin coat at large numbers of endocytic sites. Through pseudo-temporal sorting, we determine the average trajectory of clathrin remodeling during endocytosis. We find that clathrin coats assemble first on flat membranes to 50% of the coat area before they become rapidly and continuously bent, and this mechanism is confirmed in three cell lines. We introduce the cooperative curvature model, which is based on positive feedback for curvature generation. It accurately describes the measured shapes and dynamics of the clathrin coat and could represent a general mechanism for clathrin coat remodeling on the plasma membrane.
Collapse
Affiliation(s)
- Markus Mund
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/01swzsf04Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Aline Tschanz
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Candidate for Joint PhD Programme of EMBL and University of Heidelberg, Heidelberg, Germany
| | - Yu-Le Wu
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Candidate for Joint PhD Programme of EMBL and University of Heidelberg, Heidelberg, Germany
| | - Felix Frey
- https://ror.org/02e2c7k09Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Johanna L. Mehl
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marko Kaksonen
- https://ror.org/01swzsf04Department of Biochemistry, University of Geneva, Geneva, Switzerland,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Ori Avinoam
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,https://ror.org/0316ej306Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ulrich S. Schwarz
- https://ror.org/04rcqnp59Institute for Theoretical Physics and Bioquant, Heidelberg University, Heidelberg, Germany,Bioquant, Heidelberg University, Heidelberg, Germany
| | - Jonas Ries
- https://ror.org/03mstc592Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany,Correspondence to Jonas Ries:
| |
Collapse
|
10
|
Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev Med Virol 2023; 33:e2403. [PMID: 36345157 PMCID: PMC9877911 DOI: 10.1002/rmv.2403] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-β-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research DepartmentNational Center for Social and Criminological Research (NCSCR)GizaEgypt
| | - Soumya Ghosh
- Department of GeneticsFaculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
| | - Samah A. Loutfy
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
- Nanotechnology Research CenterBritish UniversityCairoEgypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design DepartmentFaculty of EngineeringMenofia UniversityMenofiaEgypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
| | - Mohamed Hessien
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| |
Collapse
|
11
|
Yang C, Colosi P, Hugelier S, Zabezhinsky D, Lakadamyali M, Svitkina T. Actin polymerization promotes invagination of flat clathrin-coated lattices in mammalian cells by pushing at lattice edges. Nat Commun 2022; 13:6127. [PMID: 36253374 PMCID: PMC9576739 DOI: 10.1038/s41467-022-33852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) requires energy input from actin polymerization in mechanically challenging conditions. The roles of actin in CME are poorly understood due to inadequate knowledge of actin organization at clathrin-coated structures (CCSs). Using platinum replica electron microscopy of mammalian cells, we show that Arp2/3 complex-dependent branched actin networks, which often emerge from microtubule tips, assemble along the CCS perimeter, lack interaction with the apical clathrin lattice, and have barbed ends oriented toward the CCS. This structure is hardly compatible with the widely held "apical pulling" model describing actin functions in CME. Arp2/3 complex inhibition or epsin knockout produce large flat non-dynamic CCSs, which split into invaginating subdomains upon recovery from Arp2/3 inhibition. Moreover, epsin localization to CCSs depends on Arp2/3 activity. We propose an "edge pushing" model for CME, wherein branched actin polymerization promotes severing and invagination of flat CCSs in an epsin-dependent manner by pushing at the CCS boundary, thus releasing forces opposing the intrinsic curvature of clathrin lattices.
Collapse
Affiliation(s)
- Changsong Yang
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Patricia Colosi
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Siewert Hugelier
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Daniel Zabezhinsky
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| | - Melike Lakadamyali
- grid.25879.310000 0004 1936 8972Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Tatyana Svitkina
- grid.25879.310000 0004 1936 8972Department of Biology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
12
|
Johnson A, Kaufmann WA, Sommer C, Costanzo T, Dahhan DA, Bednarek SY, Friml J. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. MOLECULAR PLANT 2022; 15:1533-1542. [PMID: 36081349 DOI: 10.1016/j.molp.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the "pseudo 3D" morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| | - Walter A Kaufmann
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Christoph Sommer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Tommaso Costanzo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Dana A Dahhan
- UW-Madison, Department of Biochemistry, 433 Babcock Dr., Madison, WI 53706, USA
| | | | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| |
Collapse
|
13
|
Hinkle ER, Blue RE, Tsai YH, Combs M, Davi J, Coffey AR, Boriek AM, Taylor JM, Parker JS, Giudice J. Stretching muscle cells induces transcriptional and splicing transitions and changes in SR proteins. Commun Biol 2022; 5:987. [PMID: 36123433 PMCID: PMC9485123 DOI: 10.1038/s42003-022-03915-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Alternative splicing is an RNA processing mechanism involved in skeletal muscle development and pathology. Muscular diseases exhibit splicing alterations and changes in mechanobiology leading us to investigate the interconnection between mechanical forces and RNA processing. We performed deep RNA-sequencing after stretching muscle cells. First, we uncovered transcriptional changes in genes encoding proteins involved in muscle function and transcription. Second, we observed that numerous mechanosensitive genes were part of the MAPK pathway which was activated in response to stretching. Third, we revealed that stretching skeletal muscle cells increased the proportion of alternatively spliced cassette exons and their inclusion. Fourth, we demonstrated that the serine and arginine-rich proteins exhibited stronger transcriptional changes than other RNA-binding proteins and that SRSF4 phosphorylation is mechanosensitive. Identifying SRSF4 as a mechanosensitive RNA-binding protein that might contribute to crosstalk between mechanotransduction, transcription, and splicing could potentially reveal novel insights into muscular diseases, particularly those with unknown etiologies.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jacquelyn Davi
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alisha R Coffey
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Aladin M Boriek
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Joel S Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
14
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
15
|
Zuidema A, Wang W, Kreft M, Bleijerveld OB, Hoekman L, Aretz J, Böttcher RT, Fässler R, Sonnenberg A. Molecular determinants of αVβ5 localization in flat clathrin lattices: Role of αVβ5 in cell adhesion and proliferation. J Cell Sci 2022; 135:275569. [PMID: 35532004 PMCID: PMC9234671 DOI: 10.1242/jcs.259465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The vitronectin receptor integrin αVβ5 can reside in two distinct adhesion structures: focal adhesions (FAs) and flat clathrin lattices (FCLs). Here we investigated the mechanism that regulates the subcellular distribution of β5 in keratinocytes and show that β5 has approximately 7- and 5-fold higher affinity for the clathrin adaptors ARH and Numb, respectively, than for talin; all proteins that bind to the membrane-proximal NPxY motif of the β5 cytoplasmic domain. Using mass spectrometry, we identified β5 interactors including the Rho GEFs p115Rho-GEF and GEF-H1, and the serine protein kinase MARK2; depletion of which diminishes the clustering of β5 in FCLs. Substitution of two serines (S759/762) in the β5 cytoplasmic domain with phospho-mimetic glutamates causes a shift in the localization of β5 from FAs into FCLs without affecting the interactions with MARK2, p115Rho-GEF or GEF-H1. Instead, we demonstrate that changes in the actomyosin-based cellular contractility by ectopic expression of activated Rho or disruption of microtubules regulates β5 localization. Finally, we present evidence that β5 in either FAs or FCLs functions to promote adhesion to vitronectin, cell spreading, and proliferation.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | | | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, The Netherlands
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
16
|
Nawara TJ, Williams YD, Rao TC, Hu Y, Sztul E, Salaita K, Mattheyses AL. Imaging vesicle formation dynamics supports the flexible model of clathrin-mediated endocytosis. Nat Commun 2022; 13:1732. [PMID: 35365614 PMCID: PMC8976038 DOI: 10.1038/s41467-022-29317-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Clathrin polymerization and changes in plasma membrane architecture are necessary steps in forming vesicles to internalize cargo during clathrin-mediated endocytosis (CME). Simultaneous analysis of clathrin dynamics and membrane structure is challenging due to the limited axial resolution of fluorescence microscopes and the heterogeneity of CME. This has fueled conflicting models of vesicle assembly and obscured the roles of flat clathrin assemblies. Here, using Simultaneous Two-wavelength Axial Ratiometry (STAR) microscopy, we bridge this critical knowledge gap by quantifying the nanoscale dynamics of clathrin-coat shape change during vesicle assembly. We find that de novo clathrin accumulations generate both flat and curved structures. High-throughput analysis reveals that the initiation of vesicle curvature does not directly correlate with clathrin accumulation. We show clathrin accumulation is preferentially simultaneous with curvature formation at shorter-lived clathrin-coated vesicles (CCVs), but favors a flat-to-curved transition at longer-lived CCVs. The broad spectrum of curvature initiation dynamics revealed by STAR microscopy supports multiple productive mechanisms of vesicle formation and advocates for the flexible model of CME. Despite decades of research, the dynamics of clathrin-coated vesicle formation is ambiguous. Here, authors use STAR microscopy to quantify the nanoscale dynamics of vesicle formation, supporting the flexible model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yancey D Williams
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Elizabeth Sztul
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Hinkle ER, Wiedner HJ, Torres EV, Jackson M, Black AJ, Blue RE, Harris SE, Guzman BB, Gentile GM, Lee EY, Tsai YH, Parker J, Dominguez D, Giudice J. Alternative splicing regulation of membrane trafficking genes during myogenesis. RNA (NEW YORK, N.Y.) 2022; 28:523-540. [PMID: 35082143 PMCID: PMC8925968 DOI: 10.1261/rna.078993.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Alternative splicing transitions occur during organ development, and, in numerous diseases, splicing programs revert to fetal isoform expression. We previously found that extensive splicing changes occur during postnatal mouse heart development in genes encoding proteins involved in vesicle-mediated trafficking. However, the regulatory mechanisms of this splicing-trafficking network are unknown. Here, we found that membrane trafficking genes are alternatively spliced in a tissue-specific manner, with striated muscles exhibiting the highest levels of alternative exon inclusion. Treatment of differentiated muscle cells with chromatin-modifying drugs altered exon inclusion in muscle cells. Examination of several RNA-binding proteins revealed that the poly-pyrimidine tract binding protein 1 (PTBP1) and quaking regulate splicing of trafficking genes during myogenesis, and that removal of PTBP1 motifs prevented PTBP1 from binding its RNA target. These findings enhance our understanding of developmental splicing regulation of membrane trafficking proteins which might have implications for muscle disease pathogenesis.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hannah J Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eduardo V Torres
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Micaela Jackson
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adam J Black
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Bryan B Guzman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gabrielle M Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eunice Y Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel Dominguez
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Arandel L, Matloka M, Klein AF, Rau F, Sureau A, Ney M, Cordier A, Kondili M, Polay-Espinoza M, Naouar N, Ferry A, Lemaitre M, Begard S, Colin M, Lamarre C, Tran H, Buée L, Marie J, Sergeant N, Furling D. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 2022; 6:207-220. [PMID: 35145256 DOI: 10.1038/s41551-021-00838-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Magdalena Matloka
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud F Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Frédérique Rau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alain Sureau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Michel Ney
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Aurélien Cordier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Maria Kondili
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Micaela Polay-Espinoza
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Naira Naouar
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Université, Inserm, Phénotypage du petit animal, Paris, France
| | - Séverine Begard
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Chloé Lamarre
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Hélène Tran
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Joëlle Marie
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France.
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
19
|
Moulay G, Bitoun M, Furling D, Vassilopoulos S. [How alternative splicing contributes to clathrin's structural plasticity]. Med Sci (Paris) 2021; 37:1186-1188. [PMID: 34928228 DOI: 10.1051/medsci/2021178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gilles Moulay
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Marc Bitoun
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Stéphane Vassilopoulos
- Sorbonne Université, Inserm, Association Institut de myologie, Centre de recherche en myologie, UMRS 974, 47 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
20
|
Johnson A, Dahhan DA, Gnyliukh N, Kaufmann WA, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera-Servin J, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2021; 118:e2113046118. [PMID: 34907016 PMCID: PMC8691179 DOI: 10.1073/pnas.2113046118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin-mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.
Collapse
Affiliation(s)
| | - Dana A Dahhan
- Department of Biochemistry, Hector F. DeLuca Laboratories, University of Wisconsin-Madison, Madison, WI 53706
| | | | | | - Vanessa Zheden
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Tommaso Costanzo
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Pierre Mahou
- CNRS, INSERM, Laboratory for Optics and Biosciences Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Mónika Hrtyan
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Jie Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Daniël van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Emmanuel Beaurepaire
- CNRS, INSERM, Laboratory for Optics and Biosciences Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Martin Loose
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Sebastian Y Bednarek
- Department of Biochemistry, Hector F. DeLuca Laboratories, University of Wisconsin-Madison, Madison, WI 53706
| | - Jiří Friml
- Institute of Science and Technology, 3400 Klosterneuburg, Austria;
| |
Collapse
|
21
|
Wang S, Yao L, Zhang W, Cheng Z, Hu C, Liu H, Yan Y, Shi A. AP-1 Recruits SMAP-1/SMAPs to the trans-Golgi Network to Promote Sorting in Polarized Epithelia. Front Cell Dev Biol 2021; 9:774401. [PMID: 34901019 PMCID: PMC8655793 DOI: 10.3389/fcell.2021.774401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Coordinated AP-1 and clathrin coat assembly mediate secretory sorting on the trans-Golgi network (TGN) during conventional secretion. Here we found that SMAP-1/SMAPs deficiency caused the apical protein ERM-1 to accumulate on the basolateral side of the TGN. In contrast, the basolateral protein SLCF-1 appeared abnormally on the apical membrane. SMAP-1 colocalized with AP-1 on the TGN. The integrity of AP-1 is required for the subcellular presence of SMAP-1. Moreover, we found that the loss of SMAP-1 reduced clathrin-positive structures in the cytosol, suggesting that SMAP-1 has a regulatory role in clathrin assembly on the TGN. Functional experiments showed that overexpressing clathrin effectively alleviated exocytic defects due to the lack of SMAP-1, corroborating the role of SMAP-1 in promoting the assembly of clathrin on the TGN. Together, our results suggested that the AP-1 complex regulates the TGN localization of SMAP-1, promoting clathrin assembly to ensure polarized conventional secretion in C. elegans intestinal epithelia.
Collapse
Affiliation(s)
- Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Willy NM, Ferguson JP, Akatay A, Huber S, Djakbarova U, Silahli S, Cakez C, Hasan F, Chang HC, Travesset A, Li S, Zandi R, Li D, Betzig E, Cocucci E, Kural C. De novo endocytic clathrin coats develop curvature at early stages of their formation. Dev Cell 2021; 56:3146-3159.e5. [PMID: 34774130 PMCID: PMC11414472 DOI: 10.1016/j.devcel.2021.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 01/09/2023]
Abstract
Sculpting a flat patch of membrane into an endocytic vesicle requires curvature generation on the cell surface, which is the primary function of the endocytosis machinery. Using super-resolved live cell fluorescence imaging, we demonstrate that curvature generation by individual clathrin-coated pits can be detected in real time within cultured cells and tissues of developing organisms. Our analyses demonstrate that the footprint of clathrin coats increases monotonically during the formation of pits at different levels of plasma membrane tension. These findings are only compatible with models that predict curvature generation at the early stages of endocytic clathrin pit formation. We also found that CALM adaptors associated with clathrin plaques form clusters, whereas AP2 distribution is more homogenous. Considering the curvature sensing and driving roles of CALM, we propose that CALM clusters may increase the strain on clathrin lattices locally, eventually giving rise to rupture and subsequent pit completion at the edges of plaques.
Collapse
Affiliation(s)
- Nathan M Willy
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua P Ferguson
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Huber
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | | | - Salih Silahli
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Cemal Cakez
- Department of Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Farah Hasan
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Ames Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, USA
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Betzig
- Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
23
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Sochacki KA, Heine BL, Haber GJ, Jimah JR, Prasai B, Alfonzo-Méndez MA, Roberts AD, Somasundaram A, Hinshaw JE, Taraska JW. The structure and spontaneous curvature of clathrin lattices at the plasma membrane. Dev Cell 2021; 56:1131-1146.e3. [PMID: 33823128 PMCID: PMC8081270 DOI: 10.1016/j.devcel.2021.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/19/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Clathrin-mediated endocytosis is the primary pathway for receptor and cargo internalization in eukaryotic cells. It is characterized by a polyhedral clathrin lattice that coats budding membranes. The mechanism and control of lattice assembly, curvature, and vesicle formation at the plasma membrane has been a matter of long-standing debate. Here, we use platinum replica and cryoelectron microscopy and tomography to present a structural framework of the pathway. We determine the shape and size parameters common to clathrin-mediated endocytosis. We show that clathrin sites maintain a constant surface area during curvature across multiple cell lines. Flat clathrin is present in all cells and spontaneously curves into coated pits without additional energy sources or recruited factors. Finally, we attribute curvature generation to loosely connected and pentagon-containing flat lattices that can rapidly curve when a flattening force is released. Together, these data present a universal mechanistic model of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Bridgette L Heine
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gideon J Haber
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bijeta Prasai
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aleah D Roberts
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Agila Somasundaram
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jenny E Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Wu M, Wu X. A kinetic view of clathrin assembly and endocytic cargo sorting. Curr Opin Cell Biol 2021; 71:130-138. [PMID: 33865229 DOI: 10.1016/j.ceb.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Specificity and sensitivity in biochemical reactions can be achieved through regulation of equilibrium binding affinity or through proofreading mechanisms that allow for the dissociation of unwanted intermediates. In this essay, we aim to provide our perspectives on how the concept of kinetic proofreading might apply in the context of cargo sorting in clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Min Wu
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520-8002, USA.
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Frey F, Schwarz US. Competing pathways for the invagination of clathrin-coated membranes. SOFT MATTER 2020; 16:10723-10733. [PMID: 33107553 DOI: 10.1039/d0sm01375g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Clathrin-mediated endocytosis is the major pathway by which eukaryotic cells take up extracellular material, but it is still elusive which physical pathways are being taken during membrane invagination. From a continuum point of view, it can be driven by increases in coat stiffness, preferred curvature or line tension. Here we develop a comprehensive theoretical framework that can be solved analytically and that predicts the consequences of these different scenarios. We find that for the case of increasing stiffness or preferred curvature, curvature will be acquired gradually with growth, while for increasing line tension, the lattice must have grown to a certain size before a flat-to-curved transition can occur. At low membrane tension, the critical value for coat stiffness is 30 kBT, for preferred curvature it is 200 nm, and for line tension it is 6 pN. For high membrane tension, critical coat stiffness is 150 kBT and critical preferred curvature is 70 nm. In the mixed case when a coat with finite rigidity but increasing line tension is considered, a cup-to-sphere transition can occur for a line tension of 6 pN. The flat-to-curved and the cup-to-sphere transitions driven by line tension are both suppressed by high membrane tension.
Collapse
Affiliation(s)
- Felix Frey
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
| | | |
Collapse
|
27
|
Briant K, Redlingshöfer L, Brodsky FM. Clathrin's life beyond 40: Connecting biochemistry with physiology and disease. Curr Opin Cell Biol 2020; 65:141-149. [PMID: 32836101 DOI: 10.1016/j.ceb.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023]
Abstract
Understanding of the range and mechanisms of clathrin functions has developed exponentially since clathrin's discovery in 1975. Here, newly established molecular mechanisms that regulate clathrin activity and connect clathrin pathways to differentiation, disease and physiological processes such as glucose metabolism are reviewed. Diversity and commonalities of clathrin pathways across the tree of life reveal species-specific differences enabling functional plasticity in both membrane traffic and cytokinesis. New structural information on clathrin coat formation and cargo interactions emphasises the interplay between clathrin, adaptor proteins, lipids and cargo, and how this interplay regulates quality control of clathrin's function and is compromised in infection and neurological disease. Roles for balancing clathrin-mediated cargo transport are defined in stem cell development and additional disease states.
Collapse
Affiliation(s)
- Kit Briant
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK
| | - Lisa Redlingshöfer
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck and University College London, 14 Malet Street, London WC1E 7HX, UK.
| |
Collapse
|