1
|
Joshi D, Chakraborty R, Bhogale T, Furtado J, Deng H, Traylor JG, Orr AW, Martin KA, Schwartz MA. Polycomb Repressive Complex 2 promotes atherosclerotic plaque vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626505. [PMID: 39703699 PMCID: PMC11656509 DOI: 10.1101/2024.12.02.626505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality worldwide, is driven by endothelial cell inflammatory activation and counter-balanced by anti-inflammatory transcription factors Klf2 and Klf4 (Klf2/4). Understanding vascular endothelial inflammation to develop effective treatments is thus essential. Here, we identify, Polycomb Repressive Complex (PRC) 2, which blocks gene transcription by trimethylating histone3 Lysine27 in gene promoter/enhancers, as a potent, therapeutically targetable determinant of vascular inflammation and ASCVD progression. Bioinformatics identified PRC2 as a direct suppressor of Klf2/4 transcription. Klf2/4 transcription requires Notch signaling, which reverses PRC2 modification of Klf2/4 promoter/enhancers. PRC2 activity is elevated in human ASCVD endothelium. Treating mice with established ASCVD with tazemetostat, an FDA approved pharmacological inhibitor of PRC2, slowed plaque progression by 50% and drastically improved markers of plaque stability. This study elucidates a fundamental mechanism of vascular inflammation, thus identifying a potential method for treating ASCVD and possibly other vascular inflammatory diseases.
Collapse
Affiliation(s)
- Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Tejas Bhogale
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Jessica Furtado
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Hanqiang Deng
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - James G. Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, LA 71103, USA
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, LA 71103, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Blazeski A, Floryan MA, Zhang Y, Fajardo Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. Biomaterials 2024; 311:122686. [PMID: 38971122 DOI: 10.1016/j.biomaterials.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell function and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The flow-dependent expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) that incorporate a KLF2-based endothelial cell flow sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that application of flow to MVNs for 48 h resulted in increased expression of the KLF2 reporter, larger vessel diameters, and decreased vascular branching and resistance. Notably, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. MVNs with KLF2-based flow sensors represent a novel, powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuzhi Zhang
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Oscar R Fajardo Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, USA and Harvard Medical School, Boston, MA, USA; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Romani P, Benedetti G, Cusan M, Arboit M, Cirillo C, Wu X, Rouni G, Kostourou V, Aragona M, Giampietro C, Grumati P, Martello G, Dupont S. Mitochondrial mechanotransduction through MIEF1 coordinates the nuclear response to forces. Nat Cell Biol 2024; 26:2046-2060. [PMID: 39433949 PMCID: PMC11628398 DOI: 10.1038/s41556-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Tissue-scale architecture and mechanical properties instruct cell behaviour under physiological and diseased conditions, but our understanding of the underlying mechanisms remains fragmentary. Here we show that extracellular matrix stiffness, spatial confinements and applied forces, including stretching of mouse skin, regulate mitochondrial dynamics. Actomyosin tension promotes the phosphorylation of mitochondrial elongation factor 1 (MIEF1), limiting the recruitment of dynamin-related protein 1 (DRP1) at mitochondria, as well as peri-mitochondrial F-actin formation and mitochondrial fission. Strikingly, mitochondrial fission is also a general mechanotransduction mechanism. Indeed, we found that DRP1- and MIEF1/2-dependent fission is required and sufficient to regulate three transcription factors of broad relevance-YAP/TAZ, SREBP1/2 and NRF2-to control cell proliferation, lipogenesis, antioxidant metabolism, chemotherapy resistance and adipocyte differentiation in response to mechanical cues. This extends to the mouse liver, where DRP1 regulates hepatocyte proliferation and identity-hallmark YAP-dependent phenotypes. We propose that mitochondria fulfil a unifying signalling function by which the mechanical tissue microenvironment coordinates complementary cell functions.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giada Benedetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Martina Cusan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mattia Arboit
- Department of Biology, University of Padova, Padova, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Xi Wu
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Georgia Rouni
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Vassiliki Kostourou
- Institute for Bioinnovation, Biomedical Sciences Research Centre "Alexander Fleming", Athens, Greece
| | - Mariaceleste Aragona
- Novo Nordisk Foundation Center for Stem Cell Medicine (ReNEW), University of Copenhagen, Copenhagen, Denmark
| | - Costanza Giampietro
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, Padova, Italy.
| |
Collapse
|
4
|
Shen YH, Ding D, Lian TY, Qiu BC, Yan Y, Wang PW, Zhang WH, Jing ZC. Panorama of artery endothelial cell dysfunction in pulmonary arterial hypertension. J Mol Cell Cardiol 2024; 197:61-77. [PMID: 39437884 DOI: 10.1016/j.yjmcc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal lung disease characterized by progressive pulmonary vascular remodeling. The initial cause of pulmonary vascular remodeling is the dysfunction of pulmonary arterial endothelial cells (PAECs), manifested by changes in the categorization of cell subtypes, endothelial programmed cell death, such as apoptosis, necroptosis, pyroptosis, ferroptosis, et al., overproliferation, senescence, metabolic reprogramming, endothelial-to-mesenchymal transition, mechanosensitivity, and regulation ability of peripheral cells. Therefore, it is essential to explore the mechanism of endothelial dysfunction in the context of PAH. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying endothelial dysfunction in PAH. We highlight the developmental process of PAECs and changes in PAH and summarise the latest classification of endothelial dysfunction. Our review could offer valuable insights into potential novel EC-specific targets for preventing and treating PAH.
Collapse
Affiliation(s)
- Ying-Huizi Shen
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong Ding
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bao-Chen Qiu
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Wen Wang
- National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hua Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Park H, Lee S, Furtado J, Robinson M, Schwartz M, Young L, Eichmann A. PIEZO1 overexpression in hereditary hemorrhagic telangiectasia arteriovenous malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625696. [PMID: 39651206 PMCID: PMC11623632 DOI: 10.1101/2024.11.27.625696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and Alk1 knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in Alk1 mutants remains unknown and means to combat AVM formation in patients are yet to be developed. Methods Single-cell RNA sequencing of endothelial-specific Alk1 KO mouse retinas and controls identified a cluster of endothelial cells (ECs) that was unique to Alk1 mutants and that overexpressed fluid shear stress (FSS) signaling signatures including upregulation of the mechanosensitive ion channel PIEZO1. PIEZO1 overexpression was confirmed in human HHT lesions, and genetic and pharmacological PIEZO1 inhibition was tested in Alk1 KO mice, as well as downstream PIEZO1 signaling. Results Pharmacological PIEZO1 inhibition, and genetic Piezo1 deletion in Alk1 -deficient mice effectively mitigated AVM formation. Furthermore, we identified that elevated VEGFR2/AKT, ERK5-p62-KLF4, hypoxia and proliferation signaling were significantly reduced in Alk1 - Piezo1 double ECKO mice. Conclusions PIEZO1 overexpression and signaling is integral to HHT2, and PIEZO1 blockade reduces AVM formation and alleviates cellular and molecular hallmarks of ALK1-deficient cells. This finding provides new insights into the mechanistic underpinnings of ALK1-related vascular diseases and identifies potential therapeutic targets to prevent AVMs.
Collapse
|
6
|
Zhou Z, Chen W, Cao Y, Abdi R, Tao W. Nanomedicine-based strategies for the treatment of vein graft disease. Nat Rev Cardiol 2024. [DOI: 10.1038/s41569-024-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 01/03/2025]
|
7
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
8
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
Kim H, Massett MP. Effect of Spermidine on Endothelial Function in Systemic Lupus Erythematosus Mice. Int J Mol Sci 2024; 25:9920. [PMID: 39337408 PMCID: PMC11432455 DOI: 10.3390/ijms25189920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1-parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE.
Collapse
Affiliation(s)
| | - Michael P. Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Park C, Baek KI, Jo H. Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1021-1023. [PMID: 39232137 DOI: 10.1038/s44161-024-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Affiliation(s)
- Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Joshi D, Coon BG, Chakraborty R, Deng H, Yang Z, Babar MU, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor JG, Orr AW, Fernandez-Hernando C, Libreros S, Schwartz MA. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1035-1048. [PMID: 39232138 PMCID: PMC11399086 DOI: 10.1038/s44161-024-00522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.
Collapse
Affiliation(s)
- Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Brian G Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hanqiang Deng
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ziyu Yang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Muhammad Usman Babar
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Emily Meredith
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - John Attanasio
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Nikhil Joshi
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - James G Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | | | - Stephania Libreros
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Yan T, Li H, Yan J, Ma S, Tan J. Age-related mitophagy regulates orthodontic tooth movement by affecting PDLSCs mitochondrial function and RANKL/OPG. FASEB J 2024; 38:e23865. [PMID: 39096136 DOI: 10.1096/fj.202401280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.
Collapse
Affiliation(s)
- Tong Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilin Li
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiayin Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Siyuan Ma
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Tan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Wang X, Liang L, Giridharan GA, Sethu P, Wang Y, Qin KR, Qu P, Wang Y. Development of in vitro microfluidic models to study endothelial responses to pulsatility with different mechanical circulatory support devices. Analyst 2024; 149:3661-3672. [PMID: 38819086 DOI: 10.1039/d4an00507d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated. In this study, two in vitro microfluidic models for culturing ECs are proposed to reproduce blood pressure (BP) and wall shear stress (WSS) on the arterial endothelium while using these medical devices. The layout and parameters of the two microfluidic systems were optimized based on the principle of hemodynamic similarity to efficiently simulate physiological conditions. Moreover, the unique design of the double-pump and double afterload systems could successfully reproduce the working mode of CPDs in an in vitro microfluidic system. The performance of the two systems was verified by numerical simulations and in vitro experiments. BP and WSS under HF, CFVAD in pulsatile modes, and CPD were reproduced accurately in the systems, and these induced signals improved the expression of Ca2+, NO, and reactive oxygen species in ECs, proving that CPD may be effective in normalizing endothelial function and replacing CFVAD to a certain extent to treat non-severe HF. This method offers an important tool for the study of cell mechanobiology and a key experimental basis for exploring the potential value of mechanical circulatory support devices in reducing adverse events and improving outcomes in the treatment of HF in the future.
Collapse
Affiliation(s)
- Xueying Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | - Lixue Liang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
| | | | - Palaniappan Sethu
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, Shandong Province, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| | - Peng Qu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| | - Yu Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China.
| |
Collapse
|
15
|
Cao Y, Xu W, Liu Q. Alterations of the blood-brain barrier during aging. J Cereb Blood Flow Metab 2024; 44:881-895. [PMID: 38513138 PMCID: PMC11318406 DOI: 10.1177/0271678x241240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional changes during aging, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. In recent years, advances in microscopy and high-throughput bioinformatics have allowed a more in-depth investigation of the aging mechanisms of BBB. This review summarizes age-related alterations of the BBB structure and function from six perspectives: endothelial cells, astrocytes, pericytes, basement membrane, microglia and perivascular macrophages, and fibroblasts, ranging from the molecular level to the human multi-system level. These basic components are essential for the proper functioning of the BBB. Recent imaging methods of BBB were also reviewed. Elucidation of age-associated BBB changes may offer insights into BBB homeostasis and may provide effective therapeutic strategies to protect it during aging.
Collapse
Affiliation(s)
- Yufan Cao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihai Xu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
17
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
18
|
Pan B, Ma X, Zhou S, Cheng X, Fang J, Yi Q, Li Y, Li S, Yang J. Predicting mitophagy-related genes and unveiling liver endothelial cell heterogeneity in hepatic ischemia-reperfusion injury. Front Immunol 2024; 15:1370647. [PMID: 38694511 PMCID: PMC11061384 DOI: 10.3389/fimmu.2024.1370647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Background Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.
Collapse
Affiliation(s)
- Bochen Pan
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuan Ma
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoling Cheng
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianwei Fang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuyun Yi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuke Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Li
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
19
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
20
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
21
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
22
|
Joshi D, Coon BG, Chakraborty R, Deng H, Fernandez-Tussy P, Meredith E, Traylor JG, Orr AW, Fernandez-Hernando C, Schwartz MA. Gamma protocadherins in vascular endothelial cells inhibit Klf2/4 to promote atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575958. [PMID: 38293157 PMCID: PMC10827163 DOI: 10.1101/2024.01.16.575958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide1. Laminar shear stress (LSS) from blood flow in straight regions of arteries protects against ASCVD by upregulating the Klf2/4 anti-inflammatory program in endothelial cells (ECs)2-8. Conversely, disturbed shear stress (DSS) at curves or branches predisposes these regions to plaque formation9,10. We previously reported a whole genome CRISPR knockout screen11 that identified novel inducers of Klf2/4. Here we report suppressors of Klf2/4 and characterize one candidate, protocadherin gamma A9 (Pcdhga9), a member of the clustered protocadherin gene family12. Pcdhg deletion increases Klf2/4 levels in vitro and in vivo and suppresses inflammatory activation of ECs. Pcdhg suppresses Klf2/4 by inhibiting the Notch pathway via physical interaction of cleaved Notch1 intracellular domain (NICD Val1744) with nuclear Pcdhg C-terminal constant domain (CCD). Pcdhg inhibition by EC knockout (KO) or blocking antibody protects from atherosclerosis. Pcdhg is elevated in the arteries of human atherosclerosis. This study identifies a novel fundamental mechanism of EC resilience and therapeutic target for treating inflammatory vascular disease.
Collapse
Affiliation(s)
- Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Brian G. Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Hanqiang Deng
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Pablo Fernandez-Tussy
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA
| | - Emily Meredith
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - James G. Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, LA 71103, USA
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, LA 71103, USA
| | | | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
23
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Blazeski A, Floryan MA, Fajardo-Ramírez OR, Meibalan E, Ortiz-Urbina J, Angelidakis E, Shelton SE, Kamm RD, García-Cardeña G. Engineering microvascular networks using a KLF2 reporter to probe flow-dependent endothelial cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565021. [PMID: 37961543 PMCID: PMC10635035 DOI: 10.1101/2023.10.31.565021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell phenotype and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems, but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) with a KLF2-based endothelial cell sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that culture of MVNs exposed to flow for 48 hours that resulted in increased expression of the KLF2-GFP-reporter display larger vessel diameters and decreased vascular branching and resistance. Additionally, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. The MVNs with KLF2-based flow sensors represent a powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.
Collapse
Affiliation(s)
- Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A. Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oscar R. Fajardo-Ramírez
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Elamaran Meibalan
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
| | - Jesús Ortiz-Urbina
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emmanouil Angelidakis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
25
|
Walsh D, Cunning C, Lee G, Boylan J, McLoughlin P. CAPILLARY LEAK AND EDEMA AFTER RESUSCITATION: THE POTENTIAL CONTRIBUTION OF REDUCED ENDOTHELIAL SHEAR STRESS CAUSED BY HEMODILUTION. Shock 2023; 60:487-495. [PMID: 37647080 DOI: 10.1097/shk.0000000000002215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACT Normal shear stress is essential for the normal structure and functions of the microcirculation. Hemorrhagic shock leads to reduced shear stress due to reduced tissue perfusion. Although essential for the urgent restoration of cardiac output and systemic blood pressure, large volume resuscitation with currently available solutions causes hemodilution, further reducing endothelial shear stress. In this narrative review, we consider how the use of currently available resuscitation solutions results in persistent reduction in endothelial shear stress, despite successfully increasing cardiac output and systemic blood pressure. We consider how this reduced shear stress causes (1) a failure to restore normal vasomotor function and normal tissue perfusion thus leading to persistent tissue hypoxia and (2) increased microvascular endothelial permeability resulting in edema formation and impaired organ function. We discuss the need for clinical research into resuscitation strategies and solutions that aim to quickly restore endothelial shear stress in the microcirculation to normal.
Collapse
Affiliation(s)
| | - Ciara Cunning
- Department of Clinical Biochemistry, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | - Paul McLoughlin
- School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
27
|
Zhou S, Fan K, Lai J, Tan S, Zhang Z, Li J, Xu X, Yao C, Long B, Zhao C, Yu S. Comprehensive analysis of mitophagy-related genes in diagnosis and heterogeneous endothelial cells in chronic rhinosinusitis: based on bulk and single-cell RNA sequencing data. Front Genet 2023; 14:1228028. [PMID: 37745856 PMCID: PMC10514917 DOI: 10.3389/fgene.2023.1228028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Chronic rhinosinusitis (CRS) is a complex inflammatory disorder affecting the nasal and paranasal sinuses. Mitophagy, the process of selective mitochondrial degradation via autophagy, is crucial for maintaining cellular balance. However, the role of mitophagy in CRS is not well-studied. This research aims to examine the role of mitophagy-related genes (MRGs) in CRS, with a particular focus on the heterogeneity of endothelial cells (ECs). Methods: We employed both bulk and single-cell RNA sequencing data to investigate the role of MRGs in CRS. We compiled a combined database of 92 CRS samples and 35 healthy control samples from the Gene Expression Omnibus (GEO) database and we explored the differential expression of MRGs between them. A logistic regression model was built based on seven key genes identified through Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE). Consensus cluster analysis was used to categorize CRS patients based on MRG expression patterns and weighted gene co-expression network analysis (WGCNA) was performed to find modules of highly correlated genes of the different clusters. Single-cell RNA sequencing data was utilized to analyze MRGs and EC heterogeneity in CRS. Results: Seven hub genes-SQSTM1, SRC, UBA52, MFN2, UBC, RPS27A, and ATG12-showed differential expression between two groups. A diagnostic model based on hub genes showed excellent prognostic accuracy. A strong positive correlation was found between the seven hub MRGs and resting dendritic cells, while a significant negative correlation was observed with mast cells and CD8+ T cells. CRS could be divided into two subclusters based on MRG expression patterns. WGCNA analysis identified modules of highly correlated genes of these two different subclusters. At the single-cell level, two types of venous ECs with different MRG scores were identified, suggesting their varying roles in CRS pathogenesis, especially in the non-eosinophilic CRS subtype. Conclusion: Our comprehensive study of CRS reveals the significant role of MRGs and underscores the heterogeneity of ECs. We highlighted the importance of Migration Inhibitory Factor (MIF) and TGFb pathways in mediating the effects of mitophagy, particularly the MIF. Overall, our findings enhance the understanding of mitophagy in CRS, providing a foundation for future research and potential therapeutic developments.
Collapse
Affiliation(s)
- Shican Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ju Lai
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiwang Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zimu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingwen Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiayue Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Yao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - BoJin Long
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chuanliang Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaoqing Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Allergy, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
29
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
30
|
Parente A, Flores Carvalho M, Schlegel A. Endothelial Cells and Mitochondria: Two Key Players in Liver Transplantation. Int J Mol Sci 2023; 24:10091. [PMID: 37373238 DOI: 10.3390/ijms241210091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Building the inner layer of our blood vessels, the endothelium forms an important line communicating with deeper parenchymal cells in our organs. Previously considered passive, endothelial cells are increasingly recognized as key players in intercellular crosstalk, vascular homeostasis, and blood fluidity. Comparable to other cells, their metabolic function strongly depends on mitochondrial health, and the response to flow changes observed in endothelial cells is linked to their mitochondrial metabolism. Despite the direct impact of new dynamic preservation concepts in organ transplantation, the impact of different perfusion conditions on sinusoidal endothelial cells is not yet explored well enough. This article therefore describes the key role of liver sinusoidal endothelial cells (LSECs) together with their mitochondrial function in the context of liver transplantation. The currently available ex situ machine perfusion strategies are described with their effect on LSEC health. Specific perfusion conditions, including perfusion pressure, duration, and perfusate oxygenation are critically discussed considering the metabolic function and integrity of liver endothelial cells and their mitochondria.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Division of Hepatobiliary and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | | | - Andrea Schlegel
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, 20122 Milan, Italy
- Transplantation Center, Digestive Disease and Surgery Institute, Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
32
|
Tusa I, Menconi A, Tubita A, Rovida E. Pathophysiological Impact of the MEK5/ERK5 Pathway in Oxidative Stress. Cells 2023; 12:cells12081154. [PMID: 37190064 DOI: 10.3390/cells12081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
33
|
Shan H, Fei T. CRISPR screening in cardiovascular research. Front Cell Dev Biol 2023; 11:1175849. [PMID: 37123412 PMCID: PMC10130668 DOI: 10.3389/fcell.2023.1175849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
The recent advent and widespread application of CRISPR-based genome editing tools have revolutionized biomedical research and beyond. Taking advantage of high perturbation efficiency and scalability, CRISPR screening has been regarded as one of the most powerful technologies in functional genomics which allows investigation of different genetic subjects at a large scale in parallel. Significant progress has been made using various CRISPR screening tools especially in cancer research, however, fewer attempts and less success are reported in other contexts. In this mini-review, we discuss how CRISPR screening has been implemented in studies on cardiovascular research and related metabolic disorders, highlight the scientific progress utilizing CRISPR screening, and further envision how to fully unleash the power of this technique to expedite scientific discoveries in these fields.
Collapse
Affiliation(s)
- Haihuan Shan
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, China
| | - Teng Fei
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang, China
| |
Collapse
|
34
|
Afshar Y, Ma F, Quach A, Jeong A, Sunshine HL, Freitas V, Jami-Alahmadi Y, Helaers R, Li X, Pellegrini M, Wohlschlegel JA, Romanoski CE, Vikkula M, Iruela-Arispe ML. Transcriptional drifts associated with environmental changes in endothelial cells. eLife 2023; 12:e81370. [PMID: 36971339 PMCID: PMC10168696 DOI: 10.7554/elife.81370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/26/2023] [Indexed: 03/29/2023] Open
Abstract
Environmental cues, such as physical forces and heterotypic cell interactions play a critical role in cell function, yet their collective contributions to transcriptional changes are unclear. Focusing on human endothelial cells, we performed broad individual sample analysis to identify transcriptional drifts associated with environmental changes that were independent of genetic background. Global gene expression profiling by RNA sequencing and protein expression by liquid chromatography-mass spectrometry directed proteomics distinguished endothelial cells in vivo from genetically matched culture (in vitro) samples. Over 43% of the transcriptome was significantly changed by the in vitro environment. Subjecting cultured cells to long-term shear stress significantly rescued the expression of approximately 17% of genes. Inclusion of heterotypic interactions by co-culture of endothelial cells with smooth muscle cells normalized approximately 9% of the original in vivo signature. We also identified novel flow dependent genes, as well as genes that necessitate heterotypic cell interactions to mimic the in vivo transcriptome. Our findings highlight specific genes and pathways that rely on contextual information for adequate expression from those that are agnostic of such environmental cues.
Collapse
Affiliation(s)
- Yalda Afshar
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| | - Feyiang Ma
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Austin Quach
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Anhyo Jeong
- Department of Obstetrics and Gynecology, University of California, Los AngelesLos AngelesUnited States
| | - Hannah L Sunshine
- Department of Molecular, Cellular and Integrative Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Vanessa Freitas
- Departament of Cell and Developmental Biology, Institute of Biomedical Science, University of Sao PauloLos AngelesUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Raphael Helaers
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos AngelesUnited States
| | - Matteo Pellegrini
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of CaliforniaLos AngelesUnited States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of LouvainBrusselsBelgium
- WELBIO department, WEL Research InstituteWavreBelgium
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
35
|
Son H, Choi HS, Baek SE, Kim YH, Hur J, Han JH, Moon JH, Lee GS, Park SG, Woo CH, Eo SK, Yoon S, Kim BS, Lee D, Kim K. Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother 2023; 161:114566. [PMID: 36963359 DOI: 10.1016/j.biopha.2023.114566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
The loss of endothelial cells is associated with the accumulation of monocytes/macrophages underneath the surface of the arteries, where cells are prone to mechanical stimulation, such as shear stress. However, the impact of mechanical stimuli on monocytic cells remains unclear. To assess whether mechanical stress affects monocytic cell function, we examined the expression of inflammatory molecules and surface proteins, whose levels changed following shear stress in human THP-1 cells. Shear stress increased the inflammatory chemokine CCL2, which enhanced the migration of monocytic cells and tumor necrosis factor (TNF)-α and interleukin (IL)- 1β at transcriptional and protein levels. We identified that the surface levels of heat shock protein 70 (HSP70), HSP90, and HSP105 increased using mass spectrometry-based proteomics, which was confirmed by western blot analysis, flow cytometry, and immunofluorescence. Treatment with HSP70/HSP105 and HSP90 inhibitors suppressed the expression and secretion of CCL2 and monocytic cell migration, suggesting an association between HSPs and inflammatory responses. We also demonstrated the coexistence and colocalization of increased HSP90 immunoreactivity and CD68 positive cells in atherosclerotic plaques of ApoE deficient mice fed a high-fat diet and human femoral artery endarterectomy specimens. These results suggest that monocytes/macrophages affected by shear stress polarize to a pro-inflammatory phenotype and increase surface protein levels involved in inflammatory responses. The regulation of the abovementioned HSPs upregulated on the monocytes/macrophages surface may serve as a novel therapeutic target for inflammation due to shear stress.
Collapse
Affiliation(s)
- Hyojae Son
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun-Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Bioinformatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Ga Seul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Chang-Hoon Woo
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu 49415, Republic of Korea
| | - Seong-Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea.
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
36
|
Wang Y, Wang Y, Li S, Jin H, Duan J, Lu X, Qin Y, Song J, Li X, Jin X. Insights of Chinese herbal medicine for mitochondrial dysfunction in chronic cerebral hypoperfusion induced cognitive impairment: Existed evidences and potential directions. Front Pharmacol 2023; 14:1138566. [PMID: 36843941 PMCID: PMC9950122 DOI: 10.3389/fphar.2023.1138566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is one of the main pathophysiological markers of cognitive impairment in central nervous system diseases. Mitochondria are cores of energy generation and information process. Mitochondrial dysfunction is the key upstream factors of CCH induced neurovascular pathology. Increasing studies explored the molecular mechanisms of mitochondrial dysfunction and self-repair for effective targets to improve CCH-related cognitive impairment. The clinical efficacy of Chinese herbal medicine in the treatment of CCH induced cognitive impairment is definite. Existed evidences from pharmacological studies have further proved that, Chinese herbal medicine could improve mitochondrial dysfunction and neurovascular pathology after CCH by preventing calcium overload, reducing oxidative stress damage, enhancing antioxidant capacity, inhibiting mitochondria-related apoptosis pathway, promoting mitochondrial biogenesis and preventing excessive activation of mitophagy. Besides, CCH mediated mitochondrial dysfunction is one of the fundamental causes for neurodegeneration pathology aggravation. Chinese herbal medicine also has great potential therapeutic value in combating neurodegenerative diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yefei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shixin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huihui Jin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Duan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiyue Lu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinglin Qin
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiale Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xianglan Jin,
| |
Collapse
|
37
|
Patel A, Pietromicca JG, Venkatesan M, Maity S, Bard JE, Madesh M, Alevriadou BR. Modulation of the mitochondrial Ca 2+ uniporter complex subunit expression by different shear stress patterns in vascular endothelial cells. Physiol Rep 2023; 11:e15588. [PMID: 36754446 PMCID: PMC9908435 DOI: 10.14814/phy2.15588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023] Open
Abstract
Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.
Collapse
Affiliation(s)
- Akshar Patel
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Julia G. Pietromicca
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Manigandan Venkatesan
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Soumya Maity
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - B. Rita Alevriadou
- Vascular Mechanobiology Laboratory, Department of Biomedical Engineering, and Center for Cell, Gene, and Tissue EngineeringUniversity at Buffalo – The State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
38
|
Endothelial mechanosensing: A forgotten target to treat vascular remodeling in hypertension? Biochem Pharmacol 2022; 206:115290. [DOI: 10.1016/j.bcp.2022.115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
39
|
Chen J, Li R, Knapp S, Zhu G, Whitener RL, Leiter EH, Mathews CE. Intergenomic and epistatic interactions control free radical mediated pancreatic β-cell damage. Front Genet 2022; 13:994501. [PMID: 36276935 PMCID: PMC9585181 DOI: 10.3389/fgene.2022.994501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Alloxan (AL)-generated Reactive Oxygen Species (ROS) selectively destroy insulin-producing pancreatic β-cells. A previous genome-wide scan (GWS) using a cohort of 296 F2 hybrids between NOD (AL-sensitive) and ALR (AL-resistant) mice identified linkages contributing to β-cell susceptibility or resistance to AL-induced diabetes on Chromosomes (Chr) 2, 3, 8, and a single nucleotide polymorphism in mt-Nd2 of the mitochondrial genome (mtDNA). AL treatment of congenic and consomic NOD mouse stocks confirmed resistance linked to both the mtDNA and the Chr 8 locus from ALR [NOD.mtALR.ALR-(D8Mit293-D8Mit137)]. To identify possible epistatic interactions, the GWS analysis was expanded to 678 F2 mice. ALR-derived diabetes-resistance linkages on Chr 8 as well as the mt-Nd2a allele were confirmed and novel additional linkages on Chr 4, 5, 6, 7, and 13 were identified. Epistasis was observed between the linkages on Chr 8 and 2 and Chr 8 and 6. Furthermore, the mt-Nd2 genotype affected the epistatic interactions between Chr 8 and 2. These results demonstrate that a combination of nuclear-cytoplasmic genome interactions regulates β-cell sensitivity to ROS-mediated ALD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Renhua Li
- Henry M Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Sarah Knapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Guizhi Zhu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Robert L. Whitener
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | | | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
40
|
Abstract
Since its discovery as a mechanosensitive transcription factor in endothelial networks, Klf2's varying expression levels under different blood flow patterns remained a mystery. In this study, Coon et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202109144) discover a connection between sustained laminar shear stress and mitochondrial flux that contributes to Klf2's transcriptional dynamics.
Collapse
Affiliation(s)
- Emir Bora Akmeriç
- Integrative Vascular Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|