1
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
2
|
Šimon M, Kaić A, Potočnik K. Unveiling Genetic Potential for Equine Meat Production: A Bioinformatics Approach. Animals (Basel) 2024; 14:2441. [PMID: 39199974 PMCID: PMC11350750 DOI: 10.3390/ani14162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In view of the predicted significant increase in global meat production, alternative sources such as horsemeat are becoming increasingly important due to their lower environmental impact and high nutritional value. This study aimed to identify SNP markers on the GeneSeek® Genomic Profiler™ Equine (Neogen, Lansing, MI, USA) that are important for horsemeat production traits. First, orthologous genes related to meat yield in cattle and common genes between horses and cattle within QTLs for body size and weight were identified. Markers for these genes were then evaluated based on predicted variant consequences, GERP scores, and positions within constrained elements and orthologous regulatory regions in pigs. A total of 268 markers in 57 genes related to meat production were analyzed. This resulted in 27 prioritized SNP markers in 22 genes, including notable markers in LCORL, LASP1, IGF1R, and MSTN. These results will benefit smallholder farmers by providing genetic insights for selective breeding that could improve meat yield. This study also supports future large-scale genetic analyses such as GWAS and Genomic Best Linear Unbiased Prediction (GBLUP). The results of this study may be helpful in improving the accuracy of genomic breeding values. However, limitations include reliance on bioinformatics without experimental validation. Future research can validate these markers and consider a wider range of traits to ensure accuracy in equine breeding.
Collapse
Affiliation(s)
- Martin Šimon
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| | - Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| |
Collapse
|
3
|
Lyons PJ. Inactive metallopeptidase homologs: the secret lives of pseudopeptidases. Front Mol Biosci 2024; 11:1436917. [PMID: 39050735 PMCID: PMC11266112 DOI: 10.3389/fmolb.2024.1436917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inactive enzyme homologs, or pseudoenzymes, are proteins, found within most enzyme families, that are incapable of performing catalysis. Rather than catalysis, they are involved in protein-protein interactions, sometimes regulating the activity of their active enzyme cousins, or scaffolding protein complexes. Pseudoenzymes found within metallopeptidase families likewise perform these functions. Pseudoenzymes within the M14 carboxypeptidase family interact with collagens within the extracellular space, while pseudopeptidase members of the M12 "a disintegrin and metalloprotease" (ADAM) family either discard their pseudopeptidase domains as unnecessary for their roles in sperm maturation or utilize surface loops to enable assembly of key complexes at neuronal synapses. Other metallopeptidase families contain pseudopeptidases involved in protein synthesis at the ribosome and protein import into organelles, sometimes using their pseudo-active sites for these interactions. Although the functions of these pseudopeptidases have been challenging to study, ongoing work is teasing out the secret lives of these proteins.
Collapse
Affiliation(s)
- Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, United States
| |
Collapse
|
4
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
5
|
Miyazaki Y, Otsuka T, Yamagata Y, Endo T, Sanbo M, Sano H, Kobayashi K, Inahashi H, Kornau HC, Schmitz D, Prüss H, Meijer D, Hirabayashi M, Fukata Y, Fukata M. Oligodendrocyte-derived LGI3 and its receptor ADAM23 organize juxtaparanodal Kv1 channel clustering for short-term synaptic plasticity. Cell Rep 2024; 43:113634. [PMID: 38194969 PMCID: PMC10828548 DOI: 10.1016/j.celrep.2023.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri Miyazaki
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Otsuka
- Section of Cellular Electrophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yoko Yamagata
- Section of Multilayer Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | | | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiromi Sano
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Inahashi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Masumi Hirabayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaki Fukata
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
6
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|