1
|
Butto T, Mungikar K, Baumann P, Winter J, Lutz B, Gerber S. Nuclei on the Rise: When Nuclei-Based Methods Meet Next-Generation Sequencing. Cells 2023; 12:cells12071051. [PMID: 37048124 PMCID: PMC10093037 DOI: 10.3390/cells12071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decade, we have witnessed an upsurge in nuclei-based studies, particularly coupled with next-generation sequencing. Such studies aim at understanding the molecular states that exist in heterogeneous cell populations by applying increasingly more affordable sequencing approaches, in addition to optimized methodologies developed to isolate and select nuclei. Although these powerful new methods promise unprecedented insights, it is important to understand and critically consider the associated challenges. Here, we provide a comprehensive overview of the rise of nuclei-based studies and elaborate on their advantages and disadvantages, with a specific focus on their utility for transcriptomic sequencing analyses. Improved designs and appropriate use of the various experimental strategies will result in acquiring biologically accurate and meaningful information.
Collapse
Affiliation(s)
- Tamer Butto
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center Mainz, 55128 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| |
Collapse
|
2
|
Wu W, Yan Z, Nguyen TC, Bouman Chen Z, Chien S, Zhong S. Mapping RNA-chromatin interactions by sequencing with iMARGI. Nat Protoc 2019; 14:3243-3272. [PMID: 31619811 PMCID: PMC7314528 DOI: 10.1038/s41596-019-0229-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
RNA-chromatin interactions represent an important aspect of the transcriptional regulation of genes and transposable elements. However, analyses of chromatin-associated RNAs (caRNAs) are often limited to one caRNA at a time. Here, we describe the iMARGI (in situ mapping of RNA-genome interactome) technique, which is used to discover caRNAs and reveal their respective genomic interaction loci. iMARGI starts with in situ crosslinking and genome fragmentation, followed by converting each proximal RNA-DNA pair into an RNA-linker-DNA chimeric sequence. These chimeric sequences are subsequently converted into a sequencing library suitable for paired-end sequencing. A standardized bioinformatic software package, iMARGI-Docker, is provided to decode the paired-end sequencing data into caRNA-DNA interactions. Compared to its predecessor MARGI (mapping RNA-genome interactions), the number of input cells for iMARGI is 3-5 million (a 100-fold reduction), experimental time is reduced, and clear checkpoints have been established. It takes a few hours a day and a total of 8 d to complete the construction of an iMARGI sequencing library and 1 d to carry out data processing with iMARGI-Docker.
Collapse
Affiliation(s)
- Weixin Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhangming Yan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sheng Zhong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Chang CC, Wang K, Zhang Y, Chen D, Fan B, Hsieh CH, Wang J, Wu MH, Chen J. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel. Cytometry A 2018; 93:822-828. [PMID: 30063818 DOI: 10.1002/cyto.a.23386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/18/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
Abstract
As label-free biomarkers, the mechanical properties of nuclei are widely treated as promising biomechanical markers for cell type classification and cellular status evaluation. However, previously reported mechanical parameters were derived from only around 10 nuclei, lacking statistical significances due to low sample numbers. To address this issue, nuclei were first isolated from SW620 and A549 cells, respectively, using a chemical treatment method. This was followed by aspirating them through two types of microfluidic constriction channels for mechanical property characterization. In this study, hundreds of nuclei were characterized, producing passage times of 0.5 ± 1.2 s for SW620 nuclei in type I constriction channel (n = 153), 0.045 ± 0.047 s for SW620 nuclei in type II constriction channel (n = 215) and 0.50 ± 0.86 s for A549 nuclei in type II constriction channel. In addition, neural network based pattern recognition was used to classify the nuclei isolated from SW620 and A549 cells, producing successful classification rates of 87.2% for diameters of nuclei, 85.5% for passage times of nuclei and 89.3% for both passage times and diameters of nuclei. These results indicate that the characterization of the mechanical properties of nuclei may contribute to the classification of different tumor cells.
Collapse
Affiliation(s)
- Chun-Chieh Chang
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chia-Hsun Hsieh
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan.,Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 PMCID: PMC5063692 DOI: 10.1002/cne.24040] [Citation(s) in RCA: 587] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
5
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 DOI: 10.1002/cne.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/25/2023]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
6
|
Abstract
This protocol presents a rapid, efficient, and practical (REAP) method to separate nuclei from cultured cells in vitro with as little damage and contamination as possible. The REAP procedure is performed at low temperature and takes <2 min, which minimizes protein degradation, protein modification, and diffusion of soluble proteins out of the nuclear compartment while maintaining the integrity of protein complexes. A mild detergent, NP-40, is used together with mild mechanical shearing to disrupt the plasma membrane, leaving the nuclear membrane intact. The REAP method can be used with various cell lines grown in vitro and requires minimal optimization. The isolated nuclei are suitable for numerous downstream applications (e.g., western blotting, 2D gel electrophoresis, and immunoprecipitation). If desired, aliquots of whole-cell lysate and the cytoplasmic fraction can be saved for comparison.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
7
|
Abstract
The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.
Collapse
Affiliation(s)
- Arash Nabbi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
8
|
Bahney J, von Bartheld CS. Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J Neurosci Methods 2013; 222:165-74. [PMID: 24239779 DOI: 10.1016/j.jneumeth.2013.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/01/2013] [Accepted: 11/03/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND The "isotropic fractionator" (IF) is a novel cell counting technique that homogenizes fixed tissue, recovers cell nuclei in solution, and samples and quantifies nuclei by extrapolation. Studies using this technique indicate that the ratio of glia to neurons in the human brain is approximately 1:1 rather than the 10:1 or 50:1 ratio previously assumed. Although some results obtained with the IF have been similar to those obtained by stereology, the IF has never been calibrated or validated. It is conceivable that only a fraction of glial cell nuclei are recovered intact or recognized after the homogenization step. NEW METHOD To rule out this simple explanation for the claim of a 1:1 glia-neuron ratio, we compared cell numbers obtained from adjacent, weight-normalized samples of human and macaque monkey white matter using three techniques: the IF, unbiased stereology of histological sections in exhaustively sectioned samples, and cell numbers calculated from DNA extraction. RESULTS AND COMPARISON OF METHODS In primate forebrains, the IF yielded 73,000-90,000 nuclei/mg white matter, unbiased stereology yielded 75,000-92,000 nuclei/mg, with coefficients of error ranging from 0.013 to 0.063, while DNA extraction yielded only 4000-23,000 nuclei/mg in fixed white matter tissues. CONCLUSIONS Since the IF revealed about 100% of the numbers produced by unbiased stereology, there is no significant underestimate of glial cells. This confirms the notion that the human brain overall contains glial cells and neurons with a ratio of about 1:1 - far from the originally assumed ratio of 10:1 in favor of glial cells.
Collapse
Affiliation(s)
- Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
9
|
Dammer EB, Duong DM, Diner I, Gearing M, Feng Y, Lah JJ, Levey AI, Seyfried NT. Neuron enriched nuclear proteome isolated from human brain. J Proteome Res 2013; 12:3193-206. [PMID: 23768213 DOI: 10.1021/pr400246t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brain consists of diverse cell types including neurons, astrocytes, oligodendrocytes, and microglia. The isolation of nuclei from these distinct cell populations provides an opportunity to identify cell-type-specific nuclear proteins, histone modifications, and regulation networks that are altered with normal brain aging or neurodegenerative disease. In this study, we used a method by which intact neuronal and non-neuronal nuclei were purified from human post-mortem brain employing a modification of fluorescence activated cell sorting (FACS) termed fluorescence activated nuclei sorting (FANS). An antibody against NeuN, a neuron specific splicing factor, was used to isolate neuronal nuclei. Utilizing mass spectrometry (MS) based label-free quantitative proteomics, we identified 1755 proteins from sorted NeuN-positive and negative nuclear extracts. Approximately 20% of these proteins were significantly enriched or depleted in neuronal versus non-neuronal populations. Immunoblots of primary cultured rat neuron, astrocyte, and oligodendrocyte extracts confirmed that distinct members of the major nucleocytoplasmic structural linkage complex (LINC), nesprin-1 and nesprin-3, were differentially enriched in neurons and astrocytes, respectively. These comparative proteomic data sets also reveal a number of transcription and splicing factors that are selectively enriched in a cell-type-specific manner in human brain.
Collapse
Affiliation(s)
- Eric B Dammer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Stoykova AS, Dabeva MD, Dimova RN, Hadjiolov AA. Ribosomal RNA precursors in neuronal and glial rat brain nuclei. J Neurochem 1979; 33:931-7. [PMID: 490165 DOI: 10.1111/j.1471-4159.1979.tb09923.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Yankner BA, Shooter EM. Nerve growth factor in the nucleus: interaction with receptors on the nuclear membrane. Proc Natl Acad Sci U S A 1979; 76:1269-73. [PMID: 286309 PMCID: PMC383232 DOI: 10.1073/pnas.76.3.1269] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells of a continuous line of rat pheochromocytoma (PC12) were incubated with 125I-labeled beta nerve growth factor (beta NGF), and at given time intervals the cell nuclei were isolated by a procedure that used the detergent Triton X-100. NGF was detectable in the nucleus after 20 min and continued to accumulate in a linear fashion for several hours after the total binding to the cell had reached steady state. After 17 hr at 37 degrees C, about 60% of the NGF bound to the cell was in the nucleus, NGF was not translocated to the nucleus at 4 degrees C. When nuclei were purified from PC12 cells and incubated with 125I-labeled beta NGF, specific binding sites were found. Binding was saturable and consistent with two sites: a high-affinity site with a Kd of 0.08 nM (+/- nM) and a lower-affinity site with a Kd of 9.0 nM (+/- 2.0 nM). The receptors in the nucleus were shown to be localized to the nuclear membrane. Membrane-free chromatin did not bind NGF specifically. The translocation of NGF to the nucleus was accompanied by a commensurate decrease in the cell-surface binding capacity. In the nucleus, however, the receptor capacities of both sites were increased when PC12 cells were grown in the presence of NGF.
Collapse
|
12
|
Scheer U, Kartenbeck J, Trendelenburg MF, Stadler J, Franke WW. Experimental disintegration of the nuclear envelope. Evidence for pore-connecting fibrils. J Cell Biol 1976; 69:1-18. [PMID: 943400 PMCID: PMC2110960 DOI: 10.1083/jcb.69.1.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The disintegration of the nuclear envelope has been examined in nuclei and nuclear envelopes isolated from amphibian oocytes from amphibian oocytes and rat liver tissue, using different electron microscope techniques (ultrathin sections and negatively or positively stained spread preparations). Various treatments were studied, including disruption by surface tension forces, very low salt concentrations, and nonionic detergents such as Triton C-100 and Nonidet P-40. The highest local stability of the cylinders of nonmembranous pore complex material is emphasized. As progressive disintegration occurred in the membrane regions, a network of fibrils became apparent which interconnects the pore complexes and is distinguished from the pore complex-associated about 15-20 nm thick, located at the level of the inner nuclear membrane, which is recognized in thin sections to bridge the interpore distances. With all disintegraiton treatments a somewhat higher susceptibility of the outer nuclear membrane is notable, but a selective removal does not take place. Final stages of disintegration are generally characterized by the absence of identifiable, membrane-like structures. Analysis of detergent-treated nuclei and nuclear membrane fractions shows almost complete absence of lipid components but retention bo significant amount of glycoproteins with a typical endomembrane-type carbohydrate pattern. Various alternative interpretations of these observations are discussed. From the present observations and those of Aaronson and Blobel (1,2), we favor the notion that threadlike intrinsic membrane components are stabilized by their attachment to the pore complexes, and perhaps also to peripheral nuclear structures,and constitute a detergent-resistant, interpore skeleton meshwork.
Collapse
|
13
|
Aaronson RP, Blobel G. Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci U S A 1975; 72:1007-11. [PMID: 1055359 PMCID: PMC432453 DOI: 10.1073/pnas.72.3.1007] [Citation(s) in RCA: 246] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nuclear pore complexes have been isolated in association with a 150 A thick lamina by detergent and salt fractionation of nuclear envelopes from rat liver. The pore complexes exhibit characteristic morphology and appear to be attached in a highly specific orientation to the lamina, which extends over relatively large areas. The pore complex-lamina fraction is composed of three major and several minor polypeptides with little or no DNA, RNA, or phospholipid. It is suggested that the association of the pore complexes and the lamina reflects the structural arrangement of the nuclear periphery in vivo.
Collapse
|
14
|
Abstract
Electron microscope examination of isolated rat liver nuclei after treatment with the detergent Triton X-100 revealed the complete removal of both the inner and outer membranes of the nuclear envelope. The envelope-denuded nuclei did not show any change in either shape or internal ultrastructure. Most strikingly, the nuclear pore complexes, which in untreated nuclei appear to be integral components of the nuclear envelope, were retained in their characteristic location at the distal ends of the channels leading through the peripheral heterochromatin. Determination of the chemical composition of detergent-treated nuclei showed that over 95% of the nuclear phospholipid was solubilized, thus corroborating the morphological absence of nuclear membranes. Furthermore, detergent treatment also solubilized approximately 10% of the nuclear protein. Analysis of the solubilized protein by polyacrylamide gel electrophoresis in the presence of SDS indicated that these proteins belong to a few specific classes which presumably represent the major polypeptides of the nuclear membranes. The total absence of the nuclear envelope on both morphological and biochemical grounds supports the idea that the nuclear pore complex does not require the membranes either for attachment to the nucleus or for maintenance of its own structural integrity.
Collapse
|
15
|
Edwards RB. A comparison of RNA from rat and rooster liver and brain by acrylamide gel electrophoresis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1974; 47:87-100. [PMID: 4589527 DOI: 10.1016/0305-0491(74)90094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Knüsel A, Lehner B, Kuenzle CC, Kistler GS. Isolation of neuronal nuclei from rat brain cortex. J Cell Biol 1973; 59:762-5. [PMID: 4761338 PMCID: PMC2109107 DOI: 10.1083/jcb.59.3.762] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
17
|
Giuditta A, Rutigliano B, Casola L, Romano M. Biosynthesis of RNA in two nuclear classes separated from rat cerebral cortex. Brain Res 1972; 46:313-28. [PMID: 4564375 DOI: 10.1016/0006-8993(72)90022-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Slagel DE, Akers RD. Isolation, fractionation, and RNA polymerase activity in a sample enriched with oligodendroglia nuclei. Brain Res 1972; 44:245-60. [PMID: 4560403 DOI: 10.1016/0006-8993(72)90379-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Olpe HR, von Hahn HP, Honegger CG. Fractionation and characterization of cell nuclei from rat neocortex by protein-DNA ratios. EXPERIENTIA 1972; 28:781-3. [PMID: 4658854 DOI: 10.1007/bf01923127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Kishimoto Y, Sostek R. Activity of sterol-sulphate sulphohydrolase in rat brain: characterization, localization and change with age. J Neurochem 1972; 19:123-30. [PMID: 4257947 DOI: 10.1111/j.1471-4159.1972.tb01261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Duerre JA, Gaitonde MK. Isolation and electrophoretic identification of histones of rat brain and liver. J Neurochem 1971; 18:1921-9. [PMID: 5118344 DOI: 10.1111/j.1471-4159.1971.tb09598.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
|
23
|
Mori K, Yamagami S, Akahani Y, Kawakita Y. Preparation, properties and fractionation of the nuclear deoxyribonucleic acid from guinea pig brain. J Neurochem 1970; 17:1691-4. [PMID: 5492989 DOI: 10.1111/j.1471-4159.1970.tb11394.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
|
25
|
Samli MH, Roberts S. Properties of RNA fractions from nuclei of brain cells which stimulate incorporation of amino acids by brain ribosomes. J Neurochem 1969; 16:1565-80. [PMID: 5379235 DOI: 10.1111/j.1471-4159.1969.tb10355.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Lolley RN, Hess HH. The retinal rod outer segment of the frog: detachment, isolation, phosphorus fractions and enzyme activity. J Cell Physiol 1969; 73:9-23. [PMID: 4237126 DOI: 10.1002/jcp.1040730103] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Abstract
1. The nucleic acid content of neuronal nucleoli and the total cell body nucleic acid content of neurones of the hypoglossal nucleus were measured by ultraviolet absorption microspectrography.2. After nerve injury both the nucleolar nucleic acid and the total cell body nucleic acid increased: nucleolar changes preceded those of the cell body.3. The closer to the nerve cell body that the axon was injured the earlier was the onset and the decline of the nucleolar response.4. Actinomycin D was given to prevent DNA-primed RNA synthesis, and the rate of ;decay' of nucleolar RNA was measured. This rate varied after nerve injury and was closely related to the nucleolar nucleic acid content.5. The apparent rate of transfer of labelled RNA from the neuronal nucleus into the cytoplasm changed after nerve injury in a manner closely related to the changes in nucleolar nucleic acid content.6. It was demonstrated by making consecutive nerve injuries or by preventing or delaying nerve regeneration, that the nucleic acid changes were not induced by removal of contact between the neurone and its motor end-plate, and were not repressed by the restoration of such contact.7. When regeneration was prevented the nucleolar nucleic acid content and the total cell body nucleic acid ultimately decreased to values less than normal: this decrease was greater when more of the axon was initially removed.8. The results are discussed in relation to the factor responsible for derepression and repression of DNA cistrons for ribosome synthesis in injured nerve cells.
Collapse
|
28
|
Youlten LJ. The permeability to plasma proteins of skeletal muscle (rat cremaster) blood vessel walls. J Physiol 1968; 194:63-4P. [PMID: 4230238 PMCID: PMC1365506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Griffin MJ, Cox RP, Grujic N. A chemical method for the isolation of HeLa cell nuclei and the nuclear localization of HeLa cell alkaline phosphatase. J Biophys Biochem Cytol 1967; 33:200-3. [PMID: 6033937 PMCID: PMC2107285 DOI: 10.1083/jcb.33.1.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
30
|
Kato T, Kurokawa M. Isolation of cell nuclei from the mammalian cerebral cortex and their assortment on a morphological basis. J Cell Biol 1967; 32:649-62. [PMID: 4226774 PMCID: PMC2107272 DOI: 10.1083/jcb.32.3.649] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An aqueous method is described for the isolation of highly purified nuclei from the cerebral cortex of adult guinea pigs. Erythrocytes were removed by a short-time perfusion of the brain, myelin fragments by a rapid mechanical method, and blood capillaries by a centrifugal sieving through dense sucrose solutions. The nuclear preparation retained the activity of ATP:NMN adenylyltransferase. Recoveries of DNA in the P4I, P4II, P(L) and P(S) preparations were 30, 43, 8, and 7%, respectively. Microscopy and phase contrast microscopy showed a satisfactory removal of erythrocytes, myelin fragments, capillaries, and cytoplasmic elements. Biochemical purity of samples was verified by the absence of several cytoplasmic enzyme activities. In the electron microscope, the majority of nuclei showed well-preserved nuclear membranes, with nuclear pores, and were provided with a finely textured nucleoplasm. Occasional contaminants were elements of endoplasmic reticulum and of the endothelium. Assortment of nuclei on a morphological basis showed that 55-65% and 47-53% of nuclei in the P4I and P4II preparations, respectively, consisted of neuronal nuclei. In the P(L) preparation, the population of neuronal nuclei ranged between 72 and 83%, while 94-99% of the nuclei in the P(S) preparation consisted of smaller nuclei, most likely of oligodendroglial origin.
Collapse
|
31
|
Ribonucleic Acids and Information Transfer in Animal Cells. ACTA ACUST UNITED AC 1967. [DOI: 10.1016/s0079-6603(08)60953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
32
|
Abstract
A method for isolating pure and unaltered nuclei from rat brain by means of differential centrifugation is described. The isolated nuclei are further separated into discrete fractions of neuronal, astrocytic, and glial nuclei, with a yield amounting to 20 to 25% of the DNA of the original homogenate. Both the morphology and size of the nuclei remained unchanged. Problems concerning the composition of the isolation media, the use of detergents, as well as those raised by density gradient centrifugation in sucrose, Ficoll, and Dextran are discussed. Some values for the density of each type of brain nuclei are suggested.
Collapse
|