1
|
Puchert M, Koch C, Zieger K, Engele J. Identification of CXCL11 as part of chemokine network controlling skeletal muscle development. Cell Tissue Res 2021; 384:499-511. [PMID: 33502606 PMCID: PMC8141492 DOI: 10.1007/s00441-020-03398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
The chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, play pivotal roles during development and maintenance of limb muscles. CXCR7 additionally binds CXCL11, which uses CXCR3 as its prime receptor. Based on this cross-talk, we investigate whether CXCL11 would likewise affect development and/or function of skeletal muscles. Western blotting and immunolabelling demonstrated the developmentally restricted expression of CXCL11 in rat limb muscles, which was contrasted by the continuous expression of its receptors in proliferating and differentiating C2C12 cells as well as in late embryonic to adult rat limb muscle fibres. Consistent with a prime role in muscle formation, functional studies identified CXCL11 as a potent chemoattractant for undifferentiated C2C12 cells and further showed that CXCL11 does neither affect myoblast proliferation and differentiation nor metabolic/catabolic pathways in formed myotubes. The use of selective receptor antagonists unravelled complementary effects of CXCL11 and CXCL12 on C2C12 cell migration, which either require CXCR3/CXCR7 or CXCR4, respectively. Our findings provide new insights into the chemokine network controlling skeletal muscle development and function and, thus, might provide a base for future therapies of muscular diseases.
Collapse
Affiliation(s)
- Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Dahl N, Albrecht E, Dannenberger D, Uken KL, Hammon HM, Maak S. Consequences of Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation on the Development of Calf Muscle and Adipose Tissue. Animals (Basel) 2020; 10:ani10091598. [PMID: 32911793 PMCID: PMC7552164 DOI: 10.3390/ani10091598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Common silage and concentrate-based diets in dairy and beef production may deliver insufficient amounts of essential fatty acids (EFA), thereby also reducing conjugated linoleic acids (CLA) in body tissues and milk. An impaired maternal EFA and CLA supply can have an important impact on calf postnatal development. The current study investigates how maternal supplementation with EFA and CLA affects muscle and adipose tissue development in neonatal calves. Holstein cows (n = 40) were abomasaly supplemented with coconut oil (control), CLA or EFA, or both combined during the transition period. Calves were fed their dam's colostrum until slaughter at day 5 of life. Fatty acid composition and tissue morphology were analyzed. In muscle and adipose tissues, EFA, CLA, and metabolites were elevated, indicating the effective transfer of maternally-supplemented FA to the offspring. Muscle fiber types, fiber nuclei, myosin heavy chain isoform distribution, capillarization, and fat cell size of intramuscular and other adipose tissues did not differ among groups. The results confirm that maternal nutrition during the transition period can alter the FA composition of the calf tissues. This could influence the offspring's development and health in the long-term, even though only minor effects were observed in the neonatal calves' tissue morphology.
Collapse
Affiliation(s)
- Nina Dahl
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
- Correspondence: ; Tel.: +49-38208-68-858
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| | - Katrin L. Uken
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (K.L.U.); (H.M.H.)
| | - Harald M. Hammon
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (K.L.U.); (H.M.H.)
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (N.D.); (D.D.); (S.M.)
| |
Collapse
|
3
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
4
|
Ye M, Ye F, He L, Luo B, Yang F, Cui C, Zhao X, Yin H, Li D, Xu H, Wang Y, Zhu Q. Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation. PLoS One 2017; 12:e0189476. [PMID: 29236749 PMCID: PMC5728575 DOI: 10.1371/journal.pone.0189476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Embryonic muscle development and fibre type differentiation has always been a topic of great importance due to its impact on both human health and farm animal financial values. Myozenin3 (Myoz3) is an important candidate gene that may regulate these processes. In the current study, we knocked down and overexpressed Myoz3 in chicken embryonic fibroblasts (CEFs) and chicken myoblasts, then utilized RNA-seq technology to screen genes, pathways and biological processes associated with Myoz3. Multiple differentially expressed genes were identified, including MYH10, MYLK2, NFAM1, MYL4, MYL9, PDZLIM1; those can in turn regulate each other and influence the development of muscle fibres. Gene ontology (GO) terms including some involved in positive regulation of cell proliferation were enriched. We further validated our results by testing the activity of cells by cell counting kit-8(CCK-8) and confirmed that under the condition of Myoz3 overexpression, the proliferation rate of CEFs and myoblasts was significantly upregulated, in addition, expression level of fast muscle specific gene was also significantly upregulated in myoblasts. Pathway enrichment analysis revealed that the PPAR (Peroxisome Proliferator-Activated Receptor) pathway was enriched, suggesting the possibility that Myoz3 regulates muscle fibre development and differentiation through the PPAR pathway. Our results provide valuable evidence regarding the regulatory functions of Myoz3 in embryonic cells by screening multiple candidate genes, biological processes and pathways associated with Myoz3.
Collapse
Affiliation(s)
- Maosen Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fei Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Liutao He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Bin Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Fuling Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- * E-mail: (YW); (QZ)
| |
Collapse
|
5
|
Spáčilová J, Hůlková M, Hruštincová A, Čapek V, Tesařová M, Hansíková H, Zeman J. Analysis of expression profiles of genes involved in F(o)F(1)-ATP synthase biogenesis during perinatal development in rat liver and skeletal muscle. Physiol Res 2016; 65:597-608. [PMID: 26988161 DOI: 10.33549/physiolres.933126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the process of intra-uterine mammalian fetal development, the oxygen supply in growing fetus is low. A rapid switch from glycolysis-based metabolism to oxidative phosphorylation (OXPHOS) must proceed during early postnatal adaptation to extra-uterine conditions. Mitochondrial biogenesis and mammalian mitochondrial F(o)F(1)-ATP synthase assembly (complex V, EC 3.6.3.14, ATPase) are complex processes regulated by multiple transcription regulators and assembly factors. Using RNA expression analysis of rat liver and skeletal tissue (Rattus norvegicus, Berkenhout, 1769), we describe the expression profiles of 20 genes involved in mitochondrial maturation and ATP synthase biogenesis in detail between the 16th and 22nd day of gestation and the first 4 days of life. We observed that the most important expression shift occurred in the liver between the 20th and 22nd day of gestation, indicating that the fetus prepares for birth about two days before parturition. The detailed mechanism regulating the perinatal adaptation process is not yet known. Deeper insights in perinatal physiological development will help to assess mitochondrial dysfunction in the broader context of cell metabolism in preterm newborns or neonates with poor adaptation to extra-uterine life.
Collapse
Affiliation(s)
- J Spáčilová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague, General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
6
|
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle 2015; 5:22. [PMID: 26180627 PMCID: PMC4502549 DOI: 10.1186/s13395-015-0046-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022] Open
Abstract
Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padova, Italy
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy ; CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
7
|
Alibardi L. Regenerating tail muscles in lizard contain Fast but not Slow Myosin indicating that most myofibers belong to the fast twitch type for rapid contraction. Tissue Cell 2015; 47:533-40. [PMID: 26164738 DOI: 10.1016/j.tice.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 11/16/2022]
Abstract
During tail regeneration in lizards a large mass of muscle tissue is formed in form of segmental myomeres of similar size located under the dermis of the new tail. These muscles accumulate glycogen and a fast form of myosin typical for twitch myofibers as it is shown by light and ultrastructural immunocytochemistry using an antibody directed against a Fast Myosin Heavy Chain. High resolution immunogold labeling shows that an intense labeling for fast myosin is localized over the thick filaments of the numerous myofibrils in about 70% of the regenerated myofibers while the labeling becomes less intense in the remaining muscle fibers. The present observations indicate that at least two subtypes of Fast Myosin containing muscle fibers are regenerated, the prevalent type was of the fast twitch containing few mitochondria, sparse glycogen, numerous smooth endoplasmic reticulum vesicles. The second, and less frequent type was a Fast-Oxidative-Glycolitic twitch fiber containing more mitochondria, a denser cytoplasm and myofibrils. Since their initial differentiation, myoblasts, myotubes and especially the regenerated myofibers do not accumulate any immuno-detectable Slow Myosin Heavy Chain. The study indicates that most of the segmental muscles of the regenerated tail serve for the limited bending of the tail during locomotion and trashing after amputation of the regenerated tail, a phenomenon that facilitates predator escape.
Collapse
Affiliation(s)
- L Alibardi
- Comparative Histolab and Department of Bigea, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
8
|
Voigt T, Neve A, Schümperli D. The craniosacral progression of muscle development influences the emergence of neuromuscular junction alterations in a severe murine model for spinal muscular atrophy. Neuropathol Appl Neurobiol 2015; 40:416-34. [PMID: 23718187 DOI: 10.1111/nan.12064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
Abstract
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Collapse
Affiliation(s)
- Tilman Voigt
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
9
|
FLADBY T, JANSEN JKS. Selective innervation of neonatal fast and slow muscle fibres before net loss of synaptic terminals in the mouse soleus muscle. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1365-201x.1988.tb10636.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Oxidative damage in the gastrocnemius of patients with peripheral artery disease is myofiber type selective. Redox Biol 2014; 2:921-8. [PMID: 25180168 PMCID: PMC4143812 DOI: 10.1016/j.redox.2014.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023] Open
Abstract
Background Peripheral artery disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in the arteries supplying the legs, affects approximately 5% of Americans. We have previously, demonstrated that a myopathy characterized by myofiber oxidative damage and degeneration is central to PAD pathophysiology. Objectives In this study, we hypothesized that increased oxidative damage in the myofibers of the gastrocnemius of PAD patients is myofiber-type selective and correlates with reduced myofiber size. Methods Needle biopsies were taken from the gastrocnemius of 53 PAD patients (28 with early PAD and 25 with advanced PAD) and 25 controls. Carbonyl groups (marker of oxidative damage), were quantified in myofibers of slide-mounted tissue, by quantitative fluorescence microscopy. Myofiber cross-sectional area was determined from sarcolemma labeled with wheat germ agglutinin. The tissues were also labeled for myosin I and II, permitting quantification of oxidative damage to and relative frequency of the different myofiber Types (Type I, Type II and mixed Type I/II myofibers). We compared PAD patients in early (N=28) vs. advanced (N=25) disease stage for selective, myofiber oxidative damage and altered morphometrics. Results The carbonyl content of gastrocnemius myofibers was higher in PAD patients compared to control subjects, for all three myofiber types (p<0.05). In PAD patients carbonyl content was higher (p<0.05) in Type II and I/II fibers compared to Type I fibers. Furthermore, the relative frequency and cross-sectional area of Type II fibers were lower, while the relative frequencies and cross-sectional area of Type I and Type I/II fibers were higher, in PAD compared to control gastrocnemius (p<0.05). Lastly, the type II-selective oxidative damage increased and myofiber size decreased as the disease progressed from the early to advanced stage. Conclusions Our data confirm increased myofiber oxidative damage and reduced myofiber size in PAD gastrocnemius and demonstrate that the damage is selective for type II myofibers and is worse in the most advanced stage of PAD. Peripheral artery disease, is characterized by the formation of atherosclerotic plaques that limit blood flow to the legs. There was increased myofiber oxidative damage and degeneration in the gastrocnemius of PAD patients compared to controls. Myofiber oxidative damage and morphology were worse for Type II myofibers. Type II-selective oxidative damage and abnormal morphology worsened as the PAD progressed from the early to advanced stage. Myofiber oxidative damage and degeneration is a significant contributors to the pathophysiology of PAD.
Collapse
|
11
|
Wang L, Liu X, Niu F, Wang H, He H, Gu Y. Single nucleotide polymorphisms, haplotypes and combined genotypes in MYH₃ gene and their associations with growth and carcass traits in Qinchuan cattle. Mol Biol Rep 2012; 40:417-26. [PMID: 23073773 PMCID: PMC3518803 DOI: 10.1007/s11033-012-2076-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
MYH₃ is a major contractile protein which converts chemical energy into mechanical energy through the ATP hydrolysis. MYH₃ is mainly expressed in the skeletal muscle in different stages especially embryonic period, and it has a role in the development of skeletal muscle and heart. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was applied to analyze the genetic variations of the MYH₃ gene and verify the effect on growth and carcass traits in a total of 365 Qinchuan cattles. The PCR product was digested with some restriction enzyme and demonstrated the polymorphism in the population, the single nucleotide polymorphisms (SNPs) at nucleotides g. +1215T>C, g. +3377C>T, and g. +28625C>T were in linkage disequilibrium with each other. The result of haplotype analysis showed that nineteen different haplotypes were identified among the five SNPs. The statistical analyses indicated that the five SNPs were significant association with growth and carcass traits (P < 0.05, N = 365); whereas the five SNPs were no significant association between 18 combined genotypes of MYH₃ gene and growth and carcass traits. Taken together, our results provide the evidence that polymorphisms in MYH₃ are associated with growth and carcass traits in Qinchuan cattle, and may be used as a possible candidate for marker-assisted selection and management in beef cattle breeding program.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Miwa Y, Sunohara M, Sato I. Expression of myosin heavy chain isoforms in the postnatal mouse masseter muscle. Okajimas Folia Anat Jpn 2010; 86:105-10. [PMID: 20166551 DOI: 10.2535/ofaj.86.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the properties of the masseter muscle in mice from five to seven weeks of age. Myosin heavy chain (MyHC) isoforms were measured in the masseter muscle. The three types of muscle fibers (Type I, strong reaction; Type IIA, intermediate reaction; and Type IIB, weak reaction) were all present in the masseter muscle in five-weeks-old mice and seven-weeks-old mice, the three types could be clearly distinguished by their enzyme activity. The percentage of Type IIB fibers (above 50%) was the highest among all fiber types both 5- and 7-weeks-old mice. The mRNA levels for myosin slow and myosin IIb increased significantly between 5 and 7 weeks. These observations suggest that muscle fiber size, muscle fiber types and mRNA levels of the MyHC isoforms all contribute to the diminished functional adaptability of enzyme activity in the masseter muscle.
Collapse
Affiliation(s)
- Yoko Miwa
- Department of Anatomy, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi Chiyoda-Ku, Tokyo, Japan 102-8159
| | | | | |
Collapse
|
13
|
Abstract
AbstractUltrasonography has not previously been used for studying fetal movements in precocial rodents. The objective of this study was to ultrasonographically determine the sequence of the appearance of basic movements in a guinea pig fetus. The research included eight guinea pig females carrying one fetus each. Fetal movements were observed for 10 minutes each day, from the 25th to 38th day of gestation. The time and sequence of the appearance of movements was observed as follows: whole body flexion (mean 27.6 SD ± 1.68), whole body extension (mean 28.1 SD ± 1.12), head flexion (mean 28.1 SD ± 1.80), head extension (mean 30.5 SD ± 2.67) forelimbs flexion (mean 30.5 SD ± 2.32), forelimbs extension (mean 30.7 SD ± 1.84), trunk rotation (mean 31.9 SD ± 2.23), forelimbs alternating flexion and extension (mean 32.1 SD ± 2.1), hind limbs extension (mean 32.2 SD ± 3.2), hind limbs flexion (mean 32.4 SD ± 3.16), and hind limbs alternating flexion and extension (mean 33.5 SD ± 2.39). The identical sequences of basic movement appearances in guinea pigs, sheep, and rats suggest that the rostrocaudal gradient of basic movement appearance could be a general developmental pattern in mammalian species.
Collapse
|
14
|
Abe S, Nonami K, Iwanuma O, Hiroki E, Yanagisawa N, Sakiyama K, Ide Y. HGF and IGF-1 is Present during the Developmental Process of Murine Masseter Muscle. J HARD TISSUE BIOL 2009. [DOI: 10.2485/jhtb.18.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Chung KW, Suh BC, Shy ME, Cho SY, Yoo JH, Park SW, Moon H, Park KD, Choi KG, Kim S, Kim SB, Shim DS, Kim SM, Sunwoo IN, Choi BO. Different clinical and magnetic resonance imaging features between Charcot-Marie-Tooth disease type 1A and 2A. Neuromuscul Disord 2008; 18:610-8. [PMID: 18602827 DOI: 10.1016/j.nmd.2008.05.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/23/2008] [Accepted: 05/28/2008] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the more frequent cause of demyelinating CMT, and CMT2A is the most common cause of axonal CMT. We conducted a magnetic resonance imaging (MRI) study on 39 CMT1A and 21 CMT2A patients to compare their neuroimaging patterns and correlate with clinical features. CMT1A patients showed selective fatty infiltration with a preference for anterior and lateral compartment muscles, whereas CMT2A patients showed a preference for superficial posterior compartment muscles. Early-onset CMT2A patients showed more severe leg fatty atrophy than late-onset CMT2A patients. In late-onset CMT2A, soleus muscle was the earliest, and most severely affected than the other leg muscles. Selective involvement of intrinsic foot muscles is a characteristic pattern of minimal CMT1A and CMT2A. Our MRI study demonstrates different patterns of fatty infiltration involving superficial posterior compartment muscles in CMT2A (partial T-type), and peroneal nerve innervated muscles in CMT1A (P-type).
Collapse
Affiliation(s)
- K W Chung
- Department of Biological Science, Kongju National University, Gongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
STRÖM D, HOLM S. Fibre type grouping in porcine masseter and soleus muscles assessed by the enclosed fibre type concept. A statistical and computational analysis. J Oral Rehabil 2008. [DOI: 10.1111/j.1365-2842.1997.tb00345.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Rader EP, Cederna PS, McClellan WT, Caterson SA, Panter KE, Yu D, Buchman SR, Larkin LM, Faulkner JA, Weinzweig J. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates. Cleft Palate Craniofac J 2008; 45:113-20. [PMID: 18333646 DOI: 10.1597/06-171.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Despite cleft palate repair, velopharyngeal competence is not achieved in approximately 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resistant type 1 fibers. As an initial step to determining the validity of this theory, we tested the hypothesis that, in most cases, repair induces the transformation to type 1 fibers, thus diminishing susceptibility to injury. INTERVENTIONS Single permeabilized levator veli palatini muscle fibers were obtained from normal palates and nonrepaired congenitally-clefted palates of young (2 months old) and adult (14 to 15 months old) goats and from repaired palates of adult goats (8 months old). Repair was done at 2 months of age using a modified von Langenbeck technique. MAIN OUTCOME MEASURES Fiber type was determined by contractile properties and susceptibility to injury was assessed by force deficit, the decrease in maximum force following a lengthening contraction protocol expressed as a percentage of initial force. RESULTS For normal palates and cleft palates of young goats, the majority of the fibers were type 2 with force deficits of approximately 40%. Following repair, 80% of the fibers were type 1 with force deficits of 20% +/- 2%; these deficits were 45% of those for nonrepaired cleft palates of adult goats (p < .0001). CONCLUSION The decrease in the percentage of type 2 fibers and susceptibility to injury may be important for the development of a functional levator veli palatini muscle postrepair.
Collapse
Affiliation(s)
- Erik P Rader
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Downie D, Delday MI, Maltin CA, Sneddon AA. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero. Mol Reprod Dev 2008; 75:785-94. [DOI: 10.1002/mrd.20795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
|
20
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
21
|
Rubinstein NA, Lyons GE, Kelly AM. Hormonal control of myosin heavy chain genes during development of skeletal muscles. CIBA FOUNDATION SYMPOSIUM 2007; 138:35-51. [PMID: 3058433 DOI: 10.1002/9780470513675.ch4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A pattern of myosin heavy chain (MHC) switching is a hallmark of developing muscles. Factors responsible for these changes in gene expression include endogenous signals, motoneurons and hormones, especially thyroid hormones. After perturbing the innervation and/or thyroid hormone levels we have examined the neonatal-IIb MHC transition during rat development. First, denervation does not qualitatively affect the transition at either the transcriptional or translational level. Second, hypothyroidism prevents the appearance of IIb MHC and its mRNA in the innervated limb; in the denervated hypothyroid limb IIb MHC is synthesized at moderately high levels. Third, hyperthyroidism causes a precocious increase in IIb MHC in both innervated and denervated muscles. These results suggest that the transition from neonatal to adult IIb myosin synthesis is endogenously programmed during development, but is closely orchestrated by the changing neuronal and hormonal status of the animal. Thyroid hormone may exert its influence by effects both on the muscle fibre and on the developing motoneuron. In the guinea-pig the temporalis muscle is sexually dimorphic: it contains a fast-red MHC in the female but a fast-white MHC in the male. This dimorphism has been shown to be mediated by testosterone, since the castrated male synthesizes the fast-red MHC while the testosterone-supplemented female contains the fast-white MHC. During development male and female muscles initially synthesize the fast-red isoform. The male switches to the fast-white form at puberty.
Collapse
Affiliation(s)
- N A Rubinstein
- Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
22
|
Wank V, Fischer MS, Walter B, Bauer R. Muscle growth and fiber type composition in hind limb muscles during postnatal development in pigs. Cells Tissues Organs 2006; 182:171-81. [PMID: 16914919 DOI: 10.1159/000093966] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2006] [Indexed: 11/19/2022] Open
Abstract
Rapid postnatal development in pigs is reflected by differentiation in skeletal muscle. This process depends on muscle function and demands, but a comprehensive overview of individual developmental characteristics of quickly growing leg muscles in pigs is still missing. This study focused on the development of 10 hind limb muscles in pigs. To determine these changes in mass, fiber type patterns and fiber diameters were analyzed 0, 2, 4, 7, 14, 28, 42, 56 and 400 days after birth. Generally, the proportion of slow fibers increased from birth to 8 weeks. Thereafter, only minor changes in muscle fiber type composition were observed. The majority of the muscles contained less then 10% slow-twitch fibers at birth, increasing to between 12 (Musculus vastus lateralis) and 38% (M. gastrocnemius medialis) in adult pigs. By contrast, postural muscles already had 20-30% slow fibers at birth, and this contribution increased up to 65% in adults (i.e. M. vastus intermedius). From birth to the 2nd week, only in slow fibers could activity of oxidative enzymes be detected. A differentiation of fast-twitch fibers into subtypes with high (comparable to type IIA) and low oxidative metabolism (equivalent to type IIB) occurred between the 2nd and 4th week of life. The ratio between type II fibers with high and low oxidative enzyme activity did not change markedly through development in any muscle, although there was a trend towards an increasing proportion of type IIA fibers in the soleus. In the majority of the muscles investigated, the fast-twitch fibers with low oxidative metabolism (IIB) obtained the largest cross-sectional area. In contrast, at birth no remarkable differences in the diameter of fast and slow fibers were found. The rapid increase in muscle mass compared to body mass reflects the high performance in meat production of the cross pig investigated.
Collapse
Affiliation(s)
- Veit Wank
- Institute of Sports and Sports Science, Eberhard Karls University, Tubingen, Germany
| | | | | | | |
Collapse
|
23
|
Koulmann N, Sanchez H, N'Guessan B, Chapot R, Serrurier B, Peinnequin A, Ventura-Clapier R, Bigard X. The responsiveness of regenerated soleus muscle to pharmacological calcineurin inhibition. J Cell Physiol 2006; 208:116-22. [PMID: 16547932 DOI: 10.1002/jcp.20643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The responsiveness of mature regenerated soleus (SOL) muscles to cyclosporin A (CsA) administration was studied in rats. Forty-two days after notexin-induced degeneration of left SOL muscles, rats were treated with CsA (25 mg/kg x day) or vehicle daily for 3 weeks. CsA administration decreased by eightfold the level of transcription of MCIP-1, a well-known calcineurin-induced gene, in intact as well as in regenerated muscles (P < 0.001). In response to CsA-administration we observed a slow-to-fast transition in the MHC profile, more marked in regenerated than in intact muscles (P < 0.05), but mainly restricted to MHC-Ibeta toward MHC-IIA. Immunohistochemical analysis showed that MHC-IIA was often co-expressed with MHC-Ibeta within myofibers of intact muscles, whereas it was mainly expressed within pure fast fibers of regenerated muscles. MHC-Ibeta mRNA levels were lower in regenerated than in intact muscles, but did not change in response to CsA-administration. CsA administration induced a significant increase in MHC-IIA mRNA levels (P < 0.001) similar in both intact and regenerated muscles. Present results suggest that in vivo in intact SOL muscles, calcineurin blocks the upregulation of the MHC-IIA isoform at the transcriptional level. On the other hand, the higher response of regenerated muscles to CsA administration cannot be explained by transcriptional events, and may result from either a more rapid turnover of MHC proteins in regenerated muscles than in intact ones, or translational events. This study further suggests that the developmental history of myofibers could play a role in the adaptability of skeletal muscle to variations in neuromuscular activity.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Weight
- Calcineurin/physiology
- Calcineurin Inhibitors
- Cyclosporine/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/genetics
- Gene Expression Regulation/physiology
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins
- Male
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiology
- Myosin Heavy Chains/analysis
- Myosin Heavy Chains/genetics
- Organ Size
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Regeneration/drug effects
- Regeneration/physiology
- Transcription Factors/analysis
- Transcription Factors/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des facteurs humains, Centre de Recherches du Service de Santé des Armées, La Tronche Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Silvado CE, Werneck LC. Alterations in the gastrocnemius muscle of undernourished suckling rats. Muscle Nerve 2006; 34:72-7. [PMID: 16718688 DOI: 10.1002/mus.20614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-energy undernutrition (PEU) during both the gestational and suckling periods causes a reduction in muscle fiber cross-section and a delay in fiber type differentiation. Such changes are not found when PEU occurs after the suckling period. To elucidate the consequences of PEU on muscle during the suckling period, we undernourished (UND) newborn rats by reducing their food intake, including a 6-hour fast every day, and doubling the number of pups suckled by the nursing rat. At day 24 of life, the gastrocnemius muscle showed a discrete reduction in lipids in the fibers of 5 control rats, and in 15 UND rats (P < 0.001). The type 2a and 2b fibers of the UND rats showed a smaller cross-sectional area than control rats (P < 0.05). The distribution frequency histogram for the muscle fibers was skewed to the left in the undernourished rats, and this was significant for type 2a and 2b fibers. PEU during the suckling period may thus induce a delay in muscle fiber maturation but does not produce significant structural alterations.
Collapse
Affiliation(s)
- Carlos Eduardo Silvado
- Neuromuscular/Neurology Division, Internal Medicine Department, Hospital de Clinicas, Universidade Federal do Paraná, Rua General Carneiro 181, Curitiba, Paraná 80069-900, Brazil.
| | | |
Collapse
|
25
|
Abstract
Muscle cells grow by proliferation and protein accumulation. During the initial stages of development the participation of nerves is not always required. Myoblasts and satellite cells proliferate, fusing to form myotubes which further differentiate to muscle fibers. Myotubes and muscle fibers grow by protein accumulation and fusion with other myogenic cells. Muscle fibers finally reach a quasi-steady state which is then maintained for a long period. The mechanism of maintenance is not well understood. However, it is clear that protein metabolism plays a paramount role. The role played by satellite cells in the maintenance of muscle fibers is not known. Growth and maintenance of muscle cells are under the influence of various tissues and substances. Among them are Tf and the motor nerve, the former being the main object of this review and essential for both DNA and protein synthesis. Two sources of Tf have been proposed, i.e., the motor nerve and the tissue fluid. The first proposal is that the nervous trophic influence on muscle cells is mediated by Tf which is released from the nerve terminals. In this model, the sole source of Tf which is donated to muscle cells should be the nerve, and Tf should not be provided for muscle fiber at sites other than the synaptic region; otherwise, denervation atrophy would not occur, since Tf provided from TfR located at another site would cancel the effect of denervation. The second proposal is that Tf is provided from tissue fluid. This implies that an adequate amount of Tf is transferred from serum to tissue fluid; in this case TfR may be distributed over the entire surface of the cells. The trophic effects of the motor neuron have been studied in vivo, but its effects of myoblast proliferation have not been determined. There are few experiments on its effects on myotubes. Most work has been made on muscle fibers, where innervation is absolutely required for their maintenance. Without it, muscle fibers atrophy, although they do not degenerate. In contrast, almost all the work on Tf has been performed in vitro. Its effects on myoblast proliferation and myotube growth and maintenance have been established; myotubes degenerate following Tf removal. But its effects on mature muscle fibers in vivo are not well understood. Muscle fibers possess TfR all over on their cell surface and contain a variety of Fe-binding proteins, such as myoglobin. It is entirely plausible that muscle fibers require an amount of Tf, and that this is provided by TfR scattered on the cell surface.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
26
|
Pesce V, Cormio A, Fracasso F, Lezza AMS, Cantatore P, Gadaleta MN. Age-Related Changes of Mitochondrial DNA Content and Mitochondrial Genotypic and Phenotypic Alterations in Rat Hind-Limb Skeletal Muscles. J Gerontol A Biol Sci Med Sci 2005; 60:715-23. [PMID: 15983173 DOI: 10.1093/gerona/60.6.715] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) content relative to nuclear DNA content as well as mitochondrial transcription factor A (TFAM) content was measured in four hind-limb skeletal muscles, namely soleus (S), tibialis anterior (TA), gastrocnemius (G), and extensor digitorum longus (EDL) of adult rats. Content of mtDNA in 6-month-old rats is in the rank order of S > TA > G > EDL, and TFAM content is higher in S than in the other studied muscles. After the rat is 6 months of age, the mtDNA content decreases only in S and TA, whereas the TFAM content increases only in S. Deletions in mtDNA appear quite early in life in S and later on in the other muscles. Fibers defective for mitochondrial respiratory enzymes appear in rats at 15 months of age. In the oldest animals, the highest frequencies of occurrence of mtDNA deletions as well as of mitochondrial phenotypic alterations are found in S according to its highest mtDNA content and oxidative potential.
Collapse
Affiliation(s)
- Vito Pesce
- Department of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Cheng G, Merriam AP, Gong B, Leahy P, Khanna S, Porter JD. Conserved and muscle-group-specific gene expression patterns shape postnatal development of the novel extraocular muscle phenotype. Physiol Genomics 2004; 18:184-95. [PMID: 15138310 DOI: 10.1152/physiolgenomics.00222.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current models in skeletal muscle biology do not fully account for the breadth, causes, and consequences of phenotypic variation among skeletal muscle groups. The muscle allotype concept arose to explain frank differences between limb, masticatory, and extraocular (EOM) muscles, but there is little understanding of the developmental regulation of the skeletal muscle phenotypic range. Here, we used morphological and DNA microarray analyses to generate a comprehensive temporal profile for rat EOM development. Based upon coordinate regulation of morphologic/gene expression traits with key events in visual, vestibular, and oculomotor system development, we propose a model that the EOM phenotype is a consequence of extrinsic factors that are unique to its local environment and sensory-motor control system, acting upon a novel myoblast lineage. We identified a broad spectrum of differences between the postnatal transcriptional patterns of EOM and limb muscle allotypes, including numerous transcripts not traditionally associated with muscle fiber/group differences. Several transcription factors were differentially regulated and may be responsible for signaling muscle allotype specificity. Significant differences in cellular energetic mechanisms defined the EOM and limb allotypes. The allotypes were divergent in many other functional transcript classes that remain to be further explored. Taken together, we suggest that the EOM allotype is the consequence of tissue-specific mechanisms that direct expression of a limited number of EOM-specific transcripts and broader, incremental differences in transcripts that are conserved by the two allotypes. This represents an important first step in dissecting allotype-specific regulatory mechanisms that may, in turn, explain differential muscle group sensitivity to a variety of metabolic and neuromuscular diseases.
Collapse
|
28
|
Li X, Blagden CS, Bildsoe H, Bonnin MA, Duprez D, Hughes SM. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle. BMC DEVELOPMENTAL BIOLOGY 2004; 4:9. [PMID: 15238161 PMCID: PMC471547 DOI: 10.1186/1471-213x-4-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Accepted: 07/06/2004] [Indexed: 03/10/2023]
Abstract
BACKGROUND Secreted Hedgehog (Hh) signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known. RESULTS We show that Sonic hedgehog (Shh) can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis. CONCLUSIONS Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for normal differentiation and slow myosin expression. We propose a simple model of how direct and indirect effects of Hh regulate early limb myogenesis.
Collapse
Affiliation(s)
- Xiaopeng Li
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Christopher S Blagden
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA
| | - Heidi Bildsoe
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Marie Ange Bonnin
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Delphine Duprez
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Simon M Hughes
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
29
|
Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, Neilson JR, Liberatore CM, Yutzey KE, Crabtree GR, Tsika RW, Molkentin JD. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 2004; 279:26192-200. [PMID: 15082723 DOI: 10.1074/jbc.m313800200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The serine/threonine phosphatase calcineurin is an important regulator of calcium-activated intracellular responses in eukaryotic cells. In higher eukaryotes, calcium/calmodulin-mediated activation of calcineurin facilitates direct dephosphorylation and nuclear translocation of the transcription factor nuclear factor of activated T-cells (NFAT). Recently, controversy has surrounded the role of calcineurin in mediating skeletal muscle cell hypertrophy. Here we examined the ability of calcineurin-deficient mice to undergo skeletal muscle hypertrophic growth following mechanical overload (MOV) stimulation or insulin-like growth factor-1 (IGF-1) stimulation. Two distinct models of calcineurin deficiency were employed: calcineurin Abeta gene-targeted mice, which show a approximately 50% reduction in total calcineurin, and calcineurin B1-LoxP-targeted mice crossed with a myosin light chain 1f cre knock-in allele, which show a greater than 80% loss of total calcineurin only in skeletal muscle. Calcineurin Abeta-/- and calcineurin B1-LoxP(fl/fl)-MLC-cre mice show essentially no defects in muscle growth in response to IGF-1 treatment or MOV stimulation, although calcineurin Abeta-/- mice show a basal defect in total fiber number in the plantaris and a mild secondary reduction in growth, consistent with a developmental defect in myogenesis. Both groups of gene-targeted mice show normal increases in Akt activation following MOV or IGF-1 stimulation. However, overload-mediated fiber-type switching was dramatically impaired in calcineurin B1-LoxP(fl/fl)-MLC-cre mice. NFAT-luciferase reporter transgenic mice failed to show a correlation between IGF-1- or MOV-induced hypertrophy and calcineurin-NFAT-dependent signaling in vivo. We conclude that calcineurin expression is important during myogenesis and fiber-type switching, but not for muscle growth in response to hypertrophic stimuli.
Collapse
Affiliation(s)
- Stephanie A Parsons
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bricout VA, Serrurier BD, Bigard AX. Clenbuterol treatment affects myosin heavy chain isoforms and MyoD content similarly in intact and regenerated soleus muscles. ACTA ACUST UNITED AC 2004; 180:271-80. [PMID: 14962009 DOI: 10.1046/j.0001-6772.2003.01246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Pharmacological treatment with the beta2-adrenoceptor agonist clenbuterol is known to induce a slow-to-fast fibre type and myosin heavy chain (MHC) isoform transition in intact muscle. This study examined the sensitivity of regenerated soleus muscle to 4 weeks of clenbuterol treatment (2 mg kg-1 day-1). METHODS Female Wistar rats were divided into two groups: vehicle treated (n = 8) and clenbuterol treated (n = 8). The clenbuterol effects on MHC and MyoD expression were examined in soleus muscles either intact, or previously degenerated by venom of the Notechis scutatus scutatus snake. RESULTS Post-treatment body weights and skeletal muscle weights were not affected by clenbuterol treatment. Muscle protein concentration was higher, and body fat lower in clenbuterol-treated rats than in vehicle-treated animals (P < 0.05). Polyacrylamide gel electrophoresis of soleus myofibrillar protein indicated a clenbuterol-induced decrease in the relative percentage of type I MHC with a concomitant increase in type IIa MHC (31%, P < 0.001). No degeneration effect was observed after 28 days of recovery on the MHC isoform content, and regenerated soleus muscles exhibited the same phenotypical profile as intact soleus muscles, whether or not they were treated with clenbuterol. In intact and in regenerated soleus muscles, MyoD protein levels were significantly increased by clenbuterol treatment (90 and 77%, respectively, P < 0.001). CONCLUSION These results show that regenerated soleus muscles, comprising a homogeneous population of fibres deriving from satellite cells, have a similar response to clenbuterol as intact muscle arising from at least two discrete populations of myotubes; it is suggested that the activity of signalling pathways involved in the effects of clenbuterol on MHC transitions is not related to the developmental history of myofibres.
Collapse
Affiliation(s)
- V-A Bricout
- Department of Human Factors, Centre de recherches du service de santé des armées, La Tronche Cedex, France
| | | | | |
Collapse
|
31
|
Usami A, Abe S, Ide Y. Myosin heavy chain isoforms of the murine masseter muscle during pre- and post-natal development. Anat Histol Embryol 2003; 32:244-8. [PMID: 12919077 DOI: 10.1046/j.1439-0264.2003.00481.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Masticatory muscles that are derived from the branchial arches express different compositions of myosin heavy chain (MHC) isoforms during the transitional phase from suckling to mastication. To clarify the developmental changes of murine masseter muscle, the composition of MHC isoforms was examined using immunohistochemical staining and competitive reverse transcription PCR. We found that MHC1 was expressed transiently in the pre and post-natal stages. In the compositional change of isoforms, the embryonic type MHCp was expressed consistently, whereas the adult isoforms increased with the developmental process. In particular, a significant change was observed between embryonic days 14 and 16, a stage when murine facial development is conspicuous. This suggests that the development of murine masseter muscle is closely associated with facial development.
Collapse
Affiliation(s)
- A Usami
- Department of Anatomy, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba-City, Chiba, Japan.
| | | | | |
Collapse
|
32
|
Lane RH, Maclennan NK, Daood MJ, Hsu JL, Janke SM, Pham TD, Puri AR, Watchko JF. IUGR alters postnatal rat skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a fiber specific manner. Pediatr Res 2003; 53:994-1000. [PMID: 12646730 DOI: 10.1203/01.pdr.0000064583.40495.51] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of insulin resistance in humans and rats. Aberrant skeletal muscle lipid metabolism contributes to the pathogenesis of insulin resistance. Peroxisome proliferator-activated receptor-gamma co-activator-1 (PGC-1) is a transcriptional co-activator that affects gene expression of key lipid metabolizing enzymes such as carnitine palmitoyl-transferase I (mCPTI). Because gene expression of lipid metabolizing enzymes is altered in IUGR postnatal skeletal muscle, and we hypothesized that PGC-1 expression would be similarly affected. To prove this hypothesis, bilateral uterine artery ligation and sham surgery were used to produce IUGR and control rats respectively. Western Blotting demonstrated that PGC-1 hind limb skeletal muscle protein levels were increased in perinatal and postnatal IUGR rats. Conventional RT-PCR demonstrated that PGC-1 mRNA levels were similarly increased in perinatal hind limb skeletal muscle and juvenile extensor digitorum longus (EDL), but were decreased in juvenile soleus. Because a gender specific trend was noted in PGC-1 mRNA levels, real time RT-PCR was used for further differentiation. Real time RT-PCR revealed that changes in postnatal skeletal muscle PGC-1 expression were more marked in male IUGR rats versus female IUGR rats. Down stream targets of PGC-1 followed a similar pattern of expression. We conclude that PGC-1 expression is altered in rat IUGR skeletal muscle and speculate that it contributes to the pathogenesis of insulin resistance in the IUGR rat.
Collapse
Affiliation(s)
- Robert H Lane
- David Geffen School of Medicine at UCLA, Mattel Children's Hospital at UCLA, Department of Pediatrics, Los Angles CA 90095-1752, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pin CL, Hrycyshyn AW, Rogers KA, Rushlow WJ, Merrifield PA. Embryonic and fetal rat myoblasts form different muscle fiber types in an ectopic in vivo environment. Dev Dyn 2002; 224:253-66. [PMID: 12112456 DOI: 10.1002/dvdy.10106] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Limb muscle development is characterized by the migration of muscle precursor cells from the somite followed by myoblast differentiation and the maturation of myotubes into distinct muscle fiber types. Previous in vitro experiments have suggested that rat limb myoblasts are composed of at least two distinct myoblast subpopulations that appear in the developing hindlimb at different developmental stages. These embryonic and fetal myoblast subpopulations are believed to generate primary and secondary myotubes, respectively. To test this hypothesis, cells obtained from embryonic day 14 (ED 14) and ED 20 rat hindlimbs were analyzed for myosin heavy chain expression after long-term differentiation in adult rat brains. Fetal myoblasts from ED 20 hindlimbs produced muscle fibers with a phenotype similar to that seen in tissue culture--predominantly fast myosin with a small proportion also coexpressing slow myosin. However, injection sites populated by embryonic myoblasts from ED 14 hindlimbs produced a different phenotype from that previously reported in culture, with fibers expressing an entire array of myosin isoforms. In addition, a subpopulation of fibers expressing exclusively slow myosin was found only in the embryonic injection sites. Our results support the existence of at least three myogenic subpopulations in early rat limb buds with only one exhibiting the capability to differentiate in vitro. These findings are consistent with a model of muscle fiber type development in which the fiber type potential of myoblast populations is established before differentiation into myotubes. This process establishes myogenic subpopulations that have restricted adaptive ranges regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Nikovits W, Cann GM, Huang R, Christ B, Stockdale FE. Patterning of fast and slow fibers within embryonic muscles is established independently of signals from the surrounding mesenchyme. Development 2001; 128:2537-44. [PMID: 11493570 DOI: 10.1242/dev.128.13.2537] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryonic development, and before functional innervation, a highly stereotypic pattern of slow- and fast-contracting primary muscle fibers is established within individual muscles of the limbs, from distinct populations of myoblasts. A difference between the fiber-type pattern found within chicken and quail pectoral muscles was exploited to investigate the contributions of somite-derived myogenic precursors and lateral plate-derived mesenchymal stroma to the establishment of muscle fiber-type patterns. Chimeric chicken/quail embryos were constructed by reciprocal transplantation of somites or lateral plate mesoderm at stages prior to muscle formation. Muscle fibers derived from quail myogenic precursors that had migrated into chicken stroma showed a quail pattern of mixed fast- and slow-contracting muscle fibers. Conversely, chicken myogenic precursors that had migrated into quail stroma showed a chicken pattern of nearly exclusive fast muscle fiber formation. These results demonstrate in vivo an intrinsic commitment to fiber-type on the part of the myoblast, independent of extrinsic signals it receives from the mesenchymal stroma in which it differentiates.
Collapse
Affiliation(s)
- W Nikovits
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5151, USA
| | | | | | | | | |
Collapse
|
35
|
Kegley KM, Gephart J, Warren GL, Pavlath GK. Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol 2001; 232:115-26. [PMID: 11254352 DOI: 10.1006/dbio.2001.0179] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal transduction pathways involving calcineurin and its downstream effector NFAT have been implicated in regulating myogenesis. Several isoforms of NFAT exist that may differentially contribute to regulating skeletal muscle physiology. The purpose of this study was to determine the role of the NFATC3 isoform in skeletal muscle development. Adult mice lacking NFATC3 have reduced muscle mass compared to control mice. The smaller size of the muscles is not due to atrophy or blunted myofiber growth, but rather to a reduced number of myofibers. This reduction in myofiber number is not limited to a specific fiber type nor are the proportions of fiber types altered. The lower fiber number found in the adult NFATC3(-/-) mice is a consequence of impaired muscle development during embryogenesis. Immunohistochemical studies of E15 EDL muscles indicate that the total number of primary myofibers is decreased in NFATC3(-/-) embryos. At E17.5 no further decrease in primary myofiber number occurs; the size and organization of the myofibers are unaltered, and secondary myogenesis proceeds normally, suggesting a role for NFATC3 during early events in primary myogenesis. These results suggest a heretofore unknown role for the transcription factor NFAT in early skeletal muscle development.
Collapse
Affiliation(s)
- K M Kegley
- Department of Pharmacology, Emory University School of Medicine, Atlanta, 30322, USA
| | | | | | | |
Collapse
|
36
|
|
37
|
Tucker LB, Stehouwer DJ. L-DOPA-induced air-stepping in the preweanling rat: electromyographic and kinematic analyses. Behav Neurosci 2000; 114:1174-82. [PMID: 11142649 DOI: 10.1037/0735-7044.114.6.1174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ontogenetic changes in intralimb coordination may result from maturation of the central pattern for locomotion, maturation of peripheral efferents, changes in afferent modulation of the centrally generated pattern, interactions with the substrate, biomechanical changes within the limb itself, or a combination of these. Electromyograms obtained from three hindlimb extensors of rats on Postnatal Days (PND) 5, 10, 15, or 20, during episodes of coordinated L-DOPA-induced air-stepping, showed that muscle activation preceded extension of the corresponding joints at all ages. The delay between the onset of extensor activity and the onset of joint extension increased during ontogeny and was greatest at PND 20. Ontogenetic changes in the relative timing of muscle activity and corresponding joint movements probably resulted from changes in biomechanical factors, changes in afferent modulation of central motor output, or both.
Collapse
Affiliation(s)
- L B Tucker
- Department of Psychology, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
38
|
Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 2000; 66:229-41. [PMID: 10873377 DOI: 10.1006/geno.2000.6213] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanically induced hypertrophy of skeletal muscles involves shifts in gene expression leading to increases in the synthesis of specific proteins. Full characterization of the regulation of muscle hypertrophy is a prerequisite for the development of novel therapies aimed at treating muscle wasting (atrophy) in human aging and disease. Using suppression subtractive hybridization, cDNAs corresponding to mRNAs that increase in relative abundance in response to mechanical stretch of mouse skeletal muscles in vivo were identified. A novel 1100-bp transcript was detected exclusively in skeletal muscle. This exhibited a fourfold increase in expression after 7 days of stretch. The transcript had an open reading frame of 328 amino acids encoding an ATP/GTP binding domain, a nuclear localization signal, two PEST protein-destabilization motifs, and a 132-amino-acid ankyrin-repeat region. We have named this gene ankyrin-repeat domain 2 (stretch-responsive muscle) (Ankrd2). We hypothesize that Ankrd2 plays an important role in skeletal muscle hypertrophy.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Ankyrin Repeat/genetics
- Base Sequence
- Cell Differentiation
- Cells, Cultured
- Cloning, Molecular
- DNA, Complementary/genetics
- Exons
- Gene Expression
- Genomic Library
- Humans
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Nuclear Proteins
- Organ Specificity/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Stress, Mechanical
Collapse
Affiliation(s)
- T J Kemp
- Division of Biomedical Sciences, Imperial College of Science, Technology and Medicine, London, SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bigard AX, Sanchez H, Birot O, Serrurier B. Myosin heavy chain composition of skeletal muscles in young rats growing under hypobaric hypoxia conditions. J Appl Physiol (1985) 2000; 88:479-86. [PMID: 10658014 DOI: 10.1152/jappl.2000.88.2.479] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of voluntary wheel running on the myosin heavy chain (MHC) composition of the soleus (Sol) and plantaris muscles (Pla) in rats developing under hypobaric choronic hypoxia (CH) conditions during 4 wk in comparison with those of control rats maintained under local barometric pressure conditions (C) or rats pair-fed an equivalent quantity of food to that consumed by CH animals (PF). Compared with C animals, sedentary rats subjected to CH conditions showed a significant decrease in type I MHC in Sol (-12%, P < 0.01). Although strongly decreased under hypoxia, spontaneous running activity increased the expression of type I MHC (P < 0.01) so that no difference in the MHC profile of Sol was shown between CH active and C active rats. The MHC distribution in Sol of PF rats was not significantly different from that found in C animals. CH resulted in a significant decrease in type I (P < 0.01) and type IIA (P < 0.005) MHC, concomitant with an increase in type IIB MHC in Pla (P < 0.001), compared with C and PF animals. In contrast to results in Sol muscle, this slow-to-fast shift in the MHC profile was unaffected by spontaneous running activity. These results suggest that running exercise suppresses the hypoxia-induced slow-to-fast transition in the MHC expression in Sol muscles only. The hypoxia-induced decrease in food intake has no major influence on MHC expression in developing rats.
Collapse
Affiliation(s)
- A X Bigard
- Unité de Bioénergétique et Environnement, Centre de Recherches du Service de Santé des Armées, 38702 La Tronche, France.
| | | | | | | |
Collapse
|
40
|
Abstract
LIM kinase 1 (LIMK1) is a cytoplasmic protein kinase that is highly expressed in neurons. In transfected cells, LIMK1 binds to the cytoplasmic tail of neuregulins and regulates the breakdown of actin filaments. To identify potential functions of LIMK1 in vivo, we have determined the subcellular distribution of LIMK1 protein within neurons of the rat by using immunomicroscopy. At neuromuscular synapses in the adult hindlimb, LIMK1 was concentrated in the presynaptic terminal. However, little LIMK1 immunoreactivity was detected at neuromuscular synapses before the 2nd week after birth, and most motoneuron terminals were not strongly LIMK1 immunoreactive until the 3rd week after birth. Thus, LIMK1 accumulation at neuromuscular synapses coincided with their maturation. In contrast, SV2, like many other presynaptic terminal proteins, can be readily detected at neuromuscular synapses in the embryo. Similar to its late accumulation at developing synapses, LIMK1 accumulation at regenerating neuromuscular synapses occurred long after these synapses first formed. In the adult ventral spinal cord, LIMK1 was concentrated in a subset of presynaptic terminals. LIMK1 gradually accumulated at spinal cord synapses postnatally, reaching adult levels only after P14. This study is the first to implicate LIMK1 in the function of presynaptic terminals. The concentration of LIMK1 in adult, but not nascent, presynaptic terminals suggests a role for this kinase in regulating the structural or functional characteristics of mature synapses.
Collapse
Affiliation(s)
- J Y Wang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Avian skeletal muscles consist of myotubes that can be categorized according to contraction and fatigue properties, which are based largely on the types of myosins and metabolic enzymes present in the cells. Most mature muscles in the head are mixed, but they display a variety of ratios and distributions of fast and slow muscle cells. We examine the development of all head muscles in chick and quail embryos, using immunohistochemical assays that distinguish between fast and slow myosin heavy chain (MyHC) isoforms. Some muscles exhibit the mature spatial organization from the onset of primary myotube differentiation (e.g., jaw adductor complex). Many other muscles undergo substantial transformation during the transition from primary to secondary myogenesis, becoming mixed after having started as exclusively slow (e.g., oculorotatory, neck muscles) or fast (e.g., mandibular depressor) myotube populations. A few muscles are comprised exclusively of fast myotubes throughout their development and in the adult (e.g., the quail quadratus and pyramidalis muscles, chick stylohyoideus muscles). Most developing quail and chick head muscles exhibit identical fiber type composition; exceptions include the genioglossal (chick: initially slow, quail: mixed), quadratus and pyramidalis (chick: mixed, quail: fast), and stylohyoid (chick: fast, quail: mixed). The great diversity of spatial and temporal scenarios during myogenesis of head muscles exceeds that observed in the limbs and trunk, and these observations, coupled with the results of precursor mapping studies, make it unlikely that a lineage based model, in which individual myoblasts are restricted to fast or slow fates, is in operation. More likely, spatiotemporal patterning of muscle fiber types is coupled with the interactions that direct the movements of muscle precursors and subsequent segregation of individual muscles from common myogenic condensations. In the head, most of these events are facilitated by connective tissue precursors derived from the neural crest. Whether these influences act upon uncommitted, or biased but not restricted, myogenic mesenchymal cells remains to be tested.
Collapse
Affiliation(s)
- R S Marcucio
- Department of Anatomy, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
42
|
|
43
|
Oron U, Maltz L, Shefer G, Eilam D. Histology and enzymatic activity in the postnatal development of limb muscles in rodents. Physiol Behav 1998; 63:651-7. [PMID: 9523911 DOI: 10.1016/s0031-9384(97)00489-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present work examines how increases in spontaneous motor capabilities during postnatal development are reflected in enzymatic activity and the histology of hindlimb muscles of the dormouse (Eliomys melanurus), the jird (Meriones tristrami), the vole (Microtus socialis), and the spiny mouse (Acomys cahirinus). The precocial neonate of the spiny mouse had the most advanced developmental state of young myofibers with striations as early as 1 week after delivery. At the same age, the altricial neonate vole had less developed muscles compared to the spiny mouse, but was more mature compared to other altricial species. The dormouse was the least developed, with numerous myoblasts and few myotubes at 1 week after delivery. These differences in myogenic development were conspicuous throughout postnatal development. Similar differences between the species were also evident at the biochemical level, as measured in the kinetics of activity of the enzyme creatine-phosphokinase immediately after delivery. On postnatal day 7, the creatine-phosphokinase level in the spiny mouse was fourfold higher than in the dormouse or vole. The enzymatic activity of acid phosphatase decreased during the first week postdelivery in the spiny mouse while peaking in the first, second, and third week in the jird, vole, and dormouse, respectively. These results support the notion that precocial species undergo certain developmental stages in utero, whereas, the same stages commence in altricials only postnatally. For the tested altricial species, the results illustrate that limb muscles in the vole, which displays more basic gaits, mature before limb muscles of the jird and dormouse, which display more specialized gaits.
Collapse
Affiliation(s)
- U Oron
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | | | |
Collapse
|
44
|
Sheard PW, Oettli HE, Johnson AJ, Duxson MJ. Variations in oxidative enzyme type profiles among prenatal rat lumbar motoneurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 103:67-75. [PMID: 9370061 DOI: 10.1016/s0165-3806(97)00118-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have used cytochrome oxidase histochemical staining to evaluate whether immature rat lumbar motoneurons show intrinsic separation into high or low oxidative enzyme types. Relative oxidative enzyme levels are frequently used to help differentiate between muscle fibres of various types and to differentiate between mature neurons. Here we show a wide variation in motoneuron cytochrome oxidase levels from prenatal times, although the range of staining levels as measured densitometrically is greater for mature than for prenatal animals. We find variation in cytochrome oxidase levels among motoneurons prior to the formation of mature patterns of connectivity or electrical activity, and conclude therefore that this differentiation is unlikely to have arisen by differential usage and probably arose as a function of cell lineage.
Collapse
Affiliation(s)
- P W Sheard
- Developmental Biology Unit, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
45
|
Porter JD, Baker RS. Absence of oculomotor and trochlear motoneurons leads to altered extraocular muscle development in the Wnt-1 null mutant mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 100:121-6. [PMID: 9174254 DOI: 10.1016/s0165-3806(97)00020-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wnt-1 null mutant mice lack midbrain somatic motor nuclei. Primordial migration and spatial patterning of the extraocular muscles, however, was preserved, but myogenesis was disrupted in aneural muscles. Some muscles normally innervated by oculomotor and trochlear nuclei received aberrant innervation, which proved sufficient to maintain prenatal stages of myogenesis. The absence of motoneurons followed by innervation from inappropriate motoneuron pools is a viable candidate mechanism in ocular motility disorders, including Duane retraction syndrome and congenital fibrosis of extraocular muscle.
Collapse
Affiliation(s)
- J D Porter
- Department of Anatomy, University of Kentucky Medical Center, Lexington 40536-0084, USA.
| | | |
Collapse
|
46
|
Arregui CO, Mas CR, Argaraña CE, Barra HS. Tubulin tyrosine ligase: protein and mRNA expression in developing rat skeletal muscle. Dev Growth Differ 1997; 39:167-78. [PMID: 9108330 DOI: 10.1046/j.1440-169x.1997.t01-1-00005.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alpha tubulin can be post-translationally tyrosinated at the carboxy-terminus by a specific enzyme: tubulin tyrosine ligase. The expression of tubulin tyrosine ligase mRNA and protein during the development of rat skeletal muscle was examined in the present study. A portion of the coding region of the rat ligase cDNA was isolated and sequenced. The nucleotide and amino acid sequences showed about 90% homology with previously reported porcine and bovine ligase sequences. In newborn rats, ligase mRNA and protein were highly expressed in skeletal muscle. During early postnatal development, however, both ligase mRNA and protein dropped down dramatically. Quantitative measurements revealed that ligase protein at postnatal day 20 represented only 10% or less of the level at postnatal day 1. Ligase mRNA expression was also examined during the myogenesis in vitro. A strong ligase mRNA signal was detected in both undifferentiated myoblasts and cross-striated, contractile myotubes. The present results suggest that, during muscle differentiation, ligase function may be regulated by the amount of available mRNA. The discrepancy in the ligase expression between the in vivo and in vitro myogenesis suggests that factors controlling the levels of mRNA in vivo are lost in vitro.
Collapse
Affiliation(s)
- C O Arregui
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | |
Collapse
|
47
|
Sheard PW, Duxson MJ. The transient existence of 'en passant' nerve terminals in normal embryonic rat skeletal muscle. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 98:259-64. [PMID: 9051268 DOI: 10.1016/s0165-3806(96)00184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a recent examination of labeled normal embryonic rat nerve terminals we have found evidence of synaptic specialisation at non-terminal regions of axons ('en passant' terminals). The specialisation typically consists of a vesicle-filled axonal swelling lying in close apposition to a zone of thickened sarcolemma, with the two structures separated by a basal lamina-filled cleft. Such 'en passant' terminals are never seen in normal mature rat muscle, where all synaptic sites form at the true termination of axonal branches. These terminals thus appear to be a transient feature of developing neuromuscular relations. Analogous structures may arise in mature muscle when axons undergo ultraterminal sprouting in response to paralysis or partial denervation. We discuss our finding in relation to the role such terminals may play in normal development and in partially denervated mature muscle.
Collapse
Affiliation(s)
- P W Sheard
- Developmental Biology Unit, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
48
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
49
|
Bigard XA, Janmot C, Merino D, Lienhard F, Guezennec YC, D'Albis A. Endurance training affects myosin heavy chain phenotype in regenerating fast-twitch muscle. J Appl Physiol (1985) 1996; 81:2658-65. [PMID: 9018519 DOI: 10.1152/jappl.1996.81.6.2658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to analyze the effects of treadmill training (2 h/day, 5 days/wk, 30 m/min, 7% grade for 5 wk) on the expression of myosin heavy chain (MHC) isoforms during and after regeneration of a fast-twitch white muscle [extensor digitorum longus (EDL)]. Male Wistar rats were randomly assigned to a sedentary (n = 10) or an endurance-trained (ET; n = 10) group. EDL muscle degeneration and regeneration were induced by two subcutaneous injections of a snake toxin. Five days after induction of muscle injury, animals were trained over a 5-wk period. It was verified that approximately 40 days after venom treatment, central nuclei were present in the treated EDL muscles from sedentary and ET rats. The changes in the expression of MHCs in EDL muscles were detected by using a combination of biochemical and immunocytochemical approaches. Compared with contralateral nondegenerated muscles, relative concentrations of types I, IIa, and IIx MHC isoforms in ET rats were greater in regenerated EDL muscles (146%, P < 0.05; 76%, P < 0.01; 87%, P < 0.01, respectively). Their elevation corresponded to a decrease in the relative concentration of type IIb MHC (-36%, P < 0.01). Although type I accounted for only 3.2% of total myosin in regenerated muscles from the ET group, the cytochemical analysis showed that the proportion of positive staining with the slow MHC antibody was markedly greater in regenerated muscles than in contralateral ones. Collectively, these results demonstrate that the regenerated EDL muscle is sensitive to endurance training and suggest that the training-induced shift in MHC isoforms observed in these muscles resulted from an additive effect of regeneration and repeated exercise.
Collapse
Affiliation(s)
- X A Bigard
- Départment de Physiologie Systémique, Institut de Médecine Aésopatiale du Service de Santé des Acmées, Brétigny sur Orge, France
| | | | | | | | | | | |
Collapse
|
50
|
Gondret F, Lefaucheur L, D'Albis A, Bonneau M. Myosin isoform transitions in four rabbit muscles during postnatal growth. J Muscle Res Cell Motil 1996; 17:657-67. [PMID: 8994085 DOI: 10.1007/bf00154060] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four rabbit muscles (i.e. semimembranosus proprius, psoas major, biceps femoris and longissimus lumborum), differing in their fibre type composition in the adult, were investigated during postnatal development. Muscle samples were taken at 1, 7, 14, 21, 28, 35, 49 and 77 days of age. Complementary techniques were used to characterize myosin heavy chain (MHC) isoform transitions, i.e. SDS-PAGE, immunocytochemistry and conventional histochemistry. Good accordance was found between electrophoretic and immunocytochemical techniques. Our results show that rabbit muscles were phenotypically immature at birth. At 1 day of age, perinatal isoform represented 70-90% of the total isoform content of the muscles. Two generations of myofibres could be observed on the basis of their morphology and reaction to specific antibodies. In all muscles, primary fibres expressed slow MHC. In contrast, secondary generation of fibres never expressed slow MHC in future fast muscles, while half of them expressed slow MHC in the future slow-twitch muscle, the semimembranosus proprius. During the postnatal period, all muscles displayed a transition from embryonic to perinatal MHC isoforms, followed by a transition from perinatal to adult MHC isoforms. These transitions occured mainly during the first postnatal month. The embryonic isoform was no longer expressed after 14 days, except in longissimus where it disappeared after 28 days. On the contrary, large differences were found in the timing of disappearance of the perinatal isoform between the four muscles. The perinatal isoform disappeared between 28 and 35 days in semimembranosus proprius and 35 and 49 days in psoas and biceps femoris. Interestingly, the perinatal isoform was still present in 6% of the fibres in longissimus at 77 days, the commercial slaughter age, denoting a great delay in the maturation. Fate of each generation of fibres differed between muscles.
Collapse
Affiliation(s)
- F Gondret
- Station de Recherches Cunicoles, INRA, BP 27, Castanet-Tolosan, France
| | | | | | | |
Collapse
|