1
|
Haridevamuthu B, Madesh S, Bharti AK, Kumar A, Dhivya LS, Chagaleti BK, Rajagopal R, Alfarhan A, Kathiravan MK, Arockiaraj J. Therapeutic Potential of Thiophene-Based Chalcone Analog Against Acrylamide-Induced Neurotoxicity and Osteotoxicity. Mol Neurobiol 2025; 62:5730-5743. [PMID: 39617840 DOI: 10.1007/s12035-024-04623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025]
Abstract
Acrylamide (AR), a prevalent toxin in fried and baked foods, induces neurotoxicity and skeletal impairments through oxidative stress and apoptosis. A novel chalcone analog, 3-(5-bromo-2-hydroxyphenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one ( DC11 ), with its phenolic hydroxyl group, conjugated enone system, and chlorine atom in the thiophene ring, will contribute to the antioxidant properties. This study investigates the neuroprotective and osteoprotective effects of the chalcone derivative DC11 against AR-induced toxicity in zebrafish larvae. Our results show that DC11 effectively reduces oxidative stress, mitigates apoptosis, enhances bone mineralization, and improves locomotor functions in AR-exposed larvae. The phenolic hydroxyl group scavenges reactive oxygen species (ROS), while the enone system and chlorine atom enhance binding affinity and efficacy. Behavioral improvements in locomotion, coupled with biochemical and molecular evidence, underscore the comprehensive protective effects of DC11 against AR-induced toxicity. Although promising, further research is necessary to validate the efficacy and safety of DC11 in mammalian models and to elucidate its molecular mechanisms. Long-term studies are essential to understand potential side effects and therapeutic windows. This research identifies DC11 as a potent therapeutic candidate, addressing a critical gap in treating AR-induced neurotoxicity and osteotoxicity, and highlights its potential for mitigating these widespread health hazards.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Ashok Kumar
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
Uvarajan D, Ravikumar M, Durairaj B. Mitigating Bisphenol-Induced Neurotoxicity: Exploring the Therapeutic Potential of Diosmin in Zebrafish Larvae. Food Chem Toxicol 2025; 200:115402. [PMID: 40122510 DOI: 10.1016/j.fct.2025.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders are commonly accompanied by inflammation of the brain, which can be triggered by oxidative stress and cell damage caused by hazardous environmental substances. The ubiquitous harmful chemical bisphenol A (BPA) has been linked to several neuropsychiatric disorders and is thought to contribute to oxidative damage. This study explored the mechanisms underlying the effects of BPA on neurological health. Diosmin (DM) is a natural flavonoid (C28H32O15) found in various plants, including citrus fruits and it possess various pharmacological activities. This study investigated the neuroprotective effects of DM on BPA-induced neuroinflammation in zebrafish larvae, suggesting its potential therapeutic uses. Developmental toxicity, including mortality, hatching rate, and heart rate, was evaluated to determine DM toxicity. Oxidative stress biomarkers such as reactive oxygen species (ROS), superoxide anions (O-2), lipid peroxidation (LPO), and nitric oxide (NO) were quantified using colorimetric assays in the head region of the larvae. Antioxidant enzyme activities were measured to assess the impact of DM on antioxidant defences. Neuroinflammation was evaluated by analysing pro-inflammatory markers using RT-qPCR, and motor neuron function was assessed using acetylcholinesterase (AChE) activity and behavioural assays. The findings indicate that exposure to DM prevents neurotoxicity induced by BPA by increasing antioxidant defence enzymes and reducing the levels of ROS, O2-, LPO, and NO in the head region of zebrafish larvae. Furthermore, DM enhanced motor neuron function by increasing AChE activity and decreasing neuroinflammation by reducing the levels of pro-inflammatory markers influenced by BPA. This study suggests that DM offers neuroprotection against BPA-induced oxidative damage and neuroinflammation, thereby paving the way for the development of new treatment options for neurological disorders.
Collapse
Affiliation(s)
- Deenathayalan Uvarajan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Manish Ravikumar
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Brindha Durairaj
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
3
|
Nayak SPRR, Das A, Ramamurthy K, Pasupuleti M, Rajagopal R, Arockiaraj J. Exposure to bisphenol A and sodium nitrate found in processed meat induces endocrine disruption and dyslipidemia through PI3K/AKT/SREBP pathway in zebrafish larvae. J Nutr Biochem 2025; 140:109887. [PMID: 40023200 DOI: 10.1016/j.jnutbio.2025.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Meat is a staple in many cultural diets, and the consumption of processed meats has increased significantly worldwide. The widespread use of sodium nitrate (NaNO3) as a preservative and the unintentional leaching of bisphenol A (BPA) from packaging into meats have raised health concerns. This study evaluates the combined toxicity of BPA and NaNO3 despite their individual safety assessments. Our findings reveal that coexposure to BPA and NaNO3 at levels found in processed meats induces mortality and malformations in zebrafish larvae. The combined exposure triggers oxidative stress, lipid peroxidation, dyslipidemia, inflammation, and apoptosis. Network toxicology analysis elucidates the molecular mechanisms underlying metabolic dysfunction caused by these substances. Dysregulation of genes related to thyroid function (tsh-β, dio-1, thr-b) and inflammation (tnf-α, il-1β, il-6, nfκb) was observed in the co-exposure group. Additionally, this group exhibited increased lipid accumulation, elevated cholesterol and triglyceride levels, and dysregulation of essential lipid metabolism genes (srebp2, pcsk9). Co-exposure also impaired larval motility and behavior, evidenced by hypolocomotion and reduced acetylcholinesterase levels. Further gene expression analysis showed increased levels of pi3k and akt, two major signaling molecules. Ultimately, the simultaneous exposure to BPA and NaNO3 leads to disruptions in the endocrine system and abnormal lipid levels via activating the PI3K/AKT/SREBP pathway.
Collapse
Affiliation(s)
- Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anamika Das
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
4
|
Haridevamuthu B, Madesh S, Bharti AK, Dhivya LS, Rajagopal R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. Protective effect of a novel furan hybrid chalcone against bisphenol A-induced craniofacial developmental toxicity in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2025; 288:110072. [PMID: 39571873 DOI: 10.1016/j.cbpc.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Bisphenol A (BPA), a pervasive endocrine disruptor, is known to cause significant developmental toxicity, particularly affecting craniofacial structures through oxidative stress and apoptosis. A novel furan hybrid chalcone derivative, 3-(2-hydroxy-5-nitrophenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DK04), specifically with a hydroxyl group for its antioxidant properties and a nitro group for enhanced electron-withdrawing ability, was evaluated for its potential to mitigate these toxic effects. Zebrafish embryos were exposed to BPA and co-treated with various concentrations of DK04. Our results demonstrated that DK04 significantly reduced reactive oxygen species (ROS) generation and lipid peroxidation, increased antioxidant enzyme activities (SOD and CAT), and restored the balance between pro-apoptotic (p53) and anti-apoptotic (bcl2) genes. Furthermore, DK04 treatment improved bone mineralization and chondrogenesis by reversing BPA-induced disruptions in osteogenic markers (runx2, sox9a, bmp6, and mmp13a). The locomotion impairments observed in BPA-exposed embryos were also ameliorated by DK04, indicating its potential neuroprotective effects. These findings suggest that DK04 offers a multifaceted approach to counteract BPA toxicity, making it a promising candidate for therapeutic intervention. This research underscores the importance of developing prophylactic compounds to safeguard health against environmental toxicants like BPA. Future studies should focus on long-term safety and efficacy in mammalian models and explore synergistic effects with other protective agents to broaden the applications of DK04 and contribute to public health benefits.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ankit Kumar Bharti
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Custódio SV, Piccoli RC, Goularte KCM, Simões WS, de Mello JE, de Souza AA, de Mattos Almeida IP, Barschak AG, Tavares RG, Stefanello FM, de Aguiar MSS, Spanevello RM. Blackberry extract prevents lipopolysaccharide-induced depressive-like behavior in female mice: implications for redox status, inflammation, and brain enzymes. Nutr Neurosci 2025; 28:194-208. [PMID: 38861649 DOI: 10.1080/1028415x.2024.2363570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
This study evaluated the effects of Rubus sp. extract on behavioral and neurochemical parameters in female mice submitted to experimental model of depression induced by lipopolysaccharide (LPS). The results indicated that Rubus sp. extract protected against depressive-like behavior induced by LPS. Moreover, the administration of Rubus sp. extract was effective in preventing the increase in reactive species and nitrites levels, as well as the decrease in catalase activity induced by LPS in the cerebral cortex. In the serum, the Rubus sp. extract was effective in preventing the decrease in catalase activity induced by LPS. Treatment with Rubus sp. extract attenuated the increase in acetylcholinesterase activity induced by LPS in the cerebral cortex. Finally, blackberry extract also downregulated IL-1β levels in cerebral cortex. In conclusion, our findings demonstrated that treatment with Rubus sp. exerted antidepressant, antioxidant, anticholinesterase and anti-inflammatory effects in a model of depressive - like behavior induced by LPS in female mice. This highlights Rubus sp. as a potential therapeutic agent for individuals with major depressive disorder.
Collapse
Affiliation(s)
- Solange Vega Custódio
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Raphaela Cassol Piccoli
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - William Sanabria Simões
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Alethéa Gatto Barschak
- Laboratório de Análises Clínicas, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Rejane Giacomelli Tavares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
6
|
Saraiva JT, Dos Santos FDS, Bona NP, da Silveira LM, Simões WS, da Silva GBDO, da Silva JA, Domingues WB, Nascimento MC, Campos VF, Spanevello RM, Pedra NS, Stefanello FM. Antitumor Effect of Butia odorata Hydroalcoholic Extract on C6 and U87MG Glioma Cell Lines: Impact on Redox Status and Inflammation Signaling. Neurochem Res 2024; 50:56. [PMID: 39671046 DOI: 10.1007/s11064-024-04305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Among the spectrum of gliomas, glioblastoma stands out as the most aggressive brain tumor affecting the central nervous system. In addressing this urgent medical challenge, exploring therapeutic alternatives becomes imperative to enhance the patient's prognosis. In this regard, Butia odorata (BO) fruit emerges as a promising candidate due to its array of bioactive compounds, including flavonoids, phenolic acids, and carotenoids, known for their antioxidant, anti-inflammatory, and antitumor properties. Thus, this study aimed to investigate the impact of standardized hydroalcoholic extract of BO on rat C6 and human U87MG glioma cell lines. Cells were exposed to varying extract concentrations (125-2000 μg/mL) for intervals of 0, 2, 4, 6, 24, 48, or 72 h. Then, cell viability, proliferation, colony formation, redox equilibrium parameters, cell migration, and the relative mRNA expression of genes related to gliomagenesis were evaluated. Our findings revealed a reduction in viability, proliferation, colony formation, reactive oxygen species, and nitrite levels in both glioma cell lines upon exposure to the extract. Conversely, an increase in sulfhydryl content and the activity of superoxide dismutase and catalase were observed in both glioma cell lines. No significant changes in viability and proliferation were observed in astrocytes. Furthermore, in the C6 cells only, the BO extract reduced the migration and downregulated the relative mRNA expression of matrix metalloproteinase-2, O6-methylguanine-DNA methyltransferase, nuclear factor-kappa B, interleukin-6 genes, and upregulated caspase-3 gene. These results underscore the promising anti-glioma potential of BO extract, attributed to its diverse bioactive composition.
Collapse
Affiliation(s)
- Juliane Torchelsen Saraiva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Larissa Menezes da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - William Sanabria Simões
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Giulia Bueno de Oliveira da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - Júlia Araújo da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mariana Cavalcanti Nascimento
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia - Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
7
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
8
|
Meine BDM, de Mello JE, Custódio SV, da Silveira LM, Simões WS, Bona NP, Garcia DN, Schneider A, de Souza LP, Domingues WB, Campos VF, Spanevello RM, de Aguiar MSS, Stefanello FM. Tannic acid: A possible therapeutic agent for hypermethioninemia-induced neurochemical changes in young rats. Biochem Biophys Res Commun 2024; 734:150635. [PMID: 39236587 DOI: 10.1016/j.bbrc.2024.150635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This study explores the therapeutic benefits of tannic acid (TnA) in an experimental protocol of chronic hypermethioninemia in rats. Rats were categorized into four groups: Group I - control, Group II - TnA 30 mg/kg, Group III - methionine (Met) 0.2-0.4 g/kg + methionine sulfoxide (MS) 0.05-0.1 g/kg, Group IV - TnA/Met + MS. Saline was administered by subcutaneous pathway into groups I and II twice daily from postnatal day 6 (P6) to P28, whereas those in groups III and IV received Met + MS. From P28 to P35, groups II and IV received TnA orally. Animals from group III presented cognitive and memory impairment assessed through object recognition and Y-maze tests (p < 0.05). Elevated levels of reactive species, lipid peroxidation, and nitrites followed by a decline in sulfhydryl content, catalase activity, and superoxide dismutase activity were observed in animals treated with Met + MS (p < 0.05). However, TnA treatment reversed all these effects (p < 0.05). In group III, there was an increase in acetylcholinesterase activity and IL-6 levels, coupled with a reduction in Na+/K+-ATPase activity (p < 0.05). TnA was able to protect against these effects (p < 0.05). The gene expression of catalase, brain-derived neurotrophic factor, and nuclear factor erythroid 2-related factor 2 was decreased in the hippocampus and striatum from group III (p < 0.05). TnA reversed almost all of these alterations (p < 0.05). These findings suggest that TnA is a therapeutic target for patients with hypermethioninemia.
Collapse
Affiliation(s)
- Bernardo de Moraes Meine
- Laboratório de Biomarcadores, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Julia Eisenhardt de Mello
- Laboratório de Neuroquímica, Inflamação e Câncer, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Solange Vega Custódio
- Laboratório de Neuroquímica, Inflamação e Câncer, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Larissa Menezes da Silveira
- Laboratório de Biomarcadores, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - William Sanabria Simões
- Laboratório de Biomarcadores, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucas Petitemberte de Souza
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Laboratório de Neuroquímica, Inflamação e Câncer, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Ávila BM, Zanini BM, Luduvico KP, Oliveira TL, Hense JD, Garcia DN, Prosczek J, Stefanello FM, da Cruz PH, Giongo JL, Vaucher RA, Mason JB, Masternak MM, Schneider A. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci 2024; 357:123073. [PMID: 39307182 DOI: 10.1016/j.lfs.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIMS This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Collapse
Affiliation(s)
- Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina P Luduvico
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Prosczek
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H da Cruz
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
10
|
Piccoli RC, Simões WS, Custódio SV, Goularte KCM, Luduvico KP, de Mello JE, de Souza AA, Teixeira AC, da Costa DA, Barschak AG, Deniz BF, de Almeida W, Pereira P, Nicolai M, Spanevello RM, Stefanello FM, Tavares RG, Palma ML. Sustainable Intervention: Grape Pomace Flour Ameliorates Fasting Glucose and Mitigates Streptozotocin-Induced Pancreatic Damage in a Type 2 Diabetes Animal Model. Pharmaceuticals (Basel) 2024; 17:1530. [PMID: 39598440 PMCID: PMC11597639 DOI: 10.3390/ph17111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycemia, increased risk of cardiovascular diseases, and oxidative imbalances. This study aimed to investigate the impact of dietary supplementations with 'Arinto' grape pomace flour (GPF) (WGPF) and 'Touriga Nacional' GPF (RGPF) in an animal model of T2DM. Methods: T2DM was induced by a high-fat diet (HFD) for 28 days and a single dose of streptozotocin (STZ) (35 mg/kg) on the 21st day. Forty adult male Wistar rats were divided into five groups: Control (CT), T2DM, T2DM + Metformin (250 mg/kg), T2DM + 10% 'Arinto' GPF (WGPF), and T2DM + 10% 'Touriga Nacional' GPF (RGPF). On the 21st day of the experimental protocol, animals were submitted to an oral glucose tolerance test. An oral glucose tolerance test, oxidative stress parameters, biochemical analysis, and pancreas histological analyses were performed. Results: T2DM impaired glucose tolerance, elevated serum triglycerides and cholesterol, increased oxidative damage in the liver, and induced pancreatic histological abnormalities. However, supplementation with WGPF and RGPF demonstrated positive effects, mitigating glycemic and lipid disruptions, ameliorating oxidative stress, and protecting pancreatic Islets β-cells. Conclusions: Our findings highlight the protective effects of WGPF and RGPF in the adverse impacts of T2DM. Additionally, our study emphasizes the innovative use of grape pomace, a winemaking by-product, promoting sustainability by transforming waste into functional foods with significant health benefits.
Collapse
Affiliation(s)
- Raphaela Cassol Piccoli
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - William Sanabria Simões
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Solange Vega Custódio
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Kelen Cristiane Machado Goularte
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Karina Pereira Luduvico
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Julia Eisenhardt de Mello
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Anita Avila de Souza
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Ana Carolina Teixeira
- Postgraduation Program in Biochemistry and Bioprospection, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (R.C.P.); (W.S.S.); (S.V.C.); (K.C.M.G.); (K.P.L.); (J.E.d.M.); (A.A.d.S.); (A.C.T.)
| | - Diego Araujo da Costa
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
| | - Alethéa Gatto Barschak
- Clinical Analysis Laboratory, Federal University of Health Sciences of Porto Alegre, Department of Basic Health Sciences, Porto Alegre 90050-170, RS, Brazil;
| | - Bruna Ferrary Deniz
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Wellington de Almeida
- Department of Physiology and Pharmacology, Federal University of Pelotas, Campus Capão do Leão, S/N, Pelotas 96010-900, RS, Brazil; (B.F.D.); (W.d.A.)
| | - Paula Pereira
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Natural Resources and Environment (CERENA), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- EPCV, School of Phycology and Life Science, Department of Live Sciences, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marisa Nicolai
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| | - Roselia Maria Spanevello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Rejane Giacomelli Tavares
- Postgraduation Program in Nutrition and Foods, Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96010-610, RS, Brazil;
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
- Center for Chemical, Pharmaceutical and Food Science (CCQFA), Federal University of Pelotas, Campus Universitário, S/N, Pelotas 96160-000, RS, Brazil; (R.M.S.); (F.M.S.)
| | - Maria Lídia Palma
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona, 1749-024 Lisboa, Portugal; (P.P.); (M.N.); (M.L.P.)
| |
Collapse
|
11
|
Haridevamuthu B, Nayak SPRR, Madesh S, Dhivya LS, Chagaleti BK, Pasupuleti M, Rajakrishnan R, Alfarhan A, Muthu Kumaradoss K, Arockiaraj J. A novel brominated chalcone derivative as a promising multi-target inhibitor against multidrug-resistant Listeria monocytogenes. Microb Pathog 2024; 196:106968. [PMID: 39307201 DOI: 10.1016/j.micpath.2024.106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Foodborne pathogens continue to challenge public health due to their ability to cause severe illness and their increasing resistance to current antimicrobial treatments. Listeria monocytogenes is a resilient foodborne pathogen that poses significant risks to vulnerable populations, leading to severe infections and high hospitalization rates. The emergence of antimicrobial-resistant (AMR) strains of L. monocytogenes underscores the need for novel therapeutic strategies. In this study, we investigated the antimicrobial efficacy of the (2E)-3-(3,5-dibromo-2-hydroxylphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DK06) against multidrug-resistant L. monocytogenes. DK06 exhibited a significant dose-dependent inhibition of L. monocytogenes growth, achieving a maximum inhibition of 92.9 % at 320 μM. Molecular docking and dynamics simulations revealed high binding affinities for key virulence proteins PlcB and ArgA, with stable protein-ligand interactions. DK06 also disrupted biofilm formation at sub-MIC levels, reducing extracellular polymeric substances (EPS) and biofilm mass, as observed by scanning electron microscopy (SEM) analysis. Furthermore, DK06 downregulated the expression of virulence genes (plcB, argA, and hly) and decreased hemolytic activity. In vivo zebrafish studies confirmed the safety of DK06 up to 80 μM, demonstrating its efficacy in reducing mortality and oxidative stress associated with L. monocytogenes infection. DK06 also attenuated inflammation by downregulating key inflammatory markers (tnfa, il1b, il6, and nfkb). These findings indicate that DK06 is a promising multi-target inhibitor with potential application in treating infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bharath Kumar Chagaleti
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Microbiology & Immunology, CSIR - Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - R Rajakrishnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Jegadheeshwari S, Santhi JJ, Velayutham M, Issac PK, Kesavan M. DbGTi protein attenuates chromium (VI)-induced oxidative stress via activation of the Nrf2/HO-1 signalling pathway in zebrafish (Danio rerio) larval model. Int J Biol Macromol 2024; 280:136099. [PMID: 39343269 DOI: 10.1016/j.ijbiomac.2024.136099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Hexavalent chromium (Cr (VI)) contamination poses a significant threat to environmental and human health due to its ability to induce oxidative stress. Conventional strategies to counter Cr (VI)-induced oxidative stress, like antioxidants and chelating agents, face efficacy limitations and adverse effects. The present study is intended to counteract the limitations of conventional strategies by introducing a trypsin inhibitor isolated from Dioscorea bulbifera L. tubers, known as DbGTi protein, against Cr (VI)-induced developmental toxicity and oxidative stress. Through a comprehensive array of biochemical assays, behavioural tests, and gene expression analyses, this study interprets the underlying mechanisms of the DbGTi protein. Results demonstrated that the DbGTi protein effectively restored antioxidant defense systems, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S-transferase (GST), and glutathione peroxidase (GTPx), thereby mitigating cellular damage, reducing cell death, and enhancing neuro-biomarkers. qRT-PCR analysis of mRNA expression profiling revealed the upregulation of genes associated with antioxidant defense (sod, cat, gpx) and defense pathway (nrf2, hmox-1a), further highlighting the protective effects of DbGTi protein against Cr (VI)-induced oxidative stress.
Collapse
Affiliation(s)
- S Jegadheeshwari
- Department of Biotechnology, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Jenila John Santhi
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Kanchipuram, Tamil Nadu, India
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
13
|
Bona NP, Pedra NS, Spohr L, da Silva Dos Santos F, Saraiva JT, Carvalho FB, da Cruz Fernandes M, Fernandes AS, Saraiva N, Martins MF, Tavares RG, Spanevello RM, Aguiar MSSD, Stefanello FM. Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects. Mol Neurobiol 2024; 61:8234-8252. [PMID: 38483655 DOI: 10.1007/s12035-024-04086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/02/2024] [Indexed: 09/21/2024]
Abstract
The aim of this study was to investigate the antiglioma effect of Cecropia pachystachya Trécul (CEC) leaves extract against C6 and U87 glioblastoma (GB) cells and in a rat preclinical GB model. The CEC extract reduced in vitro cell viability and biomass. In vivo, the extract decreased the tumor volume approximately 62%, without inducing systemic toxicity. The deficit in locomotion and memory and an anxiolytic-like behaviors induced in the GB model were minimized by CEC. The extract decreased the levels of reactive oxygen species, nitrites and thiobarbituric acid reactive substances and increased the activity of antioxidant enzymes in platelets, sera and brains of GB animals. The activity of NTPDases, 5'-nucleotidase and adenosine deaminase (ADA) was evaluated in lymphocytes, platelets and serum. In platelets, ATP and AMP hydrolysis was reduced and hydrolysis of ADP and the activity of ADA were increased in the control, while in CEC-treated animals no alteration in the hydrolysis of ADP was detected. In serum, the reduction in ATP hydrolysis was reversed by CEC. In lymphocytes, the increase in the hydrolysis of ATP, ADP and in the activity of ADA observed in GB model was altered by CEC administration. The observed increase in IL-6 and decrease in IL-10 levels in the serum of GB animals was reversed by CEC. These results demonstrate that CEC extract is a potential complementary treatment to GB, decreasing the tumor size, while modulating aspects of redox and purinergic systems.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Juliane Torchelsen Saraiva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Sofia Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
| | - Marta Filipa Martins
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra, Madrid-Barcelona Km. 33.600, Alcalá de Henares, Madrid, 28871, Spain
| | - Rejane Giacomelli Tavares
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa, 1749-024, Portugal
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
14
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
15
|
Haridevamuthu B, Nayak SPRR, Murugan R, Sudhakaran G, Pachaiappan R, Manikandan K, Chitra V, Almutairi MH, Almutairi BO, Kathiravan MK, Arockiaraj J. Co-occurrence of azorubine and bisphenol A in beverages increases the risk of developmental toxicity: A study in zebrafish model. Food Chem Toxicol 2024; 191:114861. [PMID: 38992409 DOI: 10.1016/j.fct.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India.
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 600077, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Vellapandian Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
16
|
Won C, Kim S, Kwak D, Kim T, Kim J, Lee E, Kim S, Velmurugan Adith R, Ringe S, Kim HI, Jin K. Spatiotemporal Nitric Oxide Modulation via Electrochemical Platform to Profile Tumor Cell Response. Angew Chem Int Ed Engl 2024:e202411260. [PMID: 39183147 DOI: 10.1002/anie.202411260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule intricately implicated in oncologic processes, encompassing the modulation of angiogenesis and instigating apoptosis. Investigation of the antitumor effects of NO is currently underway, necessitating a detailed understanding of its cellular-level reactions. Regulating the behavior of radical NO species has been a significant challenge, primarily due to its instability in aqueous environments by rapid O2-induced degradation. In this study, we devised an electrochemical platform to investigate the cellular responses to reactive gaseous molecules. Our designed platform precisely controlled the NO flux and diffusion rates of NO to tumor cells. COMSOL Multiphysics calculations based on diffusion and reaction kinetics were conducted to simulate the behavior of electrochemically generated NO. We discerned that the effective radius, NO flux, and electrolysis duration are pivotal factors governing cellular response by NO.
Collapse
Affiliation(s)
- Chanju Won
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Sojin Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Dongvin Kwak
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Taemin Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Jinhui Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Eunjun Lee
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Suyeon Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | | | - Stefan Ringe
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
| | - Hugh I Kim
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
- Center for Proteogenome Research, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea E-mail: and
- Single Cell Analysis Laboratory, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of, Korea
| |
Collapse
|
17
|
Ramamurthy K, Madesh S, Priya PS, Ayub R, Aljawdah HM, Arokiyaraj S, Guru A, Arockiaraj J. Textile azo dye, Sudan Black B, inducing hepatotoxicity demonstrated in in vivo zebrafish larval model. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1811-1829. [PMID: 38970761 DOI: 10.1007/s10695-024-01371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.
Collapse
Affiliation(s)
- Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Selvam Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Rashid Ayub
- College of Science, King Saud University, P.O. Box 2454, 11451, Riyadh, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
Nayak SPRR, Boopathi S, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Indole-3-acetic acid induced cardiogenesis impairment in in-vivo zebrafish via oxidative stress and downregulation of cardiac morphogenic factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104479. [PMID: 38821154 DOI: 10.1016/j.etap.2024.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - M K Kathiravan
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
19
|
Nayak SRR, Haridevamuthu B, Murugan R, Dhivya L, Venkatesan S, Almutairi MH, Almutairi BO, Kathiravan M, Namasivayam SKR, Arockiaraj J. Furan-based chalcone protects β-cell damage and improves glucose uptake in alloxan-induced zebrafish diabetic model via influencing Peroxisome Proliferator-Activated Receptor agonists (PPAR-γ) signaling. Process Biochem 2024; 142:149-161. [DOI: 10.1016/j.procbio.2024.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Zuliani JP, Gutiérrez JM, Teixeira C. Role of nitric oxide and signaling pathways modulating the stimulatory effect of snake venom secretory PLA 2S on non-opsonized zymosan phagocytosis by macrophages. Toxicon 2024; 243:107716. [PMID: 38614247 DOI: 10.1016/j.toxicon.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the β-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.
Collapse
Affiliation(s)
- Juliana Pavan Zuliani
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil; Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz Rondônia/FIOCRUZ-RO, Porto Velho-RO, Brazil; Dep. Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Catarina Teixeira
- Laboratório de Farmacologia - Instituto Butantan, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Boullard NG, Paris JJ, Shariat-Madar Z, Mahdi F. Increased Prolylcarboxypeptidase Expression Can Serve as a Biomarker of Senescence in Culture. Molecules 2024; 29:2219. [PMID: 38792081 PMCID: PMC11123917 DOI: 10.3390/molecules29102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.
Collapse
Affiliation(s)
| | - Jason J. Paris
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (J.J.P.); (Z.S.-M.)
| |
Collapse
|
22
|
Ávila BM, Zanini BM, Luduvico KP, Hense JD, Garcia DN, Prosczek J, Stefanello FM, Mason JB, Masternak MM, Schneider A. Effect of calorie restriction on redox status during chemically induced estropause in female mice. GeroScience 2024; 46:2139-2151. [PMID: 37857995 PMCID: PMC10828157 DOI: 10.1007/s11357-023-00979-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
In females, there is a continuous decline of the ovarian reserve with age, which results in menopause in women or estropause in mice. Loss of ovarian function results in metabolic alterations in mice and women. Based on this, we aimed to evaluate the effect of caloric restriction (CR) on redox status and metabolic changes in chemically induced estropause in mice. For this, mice were divided into four groups (n = 10): cyclic ad libitum (AL), cyclic 30% CR, AL estropause, and estropause 30% CR. Estropause was induced using 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days in 2-month-old females. The CR protocol started at 5 months of age and the treatments lasted for 4 months. The CR females gained less body weight than AL females (p < 0.001) and had lower glycemic curves in response to glucose tolerance test (GTT). The AL estropause females had the highest body weight and body fat, despite having lower food intake. However, the estropause females on 30% CR lost the most body weight and had the lowest amount of body fat compared to all groups. The effect of 30% CR on redox status in fat and liver tissue was similar for cyclic and estropause females. Interestingly, estropause decreased ROS in adipose tissue, while increasing it in the liver. No significant effects of CR on redox status were observed. Chemically induced estropause did not influence the response to 30% CR on glucose tolerance and redox status; however, weight loss was exarcebated compared to cyclic females.
Collapse
Affiliation(s)
- Bianca M Ávila
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Karina P Luduvico
- Centro de Ciências Quimicas, Farmacêutica e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Juliane Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil
| | - Francielle M Stefanello
- Centro de Ciências Quimicas, Farmacêutica e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228 CEP, Pelotas, RS, 9601-610, Brazil.
| |
Collapse
|
23
|
Ocampo YC, Castro JP, Pájaro IB, Caro D, Talero E, Motilva V, Franco LA. Protective effect of sucrose esters from cape gooseberry (Physalis peruviana L.) in TNBS-induced colitis. PLoS One 2024; 19:e0299687. [PMID: 38512973 PMCID: PMC10957089 DOI: 10.1371/journal.pone.0299687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1β, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.
Collapse
Affiliation(s)
- Yanet C. Ocampo
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Jenny P. Castro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Indira B. Pájaro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
- Faculty of Chemistry and Pharmacy, Universidad del Atlántico, Barranquilla, Colombia
| | - Daneiva Caro
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| | - Elena Talero
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Virginia Motilva
- Department of Pharmacology, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Luis A. Franco
- Biological Evaluation of Promising Substances Group, Faculty of Pharmaceutical Science, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
24
|
Faria OW, de Aguiar MSS, de Mello JE, Alvez FL, Luduvico KP, Garcia DN, Schneider A, Masternak MM, Spanevello RM, Stefanello FM. Senolytics prevent age-associated changes in female mice brain. Neurosci Lett 2024; 826:137730. [PMID: 38485080 DOI: 10.1016/j.neulet.2024.137730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.
Collapse
Affiliation(s)
- Olivia Wyse Faria
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Julia Eisenhardt de Mello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Karina Pereira Luduvico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | | | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| |
Collapse
|
25
|
Vagher B, Amiel E. Detection of nitric oxide-mediated metabolic effects using real-time extracellular flux analysis. PLoS One 2024; 19:e0299294. [PMID: 38451983 PMCID: PMC10919732 DOI: 10.1371/journal.pone.0299294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Dendritic cell (DC) activation is marked by key events including: (I) rapid induction and shifting of metabolism favoring glycolysis for generation of biosynthetic metabolic intermediates and (II) large scale changes in gene expression including the upregulation of the antimicrobial enzyme inducible nitric oxide synthase (iNOS) which produces the toxic gas nitric oxide (NO). Historically, acute metabolic reprogramming and NO-mediated effects on cellular metabolism have been studied at specific timepoints during the DC activation process, namely at times before and after NO production. However, no formal method of real time detection of NO-mediated effects on DC metabolism have been fully described. Here, using Real-Time Extracellular Flux Analysis, we experimentally establish the phenomenon of an NO-dependent mitochondrial respiration threshold, which shows how titration of an activating stimulus is inextricably linked to suppression of mitochondrial respiration in an NO-dependent manner. As part of this work, we explore the efficacy of two different iNOS inhibitors in blocking the iNOS reaction kinetically in real time and explore/discuss parameters and considerations for application using Real Time Extracellular Flux Analysis technology. In addition, we show, the temporal relationship between acute metabolic reprogramming and NO-mediated sustained metabolic reprogramming kinetically in single real-time assay. These findings provide a method for detection of NO-mediated metabolic effects in DCs and offer novel insight into the timing of the DC activation process with its associated key metabolic events, revealing a better understanding of the nuances of immune cell biology.
Collapse
Affiliation(s)
- Bay Vagher
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, United States of America
- The Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States of America
| | - Eyal Amiel
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, United States of America
- The Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
26
|
Casella AC, Prolo C, Pereyra J, Ríos N, Piacenza L, Radi R, Álvarez MN. Superoxide, nitric oxide and peroxynitrite production by macrophages under different physiological oxygen tensions. Free Radic Biol Med 2024; 212:330-335. [PMID: 38141888 DOI: 10.1016/j.freeradbiomed.2023.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Macrophages count on two O2-consuming enzymes to form reactive radical species: NAPDH oxidase 2 (Nox2) and nitric oxide synthase 2 (inducible isoform, iNOS) that produce superoxide radical (O2•-) and nitric oxide (•NO), respectively. If formed simultaneously, the diffusion-controlled reaction of O2•- and •NO yields peroxynitrite, a potent cytotoxic oxidant. In human tissues and cells, the oxygen partial pressure (pO2) normally ranges within 2-14 %, with a typical average pO2 value for most tissues ca. 5 %. Given that O2 is a substrate for both Nox2 and iNOS, its tissue and cellular concentration can affect O2•- and •NO production. Also, O2 is a modulator of the macrophage adaptative response and may influence iNOS expression in a hypoxia inducible factor 1-α (HIF1α-)-dependent manner. However, most of the reported experiments in cellula, analyzing the formation and effects of O2•- and •NO during macrophage activation and cytotoxicity towards pathogens, have been performed in cells exposed to atmospheric air supplemented with 5 % CO2; under these conditions, most cells are exposed to supraphysiologic oxygen tensions (ca. 20 % O2) which are far from the physiological pO2. Here, the role of O2 as substrate in the oxidative response of J774A.1 macrophages was explored upon exposure to different pO2 and O2•- and •NO formation rates were measured, obtaining a KM of 26 and 42 μM O2 for Nox2 and iNOS, respectively. Consequently, peroxynitrite formation was influenced by pO2, reaching a maximum at ≥ 10 % O2, but even at levels as low as 2 % O2, a substantial formation rate of this oxidant was detected. Indeed, the cytotoxic capacity of immunostimulated macrophages against the intracellular parasite T. cruzi was significant, even at low pO2 values, confirming the role of peroxynitrite as a potent oxidizing cytotoxin within a wide range of physiological oxygen tensions.
Collapse
Affiliation(s)
- Ana Clara Casella
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Josefina Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ríos
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - María Noel Álvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Departamento de Educación Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
27
|
Guru A, Murugan R, Arockiaraj J. Histone acetyltransferases derived RW20 protects and promotes rapid clearance of Pseudomonas aeruginosa in zebrafish larvae. Int Microbiol 2024; 27:25-35. [PMID: 37335389 DOI: 10.1007/s10123-023-00391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/27/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Pseudomonas is a group of bacteria that can cause a wide range of infections, particularly in people with weakened immune systems, such as those with cystic fibrosis or who are hospitalized. It can also cause infections in the skin and soft tissue, including cellulitis, abscesses and wound infections. Antimicrobial peptides (AMPS) are the alternative strategy due to their broad spectrum of activity and act as effective treatment against multi-drug resistance pathogens. In this study, we have used an AMP, RW20 (1RPVKRKKGWPKGVKRGPPKW20). RW20 peptide is derived from the histone acetyltransferases (HATs) of the freshwater teleost, Channa striatus. The antimicrobial prediction tool has been utilized to identify the RW20 sequence from the HATs sequence. We synthesized the peptide to explore its mechanism of action. In an in vitro assay, RW20 was challenged against P. aeruginosa and we showed that RW20 displayed antibacterial properties and damaged the cell membrane. The mechanism of action of RW20 against P. aeruginosa has been established via field emission scanning electron microscopy (FESEM) as well as fluorescence assisted cell sorter (FACS) analysis. Both these experiments established that RW20 caused bacterial membrane disruption and cell death. Moreover, the impact of RW20, in-vivo, was tested against P. aeruginosa-infected zebrafish larvae. In the infected larvae, RW20 showed protective effect against P. aeruginosa by increasing the larval antioxidant enzymes, reducing the excess oxidative stress and apoptosis. Thus, it is possible that HATs-derived RW20 can be an efficient antimicrobial molecule against P. aeruginosa.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, 600 077, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603 203, India.
| |
Collapse
|
28
|
Nayak SPRR, Basty C, Boopathi S, Dhivya LS, Alarjani KM, Gawwad MRA, Hager R, Kathiravan MK, Arockiaraj J. Furan-based Chalcone Annihilates the Multi-Drug-Resistant Pseudomonas aeruginosa and Protects Zebra Fish Against its Infection. J Microbiol 2024; 62:75-89. [PMID: 38383881 DOI: 10.1007/s12275-024-00103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/23/2024]
Abstract
The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Santosh Pushpa Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Catharine Basty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Loganathan Sumathi Dhivya
- Dr. APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ragab Abdel Gawwad
- Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, 71210, Bosnia and Herzegovina
| | - Raghda Hager
- Department of Medical Microbiology and Immunology, King Salman International University, South Sinai, Egypt
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
29
|
Bona NP, Soares de Aguiar MS, Spohr L, Pedra NS, Dos Santos FDS, Saraiva JT, Alvez FL, de Moraes Meine B, Recart V, Farias IV, Ortmann CF, Spanevello RM, Reginatto FH, Stefanello FM. Protective action of Cecropia pachystachya extract and enriched flavonoid fraction against memory deficits, inflammation and oxidative damage in lipopolysaccharide challenged mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117080. [PMID: 37625607 DOI: 10.1016/j.jep.2023.117080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cecropia pachystachya (CP) Trécul is a medicinal plant native to South and Central America with several pharmacological properties, such as anti-inflammatory and neuroprotective. AIM OF THE STUDY In this study, we investigated the effect of CP extract (200 mg/kg) and its enriched flavonoid fraction (EFF-CP) (50 and 100 mg/kg) in a model of lipopolysaccharide (LPS)-induced neuroinflammation. MATERIAL AND METHODS CP and EFF-CP were administered intragastrically for 14 days and LPS (250 μg/kg) was administered intraperitoneally from the 8th to the 14th days. LC/DAD/MS analysis showed the presence of isoorientin, orientin, and isovitexin as major compounds. RESULTS The results demonstrated that CP extract and EFF-CP gave protection against LPS-induced short-term and long-term memory deficits. The treatment with CP and/or EFF-CP protected against LPS-induced increases in reactive species, nitrites, total thiol and lipoperoxidation in the cerebral cortex, hippocampus and striatum. Moreover, CP and EFF-CP restored superoxide dismutase and catalase activities that had been reduced by LPS in the cerebral cortex, hippocampus and striatum. TNF-α levels were increased in the cortex, striatum and hippocampus in the LPS group, while CP treatment prevented this change in the cerebral cortex. EFF-CP decreased the levels of this cytokine in all structures analyzed at both doses. CONCLUSION CP extract and its EFF-CP are important therapeutic targets for the management of neuroinflammation observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natália Pontes Bona
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Luiza Spohr
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Francieli da Silva Dos Santos
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Juliane Torchelsen Saraiva
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Fernando Lopez Alvez
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Bernardo de Moraes Meine
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Vânia Recart
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Ingrid Vicente Farias
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Caroline Flach Ortmann
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| | - Flavio Henrique Reginatto
- Programa de Pós-Graduação Em Farmácia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação Em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
30
|
Haridevamuthu B, Murugan R, Seenivasan B, Meenatchi R, Pachaiappan R, Almutairi BO, Arokiyaraj S, M K K, Arockiaraj J. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132524. [PMID: 37741213 DOI: 10.1016/j.jhazmat.2023.132524] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Tartrazine (TZ), or E 102 or C Yellow, is a commonly used azo dye in the food and dyeing industries. Its excessive usage beyond permissible levels threatens human health and the aquatic environment. While previous studies have reported adverse effects such as mutagenicity, carcinogenicity, and reproductive toxicity. Our study aimed to comprehensively evaluate the developmental neurotoxicity of TZ exposure via biochemical and behavioral examinations and explored the underlying mechanism via gene expression analyses. TZ at an environmentally relevant concentration (50 mg/L) significantly induces oxidative stress, altered antioxidant (SOD, CAT and GSH) response, triggered cellular damage (MDA and LDH), and induced neuro-biochemical changes (AChE and NO). Gene expression analyses revealed broad disruptions in genes associated with antioxidant defense (sod1, cat, and gstp1), mitochondrial dysfunction (mfn2, opa1, and fis1),evoked inflammatory response (nfkb, tnfa, and il1b), apoptosis activation (bcl2, bax, and p53), and neural development (bdnf, mbp, and syn2a). Behavioral analysis indicated altered thigmotaxis, touch response, and locomotion depending on the concentration of TZ exposure. Remarkably, the observed effective concentrations were consistent with the permitted levels in food products, highlighting the neurodevelopmental effects of TZ at environmentally relevant concentrations. These findings provide valuable insights into the underlying molecular mechanisms, particularly the role of mitochondria-mediated apoptosis, contributing to TZ-induced neurodevelopmental disorders in vivo.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Boopathi Seenivasan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Ramu Meenatchi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Kathiravan M K
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
31
|
Haridevamuthu B, Murugan R, Seenivasan B, Meenatchi R, Pachaiappan R, Almutairi BO, Arokiyaraj S, M. K K, Arockiaraj J. Synthetic azo-dye, Tartrazine induces neurodevelopmental toxicity via mitochondria-mediated apoptosis in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132524. [DOI: https:/doi.org/10.1016/j.jhazmat.2023.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
|
32
|
Ru J, Wang Y, Li Z, Wang J, Ren C, Zhang J. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. Eur J Med Chem 2023; 261:115800. [PMID: 37708798 DOI: 10.1016/j.ejmech.2023.115800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of acetyl-l-lysine side chains in histones and non-histones, which are key to epigenetic regulation in humans. Targeting HDACs has emerged as a promising strategy for treating various types of cancer, including myeloma and hematologic malignancies. At present, numerous small molecule inhibitors targeting HDACs are actively being investigated in clinical trials. Despite their potential efficacy in cancer treatment, HDAC inhibitors suffer from multi-directional selectivity and preclinical resistance issues. Hence, developing novel inhibitors based on cutting-edge medicinal chemistry techniques is essential to overcome these limitations and improve clinical outcomes. This manuscript presents an extensive overview of the properties and biological functions of HDACs in cancer, provides an overview of the current state of development and limitations of clinical HDAC inhibitors, and analyzes a range of innovative medicinal chemistry techniques that are applied. These techniques include selective inhibitors, dual-target inhibitors, proteolysis targeting chimeras, and protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jinxiao Ru
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Zijia Li
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, USA
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
33
|
Liu B, Huang J, Xiao J, Xu W, Zhang H, Yuan Y, Yin Y, Zhang X. The Streptococcus virulence protein PepO triggers anti-tumor immune responses by reprograming tumor-associated macrophages in a mouse triple negative breast cancer model. Cell Biosci 2023; 13:198. [PMID: 37925462 PMCID: PMC10625220 DOI: 10.1186/s13578-023-01153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The efficacy of current surgery and chemotherapy for triple negative breast cancer (TNBC) is limited due to heterogenous and immunosuppressive tumor microenvironment (TME). Tumor associated macrophages (TAMs), which are regarded as an M2 tumor-promoting phenotype, are crucial in the development of the immunosuppressive TME. Targeting TAM reprograming is a promising strategy in anti-tumor therapy since reprogramming techniques provide the opportunity to actively enhance the antitumor immunological activity of TAM in addition to eliminating their tumor-supportive roles, which is rarely applied in TNBC clinically. However, how to drive M2 macrophages reprogramming into M1 with high potency remains a challenge and the molecular mechanisms how M2 macrophages polarized into M1 are poorly understood. Here, we identified a new immunoregulatory molecular PepO that was served as an immunoregulatory molecule governed the transformation of tumor-promoting M2 to tumor-inhibitory M1 cells and represented an effective anti-tumor property. RESULTS At the present study, we identified a new immunoregulatory molecular PepO, as a harmless immunoregulatory molecule, governed the transformation of tumor-promoting M2 to tumor-inhibitory M1 cells efficiently. PepO-primed M2 macrophages decreased the expression of tumor-supportive molecules like Arg-1, Tgfb, Vegfa and IL-10, and increased the expression of iNOS, Cxcl9, Cxcl10, TNF-α and IL-6 to inhibit TNBC growth. Moreover, PepO enhanced the functions of macrophages related to cell killing, phagocytosis and nitric oxide biosynthetic process, thereby inhibiting the development of tumors in vivo and in vitro. Mechanistically, PepO reprogramed TAMs toward M1 by activating PI3K-AKT-mTOR pathway via TLR4 and suppressed the function of M2 by inhibiting JAK2-STAT3 pathway via TLR2. The PI3K inhibitor LY294002 abrogated the role of PepO in switching M2 macrophages into M1 and in inhibiting TNBC growth in vivo. And PepO failed to govern the M2 macrophages to reprogram into M1 macrophages and inhibit TNBC when TLR2 or TLR4 was deficient. Moreover, PepO enhanced the antitumor activity of doxorubicin and the combination exerted a synergistic effect on TNBC suppression. CONCLUSIONS Our research identified a possible macrophage-based TNBC immunotherapeutic approach and suggested a novel anticancer immunoregulatory molecular called PepO.
Collapse
Affiliation(s)
- Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jun Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Hong Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Laboratory Medicine and Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Nayak SPRR, Dhivya LS, R R, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Furan based synthetic chalcone derivative functions against gut inflammation and oxidative stress demonstrated in in-vivo zebrafish model. Eur J Pharmacol 2023; 957:175994. [PMID: 37574161 DOI: 10.1016/j.ejphar.2023.175994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1β, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Reshma R
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
35
|
Almazroue H, Jin Y, Nelin LD, Barba JC, Milton AD, Trittmann JK. Human pulmonary microvascular endothelial cell DDAH1-mediated nitric oxide production promotes pulmonary smooth muscle cell apoptosis in co-culture. Am J Physiol Lung Cell Mol Physiol 2023; 325:L360-L367. [PMID: 37431589 PMCID: PMC10639007 DOI: 10.1152/ajplung.00433.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in preterm infants, and pulmonary hypertension (PH) develops in 25%-40% of patients with BPD, increasing morbidity and mortality. BPD-PH is characterized by vasoconstriction and vascular remodeling. Nitric oxide (NO) is a pulmonary vasodilator and apoptotic mediator made in the pulmonary endothelium by NO synthase (eNOS). Asymmetric dimethylarginine (ADMA) is an endogenous eNOS inhibitor, primarily metabolized by dimethylarginine dimethylaminohydrolase-1 (DDAH1). Our hypothesis is that DDAH1 knockdown in human pulmonary microvascular endothelial cells (hPMVEC) will result in lower NO production, decreased apoptosis, and greater proliferation of human pulmonary arterial smooth muscle cells (hPASMC), whereas DDAH1 overexpression will have the opposite effect. hPMVECs were transfected with small interfering RNA targeting DDAH1 (siDDAH1)/scramble or adenoviral vector containing DDAH1 (AdDDAH1)/AdGFP for 24 h and co-cultured for 24 h with hPASMC. Analyses included Western blot for cleaved and total caspase-3, caspase-8, caspase-9, β-actin; trypan blue exclusion for viable cell numbers; terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL); and BrdU incorporation. Small interfering RNA targeting DDAH1 (siDDAH1) transfected into hPMVEC resulted in lower media nitrites, cleaved caspase-3 and caspase-8 protein expression, and TUNEL staining; and greater viable cell numbers and BrdU incorporation in co-cultured hPASMC. Adenoviral-mediated transfection of the DDAH1 gene (AdDDAH1) into hPMVEC resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured hPASMC. Partial recovery of hPASMC viable cell numbers after AdDDAH1-hPMVEC transfection was observed when media were treated with hemoglobin to sequester NO. In conclusion, hPMVEC-DDAH1-mediated NO production positively regulates hPASMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.NEW & NOTEWORTHY BPD-PH is characterized by vascular remodeling. NO is an apoptotic mediator made in the pulmonary endothelium by eNOS. ADMA is an endogenous eNOS inhibitor metabolized by DDAH1. EC-DDAH1 overexpression resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured SMC. After NO sequestration, SMC viable cell numbers partially recovered despite EC-DDAH1 overexpression. EC-DDAH1-mediated NO production positively regulates SMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.
Collapse
Affiliation(s)
- Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - John C Barba
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Avante D Milton
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
36
|
Centeno Crespo P, Anderson Meira Martins L, Camacho Dos Reis C, Fernandes Medeiros L, Leal Scarabelot V, Duzzo Gamaro G, Sandrielly Pereira Soares M, Maria Spanevello R, Moro Stefanello F, Cristina Custódio De Souza I. Transcranial direct current stimulation effects in the pain threshold and in oxidative stress parameters of neuropathic pain rats. Neurosci Lett 2023; 803:137179. [PMID: 36914044 DOI: 10.1016/j.neulet.2023.137179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability and relieve neuropathic pain (NP), but the role of several biomarkers in this process is not well understood. This study aimed to analyze the effects of tDCS on biochemical parameters in rats with neuropathic pain (NP) induced by chronic constriction injury (CCI) of the right sciatic nerve. Eighty-eight male 60-day-old Wistar rats were divided into nine groups: control (C), control-electrode off (CEoff), control-tDCS (C-tDCS), sham-lesion (SL), sham-lesion electrode off (SLEoff), sham-lesion (SL-tDCS), lesion (L), lesion electrode off (LEoff), and lesion-tDCS (L-tDCS). After NP establishment, 20-minute bimodal tDCS for 8 consecutive days was applied to the rats. Fourteen days after the induction of NP, rats developed mechanical hyperalgesia with a decreased threshold, and at the end of treatment, an increase in the pain threshold was observed in NP rats. In addition, NP rats had increased levels of reactive species (RS) in the prefrontal cortex, while superoxide dismutase (SOD) activity was decreased in NP rats. In the spinal cord, nitrite levels and glutathione-S-transferase (GST) activity decreased in the L-tDCS group, and it was observed that increased levels in total sulfhydryl content for neuropathic pain rats were reversed by tDCS. In serum analyses, the neuropathic pain model increased the levels of RS and thiobarbituric acid-reactive substances (TBARS) and decreased the activity of butyrylcholinesterase (BuChE). In conclusion, bimodal tDCS increased total sulfhydryl content in the spinal cord of rats with neuropathic pain, positively modulating this parameter.
Collapse
Affiliation(s)
- Priscila Centeno Crespo
- Postgraduate Program in Bioprospecting and Biochemistry, Universidade Federal de Pelotas (UFPel), Pelotas, RS 96010-900, Brazil; Laboratory of Cell Neuromodulation: Basic Research, Biology Institute, Department of Morphology, UFPel, Pelotas, RS 96030-000, Brazil
| | | | - Clara Camacho Dos Reis
- Laboratory of Cell Neuromodulation: Basic Research, Biology Institute, Department of Morphology, UFPel, Pelotas, RS 96030-000, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researches, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Postgraduate Program in Health and Human Development, Unilasalle, Canoas, RS 92010-000, Brazil
| | - Vanessa Leal Scarabelot
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Researches, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90050-170, Brazil; Postgraduate Program in Medicine, Medical Sciences, Medicine School, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS 90035-003, Brazil
| | - Giovana Duzzo Gamaro
- Laboratory of Cell Neuromodulation: Basic Research, Biology Institute, Department of Morphology, UFPel, Pelotas, RS 96030-000, Brazil
| | - Mayara Sandrielly Pereira Soares
- Postgraduate Program in Bioprospecting and Biochemistry, Universidade Federal de Pelotas (UFPel), Pelotas, RS 96010-900, Brazil; Laboratory of Biomarkers, Center of Chemical, Pharmaceutical and Food Sciences, UFPel, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Postgraduate Program in Bioprospecting and Biochemistry, Universidade Federal de Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Francieli Moro Stefanello
- Postgraduate Program in Bioprospecting and Biochemistry, Universidade Federal de Pelotas (UFPel), Pelotas, RS 96010-900, Brazil; Postgraduate Program in Medicine, Medical Sciences, Medicine School, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, RS 90035-003, Brazil
| | - Izabel Cristina Custódio De Souza
- Postgraduate Program in Bioprospecting and Biochemistry, Universidade Federal de Pelotas (UFPel), Pelotas, RS 96010-900, Brazil; Laboratory of Cell Neuromodulation: Basic Research, Biology Institute, Department of Morphology, UFPel, Pelotas, RS 96030-000, Brazil.
| |
Collapse
|
37
|
Nayak SPRR, Boopathi S, Priya PS, Pasupuleti M, Pachaiappan R, Almutairi BO, Arokiyaraj S, Arockiaraj J. Luteolin, a promising quorum quencher mitigates virulence factors production in Pseudomonas aeruginosa - In vitro and in vivo approach. Microb Pathog 2023; 180:106123. [PMID: 37088400 DOI: 10.1016/j.micpath.2023.106123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1β, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Division of Molecular Immunology & Microbiology, CSIR-Central Drug Research Institute (CDRI), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
38
|
Haridevamuthu B, Seenivasan B, Priya PS, Muthuraman S, Kumar RS, Manikandan K, Almutairi BO, Almutairi MH, Arokiyaraj S, Gopinath P, Arockiaraj J. Hepatoprotective effect of dihydroxy piperlongumine in high cholesterol-induced non-alcoholic fatty liver disease zebrafish via antioxidant activity. Eur J Pharmacol 2023; 945:175605. [PMID: 36822456 DOI: 10.1016/j.ejphar.2023.175605] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are a growing epidemic and the most common liver diseases. Consumption of a western diet with high fats alters redox status, induces inflammation, and impairs the physiological function of hepatocytes. However, the pharmacological market lacks anti-NAFLD/NASH drugs. Long pepper (Piper longum L) is used in traditional Mongolian medicine for treating hyperlipidemia. Piperlongumine (PL) is a bioactive compound of Piper longum L, which usually possesses anticancer activities due to its ROS elevation property. However, when PL was demethylated they behave as an antioxidant. Previously, we found dihydroxy piperlongumine (DHPL) possesses high antioxidant activity among the hydroxy piperlongumines, which makes us curious to reveal the anti-NAFLD effect. A high-cholesterol diet (HCD) was chosen to induce NAFLD zebrafish model, and the antioxidant and lipid-lowering effects of DHPL were evaluated. Histological alterations of NAFLD were also scored along with gene expression to explore the molecular mechanism. DHPL reduced lipid accumulation in both short-term and long-term feeding trials. DHPL increases antioxidant activity and lipid-lowering gene expression and decreases hepatic triglyceride, oxidative stress, and lipogenic genes. In conclusion, DHPL halted the progression of HCD-induced NAFLD in the zebrafish model.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Subramani Muthuraman
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, 600 127, Tamil Nadu, India
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, 600 127, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
39
|
Priya PS, Guru A, Meenatchi R, Haridevamuthu B, Velayutham M, Seenivasan B, Pachaiappan R, Rajagopal R, Kuppusamy P, Juliet A, Arockiaraj J. Syringol, a wildfire residual methoxyphenol causes cytotoxicity and teratogenicity in zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160968. [PMID: 36549541 DOI: 10.1016/j.scitotenv.2022.160968] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.
Collapse
Affiliation(s)
- P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, 600 077 Chennai, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, SIMATS, 600 077, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, South Korea
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
40
|
Dash P, Siva C, Tandel RS, Bhat RAH, Gargotra P, Chadha NK, Pandey PK. Temperature alters the oxidative and metabolic biomarkers and expression of environmental stress-related genes in chocolate mahseer (Neolissochilus hexagonolepis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43203-43214. [PMID: 36650370 DOI: 10.1007/s11356-023-25325-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Long-term acclimation temperature effects on biomarkers of oxidative stress, metabolic stress, expression of heat shock proteins (Hsps), and warm-temperature acclimation related 65-kDa protein (Wap65) were evaluated in the threatened chocolate mahseer (Neolissochilus hexagonolepis). Fifteen-day-old larvae were acclimated to different water temperatures (15, 19, 23-control group, 27, and 31 °C) for 60 days prior to the sampling for quantification of mRNA, enzyme, nitric oxide, and malondialdehyde (MDA) content. Acclimation to 31 °C increased the basal mRNA level of glutathione S-transferase alpha 1 (GSTa1), and activities of catalase (CAT), glutathione reductase (GR), and GST enzymes and but downregulated the expression of superoxide dismutase 1 (SOD1) in the whole-body homogenate. Other antioxidant genes, i.e., CAT and GPx1a, were unaffected at 31 °C, and nitric oxide (NO) concentration was significantly lower. In contrast, fish acclimated to 15 °C showed an upregulated transcript level of all the antioxidant genes and no significant difference in the CAT, GR, and GST enzymes. Activities of the metabolic enzymes, aspartate transaminase (AST) and alanine transaminase (ALT), were significantly lower at 15 °C. The expression of Hsp47 was upregulated at both 15 and 31 °C groups, whereas Hsp70 was elevated at 27 and 31 °C groups. Wap65-1 transcription did not show significant variation in treatment groups compared to control. Fish in the high (31 °C) and low-temperature (15 °C) acclimation groups were capable of maintaining oxidative stress by modulating their antioxidant transcripts, enzymes, and Hsps.
Collapse
Affiliation(s)
- Pragyan Dash
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India.
| | - C Siva
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Ritesh Shantilal Tandel
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Raja Aadil Hussain Bhat
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Pankaj Gargotra
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education, Panch Marg, Versova, Andheri West, Maharastra, 400061, India
| | - Pramod Kumar Pandey
- ICAR-DCFR, Indian Council of Agricultural Research- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand, 263136, India
| |
Collapse
|
41
|
Cardoso JDS, Cardoso Teixeira F, De Mello JE, Soares De Aguiar MS, Souto Oliveira P, Torchelsen Saraiva J, Vizzotto M, Borelli Grecco F, Lencina CL, Spanevello RM, Tavares RG, Stefanello FM, Stefanello FM. Psidium cattleianum fruit extract prevents systemic alterations in an animal model of type 2 diabetes mellitus: comparison with metformin effects. Biomarkers 2023; 28:238-248. [PMID: 36576409 DOI: 10.1080/1354750x.2022.2163695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Objective: In this study, we aimed to determine the role of Psidium cattleianum extract (PCE) and compare its effects with those of metformin (Met) in an animal model with type 2 diabetes mellitus (T2DM).Methods: T2DM was induced in rats using a high-fat diet (HFD), followed by a single dose of streptozotocin (STZ). Met and PCE were administered intragastrically once a day throughout the experiment, and their effects on biochemical, inflammatory, oxidative, and histological parameters were evaluated.Results: Met and PCE prevented the increase in serum levels of glucose, total cholesterol (TC), triacylglycerol (TG), very low-density lipoprotein (VLDL) and interleukin-6 (IL-6) induced by T2DM, and restored redox homeostasis in the liver and brain. Met increased the serum levels of anti-inflammatory cytokine and interleukin-10 (IL-10). Furthermore, both treatments restored the liver and pancreas from marked cellular disorganisation, vacuolisation, and necrosis, with PCE being more effective than Met in recovering histological changes.Conclusion: PCE is a promising agent for the prevention of T2DM complications.
Collapse
Affiliation(s)
- Juliane De Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Julia Eisenhardt De Mello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Soares De Aguiar
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Juliane Torchelsen Saraiva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Marcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, Brazil
| | - Fabiane Borelli Grecco
- Laboratório de Patologia Animal, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Rejane Giacomelli Tavares
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil.,Centro de Investigação em Biociências e Tecnologias da Saúde (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário Capão do Leão s/n, Pelotas, RS, Brazil
| |
Collapse
|
42
|
Minarrieta L, Godoy GJ, Velazquez LN, Ghorbani P, Sparwasser T, Berod L. Regulation of DC metabolism by nitric oxide in murine GM-CSF cultures. Eur J Immunol 2023; 53:e2149691. [PMID: 36577714 DOI: 10.1002/eji.202149691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/17/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The CD11c+ MHCII+ compartment within GM-CSF cultures consists of a MHCIIlow CD11bhigh population (GM-Macs) and a MHCIIhigh CD11bint population (GM-DCs), with different metabolic profiles. GM-Macs upregulate iNOS and produce nitric oxide (NO) upon TLR activation inhibiting mitochondrial respiration (OXPHOS) while promoting glycolytic metabolism in GM-DCs, which naturally do not express iNOS.
Collapse
Affiliation(s)
- Lucía Minarrieta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lis N Velazquez
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Molecular Medicine, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
43
|
Alvez FL, Bona NP, Pedra NS, da Silva DS, Cunico WJ, Stefanello FM, de Andrade CM, Soares MSP, Spanevello RM. Effect of Thiazolidin-4-one Against Lipopolysaccharide-Induced Oxidative Damage, and Alterations in Adenine Nucleotide Hydrolysis and Acetylcholinesterase Activity in Cultured Astrocytes. Cell Mol Neurobiol 2023; 43:283-297. [PMID: 35031909 PMCID: PMC11415203 DOI: 10.1007/s10571-021-01177-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/28/2021] [Indexed: 01/07/2023]
Abstract
Astrocytes play multiple important roles in brain physiology. However, depending on the stimuli, astrocytes may exacerbate inflammatory reactions, contributing to the development and progression of neurological diseases. Therefore, therapies targeting astrocytes represent a promising area for the development of new brain drugs. Thiazolidinones are heterocyclic compounds that have a sulfur and nitrogen atom and a carbonyl group in the ring and represent a class of compounds of great scientific interest due to their pharmacological properties. The aim of this study was to investigate the effect of 3-(3-(diethylamino)propyl)-2-(4-(methylthio)phenyl)thiazolidin-4-one (DS27) on cell proliferation and morphology, oxidative stress parameters, activity of the enzymes ectonucleotidases and acetylcholinesterase (AChE) and interleukin 6 (IL-6) levels in primary astrocyte cultures treated with lipopolysaccharide (LPS), to model neuroinflammation. The astrocyte culture was exposed to LPS (10 μg/ml) for 3 h and subsequently treated with compound DS27 for 24 and 48 h (concentrations ranging to 10-100 μM). LPS induced an increase in astrocyte proliferation, AChE activity, IL-6 levels, oxidative damage, ATP and ADP and a reduction in AMP hydrolysis in rat primary astrocyte cultures. DS27 treatment was effective in reversing these alterations induced by LPS. Our findings demonstrated that DS27 is able to modulate cholinergic and purinergic signaling, redox status, and the levels of pro-inflammatory cytokines in LPS-induced astrocyte damage. These glioprotective effects of DS27 may be very important for improving neuroinflammation, which is associated with many brain diseases.
Collapse
Affiliation(s)
- Fernando Lopez Alvez
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Daniel Schuch da Silva
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wilson João Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Cinthia Melazzo de Andrade
- Programa de Pós-Graduação em Medicina Veterinária, Departamento de Clínica de Pequenos Animais, Laboratório de Análises Clínicas Veterinária, Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
- Universidade Federal de Pelotas, Campus Capão do Leão, s/n, Caixa Postal 354, Pelotas, RS, CEP 9601090, Brazil.
| |
Collapse
|
44
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
45
|
de Moraes Meine B, Franceschi TS, Bona NP, Spohr L, Pedra NS, Spanevello RM, de Aguiar MSS, Stefanello FM. Chemical hypermethioninemia in young mice: oxidative damage and reduction of antioxidant enzyme activity in brain, kidney, and liver. Metab Brain Dis 2023; 38:223-232. [PMID: 36308587 DOI: 10.1007/s11011-022-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
High levels of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), found in hypermethioninemia, can be detrimental to the body; however, the underlying mechanisms are still uncertain. Using a recently standardized protocol, the aim of this study was to investigate the effects of chronic administration of Met and/or MetO on parameters of oxidative damage in the total brain, liver, and kidney of young mice. Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. Results showed that Met and/or MetO caused an increase in reactive oxygen species (ROS) and lipoperoxidation, along with a reduction of superoxide dismutase (SOD) and catalase (CAT) activities in the brain. In the liver, Met and/or MetO enhanced ROS and nitrite levels, and reduced SOD, CAT, and delta aminolevulinic dehydratase activities. The effects on the kidney were an increase in ROS production and SOD activity, and a reduction in thiol content and CAT activity. These data demonstrated the contribution of redox imbalance to the systemic changes found in patients with hypermethioninemia. In conclusion, our findings may help future studies to better understand the pathophysiological mechanisms of hypermethioninemia as well as contribute to the search for new therapeutic agents for this pathology.
Collapse
Affiliation(s)
- Bernardo de Moraes Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Thaís Scolari Franceschi
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, CEP: 96010-900, Brazil.
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| |
Collapse
|
46
|
Pedra NS, Bona NP, de Aguiar MSS, Spohr L, Alves FL, Santos FDSD, Saraiva JT, Stefanello FM, Braganhol E, Spanevello RM. Impact of gallic acid on tumor suppression: Modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. J Nutr Biochem 2022; 110:109156. [PMID: 36255060 DOI: 10.1016/j.jnutbio.2022.109156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the deadliest primary brain tumor in adults due to the high rate of relapse with current treatment. Therefore, the search for therapeutic alternatives is urgent. Gallic acid (GA), a potent natural antioxidant, has antitumor and modulatory actions on purinergic signaling. In this study, we investigated the cytotoxic effects of GA on the rat GBM (C6) cell line and on astrocyte culture and analyzed its role in regulating oxidative stress and purinergic enzymes involved in GBM proliferation. Cells were exposed to GA from 50 to 400 µM for 24 and/or 48 h. Next, the effect of GA was evaluated in the preclinical model of GBM. Wistar rats were treated with 50 or 100 mg/kg of GA for 15 days, and cerebral and systemic redox status and degradation of adenine nucleotides and nucleosides in circulating platelets, lymphocytes, and serum were evaluated. Our results demonstrated that GA has selective anti-glioma activity in vitro, without inducing cytotoxicity in astrocyte. Furthermore, GA prevented oxidative stress and changes in the hydrolysis of nucleotides in GBM cells. The anti-glioma effect was also observed in vivo, as GA reduced tumor volume by 90%. Interestingly, GA decreased the oxidative damage induced by a tumor in the brain, serum, and platelets, and, also prevented changes in the degradation of nucleotides and nucleosides in lymphocytes, platelets, and serum. These results indicate, for the first time, the therapeutic potential of GA in a preclinical model of GBM, whose effects may be related to its role in redox and purinergic modulation.
Collapse
Affiliation(s)
- Nathalia Stark Pedra
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Natália Pontes Bona
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luíza Spohr
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fernando Lopez Alves
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli da Silva Dos Santos
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Torchelsen Saraiva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências - Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roselia Maria Spanevello
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
47
|
Sun L, Han X, Egeblad M. Isolation of mouse mammary carcinoma-derived macrophages and cancer cells for co-culture assays. STAR Protoc 2022; 3:101833. [PMID: 36386879 PMCID: PMC9664409 DOI: 10.1016/j.xpro.2022.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We recently established an in vitro co-culture system in which monophosphoryl lipid A + interferon-γ (MPLA+IFNγ)-treated tumor-associated macrophages (TAMs) killed cancer cells. Here, we describe a step-by-step protocol for isolating TAMs and cancer cells from mouse primary mammary carcinomas, the setup of the co-culture system, and the image acquisition approach. The technical difficulties in the co-culture assay involve isolating pure TAMs and cancer cells from the same tumor and staining them with different dyes to track the macrophages' tumoricidal activity. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).1.
Collapse
Affiliation(s)
- Lijuan Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Corresponding author
| | - Xiao Han
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA,Corresponding author
| |
Collapse
|
48
|
Haridevamuthu B, Guru A, Murugan R, Sudhakaran G, Pachaiappan R, Almutairi MH, Almutairi BO, Juliet A, Arockiaraj J. Neuroprotective effect of Biochanin a against Bisphenol A-induced prenatal neurotoxicity in zebrafish by modulating oxidative stress and locomotory defects. Neurosci Lett 2022; 790:136889. [PMID: 36179902 DOI: 10.1016/j.neulet.2022.136889] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin TX 78712, USA
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
49
|
Engler C, Renna MS, Beccaria C, Silvestrini P, Pirola SI, Pereyra EAL, Baravalle C, Camussone CM, Monecke S, Calvinho LF, Dallard BE. Differential immune response to two Staphylococcus aureus strains with distinct adaptation genotypes after experimental intramammary infection of dairy cows. Microb Pathog 2022; 172:105789. [PMID: 36176246 DOI: 10.1016/j.micpath.2022.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
The aim of this study was to evaluate and compare the ability of two S. aureus strains with different adaptation genotypes (low and high) to the bovine mammary gland (MG) to establish an intramammary infection (IMI) and induce an immune response after an experimental challenge in lactating cows. Two isolates (designated 806 and 5011) from bovine IMI with different genotypic profiles, harboring genes involved in adherence and biofilm production, belonging to different capsular polysaccharide (CP) type, accessory gene regulator (agr) group, pulsotype (PT) and sequence type/clonal complex (ST/CC) were selected. Strains 806 and 5011 were associated with low (nonpersistent-NP) and high (persistent-P) adaptation to the MG, respectively. Strain 806 (NP) was characterized as agr group II, cap5 positive and ST350; strain 5011 (P) agr group I, cap8 positive and CC188. Three groups of clinically healthy cows, 4 cows/treatment group, were inoculated by the intramammary route with strain 806 (NP), strain 5011 (P) and pyrogen-free saline solution. All mammary quarters challenged with strain 806 (NP) developed mild clinical mastitis between 1 and 7 d post inoculation (pi). Quarters challenged with strain 5011 (P) developed a persistent IMI; bacteria were recovered from milk from d 7 pi and up to d 56 pi. In quarters inoculated with strain 806 (NP) the inflammatory response induced was greater and earlier than the one induced by strain 5011 (P), since a somatic cell count (SCC) peak was observed at d 2 pi, while in quarters inoculated with strain 5011 (P) no variations in SCC were observed until d 4 pi reaching the maximum values at d 14 pi; indicating a lower and delayed initial inflammatory response. The highest levels of nitric oxide (NO) and lactoferrin (Lf) detected in milk from quarters inoculated with both S. aureus strains coincided with the highest SCC at the same time periods, indicating an association with the magnitude of inflammation. The high levels of IL-1β induced by strain 806 (NP) were associated with the highest SCC detected (d 2 pi); while quarters inoculated with strain 5011 (P) showed similar IL-1β levels to those found in control quarters. In quarters inoculated with strain 806 (NP) two peaks of IL-6 levels on d 2 and 14 pi were observed; while in quarters inoculated with strain 5011 (P) IL-6 levels were similar to those found in control quarters. The strain 806 (NP) induced a higher total IgG and IgG1 response; while strain 5011 (P) generated a higher IgG2 response (even against the heterologous strain). The present study demonstrated that S. aureus strains with different genotype and adaptability to bovine MG influence the local host immune response and the course and severity of the infectious process.
Collapse
Affiliation(s)
- Carolina Engler
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - María S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Camila Beccaria
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Paula Silvestrini
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Silvana I Pirola
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Elizabet A L Pereyra
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Celina Baravalle
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina
| | - Cecilia M Camussone
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Stefan Monecke
- Institute for Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany; Alere Technologies GmbH, Jena, Germany
| | - Luis F Calvinho
- Cátedra de Enfermedades Infecciosas. Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Bibiana E Dallard
- Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina; Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina.
| |
Collapse
|
50
|
Kim H, Rahmawati L, Hong YH, Choi SY, Cho JY. NK cell-mediated immunostimulatory effects of ethanol extract of Morinda citrifolia (noni) fruit. BMC Complement Med Ther 2022; 22:222. [PMID: 35996139 PMCID: PMC9394078 DOI: 10.1186/s12906-022-03700-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Morinda citrifolia (Noni) is a plant that has long been used in various products such as foods and cosmetics. Although noni has been known to have immunostimulatory activity, detailed mechanism at the cellular level has not been fully elucidated yet. In this study, we focused on understanding as to how noni fruit can positively stimulate body’s immune responses. Methods To do this, an ethanol extract of noni fruit (Mc-fEE) was prepared and administered for 30 days to male C57BL/6 mice for in vivo experiment. NK cell activity and cytokine production level from Mc-fEE-treated mice were analyzed by flowcytometry, real-time PCR, and ELISA. Mc-fEE-triggered molecular events were detected from RAW264.7 cells and splenocytes using Western blotting and real-time PCR analyses. Results The mRNA expression levels of cytokines such as interleukin families, interferon (IFN)-β, and tumor necrosis factor (TNF)-α were increased by Mc-fEE treatment in vitro and in vivo. Western blotting analysis showed that the phosphorylation levels of nuclear factor (NF)-κB and activator protein (AP)-1 subunits these were enhanced in Mc-fEE-treated RAW264.7 cells. In addition, according to in vivo experiments, it was considered that Mc-fEE can increase the population of splenic NK cells and subsequent upregulation of their cytotoxic activity against YAC-1 cells, a T- cell lymphoma. Conclusion In this paper, we could confirm that Mc-fEE has remarkable immunostimulatory effects by activation and increase of the NK cell population. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03700-3.
Collapse
|