1
|
Apicella MA, Edwards JL, Ketterer MR, Weiss DS, Zhang Y, Jen FEC, Jennings MP. The phospholipase A of Neisseria gonorrhoeae lyses eukaryotic membranes and is necessary for survival in neutrophils and cervical epithelial cells. mBio 2024; 15:e0242524. [PMID: 39324821 PMCID: PMC11481481 DOI: 10.1128/mbio.02425-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Contact-dependent hemolysins are virulence factors in a number of human pathogens, including Helicobacter pylori, Rickettsia typhi, Bartonella bacilliformis, Mycobacterium tuberculosis, entero-invasive Escherichia coli, and Shigella. Here we demonstrate that Neisseria gonorrhoeae produces an outer membrane protein, phospholipase A, that exhibits contact-dependent lytic activity on host cell membranes. This enzyme can lyse human erythrocytes over a 3-day period, whereas a phospholipase A mutant cannot. We demonstrated phospholipase A activity in the parent strain but not in two, independent phospholipase A mutants. A gene for phospholipase A, pldA (hereafter referred to as pla to avoid confusion with the gene for phospholipase D, pld), is present in all sequenced gonococcal strains. Fluid phase, hemolytic activity assays showed that 25 of 29 gonococcal strains tested had hemolytic activity greater than 50% of the positive control. In support of PLA as a gonococcal outer membrane protein, supernatants from 24-, 48-, and 72-h cultures of N. gonorrhoeae strain 1291 did not contain hemolysin activity, and a monoclonal antibody specific for gonococcal phospholipase A failed to detect the enzyme in these supernatants. The organism must be viable for lysis to occur, and the inclusion of EDTA in the media removes all activity. Our studies have shown that a phospholipase A mutant has significantly reduced survival in human neutrophils and primary human cervical epithelial cells compared to the parent gonococcal strain after 3 h of incubation. Collectively, our data demonstrate that gonococcal PLA lyses host cell membranes, which is important for intracellular survival. IMPORTANCE Intracellular survival is crucial to the success of Neisseria gonorrhoeae as a human pathogen. Multiple factors contribute to the intracellular survival of gonococci, including the ability to prohibit apoptosis of the epithelial cell the organism invades and mechanisms to evade host innate defense systems. The role of phospholipase A (PLA), an outer membrane protein, is important as it disrupts the host vacuolar and phagolysosomal membranes, preventing the effective delivery of innate immune factors that normally restrict organism growth within human cells. After cell entry, PLA disrupts the integrity of these host cell membranes, allowing the gonococcus to live free within disrupted vacuoles where it pilfers host cell nutrients that enable its survival and replication. A vaccine or drug that could neutralize PLA activity would disrupt the intracellular survival of the gonococcus.
Collapse
Affiliation(s)
- Michael A. Apicella
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | - Margaret R. Ketterer
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Yuan Zhang
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Freda E.-C. Jen
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P. Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Morrill SR, Saha S, Varki AP, Lewis WG, Ram S, Lewis AL. Gardnerella Vaginolysin Potentiates Glycan Molecular Mimicry by Neisseria gonorrhoeae. J Infect Dis 2023; 228:1610-1620. [PMID: 37722688 PMCID: PMC10681867 DOI: 10.1093/infdis/jiad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
Bacterial vaginosis (BV) is a dysbiotic condition of the vaginal microbiome associated with higher risk of infection by Neisseria gonorrhoeae-the cause of gonorrhea. Here we test if one known facet of BV-the presence of bacterial cytolysins-leads to mobilization of intracellular contents that enhance gonococcal virulence. We cloned and expressed recombinant vaginolysin (VLY), a cytolysin produced by the BV-associated bacterium Gardnerella, verifying that it liberates contents of cervical epithelial (HeLa) cells, while vector control preparations did not. We tested if VLY mediates a well-known gonococcal virulence mechanism-the molecular mimicry of host glycans. To evade host immunity, N. gonorrhoeae caps its lipooligosaccharide (LOS) with α2-3-linked sialic acid. For this, gonococci must scavenge a metabolite made inside host cells. Flow cytometry-based lectin-binding assays showed that gonococci exposed to vaginolysin-liberated contents of HeLa cells displayed greater sialic acid capping of their LOS. This higher level of bacterial sialylation was accompanied by increased binding of the complement regulatory protein factor H, and greater resistance to complement attack. Together these results suggest that cytolytic activities present during BV may enhance the ability of N. gonorrhoeae to capture intracellular metabolites and evade host immunity via glycan molecular mimicry.
Collapse
Affiliation(s)
- Sydney R Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sudeshna Saha
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Ajit P Varki
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Department of Pathology, University of California San Diego, La Jolla, California, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, California, USA
| | - Warren G Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Dudek B, Rybka J, Bugla-Płoskońska G, Korzeniowska-Kowal A, Futoma-Kołoch B, Pawlak A, Gamian A. Biological functions of sialic acid as a component of bacterial endotoxin. Front Microbiol 2022; 13:1028796. [PMID: 36338080 PMCID: PMC9631793 DOI: 10.3389/fmicb.2022.1028796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Lipopolysaccharide (endotoxin, LPS) is an important Gram-negative bacteria antigen. LPS of some bacteria contains sialic acid (Neu5Ac) as a component of O-antigen (O-Ag), in this review we present an overview of bacteria in which the presence of Neu5Ac has been confirmed in their outer envelope and the possible ways that bacteria can acquire Neu5Ac. We explain the role of Neu5Ac in bacterial pathogenesis, and also involvement of Neu5Ac in bacterial evading the host innate immunity response and molecular mimicry phenomenon. We also highlight the role of sialic acid in the mechanism of bacterial resistance to action of serum complement. Despite a number of studies on involvement of Neu5Ac in bacterial pathogenesis many aspects of this phenomenon are still not understood.
Collapse
Affiliation(s)
- Bartłomiej Dudek
- Department of Microbiology, University of Wrocław, Wrocław, Poland
- *Correspondence: Bartłomiej Dudek,
| | - Jacek Rybka
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Agnieszka Korzeniowska-Kowal
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Andrzej Gamian,
| |
Collapse
|
5
|
de Jong H, Moure MJ, Hartman JEM, Bosman GP, Ong JY, Bardoel BW, Boons G, Wösten MMSM, Wennekes T. Selective Exoenzymatic Labeling of Lipooligosaccharides of Neisseria gonorrhoeae with α2,6-Sialoside Analogues. Chembiochem 2022; 23:e202200340. [PMID: 35877976 PMCID: PMC9804176 DOI: 10.1002/cbic.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The interactions between bacteria and their host often rely on recognition processes that involve host or bacterial glycans. Glycoengineering techniques make it possible to modify and study the glycans on the host's eukaryotic cells, but only a few are available for the study of bacterial glycans. Here, we have adapted selective exoenzymatic labeling (SEEL), a chemical reporter strategy, to label the lipooligosaccharides of the bacterial pathogen Neisseria gonorrhoeae, using the recombinant glycosyltransferase ST6Gal1, and three synthetic CMP-sialic acid derivatives. We show that SEEL treatment does not affect cell viability and can introduce an α2,6-linked sialic acid with a reporter group on the lipooligosaccharides by Western blot, flow cytometry and fluorescent microscopy. This new bacterial glycoengineering technique allows for the precise modification, here with α2,6-sialoside derivatives, and direct detection of specific surface glycans on live bacteria, which will aid in further unravelling the precise biological functions of bacterial glycans.
Collapse
Affiliation(s)
- Hanna de Jong
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
- Department of Biomolecular Health SciencesUtrecht UniversityYalelaan 13584 CLUtrechtThe Netherlands
| | - Maria J. Moure
- Complex Carbohydrate Research Center and Department of ChemistryUniversity of Georgia315 Riverbend RoadAthensGA 30602USA
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Jet E. M. Hartman
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Gerlof P. Bosman
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bart W. Bardoel
- Department of Medical MicrobiologyUniversity Medical Center UtrechtHeidelberglaan 100 HP G04.6143584 CXUtrechtThe Netherlands
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
- Complex Carbohydrate Research Center and Department of ChemistryUniversity of Georgia315 Riverbend RoadAthensGA 30602USA
| | - Marc M. S. M. Wösten
- Department of Biomolecular Health SciencesUtrecht UniversityYalelaan 13584 CLUtrechtThe Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
6
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Thomas GH. Microbial Musings – May 2021. Microbiology (Reading) 2021; 167. [PMID: 34100696 PMCID: PMC8290100 DOI: 10.1099/mic.0.001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
The Lst Sialyltransferase of Neisseria gonorrhoeae Can Transfer Keto-Deoxyoctanoate as the Terminal Sugar of Lipooligosaccharide: a Glyco-Achilles Heel That Provides a New Strategy for Vaccines to Prevent Gonorrhea. mBio 2021; 12:mBio.03666-20. [PMID: 33758087 PMCID: PMC8092323 DOI: 10.1128/mbio.03666-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.
Collapse
|
9
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
10
|
Abstract
The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.
Collapse
|
11
|
Wang H, Liu L, Cao Q, Mao W, Zhang Y, Qu X, Cai X, Lv Y, Chen H, Xu X, Wang X. Haemophilus parasuis α-2,3-sialyltransferase-mediated lipooligosaccharide sialylation contributes to bacterial pathogenicity. Virulence 2019; 9:1247-1262. [PMID: 30036124 PMCID: PMC6104685 DOI: 10.1080/21505594.2018.1502606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial lipooligosaccharide (LOS) is an important virulence-associated factor, and its sialylation largely confers its ability to mediate cell adhesion, invasion, inflammation, and immune evasion. Here, we investigated the function of the Haemophilus parasuis α-2,3-sialyltransferase gene, lsgB, which determines the terminal sialylation of LOS, by generating a lsgB deletion mutant as well as a complementation strain. Our data indicate a direct effect of lsgB on LOS sialylation and reveal important roles of lsgB in promoting the pathogenicity of H. parasuis, including adhesion to and invasion of porcine cells in vitro, bacterial load and survival in vivo, as well as a contribution to serum resistance. These observations highlight the function of lsgB in mediating LOS sialylation and more importantly its role in H. parasuis infection. These findings provide a more profound understanding of the pathogenic mechanism of this disease-causing bacterium.
Collapse
Affiliation(s)
- Huan Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Lu Liu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Qi Cao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Weiting Mao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Yage Zhang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Xinyi Qu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China
| | - Xuwang Cai
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , China
| | - Yujin Lv
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China.,d College of Veterinary Medicine , Henan University of Animal Husbandry and Economy , Zhengzhou , China
| | - Huanchun Chen
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , China
| | - Xiaojuan Xu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , China
| | - Xiangru Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province , The Cooperative Innovation Center for Sustainable Pig Production , Wuhan , China.,c Key Laboratory of Development of Veterinary Diagnostic Products , Ministry of Agriculture of the People's Republic of China , Wuhan , China
| |
Collapse
|
12
|
Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo, Which Can Be Used as a Target for Bactericidal Antibody. mBio 2018; 9:mBio.01401-18. [PMID: 30065093 PMCID: PMC6069110 DOI: 10.1128/mbio.01401-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important pathogen in individuals of all ages. The lipooligosaccharide (LOS) of NTHi has evolved a complex structure that can be attributed to a multiplicity of glycosyltransferases, the random switching of glycosyltransferase gene expression via phase variation, and the complex structure of its core region with multiple glycoform branch points. This article adds to that complexity by describing a multifunctional enzyme (LsgB) which optimally functions when the species is grown on a solid surface and which can add either a ketodeoxyoctanoate (KDO) or an N-acetylneuramic acid (Neu5Ac) moiety to a terminal N-acetyllactosamine structure of LOS. Our studies show that expression of lsgB is reduced four- to sixfold when NTHi is grown in broth. The substrate that the enzyme utilizes is dependent upon the concentration of free Neu5Ac (between 1 and 10 µg/ml) in the environment. In environments in which Neu5Ac is below that level, the enzyme utilizes endogenous CMP-KDO as the substrate. Our studies show that during in vivo growth in an NTHi biofilm, the KDO moiety is expressed by the organism. Monoclonal antibody 6E4, which binds KDO, is bactericidal for NTHi strains that express the KDO epitope at high levels. In a survey of 33 NTHi strains isolated from healthy and diseased individuals, the antibody was bactericidal (>90% kill) for 12 strains (36%). These studies open up the possibility of using a KDO-based glycoconjugate vaccine as part of a multicomponent vaccine against NTHi.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in middle ear infections in children, sinusitis in adults, and acute bronchitis in individuals with chronic obstructive lung disease. The organism is very well adapted to the human host environment, and this has hindered successful development of an effective vaccine. In this article, we describe a mechanism by which the bacteria decorates its surface lipooligosaccharide with a sugar unique to Gram-negative bacteria, ketodeoxyoctanoate (KDO). This sugar decoration is present during active infection and we have shown that an antibody directed against this sugar can result in killing of the organism. These data demonstrate that the lipooligosaccharide ketodeoxyoctanoate epitope may be a novel NTHi-specific candidate vaccine antigen.
Collapse
|
13
|
Ram S, Shaughnessy J, de Oliveira RB, Lewis LA, Gulati S, Rice PA. Gonococcal lipooligosaccharide sialylation: virulence factor and target for novel immunotherapeutics. Pathog Dis 2017; 75:3777971. [PMID: 28460033 PMCID: PMC5449626 DOI: 10.1093/femspd/ftx049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Gonorrhea has become resistant to most conventional antimicrobials used in clinical practice. The global spread of multidrug-resistant isolates of Neisseria gonorrhoeae could lead to an era of untreatable gonorrhea. New therapeutic modalities with novel mechanisms of action that do not lend themselves to the development of resistance are urgently needed. Gonococcal lipooligosaccharide (LOS) sialylation is critical for complement resistance and for establishing infection in humans and experimental mouse models. Here we describe two immunotherapeutic approaches that target LOS sialic acid: (i) a fusion protein that comprises the region in the complement inhibitor factor H (FH) that binds to sialylated gonococci and IgG Fc (FH/Fc fusion protein) and (ii) analogs of sialic acid that are incorporated into LOS but fail to protect the bacterium against killing. Both molecules showed efficacy in the mouse vaginal colonization model of gonorrhea and may represent promising immunotherapeutic approaches to target multidrug-resistant isolates. Disabling key gonococcal virulence mechanisms is an effective therapeutic strategy because the reduction of virulence is likely to be accompanied by a loss of fitness, rapid elimination by host immunity and consequently, decreased transmission.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B. de Oliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Brade H, Brabetz W, Brade L, Hoist O, Löbau S, Lucakova M, Mamat U, Rozalski A, Zych K, Kosma P. Review: Chlamydial lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H. Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - W. Brabetz
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - L. Brade
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - O. Hoist
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - S. Löbau
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - M. Lucakova
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - U. Mamat
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - A. Rozalski
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - K. Zych
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Borstel, Germany
| | - P. Kosma
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria
| |
Collapse
|
15
|
Ram S, Shaughnessy J, DeOliveira RB, Lewis LA, Gulati S, Rice PA. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016; 221:1110-23. [PMID: 27297292 DOI: 10.1016/j.imbio.2016.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
Novel therapies are urgently needed to combat the global threat of multidrug-resistant pathogens. Complement forms an important arm of innate defenses against infections. In physiological conditions, complement activation is tightly controlled by soluble and membrane-associated complement inhibitors, but must be selectively activated on invading pathogens to facilitate microbial clearance. Many pathogens, including Neisseria gonorrhoeae and N. meningitidis, express glycans, including N-acetylneuraminic acid (Neu5Ac), that mimic host structures to evade host immunity. Neu5Ac is a negatively charged 9-cabon sugar that inhibits complement, in part by enhancing binding of the complement inhibitor factor H (FH) through C-terminal domains (19 and 20) on FH. Other microbes also bind FH, in most instances through FH domains 6 and 7 or 18-20. Here we describe two strategies to target complement activation on Neisseriae. First, microbial binding domains of FH were fused to IgG Fc to create FH18-20/Fc (binds gonococci) and FH6,7/Fc (binds meningococci). A point mutation in FH domain 19 eliminated hemolysis caused by unmodified FH18-20, but retained binding to gonococci. FH18-20/Fc and FH6,7/Fc mediated complement-dependent killing in vitro and showed efficacy in animal models of gonorrhea and meningococcal bacteremia, respectively. The second strategy utilized CMP-nonulosonate (CMP-NulO) analogs of sialic acid that were incorporated into LOS and prevented complement inhibition by physiologic CMP-Neu5Ac and resulted in attenuated gonococcal infection in mice. While studies to establish the safety of these agents are needed, enhancing complement activation on microbes may represent a promising strategy to treat antimicrobial resistant organisms.
Collapse
Affiliation(s)
- Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Gulati S, Schoenhofen IC, Whitfield DM, Cox AD, Li J, St. Michael F, Vinogradov EV, Stupak J, Zheng B, Ohnishi M, Unemo M, Lewis LA, Taylor RE, Landig CS, Diaz S, Reed GW, Varki A, Rice PA, Ram S. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics. PLoS Pathog 2015; 11:e1005290. [PMID: 26630657 PMCID: PMC4668040 DOI: 10.1371/journal.ppat.1005290] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/30/2015] [Indexed: 01/15/2023] Open
Abstract
Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5’-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation (“serum-resistance”). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea. Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, has developed widespread resistance to almost every conventional antibiotic currently in clinical use. Novel therapeutics are urgently needed against this pathogen. Gonococci have the capacity to scavenge CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac, a CMP-activated 9-carbon sugar that is a member of the ‘sialic acid family’) from the host to ‘cap’ its lipooligosaccharide with Neu5Ac, which renders gonococci resistant to complement, a key arm of innate immune defenses. Here, we show that gonococci also utilize derivatives (or analogs) of CMP-Neu5Ac, which not only fail to render the bacteria resistant to complement, but also prevent complement inhibition mediated by the ‘physiologic’ human sialic acid donor, CMP-Neu5Ac. When administered intravaginally to mice, a representative analog significantly shortened the duration and burden of gonococcal infection. Thus, CMP-sialic acid analogs may represent promising preventive or therapeutic agents against multidrug-resistant gonorrhea that poses a global threat to public health.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ian C. Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
- * E-mail: (ICS); (SR)
| | - Dennis M. Whitfield
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Andrew D. Cox
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Frank St. Michael
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Evgeny V. Vinogradov
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel E. Taylor
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Corinna S. Landig
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Sandra Diaz
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - George W. Reed
- Preventive and Behavioral Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ajit Varki
- Biomedical Sciences Graduate Program, Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, United States of America
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ICS); (SR)
| |
Collapse
|
17
|
Russell MW, Whittum-Hudson J, Fidel PL, Hook EW, Mestecky J. Immunity to Sexually Transmitted Infections. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Abstract
The acyl chain length, number, and distribution have been considered the major factors contributing to this biological activity of lipid A. The charged head groups on the dihexosamine backbone have also been implicated in contributing to this biology. In Neisseria, it has now been shown that loss of the 4' phosphoethanolamine has an impact on virulence in an animal model and on the organism's susceptibility to cationic antimicrobial peptides. Such studies offer potential insight into targets for novel antimicrobial agents.
Collapse
|
19
|
Tsonos J, Vandenheuvel D, Briers Y, De Greve H, Hernalsteens JP, Lavigne R. Hurdles in bacteriophage therapy: deconstructing the parameters. Vet Microbiol 2013; 171:460-9. [PMID: 24315040 DOI: 10.1016/j.vetmic.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
Bacterial infections in animals impact our food production, leading to economic losses due to food rejection and the need for preventive and curative measures. Since the onset of the antibiotic era, the rise of antibiotic-resistant pathogens is causing scares in health care and food producing facilities worldwide. In the search of new therapeutics, re-evaluation of bacteriophage (phage) therapy, using naturally occurring bacterial viruses to tackle infections, is gaining interest. Many studies report about phage therapy success, showing the value and power of these natural viruses. Although phages carry some interesting traits and their basic biology is now well understood, this review argues that phage therapy has not revealed all of its secrets and many parameters remain understudied, making the outcome of phage therapy highly variable depending on the disease incidence. These difficulties include poorly understood mechanisms of phage penetration and distribution throughout the body, the variable expression and accessibility of phage receptors on the bacterial host in in vivo conditions and the unusual (non-linear) phage pharmacokinetics. These parameters are not easily measured in realistic in vivo settings, but are nevertheless important hurdles to overcome the high variability of phage therapy trials. This critical approach is in accordance with Goethe's statement; "Difficulties increase the nearer we get to the goal". However, since the importance of the goal itself also rises, both difficulties and goal justify the need for additional in depth research in this domain.
Collapse
Affiliation(s)
- Jessica Tsonos
- Viral Genetics Research Group, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Department Structural Biology, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium.
| | - Dieter Vandenheuvel
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium.
| | - Yves Briers
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium.
| | - Henri De Greve
- Structural and Molecular Microbiology, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Department Structural Biology, VIB, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium.
| |
Collapse
|
20
|
Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, Gabius HJ, Tang CM, Exley RM. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol 2012; 14:1657-75. [PMID: 22827322 PMCID: PMC3749814 DOI: 10.1111/j.1462-5822.2012.01838.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/27/2022]
Abstract
Galectin-3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin-3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin-3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin-3 binds to N. meningitidis and we demonstrate that this interaction requiresfull-length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin-3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin-3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin-3 deficient (Gal-3(-/-) ) mice to evaluate the contribution of galectin-3 to meningococcal bacteraemia. We found that Gal-3(-/-) mice had significantly lower levels of bacteraemia compared with wild-type mice after challenge with live bacteria, indicating that galectin-3 confers an advantage to N. meningitidis during systemic infection.
Collapse
Affiliation(s)
- Paola Quattroni
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Davide Lucchesi
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Sebastian Lucas
- Department of Histopathology, KCL School of Medicine, North Wing, St. Thomas’s Hospital, Lambeth Palace Road, London SE1 7EH, United Kingdom
| | - Derek W. Hood
- Department of Paediatrics, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, D-80539 Munich, Germany
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
- Centre for Molecular Microbiology and Infection, Department of Microbiology, Flowers Building, Armstrong Road, Imperial College London, SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Gonococci in vivo: Host CMP-NANA, sialylated lipopolysaccharide and serum resistance. Can J Infect Dis 2012; 4:31-7. [PMID: 22346417 DOI: 10.1155/1993/791512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Decoration of Histophilus somni lipooligosaccharide with N-acetyl-5-neuraminic acid enhances bacterial binding of complement factor H and resistance to killing by serum and polymorphonuclear leukocytes. Vet Microbiol 2012; 161:113-21. [PMID: 22868182 DOI: 10.1016/j.vetmic.2012.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/26/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
Abstract
The incorporation of N-acetyl-5-neuraminic acid (Neu5Ac), or sialic acid, onto surface components of some bacterial species may enhance their virulence. We have previously shown that Neu5Ac can be incorporated onto the lipooligosaccharide (LOS) of the bovine pathogen Histophilus somni, resulting in diminished antibody binding and enhanced serum resistance (Inzana et al., 2002. Infect. Immun. 70, 4870). In the present study, we assessed the effect of sialylation of H. somni LOS on the interaction with bovine innate host defenses. Incubation of non-sialylated H. somni with pre-colostral calf serum (PCS) resulted in dose-dependent, complement-mediated killing of the bacteria by the alternative pathway. However, sialylated H. somni was significantly more resistant to killing at any of the concentrations of PCS used. Sialylated H. somni LOS activated and consumed less complement than non-sialylated LOS, as determined by reduction in hemolysis of opsonized red blood cells, and by Western blotting of C(3) activation products. Sialylated H. somni bound more factor H and iC(3)b and less C(3) than non-sialylated bacteria, as determined by enzyme-linked immunosorbent assay, supporting the deficiencies observed in complement activation and consumption by sialylated LOS. Sialylation of H. somni LOS inhibited both polymorphonuclear leukocyte phagocytosis of (3)H-thymidine-labeled bacteria and intracellular killing of the bacteria, compared to non-sialylated bacteria. Furthermore, sialylated H. somni bound less non-specific antibodies in normal bovine sera than non-sialylated bacteria. Therefore, sialylation of H. somni LOS had profound effects on resistance of the bacteria to innate bovine host defenses, which should be taken into consideration during in vitro studies of H. somni.
Collapse
|
23
|
Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans. Infect Immun 2011; 80:679-87. [PMID: 22144477 DOI: 10.1128/iai.05826-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Collapse
|
24
|
Howard MD, Willis L, Wakarchuk W, St. Michael F, Cox A, Horne WT, Hontecillas R, Bassaganya-Riera J, Lorenz E, Inzana TJ. Genetics and molecular specificity of sialylation of Histophilus somni lipooligosaccharide (LOS) and the effect of LOS sialylation on Toll-like receptor-4 signaling. Vet Microbiol 2011; 153:163-72. [DOI: 10.1016/j.vetmic.2011.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/15/2023]
|
25
|
Hobbs MM, Sparling PF, Cohen MS, Shafer WM, Deal CD, Jerse AE. Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria gonorrhoeae Strains FA1090 and MS11mkC. Front Microbiol 2011; 2:123. [PMID: 21734909 PMCID: PMC3119411 DOI: 10.3389/fmicb.2011.00123] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/17/2011] [Indexed: 11/30/2022] Open
Abstract
Experimental infection of male volunteers with Neisseria gonorrhoeae is safe and reproduces the clinical features of naturally acquired gonococcal urethritis. Human inoculation studies have helped define the natural history of experimental infection with two well-characterized strains of N. gonorrhoeae, FA1090 and MS11mkC. The human model has proved useful for testing the importance of putative gonococcal virulence factors for urethral infection in men. Studies with isogenic mutants have improved our understanding of the requirements for gonococcal LOS structures, pili, opacity proteins, IgA1 protease, and the ability of infecting organisms to obtain iron from human transferrin and lactoferrin during uncomplicated urethritis. The model also presents opportunities to examine innate host immune responses that may be exploited or improved in development and testing of gonococcal vaccines. Here we review results to date with human experimental gonorrhea.
Collapse
Affiliation(s)
- Marcia M. Hobbs
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - P. Frederick Sparling
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - Myron S. Cohen
- Departments of Medicine, University of North CarolinaChapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North CarolinaChapel Hill, NC, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of MedicineAtlanta, GA, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta)Decatur, GA, USA
| | - Carolyn D. Deal
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health SciencesBethesda, MD, USA
| |
Collapse
|
26
|
Stein DC, Miller CJ, Bhoopalan SV, Sommer DD. Sequence-based predictions of lipooligosaccharide diversity in the Neisseriaceae and their implication in pathogenicity. PLoS One 2011; 6:e18923. [PMID: 21533118 PMCID: PMC3078933 DOI: 10.1371/journal.pone.0018923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/11/2011] [Indexed: 12/31/2022] Open
Abstract
Endotoxin [Lipopolysaccharide (LPS)/Lipooligosaccharide (LOS)] is an important virulence determinant in gram negative bacteria. While the genetic basis of endotoxin production and its role in disease in the pathogenic Neisseria has been extensively studied, little research has focused on the genetic basis of LOS biosynthesis in commensal Neisseria. We determined the genomic sequences of a variety of commensal Neisseria strains, and compared these sequences, along with other genomic sequences available from various sequencing centers from commensal and pathogenic strains, to identify genes involved in LOS biosynthesis. This allowed us to make structural predictions as to differences in LOS seen between commensal and pathogenic strains. We determined that all neisserial strains possess a conserved set of genes needed to make a common 3-Deoxy-D-manno-octulosonic acid -heptose core structure. However, significant genomic differences in glycosyl transferase genes support the published literature indicating compositional differences in the terminal oligosaccharides. This was most pronounced in commensal strains that were distally related to the gonococcus and meningococcus. These strains possessed a homolog of heptosyltransferase III, suggesting that they differ from the pathogenic strains by the presence a third heptose. Furthermore, most commensal strains possess homologs of genes needed to synthesize lipopolysaccharide (LPS). N. cinerea, a commensal species that is highly related to the gonococcus has lost the ability to make sialyltransferase. Overall genomic comparisons of various neisserial strains indicate that significant recombination/genetic acquisition/loss has occurred within the genus, and this muddles proper speciation.
Collapse
Affiliation(s)
- Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.
| | | | | | | |
Collapse
|
27
|
Johnson MB, Criss AK. Resistance of Neisseria gonorrhoeae to neutrophils. Front Microbiol 2011; 2:77. [PMID: 21747795 PMCID: PMC3128980 DOI: 10.3389/fmicb.2011.00077] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/31/2011] [Indexed: 01/04/2023] Open
Abstract
Infection with the human-specific bacterial pathogen Neisseria gonorrhoeae triggers a potent, local inflammatory response driven by polymorphonuclear leukocytes (neutrophils or PMNs). PMNs are terminally differentiated phagocytic cells that are a vital component of the host innate immune response and are the first responders to bacterial and fungal infections. PMNs possess a diverse arsenal of components to combat microorganisms, including the production of reactive oxygen species and release of degradative enzymes and antimicrobial peptides. Despite numerous PMNs at the site of gonococcal infection, N. gonorrhoeae can be cultured from the PMN-rich exudates of individuals with acute gonorrhea, indicating that some bacteria resist killing by neutrophils. The contribution of PMNs to gonorrheal pathogenesis has been modeled in vivo by human male urethral challenge and murine female genital inoculation and in vitro using isolated primary PMNs or PMN-derived cell lines. These systems reveal that some gonococci survive and replicate within PMNs and suggest that gonococci defend themselves against PMNs in two ways: they express virulence factors that defend against PMNs' oxidative and non-oxidative antimicrobial components, and they modulate the ability of PMNs to phagocytose gonococci and to release antimicrobial components. In this review, we will highlight the varied and complementary approaches used by N. gonorrhoeae to resist clearance by human PMNs, with an emphasis on gonococcal gene products that modulate bacterial-PMN interactions. Understanding how some gonococci survive exposure to PMNs will help guide future initiatives for combating gonorrheal disease.
Collapse
Affiliation(s)
| | - Alison K. Criss
- Department of Microbiology, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
28
|
Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, Sorensen RU, Chen X, Inostroza J, Nizet V, Varki A. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. ACTA ACUST UNITED AC 2010; 207:1637-46. [PMID: 20624889 PMCID: PMC2916132 DOI: 10.1084/jem.20100575] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans.
Collapse
Affiliation(s)
- Rachel E Taylor
- Department of Medicine, Skaggs School of Pharmacy and PharmaceuticalSciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Timmerman MM, Shao JQ, Apicella MA. Ultrastructural analysis of the pathogenesis of Neisseria gonorrhoeae endometrial infection. Cell Microbiol 2006; 7:627-36. [PMID: 15839892 DOI: 10.1111/j.1462-5822.2005.00491.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied gonococcal infection in human endometrium organ culture and in human primary endometrial epithelial cells using various microscopic techniques including scanning electron microscopy, transmission electron microscopy, bright field light microscopy and laser scanning confocal microscopy. Here we describe the interactions between Neisseria gonorrhoeae and human endometrial luminal epithelial cells at the ultrastructural levels. N. gonorrhoeae attached to cilia but were not observed associated with the plasma membrane of ciliated epithelial cells or internalized into ciliated epithelial cells. N. gonorrhoeae could be found in intracellular vacuoles in secretory epithelial cells. N. gonorrhoeae have diverse interactions with endometrial epithelium. These include intimate association and colocalization with asialoglycoprotein receptor (ASGP-R) and CEACAM, lamellipodia and ruffle formation and colocalization with CR3, and microvillus engagement. These studies indicate that N. gonorrhoeae utilize multiple mechanisms to associate with endometrial epithelial cells and can associate with both ciliated and secretory cells. This diversity is consistent with a role of the endometrium as a transition zone between frequently asymptomatic cervical gonorrhoea and symptomatic pelvic inflammatory disease.
Collapse
|
30
|
Swanson KV, Griffiss JM. Separation and identification of neisserial lipooligosaccharide oligosaccharides using high-performance anion-exchange chromatography with pulsed amperometric detection. Carbohydr Res 2005; 341:388-96. [PMID: 16360127 DOI: 10.1016/j.carres.2005.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 11/18/2005] [Accepted: 11/18/2005] [Indexed: 11/18/2022]
Abstract
We determined the optimal conditions for high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) of oligosaccharides (OS) released from neisserial lipooligosaccharides (LOS) by mild acid hydrolysis. We efficiently obtained detailed composition, sequence, and linkage information about high Mr LOS. We found that HPAE-PAD can discriminate isobaric (same Mr) molecules of different structure, for example, nLc4 and Gb4, distinguish alpha from beta chain extensions, and determine the number of phosphoethanolamine (PEA) substituents. HPAE-PAD provided quantitative information that could be used to compare the relative abundances of OS. We used HPAE-PAD to identify all of the known LOS alpha chain antennae. When used with antibody-binding profiles and exoglycosidase digestion results, HPAE-PAD can provide nearly complete structures rapidly.
Collapse
Affiliation(s)
- Karen V Swanson
- Centre for Immunochemistry, VA Medical Center (111W1), Department of Laboratory Medicine, University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
31
|
Gulati S, Cox A, Lewis LA, Michael FS, Li J, Boden R, Ram S, Rice PA. Enhanced factor H binding to sialylated Gonococci is restricted to the sialylated lacto-N-neotetraose lipooligosaccharide species: implications for serum resistance and evidence for a bifunctional lipooligosaccharide sialyltransferase in Gonococci. Infect Immun 2005; 73:7390-7. [PMID: 16239538 PMCID: PMC1273834 DOI: 10.1128/iai.73.11.7390-7397.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We isolated serologically identical (by serovar determination and porin variable region [VR] typing) strains of Neisseria gonorrhoeae from an infected male and two of his monogamous female sex partners. One strain (termed 398078) expressed the L1 (Galalpha1 --> 4 [corrected] Galbeta1 --> 4Glcbeta1 --> 4HepI) lipooligosaccharide (LOS) structure exclusively; the other (termed 398079) expressed the lacto-N-neotetraose (LNT; Galbeta1 --> 4GlcNAcbeta1 --> 3Galbeta1 --> 4Glcbeta1 --> 4HepI) LOS structure. The strain from the male index case expressed both glycoforms and exhibited both immunotypes. Nuclear magnetic resonance analysis revealed that sialic acid linked to the terminal Gal of L1 LOS via an alpha2 --> 6 linkage and, as expected, to the terminal Gal of LNT LOS via an alpha2--> 3 linkage. Insertional inactivation of the sialyltransferase gene (known to sialylate LNT LOS) abrogated both L1 LOS sialylation and LNT LOS sialylation, suggesting a bifunctional nature of this enzyme in gonococci. Akin to our previous observations, sialylation of the LNT LOS of strain 398079 enhanced the binding of the complement regulatory molecule, factor H. Rather surprisingly, factor H did not bind to sialylated strain 398078. LOS sialylation conferred the LNT LOS-bearing strain complete (100%) resistance to killing by even 50% nonimmune normal human serum (NHS), whereas sialylation of L1 LOS conferred resistance only to 10% NHS. The ability of gonococcal sialylated LNT to bind factor H confers high-level serum resistance, which is not seen with sialylated L1 LOS. Thus, serum resistance mediated by sialylation of gonococcal L1 and LNT LOS occurs by different mechanisms, and specificity of factor H binding to sialylated gonococci is restricted to the LNT LOS species.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2005; 71:6292-307. [PMID: 16204551 PMCID: PMC1265991 DOI: 10.1128/aem.71.10.6292-6307.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. "Species-identifying" biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within +/-5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) "strains" composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.
Collapse
|
33
|
Jarva H, Ram S, Vogel U, Blom AM, Meri S. Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. THE JOURNAL OF IMMUNOLOGY 2005; 174:6299-307. [PMID: 15879129 DOI: 10.4049/jimmunol.174.10.6299] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis (meningococcus) is an important cause of meningitis and sepsis. Currently, there is no effective vaccine against serogroup B meningococcal infection. Host defense against neisseriae requires the complement system (C) as indicated by the fact that individuals deficient in properdin or late C components (C6-9) have an increased susceptibility to recurrent neisserial infections. Because the classical pathway (CP) is required to initiate efficient complement activation on neisseriae, meningococci should be able to evade it to cause disease. To test this hypothesis, we studied the interactions of meningococci with the major CP inhibitor C4b-binding protein (C4bp). We tested C4bp binding to wild-type group B meningococcus strain (H44/76) and to 11 isogenic mutants thereof that differed in capsule expression, lipo-oligosaccharide sialylation, and/or expression of either porin (Por) A or PorB3. All strains expressing PorA bound radiolabeled C4bp, whereas the strains lacking PorA bound significantly less C4bp. Increased binding was observed under hypotonic conditions. Deleting PorB3 did not influence C4bp binding, but the presence of polysialic acid capsule reduced C4bp binding by 50%. Bound C4bp remained functionally active in that it promoted the inactivation of C4b by factor I. PorA-expressing strains were also more resistant to C lysis than PorA-negative strains in a serum bactericidal assay. Binding of C4bp thus helps Neisseria meningitidis to escape CP complement activation.
Collapse
Affiliation(s)
- Hanna Jarva
- Haartman Institute, Department of Bacteriology and Immunology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965-81, table of contents. [PMID: 15489357 PMCID: PMC523569 DOI: 10.1128/cmr.17.4.965-981.2004] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms used by the gonococcus to initiate infection exhibit gender specificity. The clinical presentations of disease are also strikingly different upon comparison of gonococcal urethritis to gonococcal cervicitis. An intimate association occurs between the gonococcus and the urethral epithelium and is mediated by the asialoglycoprotein receptor. Gonococcal interaction with the urethral epithelia cell triggers cytokine release, which promotes neutrophil influx and an inflammatory response. Similarly, gonococcal infection of the upper female genital tract also results in inflammation. Gonococci invade the nonciliated epithelia, and the ciliated cells are subjected to the cytotoxic effects of tumor necrosis factor alpha induced by gonococcal peptidoglycan and lipooligosaccharide. In contrast, gonococcal infection of the lower female genital tract is typically asymptomatic. This is in part the result of the ability of the gonococcus to subvert the alternative pathway of complement present in the lower female genital tract. Gonococcal engagement of complement receptor 3 on the cervical epithelia results in membrane ruffling and does not promote inflammation. A model of gonococcal pathogenesis is presented in the context of the male and female human urogenital tracts.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, 51 Newton Rd., BSB 3-403, Iowa City, IA 52242, USA
| | | |
Collapse
|
36
|
Genevrois S, Steeghs L, Roholl P, Letesson JJ, van der Ley P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J 2003; 22:1780-9. [PMID: 12682011 PMCID: PMC154466 DOI: 10.1093/emboj/cdg174] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Gram-negative bacteria, lipopolysaccharide and phospholipid biosynthesis takes place at the inner membrane. How the completed lipid molecules are subsequently transported to the outer membrane remains unknown. Omp85 of Neisseria meningitidis is representative for a family of outer membrane proteins conserved among Gram-negative bacteria. We first demonstrated that the omp85 gene is co-transcribed with genes involved in lipid biosynthesis, suggesting an involvement in lipid assembly. A meningococcal strain was constructed in which Omp85 expression could be switched on or off through a tac promoter-controlled omp85 gene. We demonstrated that the presence of Omp85 is essential for viability. Depletion of Omp85 leads to accumulation of electron-dense amorphous material and vesicular structures in the periplasm. We demonstrated, by fractionation of inner and outer membranes, that lipopolysaccharide and phospholipids mostly disappeared from the outer membrane and instead accumulated in the inner membrane, upon depletion of Omp85. Omp85 depletion did not affect localization of integral outer membrane proteins PorA and Opa. These results provide compelling evidence for a role for Omp85 in lipid transport to the outer membrane.
Collapse
Affiliation(s)
- Stéphanie Genevrois
- Research Unit in Molecular Biology (URBM), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Inzana TJ, Glindemann G, Cox AD, Wakarchuk W, Howard MD. Incorporation of N-acetylneuraminic acid into Haemophilus somnus lipooligosaccharide (LOS): enhancement of resistance to serum and reduction of LOS antibody binding. Infect Immun 2002; 70:4870-9. [PMID: 12183531 PMCID: PMC128230 DOI: 10.1128/iai.70.9.4870-4879.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus somnus isolates from cases of thrombotic meningoencephalitis, pneumonia, and other disease sites are capable of undergoing a high rate of phase variation in the oligosaccharide component of their lipooligosaccharides (LOS). In contrast, the LOS of commensal strains isolated from the normal reproductive tract phase vary little or not at all. In addition, the LOS of H. somnus shares conserved epitopes with LOS from Neisseria gonorrhoeae, Haemophilus influenzae, and other species that can incorporate sialic acid into their LOS. We now report that growth of disease isolates of H. somnus with CMP-N-acetylneuraminic acid (CMP-NeuAc) or NeuAc added to the medium resulted in incorporation of NeuAc into the LOS. However, NeuAc was not incorporated into the LOS of commensal isolates and one disease isolate following growth in medium containing CMP-NeuAc or NeuAc. Sialylated LOS was detected by an increase in the molecular size or an increase in the amount of the largest-molecular-size LOS electrophoretic bands, which disappeared following treatment with neuraminidase. Sialylated LOS could also be detected by reactivity with Limax flavus agglutinin lectin, which is specific for sialylated species, by dot blot assay; this reactivity was also reversed by neuraminidase treatment. H. somnus strain 2336 LOS was found to contain some sialic acid when grown in medium lacking CMP-NeuAc or NeuAc, although supplementation enhanced NeuAc incorporation. In contrast strain 738, an LOS phase variant of strain 2336, was less extensively sialylated when the growth medium was supplemented with CMP-NeuAc or NeuAc, as determined by electrophoretic profiles and electrospray mass spectrometry. The sialyltransferase of H. somnus strain 738 was confirmed to preferentially sialylate the Gal(beta)-(1-3)-GlcNAc component of the lacto-N-tetraose structure by capillary electrophoresis assay. Enhanced sialylation of the strain 2336 LOS inhibited the binding of monoclonal antibodies to LOS by enzyme immunoassay and Western blotting. Furthermore, sialylation of the LOS enhanced the resistance of H. somnus to the bactericidal action of antiserum to LOS. Sialylation and increased resistance to killing by normal serum also occurred in a deletion mutant that was deficient in the terminal Gal-GlcNAc disaccharide. LOS sialylation may therefore be an important virulence mechanism to protect H. somnus against the host immune system.
Collapse
Affiliation(s)
- Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061-0342, USA.
| | | | | | | | | |
Collapse
|
38
|
Cox AD, Hood DW, Martin A, Makepeace KM, Deadman ME, Li J, Brisson JR, Moxon ER, Richards JC. Identification and structural characterization of a sialylated lacto-N-neotetraose structure in the lipopolysaccharide of Haemophilus influenzae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4009-19. [PMID: 12180977 DOI: 10.1046/j.1432-1033.2002.03090.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A sialylated lacto-N-neotetraose (Sial-lNnT) structural unit was identified and structurally characterized in the lipopolysaccharide (LPS) from the genome-sequenced strain Rd [corrected] (RM118) of the human pathogen Haemophilus influenzae grown in the presence of sialic acid. A combination of molecular genetics, MS and NMR spectroscopy techniques showed that this structural unit extended from the proximal heptose residue of the inner core region of the LPS molecule. The structure of the Sial-lNnT unit was identical to that found in meningococcal LPS, but glycoforms containing truncations of the Sial-lNnT unit, comprising fewer residues than the complete oligosaccharide component, were not detected. The finding of sialylated glycoforms that were either fully extended or absent suggests a novel biosynthetic feature for adding the terminal tetrasaccharide unit of the Sial-lNnT to the glycose acceptor at the proximal inner core heptose.
Collapse
Affiliation(s)
- Andrew D Cox
- Institute for Biological Sciences, National Research Council, Ottawa, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shell DM, Chiles L, Judd RC, Seal S, Rest RF. The Neisseria lipooligosaccharide-specific alpha-2,3-sialyltransferase is a surface-exposed outer membrane protein. Infect Immun 2002; 70:3744-51. [PMID: 12065517 PMCID: PMC128106 DOI: 10.1128/iai.70.7.3744-3751.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 01/24/2002] [Accepted: 03/26/2002] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis express an approximately 43-kDa alpha-2,3-sialyltransferase (Lst) that sialylates the surface lipooligosaccharide (LOS) by using exogenous (in all N. gonorrhoeae strains and some N. meningitidis serogroups) or endogenous (in other N. meningitidis serogroups) sources of 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA). Sialylation of LOS can protect N. gonorrhoeae and N. meningitidis from complement-mediated serum killing and from phagocytic killing by neutrophils. The precise subcellular location of Lst has not been determined. We confirm and extend previous studies by demonstrating that Lst is located in the outer membrane and is surface exposed in both N. gonorrhoeae and N. meningitidis. Western immunoblot analysis of subcellular fractions of N. gonorrhoeae strain F62 and N. meningitidis strain MC58 not subset 3 (an acapsulate serogroup B strain) performed with rabbit antiserum raised against recombinant Lst revealed an approximately 43-kDa protein exclusively in outer membrane preparations of both pathogens. Inner membrane, periplasmic, cytoplasmic, and culture supernatant fractions were devoid of Lst, as determined by Western blot analysis. Consistent with this finding, outer membrane fractions of N. gonorrhoeae were significantly enriched for sialyltransferase enzymatic activity. A trace of enzymatic activity was detected in inner membrane fractions, which may have represented Lst in transit to the outer membrane or may have represented inner membrane contamination of outer membrane preparations. Subcellular preparations of an isogenic lst insertion knockout mutant of N. gonorrhoeae F62 (strain ST01) expressed neither a 43-kDa immunoreactive protein nor sialyltransferase activity. Anti-Lst rabbit antiserum bound to whole cells of N. meningitidis MC58 not subset 3 and wild-type N. gonorrhoeae F62 but not to the Lst mutant ST01, indicating the surface exposure of the enzyme. Although the anti-Lst antiserum avidly bound enzymatically active, recombinant Lst, it inhibited Lst (sialyltransferase) activity by only about 50% at the highest concentration of antibody used. On the contrary, anti-Lst antiserum did not inhibit sialylation of whole N. gonorrhoeae cells in the presence of exogenous CMP-NANA, suggesting that the antibody did not bind to or could not access the enzyme active site on the surface of viable Neisseria cells. Taken together, these results indicate that Lst is an outer membrane, surface-exposed glycosyltransferase. To our knowledge, this is the first demonstration of the localization of a bacterial glycosyltransferase to the outer membrane of gram-negative bacteria.
Collapse
Affiliation(s)
- Dawn M Shell
- Department of Microbiology and Immunology, MCP Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | |
Collapse
|
40
|
Chaffin DO, McKinnon K, Rubens CE. CpsK of Streptococcus agalactiae exhibits alpha2,3-sialyltransferase activity in Haemophilus ducreyi. Mol Microbiol 2002; 45:109-22. [PMID: 12100552 DOI: 10.1046/j.1365-2958.2002.02988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Streptococcus agalactiae (GBS) is a major cause of serious newborn bacterial infections. Crucial to GBS evasion of host immunity is the production of a capsular polysaccharide (CPS) decorated with sialic acid, which inactivates the alternative complement pathway. The CPS operons of serotypes Ia and III GBS have been described, but the CPS sialyltransferase gene was not identified. We identified cpsK, an open reading frame in the CPS operon of most serotypes, which was homologous to the lipooligosaccharide (LOS) sialyltransferase gene, lst, of Haemophilus ducreyi. To determine if cpsK might encode a sialyltransferase, we complemented a H. ducreyi lst mutant with cpsK. CpsK was expressed in H. ducreyi and LOS was isolated and analysed for sialic acid content by SDS-PAGE and high-performance liquid chromatography (HPLC). Sialo-LOS was seen in the wild-type, cpsK- or lst-complemented mutant strains, but not in the mutant without cpsK. Addition of Neu5Ac to the LOS was confirmed by mass spectroscopy. Lectin binding studies detected terminal Neu5Ac(alpha 2-->3)Gal(beta 1- on LOS produced by the wild-type, cpsK or lst-complemented mutant strain LOS, compared with the mutant alone. Our data characterize the first sialyltransferase gene from a Gram- positive bacterium and provide compelling evidence that its product catalyses the alpha2,3 addition of Neu5Ac to H. ducreyi LOS and therefore the terminal side-chain of GBS CPS. Phylogenetic studies further indicated that lst and cpsK are related but distinct from sialyltransferases of most other bacteria and, along with their similar codon usage bias and G + C content, suggests acquisition by lateral transfer from an ancestral low G + C organism.
Collapse
Affiliation(s)
- Donald O Chaffin
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital and Regional Medical Center/University of Washington, Seattle, 98105, USA
| | | | | |
Collapse
|
41
|
Gulati S, Ngampasutadol J, Yamasaki R, McQuillen DP, Rice PA. Strategies for mimicking Neisserial saccharide epitopes as vaccines. Int Rev Immunol 2002; 20:229-50. [PMID: 11878767 DOI: 10.3109/08830180109043036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Monoclonal antibody (mAb) 2C7 recognizes a conserved and widely expressed oligosaccharide (OS) epitope on Neisseria gonorrhoeae. This OS epitope evokes a significant bactericidal and opsonic immune response after natural infection and vaccination. The OS epitope structure represents an excellent target for a potential protective gonococcal vaccine. Because carbohydrate antigens are T-cell independent, inducing weak antibody responses, OS molecules are not useful immunogens. We developed and examined two different strategies to mimic the 2C7 OS epitope: (i) an anti-idiotope (mAb CA1); and (ii) a peptide (PEP-1). These surrogate immunogens elicited antibody responses in mice (CA1 and PEP-1) and rabbits (CA1) that were bactericidal in vitro against gonococci. Both CA1 and PEP-1 are true immunologic mimics of OS and may form a basis for the development of vaccine candidates for human immunization against N. gonorrhoeae.
Collapse
Affiliation(s)
- S Gulati
- Evans Biomedical Research Center, Department of Medicine, Boston University, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Harvey HA, Jennings MP, Campbell CA, Williams R, Apicella MA. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol Microbiol 2001; 42:659-72. [PMID: 11722733 DOI: 10.1046/j.1365-2958.2001.02666.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Urethral epithelial cells are invaded by Neisseria gonorrhoeae during gonococcal infection in men. To understand further the mechanisms of gonococcal entry into host cells, we used the primary human urethral epithelial cells (PHUECs) tissue culture system recently developed by our laboratory. These studies showed that human asialoglycoprotein receptor (ASGP-R) and the terminal lactosamine of lacto-N-neotetraose-expressing gonococcal lipooligosaccharide (LOS) play an important role in invasion of PHUECs. Microscopy studies showed that ASGP-R traffics to the cell surface after gonococcal challenge. Co-localization of ASGP-R with gonococci was observed. As ASGP-R-mediated endocytosis is clathrin dependent, clathrin localization in PHUECs was examined after infection. Infected PHUECs showed increased clathrin recruitment and co-localization of clathrin and gonococci. Preincubating PHUECs in 0.3 M sucrose or monodansylcadaverine (MDC), which both inhibit clathrin-coated pit formation, resulted in decreased invasion. N. gonorrhoeae strain 1291 produces a single LOS glycoform that terminates with Gal(beta1-4)GlcNac(beta1-3)Gal(beta1-4)Glc (lacto-N-neotetraose). Invasion assays showed that strain 1291 invades significantly more than four isogenic mutants expressing truncated LOS. Sialylation of strain 1291 LOS inhibited invasion significantly. Preincubation of PHUECs in asialofetuin (ASF), an ASGP-R ligand, significantly reduced invasion. A dose-response reduction in invasion was observed in PHUECs preincubated with increasing concentrations of NaOH-deacylated 1291 LOS. These studies indicated that an interaction between lacto-N-neotetraose-terminal LOS and ASGP-R allows gonococcal entry into PHUECs.
Collapse
Affiliation(s)
- H A Harvey
- Department of Microbiology, Bowen Science Building, 51 Newton Road, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
43
|
Stoiber H, Ammann C, Spruth M, Müllauer B, Eberhart A, Harris CL, Huber CG, Longhi R, Falkensammer B, Würzner R, Dierich MP. Enhancement of complement-mediated lysis by a peptide derived from SCR 13 of complement factor H. Immunobiology 2001; 203:670-86. [PMID: 11402501 DOI: 10.1016/s0171-2985(01)80016-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Complement factor H (fH) is an important regulator of complement activation. It contributes to protection of cells against homologous complement attack. In this study we tested the effect of fH-depletion of normal human serum (NHS) on lysis of antibody-coated sheep and human erythrocytes (EshA and EhuA). In the absence of fH, lysis of sensitised Esh and Ehu was clearly increased. Addition of fH to fH-depleted serum re-established protection of cells against complement similar to that seen with NHS. A fH-derived peptide (pepAred), covering the N-terminal half of SCR 13 in fH, was able to enhance complement-mediated lysis of EhuA significantly. However, the oxidised form of this peptide (pepAox) had no effect. Biotinylated pepAred, but not pepAox, was able to directly bind to cells. Additionally, pepAred competed with direct fH-cell interaction which was observable only after treatment of purified fH with mercaptoethanol. Only pepAred increased the amount of C3 fragments and reduced levels of fH detectable on cells as shown by FACS analysis and radio-immuno assay. Furthermore, fH and factor I (fI)-mediated cleavage of agarose bound C3b into iC3b was decreased in the presence of pepAred. These data indicate that a fH-derived peptide can enhance complement-mediated lysis. We will continue to investigate whether the use of a fH peptide can be exploited for therapeutical purposes.
Collapse
Affiliation(s)
- H Stoiber
- Institute of Hygiene and Social Medicine, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Neisserial lipooligosaccharide (LOS) contains three oligosaccharide chains, termed the alpha, beta, and gamma chains. We used Southern hybridization experiments on DNA isolated from various Neisseria spp. to determine if strains considered to be nonpathogenic possessed DNA sequences homologous with genes involved in the biosynthesis of these oligosaccharide chains. The presence or absence of specific genes was compared to the LOS profiles expressed by each strain, as characterized by their mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel and their reactivities with various LOS-specific monoclonal antibodies. A great deal of heterogeneity was seen with respect to the presence of genes encoding glycosyltransferases in Neisseria. All pathogenic species were found to possess DNA sequences homologous with the lgt gene cluster, a group of genes needed for the synthesis of the alpha chain. Some of these genes were also found to be present in strains considered to be nonpathogenic, such as Neisseria lactamica, N. subflava, and N. sicca. Some nonpathogenic Neisseria spp. were able to express high-molecular-mass LOS structures, even though they lacked the DNA sequences homologous with rfaF, a gene whose product must act before gonococcal and meningococcal LOS can be elongated. Using a PCR amplification strategy, in combination with DNA sequencing, we demonstrated that N. subflava 44 possessed lgtA, lgtB, and lgtE genes. The predicted amino acid sequence encoded by each of these genes suggested that they encoded functional proteins; however, structural analysis of LOS isolated from this strain indicated that the bulk of its LOS was not modified by these gene products. This suggests the existence of an additional regulatory mechanism that is responsible for the limited expression of these genes in this strain.
Collapse
Affiliation(s)
- D Arking
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
45
|
Devyatyarova-Johnson M, Rees IH, Robertson BD, Turner MW, Klein NJ, Jack DL. The lipopolysaccharide structures of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae determine the attachment of human mannose-binding lectin to intact organisms. Infect Immun 2000; 68:3894-9. [PMID: 10858200 PMCID: PMC101664 DOI: 10.1128/iai.68.7.3894-3899.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mannose-binding lectin (MBL) is an important component of the innate immune system. It binds to the arrays of sugars commonly presented by microorganisms and activates the complement system independently of antibody. Despite detailed knowledge of the stereochemical basis of MBL binding, relatively little is known about how bacterial surface structures influence binding of the lectin. Using flow cytometry, we have measured the binding of MBL to a range of mutants of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae which differ in the structure of expressed lipopolysaccharide (LPS). For both organisms, the possession of core LPS structures led to avid binding of MBL, which was abrogated by the addition of O antigen (Salmonella serovar Typhimurium) or sialic acid (N. gonorrhoeae). Truncation of the LPS within the core led to lower levels of MBL binding. It was not possible to predict the magnitude of MBL binding from the identity of the LPS terminal sugar alone, indicating that the three-dimensional disposition of LPS molecules is probably also of importance in determining MBL attachment. These results further support the hypothesis that LPS structure is a major determinant of MBL binding.
Collapse
|
46
|
Abstract
As outlined in this review, various experimental techniques have been employed in an attempt to understand neisserial pathogenesis. In vitro genetic analysis has been used to study the genetic basis for the structural variability of cell surface components. Transformed or primary epithelial cell cultures have provided the simplest model to analyze bacterial adherence and invasion, while the infection of polarized epithelial monolayers, fallopian tube and nasopharyngeal organ cultures, and ureteral tissue have each been used to more closely represent the events which occur in vivo. Finally, the in vivo infection of human volunteers with N. gonorrhoeae has provided a powerful means to confirm and expand the results obtained in vitro. By these various approaches, a number of neisserial adhesins (i.e. pilli, Opa, Opc and P36) and additional putative virulence determinants which affect bacterial adherence and invasion into host cells (i.e. LOS, capsule, PorB) have been identified. Clearly, neisserial surface variation serves as an adaptive mechanism which can modulate tissue tropism, immune evasion and survival in the changing host environment. Important progress has been made in recent years with respect to the host cellular receptors and subsequent signal transduction processes which are involved in neisserial adherence, invasion and transcytosis. This has led to the identification of (i) CD46 as a receptor for pilus which allows adherence to epithelial and endothelial cells, (ii) HSPGs, in cooperation with vitronectin and fibronectin, as receptors for a particular subset of Opa proteins and Opc, which may both mediate invasion into most epithelial and endothelial cells, and (iii) CD66 as the receptors for most Opa variants, potentially being involved in cellular interactions including adherence, invasion and transcytosis with epithelial, endothelial and phagocytic cells. As most of these data have been obtained using transformed cell lines growing in vitro, attempts must be made to translate these basic observations into a more natural situation. It can be expected that the successful ongoing integration of laboratory findings from the various infection models with human volunteer studies will further increase our understanding of the biology of neisserial infection. Perhaps the most difficult but also most rewarding challenge for the future will be to use volunteer studies to identify and understand the role of host factors which are important for the infectious process. Hopefully, insights gained from each of these studies will reveal new and useful strategies for the preventive and/or therapeutic intervention into infection and disease by these fascinating microbes.
Collapse
Affiliation(s)
- C Dehio
- Dept. Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
47
|
Harvey HA, Porat N, Campbell CA, Jennings M, Gibson BW, Phillips NJ, Apicella MA, Blake MS. Gonococcal lipooligosaccharide is a ligand for the asialoglycoprotein receptor on human sperm. Mol Microbiol 2000; 36:1059-70. [PMID: 10844691 DOI: 10.1046/j.1365-2958.2000.01938.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we show that Neisseria gonorrhoeae lipooligosaccharide (LOS) can bind to the asialoglycoprotein receptor (ASGP-R) on human sperm. This work demonstrates the presence of ASGP-R on human sperm. Binding of purified ASGP-R ligand decreased in the presence of gonococci. Binding of purified iodinated gonococcal LOS identified a protein of molecular weight corresponding to that of human ASGP-R. The presence of excess unlabelled LOS blocked binding of iodinated gonococcal LOS. Binding of wild-type gonococcal LOS to sperm was higher than that of mutant LOS lacking the galactose ligand for ASGP-R. These data suggest that the ASGP-R on human sperm cells recognizes and binds wild-type gonococcal LOS. This interaction may contribute to the transmission of gonorrhea from infected males to their sexual partners.
Collapse
Affiliation(s)
- H A Harvey
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. Pediatric Infectious Disease Unit, Soroka University Medical Center, P.O.B. 151, Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Serino L, Virji M. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol Microbiol 2000; 35:1550-9. [PMID: 10760154 DOI: 10.1046/j.1365-2958.2000.01825.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylcholine (ChoP) is a potential candidate for a plurispecific vaccine, because it is present on surface components of many mucosal organisms, including Haemophilus influenzae, Streptococcus pneumoniae and Pseudomonas aeruginosa. In addition, ChoP has been detected on pili of Neisseria meningitidis and Neisseria gonorrhoeae. In this study, we demonstrate the presence of the phosphorylcholine epitope on the lipopolysaccharides (LPSs) of several species of commensal Neisseriae (Cn), a property that differentiates commensal from the pathogenic strains of Neisseriae. In an extended survey of 78 strains, we confirmed the exclusive expression of the ChoP epitope on pili of pathogenic Neisseriae. Despite the presence of pili on Cn, which are homologous to Class II pili of N. meningitidis, they did not react with anti-ChoP antibody. This observation was further supported by the fact that 14C-labelled choline was incorporated only in the LPSs of Cn. Analysis of the LPS of N. lactamica strain NL4 revealed two distinct and interconvertible molecular species of LPS with high and low levels of reactivity with anti-ChoP antibody. In addition, on/off phase variation gave rise to frequent modulation in the levels of antibody reactivity. A concurrent modulation was also observed in the binding of C-reactive protein, CRP, a ChoP-binding reactant that is implicated in bacterial clearance. Genetic analysis showed the presence of a gene in several Cn spp. with significant sequence identity to H. influenzae licA. This gene encodes choline kinase and is also involved in phase variation of the LPS-associated ChoP in H. influenzae. In contrast, licA-like genes were not identified in the pathogenic Neisseria strains tested. They are absent from N. meningitidis strain Z2491 genome database. These data suggest that the genetic basis for ChoP incorporation in Cn LPS resembles that in H. influenzae spp. and may be distinct from that generating the ChoP epitope on pili of pathogenic Neisseriae. Further, the modulation of ChoP expression on Cn LPS, and corresponding modulation of CRP binding, has the potential to confer the property of immune avoidance and thus of persistence on mucosa.
Collapse
Affiliation(s)
- L Serino
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
49
|
Yamasaki R, Koshino H, Kurono S, Nishinaka Y, McQuillen DP, Kume A, Gulati S, Rice PA. Structural and immunochemical characterization of a Neisseria gonorrhoeae epitope defined by a monoclonal antibody 2C7; the antibody recognizes a conserved epitope on specific lipo-oligosaccharides in spite of the presence of human carbohydrate epitopes. J Biol Chem 1999; 274:36550-8. [PMID: 10593954 DOI: 10.1074/jbc.274.51.36550] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipo-oligosaccharides (LOS) produced by Neisseria gonorrhoeae are important antigenic and immunogenic components of the outer membrane complex. Previously, we showed that murine monoclonal antibody (mAb) 2C7 did not cross-react with human glycosphingolipids but identified the LOS epitope that is widely expressed in vivo and in vitro (Gulati, S., McQuillen, D. P., Mandrell, R. E., Jani, D. B., and Rice, P. A. (1996) J. Infect. Dis. 174, 1223-1237). In the present study, we analyzed the structure of gonococcal strain WG LOS containing the 2C7 epitope and investigated the structural requirements for expression of the epitope. We determined that the WG LOS components are Hep[1]-elongated forms of 15253 LOS that have a lactose on both Hep[1] and Hep[2] (Yamasaki, R., Kerwood, D. E., Schneider, H., Quinn, K. P., Griffiss, J. M., and Mandrell, R. E. (1994) J. Biol. Chem. 269, 30345-30351). In addition, we found that expression of the 2C7 epitope within the LOS is blocked when the Hep[2]-lactose is elongated. Based on the structural data of these LOS and the results obtained from immunochemical analyses, we conclude the following: 1) mAb 2C7 requires both the 15253 OS minimum structure and the N-linked fatty acids in the lipoidal moiety for expression of the epitope; 2) mAb 2C7 binds to the LOS that elongates the lactose on Hep[1] of the 15253 OS, but not the one on Hep[2]; and 3) the 2C7 epitope is expressed on gonococcal LOS despite the presence of human carbohydrate epitopes such as a lactosamine or its N-acetylgalactosaminylated (globo) form. Our study shows that the conserved epitope defined by mAb 2C7 could potentially be used as a safe site for the development of a vaccine candidate.
Collapse
Affiliation(s)
- R Yamasaki
- Department of Biochemistry and Biotechnology, Tottori University, Tottori 680-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ram S, Mackinnon FG, Gulati S, McQuillen DP, Vogel U, Frosch M, Elkins C, Guttormsen HK, Wetzler LM, Oppermann M, Pangburn MK, Rice PA. The contrasting mechanisms of serum resistance of Neisseria gonorrhoeae and group B Neisseria meningitidis. Mol Immunol 1999; 36:915-28. [PMID: 10698346 DOI: 10.1016/s0161-5890(99)00114-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis have evolved intricate mechanisms to evade complement-mediated killing. Sialylation of gonococcal lipooligosaccharide (LOS) results in conversion of previously serum sensitive strains to unstable serum resistance, which is mediated by factor H binding. Porin (Por) is also instrumental in mediating stable serum resistance in gonococci. The 5th loop of certain gonococcal PorlAs binds factor H, which efficiently inactivates C3b to iC3b. Factor H glycan residues may be essential for factor H binding to certain Por1A strains. Por1A strains can also regulate the classical pathway by binding to C4b-binding protein (C4bp) probably via the 1st loop of the Por molecule. Certain serum resistant Por1 B strains can also regulate complement by binding C4bp through a loop other than loop 1. Purified C4b can inhibit binding of C4bp to Por 1B, but not Por1A, suggesting different binding sites on C4bp for the two Por types. Unlike serum resistant gonococci, resistant meningococci have abundant C3b on their surface, which is only partially processed to iC3b. The main mechanism of complement evasion by group B meningococci is inhibition of membrane attack complex (MAC) insertion by their polysaccharide capsule. LOS structure may act in concert with capsule to prevent MAC insertion. Meningococcal strains with Class 3 Por preferentially bind factor H, suggesting Class 3 Por acts as a receptor for factor H.
Collapse
Affiliation(s)
- S Ram
- The Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|