1
|
Russell ML, Trofimov A, Bradley P, Matsen FA. Statistical analysis of repertoire data demonstrates the influence of microhomology in V(D)J recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618753. [PMID: 39464162 PMCID: PMC11507937 DOI: 10.1101/2024.10.16.618753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
V(D)J recombination generates the diverse B and T cell receptors essential for recognizing a wide array of antigens. This diversity arises from the combinatorial assembly of V(D)J genes and the junctional deletion and insertion of nucleotides. While previous in vitro studies have shown that microhomology--short stretches of sequence homology between gene ends--can bias the recombination process, the extent of microhomology's impact in vivo, particularly in humans, remains unknown. In this paper, we assess how germline-encoded microhomology influences trimming and ligation during V(D)J recombination using statistical inference on previously-published high-throughput TCRα repertoire sequencing data. We find that microhomology increases both trimming and ligation probabilities, making it an important predictor of recombination outcomes. These effects are consistent across different receptor loci and sequence types. Further, we demonstrate that accounting for microhomology effects significantly alters sequence annotation probabilities and rankings, highlighting its practical importance for accurately inferring the V(D)J recombination events that generated an observed sequence. Together, these results enhance our understanding of how microhomologous nucleotides shape the human V(D)J recombination process.
Collapse
Affiliation(s)
- Magdalena L Russell
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Assya Trofimov
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Physics, University of Washington, Seattle, WA 98195
| | - Philip Bradley
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Department of Statistics, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, Seattle, WA 98195
| |
Collapse
|
2
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A Massively Parallel In Vivo Assay of TdT Mutants Yields Variants with Altered Nucleotide Insertion Biases. ACS Synth Biol 2024; 13:3326-3343. [PMID: 39302688 PMCID: PMC11747941 DOI: 10.1021/acssynbio.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double-strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell HistorY Recording by Ordered InsertioN (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro, revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work and the multiplex assay it features should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
Affiliation(s)
- Courtney K. Carlson
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
| | - Theresa B. Loveless
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Patrick I. Kelly
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 82587
- School of Molecular Sciences, Arizona State University, Tempe, AZ 82587
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 82587
- School of Molecular Sciences, Arizona State University, Tempe, AZ 82587
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92697
- Center for Synthetic Biology, University of California, Irvine, CA 92697
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
| |
Collapse
|
3
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
5
|
Fujisaki K, Okazaki S, Ogawa S, Takeda M, Sugihara E, Imai K, Mizuno S, Takahashi S, Goitsuka R. B Cells of Early-life Origin Defined by RAG2-based Lymphoid Cell Tracking under Native Hematopoietic Conditions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:296-305. [PMID: 38874543 DOI: 10.4049/jimmunol.2400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.
Collapse
Affiliation(s)
- Keiko Fujisaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Miyama Takeda
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Eiji Sugihara
- Open Facility Center and Cancer Center, Fujita Health University, Aichi, Japan
| | - Kenichi Imai
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
6
|
Carlson CK, Loveless TB, Milisavljevic M, Kelly PI, Mills JH, Tyo KEJ, Liu CC. A massively parallel in vivo assay of TdT mutants yields variants with altered nucleotide insertion biases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598561. [PMID: 38915690 PMCID: PMC11195295 DOI: 10.1101/2024.06.11.598561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA with random nucleotides. TdT's de novo DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants in high throughput. In our assay, a library of TdTs is encoded next to a CRISPR-Cas9 target site in HEK293T cells. Upon transfection of Cas9 and sgRNA, the target site is cut, allowing TdT to intercept the double strand break and add nucleotides. Each resulting insertion is sequenced alongside the identity of the TdT variant that generated it. Using this assay, 25,623 unique TdT variants, constructed by site-saturation mutagenesis at strategic positions, were profiled. This resulted in the isolation of several altered-bias TdTs that expanded the capabilities of our TdT-based DNA recording system, Cell History Recording by Ordered Insertion (CHYRON), by increasing the information density of recording through an unbiased TdT and achieving dual-channel recording of two distinct inducers (hypoxia and Wnt) through two differently biased TdTs. Select TdT variants were also tested in vitro , revealing concordance between each variant's in vitro bias and the in vivo bias determined from the multiplexed high throughput assay. Overall, our work, and the multiplex assay it features, should support the continued development of TdT-based DNA recorders, in vitro applications of TdT, and further study of the biology of TdT.
Collapse
|
7
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
8
|
de Boer RJ, Tesselaar K, Borghans JAM. Better safe than sorry: Naive T-cell dynamics in healthy ageing. Semin Immunol 2023; 70:101839. [PMID: 37716048 DOI: 10.1016/j.smim.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/18/2023]
Abstract
It is well-known that the functioning of the immune system gradually deteriorates with age, and we are increasingly confronted with its consequences as the life expectancy of the human population increases. Changes in the T-cell pool are among the most prominent features of the changing immune system during healthy ageing, and changes in the naive T-cell pool in particular are generally held responsible for its gradual deterioration. These changes in the naive T-cell pool are thought to be due to involution of the thymus. It is commonly believed that the gradual loss of thymic output induces compensatory mechanisms to maintain the number of naive T cells at a relatively constant level, and induces a loss of diversity in the T-cell repertoire. Here we review the studies that support or challenge this widely-held view of immune ageing and discuss the implications for vaccination strategies.
Collapse
Affiliation(s)
- Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - José A M Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Giorgetti OB, O'Meara CP, Schorpp M, Boehm T. Origin and evolutionary malleability of T cell receptor α diversity. Nature 2023:10.1038/s41586-023-06218-x. [PMID: 37344590 PMCID: PMC10322711 DOI: 10.1038/s41586-023-06218-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Lymphocytes of vertebrate adaptive immune systems acquired the capability to assemble, from split genes in the germline, billions of functional antigen receptors1-3. These receptors show specificity; unlike the broadly tuned receptors of the innate system, antibodies (Ig) expressed by B cells, for instance, can accurately distinguish between the two enantiomers of organic acids4, whereas T cell receptors (TCRs) reliably recognize single amino acid replacements in their peptide antigens5. In developing lymphocytes, antigen receptor genes are assembled from a comparatively small set of germline-encoded genetic elements in a process referred to as V(D)J recombination6,7. Potential self-reactivity of some antigen receptors arising from the quasi-random somatic diversification is suppressed by several robust control mechanisms8-12. For decades, scientists have puzzled over the evolutionary origin of somatically diversifying antigen receptors13-16. It has remained unclear how, at the inception of this mechanism, immunologically beneficial expanded receptor diversity was traded against the emerging risk of destructive self-recognition. Here we explore the hypothesis that in early vertebrates, sequence microhomologies marking the ends of recombining elements became the crucial targets of selection determining the outcome of non-homologous end joining-based repair of DNA double-strand breaks generated during RAG-mediated recombination. We find that, across the main clades of jawed vertebrates, TCRα repertoire diversity is best explained by species-specific extents of such sequence microhomologies. Thus, selection of germline sequence composition of rearranging elements emerges as a major factor determining the degree of diversity of somatically generated antigen receptors.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Smith FL, Savage HP, Luo Z, Tipton CM, Lee FEH, Apostol AC, Beaudin AE, Lopez DA, Jensen I, Keller S, Baumgarth N. B-1 plasma cells require non-cognate CD4 T cell help to generate a unique repertoire of natural IgM. J Exp Med 2023; 220:e20220195. [PMID: 36811605 PMCID: PMC9960156 DOI: 10.1084/jem.20220195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/01/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Evolutionarily conserved, "natural" (n)IgM is broadly reactive to both self and foreign antigens. Its selective deficiency leads to increases in autoimmune diseases and infections. In mice, nIgM is secreted independent of microbial exposure to bone marrow (BM) and spleen B-1 cell-derived plasma cells (B-1PC), generating the majority of nIgM, or by B-1 cells that remain non-terminally differentiated (B-1sec). Thus, it has been assumed that the nIgM repertoire is broadly reflective of the repertoire of body cavity B-1 cells. Studies here reveal, however, that B-1PC generate a distinct, oligoclonal nIgM repertoire, characterized by short CDR3 variable immunoglobulin heavy chain regions, 7-8 amino acids in length, some public, many arising from convergent rearrangements, while specificities previously associated with nIgM were generated by a population of IgM-secreting B-1 (B-1sec). BM, but not spleen B-1PC, or B-1sec also required the presence of TCRαβ CD4 T cells for their development from fetal precursors. Together, the studies identify important previously unknown characteristics of the nIgM pool.
Collapse
Affiliation(s)
- Fauna L. Smith
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Hannah P. Savage
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | - Zheng Luo
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F. Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - April C. Apostol
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Anna E. Beaudin
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Diego A. Lopez
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Ingvill Jensen
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
| | - Stefan Keller
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA, USA
- Integrated Pathobiology Graduate Group, University of California, Davis, Davis, CA, USA
- Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
- Department Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
11
|
Webster SE, Tsuji NL, Clemente MJ, Holodick NE. Age-related changes in antigen-specific natural antibodies are influenced by sex. Front Immunol 2023; 13:1047297. [PMID: 36713434 PMCID: PMC9878317 DOI: 10.3389/fimmu.2022.1047297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Natural antibody (NAb) derived from CD5+ B-1 cells maintains tissue homeostasis, controls inflammation, aids in establishing long-term protective responses against pathogens, and provides immediate protection from infection. CD5+ B-1 cell NAbs recognize evolutionarily fixed epitopes, such as phosphatidylcholine (PtC), found on bacteria and senescent red blood cells. Anti-PtC antibodies are essential in protection against bacterial sepsis. CD5+ B-1 cell-derived NAbs have a unique germline-like structure that lacks N-additions, a feature critical for providing protection against infection. Previously, we demonstrated the repertoire and germline status of PtC+CD5+ B-1 cell IgM obtained from male mice changes with age depending on the anatomical location of the B-1 cells. More recently, we demonstrated serum antibody from aged female mice maintains protection against pneumococcal infection, whereas serum antibody from male mice does not provide protection. Results Here, we show that aged female mice have significantly more splenic PtC+CD5+ B-1 cells and more PtC specific serum IgM than aged male mice. Furthermore, we find both age and biological sex related repertoire differences when comparing B cell receptor (BCR) sequencing results of PtC+CD5+ B-1 cells. While BCR germline status of PtC+CD5+ B-1 cells from aged male and female mice is similar in the peritoneal cavity, it differs significantly in the spleen, where aged females retain germline configuration and aged males do not. Nucleic acid sensing toll-like receptors are critical in the maintenance of PtC+ B-1 cells; therefore, to begin to understand the mechanism of differences observed between the male and female PtC+CD5+ B-1 cell repertoire, we analyzed levels of cell-free nucleic acids and found increases in aged females. Conclusion Our results suggest the antigenic milieu differs between aged males and females, leading to differential selection of antigen-specific B-1 cells over time. Further elucidation of how biological sex differences influence the maintenance of B-1 cells within the aging environment will be essential to understand sex and age-related disparities in the susceptibility to bacterial infection and will aid in the development of more effective vaccination and/or therapeutic strategies specific for males and females.
Collapse
Affiliation(s)
- Sarah E. Webster
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Naomi L. Tsuji
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Michael J. Clemente
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
- Flow Cytometry and Imaging Core, Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nichol E. Holodick
- Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
- Flow Cytometry and Imaging Core, Center for Immunobiology, Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
12
|
Luo S, Jing C, Ye AY, Kratochvil S, Cottrell CA, Koo JH, Chapdelaine Williams A, Francisco LV, Batra H, Lamperti E, Kalyuzhniy O, Zhang Y, Barbieri A, Manis JP, Haynes BF, Schief WR, Batista FD, Tian M, Alt FW. Humanized V(D)J-rearranging and TdT-expressing mouse vaccine models with physiological HIV-1 broadly neutralizing antibody precursors. Proc Natl Acad Sci U S A 2023; 120:e2217883120. [PMID: 36574685 PMCID: PMC9910454 DOI: 10.1073/pnas.2217883120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody heavy chain (HC) and light chain (LC) variable region exons are assembled by V(D)J recombination. V(D)J junctional regions encode complementarity-determining-region 3 (CDR3), an antigen-contact region immensely diversified through nontemplated nucleotide additions ("N-regions") by terminal deoxynucleotidyl transferase (TdT). HIV-1 vaccine strategies seek to elicit human HIV-1 broadly neutralizing antibodies (bnAbs), such as the potent CD4-binding site VRC01-class bnAbs. Mice with primary B cells that express receptors (BCRs) representing bnAb precursors are used as vaccination models. VRC01-class bnAbs uniformly use human HC VH1-2 and commonly use human LCs Vκ3-20 or Vκ1-33 associated with an exceptionally short 5-amino-acid (5-aa) CDR3. Prior VRC01-class models had nonphysiological precursor levels and/or limited precursor diversity. Here, we describe VRC01-class rearranging mice that generate more physiological primary VRC01-class BCR repertoires via rearrangement of VH1-2, as well as Vκ1-33 and/or Vκ3-20 in association with diverse CDR3s. Human-like TdT expression in mouse precursor B cells increased LC CDR3 length and diversity and also promoted the generation of shorter LC CDR3s via N-region suppression of dominant microhomology-mediated Vκ-to-Jκ joins. Priming immunization with eOD-GT8 60mer, which strongly engages VRC01 precursors, induced robust VRC01-class germinal center B cell responses. Vκ3-20-based responses were enhanced by N-region addition, which generates Vκ3-20-to-Jκ junctional sequence combinations that encode VRC01-class 5-aa CDR3s with a critical E residue. VRC01-class-rearranging models should facilitate further evaluation of VRC01-class prime and boost immunogens. These new VRC01-class mouse models establish a prototype for the generation of vaccine-testing mouse models for other HIV-1 bnAb lineages that employ different HC or LC Vs.
Collapse
Affiliation(s)
- Sai Luo
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Changbin Jing
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Adam Yongxin Ye
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Sven Kratochvil
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA92037
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA92037
| | - Ja-Hyun Koo
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
| | - Aimee Chapdelaine Williams
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Lucas Vieira Francisco
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Himanshu Batra
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Edward Lamperti
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA92037
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA92037
| | - Yuxiang Zhang
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Alessandro Barbieri
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - John P. Manis
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC27710
- Department of Medicine, Duke University School of Medicine, Durham, NC27710
- Department of Immunology, Duke University School of Medicine, Durham, NC27710
| | - William R. Schief
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA92037
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, San Diego, CA92037
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, San Diego, CA92037
| | - Facundo D. Batista
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Immunology, Harvard Medical School, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Ming Tian
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Frederick W. Alt
- HHMI, Boston Children's Hospital, Boston, MA02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA02115
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Srikakulapu P, Pattarabanjird T, Upadhye A, Bontha SV, Osinski V, Marshall MA, Garmey J, Deroissart J, Prohaska TA, Witztum JL, Binder CJ, Holodick NE, Rothstein TL, McNamara CA. B-1b Cells Have Unique Functional Traits Compared to B-1a Cells at Homeostasis and in Aged Hyperlipidemic Mice With Atherosclerosis. Front Immunol 2022; 13:909475. [PMID: 35935999 PMCID: PMC9353528 DOI: 10.3389/fimmu.2022.909475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.
Collapse
Affiliation(s)
- Prasad Srikakulapu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| | | | - Aditi Upadhye
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Sai Vineela Bontha
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Victoria Osinski
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - James Garmey
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas A. Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joseph L. Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Christoph J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Nichol E. Holodick
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Coleen A. McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States,Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, United States,*Correspondence: Prasad Srikakulapu, ; Coleen A. McNamara,
| |
Collapse
|
14
|
Webster SE, Ryali B, Clemente MJ, Tsuji NL, Holodick NE. Sex Influences Age-Related Changes in Natural Antibodies and CD5 + B-1 Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1755-1771. [PMID: 35256511 PMCID: PMC8976758 DOI: 10.4049/jimmunol.2101150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022]
Abstract
Natural Abs are primarily produced by B-1 cells and are essential for protection against Streptococcus pneumoniae The incidence and mortality rate for pneumococcal infection increases dramatically after age 65, disproportionately affecting males in both human and murine systems. To date, there is a significant gap in our understanding of the relationship among sex, aging, natural IgM efficacy, and the natural IgM repertoire. Our investigation demonstrates that the protective capacity of serum IgM against pneumococcal infection is maintained in IgM obtained from aged female mice but absent in IgM from aged male mice. To understand this difference in protective capacity, we examined serum Ig, discovering that the protective change was not associated with shifts in levels of phosphorylcholine (PC)- or pneumococcal capsular polysaccharide serotype 3-specific IgM. Interestingly, we observed that aged females have an increase in the total number of CD5+ B-1 cells, higher serum IL-5 levels, and a larger percentage of aged female CD5+ B-1 cells that express CD86 as compared with aged males. Furthermore, single-cell IgM repertoire analysis from peritoneal PC+, splenic PC+, and bone marrow CD5+ B-1 cell subsets demonstrated greater diversity with age and a higher level of germline status in female mice than previously observed in studies of aged male mice. Aged female CD5+ B-1 cells also expressed higher levels of transcripts associated with cell activity and self-renewal, such as Nanog and Hmga2 Taken together, these data indicate that females maintain a more diverse and active CD5+ B-1 cell pool and natural IgM repertoire, which has implications for sex-related susceptibility to infection and disease.
Collapse
Affiliation(s)
- Sarah E Webster
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Brinda Ryali
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Medicine, Rush University Medical Center, Chicago, IL; and
| | - Michael J Clemente
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Flow Cytometry and Imaging Core, Western Michigan Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Naomi L Tsuji
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI.,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Nichol E Holodick
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI; .,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| |
Collapse
|
15
|
Fang M, Su Z, Abolhassani H, Zhang W, Jiang C, Cheng B, Luo L, Wu J, Wang S, Lin L, Wang X, Wang L, Aghamohammadi A, Li T, Zhang X, Hammarström L, Liu X. T Cell Repertoire Abnormality in Immunodeficiency Patients with DNA Repair and Methylation Defects. J Clin Immunol 2022; 42:375-393. [PMID: 34825286 PMCID: PMC8821531 DOI: 10.1007/s10875-021-01178-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
Both DNA damage response and methylation play a crucial role in antigen receptor recombination by creating a diverse repertoire in developing lymphocytes, but how their defects relate to T cell repertoire and phenotypic heterogeneity of immunodeficiency remains obscure. We studied the TCR repertoire in patients with the mutation in different genes (ATM, DNMT3B, ZBTB24, RAG1, DCLRE1C, and JAK3) and uncovered distinct characteristics of repertoire diversity. We propose that early aberrancies in thymus T cell development predispose to the heterogeneous phenotypes of the immunodeficiency spectrum. Shorter CDR3 lengths in ATM-deficient patients, resulting from a decreased number of nucleotide insertions during VDJ recombination in the pre-selected TCR repertoire, as well as the increment of CDR3 tyrosine residues, lead to the enrichment of pathology-associated TCRs, which may contribute to the phenotypes of ATM deficiency. Furthermore, patients with DNMT3B and ZBTB24 mutations who exhibit discrepant phenotypes present longer CDR3 lengths and reduced number of known pathology-associated TCRs.
Collapse
Affiliation(s)
- Mingyan Fang
- BGI-Shenzhen, Shenzhen, 518083, China
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Sydney, NSW, Australia
| | - Hassan Abolhassani
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, 999077, China
| | | | | | - Lihua Luo
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Liya Lin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tao Li
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Lennart Hammarström
- BGI-Shenzhen, Shenzhen, 518083, China.
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, 518083, China.
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Amendt T, Jumaa H. Adaptive tolerance: Protection through self-recognition. Bioessays 2022; 44:e2100236. [PMID: 34984705 DOI: 10.1002/bies.202100236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
The random nature of immunoglobulin gene segment rearrangement inevitably leads to the generation of self-reactive B cells. Avoidance of destructive autoimmune reactions is necessary in order to maintain physiological homeostasis. However, current central and peripheral tolerance concepts fail to explain the massive number of autoantibody-borne autoimmune diseases. Moreover, recent studies have shown that in physiological mouse models autoreactive B cells were neither clonally deleted nor kept in an anergic state, but were instead able to mount autoantibody responses. We propose that activation of autoreactive B cells is induced by polyvalent autoantigen complexes that can occur under physiological conditions. Repeated encounter of autoantigen complexes leads to the production of affinity-matured autoreactive IgM that protects its respective self-targets from degradation. We refer to this novel mechanism as adaptive tolerance. This article discusses the discovery of adaptive tolerance and the unexpected role of high affinity IgM autoantibodies.
Collapse
Affiliation(s)
- Timm Amendt
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
17
|
Regulation of the BCR signalosome by the class II peptide editor, H2-M, affects the development and repertoire of innate-like B cells. Cell Rep 2022; 38:110200. [DOI: 10.1016/j.celrep.2021.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
|
18
|
Japp AS, Meng W, Rosenfeld AM, Perry DJ, Thirawatananond P, Bacher RL, Liu C, Gardner JS, Atkinson MA, Kaestner KH, Brusko TM, Naji A, Luning Prak ET, Betts MR. TCR +/BCR + dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell 2021; 184:827-839.e14. [PMID: 33545036 DOI: 10.1016/j.cell.2020.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Ahmed and colleagues recently described a novel hybrid lymphocyte expressing both a B and T cell receptor, termed double expresser (DE) cells. DE cells in blood of type 1 diabetes (T1D) subjects were present at increased numbers and enriched for a public B cell clonotype. Here, we attempted to reproduce these findings. While we could identify DE cells by flow cytometry, we found no association between DE cell frequency and T1D status. We were unable to identify the reported public B cell clone, or any similar clone, in bulk B cells or sorted DE cells from T1D subjects or controls. We also did not observe increased usage of the public clone VH or DH genes in B cells or in sorted DE cells. Taken together, our findings suggest that DE cells and their alleged public clonotype are not enriched in T1D. This Matters Arising paper is in response to Ahmed et al. (2019), published in Cell. See also the response by Ahmed et al. (2021), published in this issue.
Collapse
Affiliation(s)
- Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Aaron M Rosenfeld
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Puchong Thirawatananond
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Rhonda L Bacher
- Department of Biostatistics, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | -
- The Human Pancreas Analysis Program, Perelman School of Medicine, Philadelphia, PA 19104
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Baizan-Edge A, Stubbs BA, Stubbington MJT, Bolland DJ, Tabbada K, Andrews S, Corcoran AE. IL-7R signaling activates widespread V H and D H gene usage to drive antibody diversity in bone marrow B cells. Cell Rep 2021; 36:109349. [PMID: 34260907 PMCID: PMC8293627 DOI: 10.1016/j.celrep.2021.109349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Generation of the primary antibody repertoire requires V(D)J recombination of hundreds of gene segments in the immunoglobulin heavy chain (Igh) locus. The role of interleukin-7 receptor (IL-7R) signaling in Igh recombination has been difficult to partition from its role in B cell survival and proliferation. With a detailed description of the Igh repertoire in murine IL-7Rα-/- bone marrow B cells, we demonstrate that IL-7R signaling profoundly influences VH gene selection during VH-to-DJH recombination. We find skewing toward 3' VH genes during de novo VH-to-DJH recombination more severe than the fetal liver (FL) repertoire and uncover a role for IL-7R signaling in DH-to-JH recombination. Transcriptome and accessibility analyses suggest reduced expression of B lineage transcription factors (TFs) and targets and loss of DH and VH antisense transcription in IL-7Rα-/- B cells. Thus, in addition to its roles in survival and proliferation, IL-7R signaling shapes the Igh repertoire by activating underpinning mechanisms.
Collapse
Affiliation(s)
- Amanda Baizan-Edge
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Bryony A Stubbs
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Michael J T Stubbington
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel J Bolland
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kristina Tabbada
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Anne E Corcoran
- Nuclear Dynamics Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Lymphocyte Signaling and Development Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
20
|
Tsuji N, Rothstein TL, Holodick NE. Antigen Receptor Specificity and Cell Location Influence the Diversification and Selection of the B-1a Cell Pool with Age. THE JOURNAL OF IMMUNOLOGY 2020; 205:741-759. [PMID: 32561570 DOI: 10.4049/jimmunol.1901302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
B-1a cells provide immediate and essential protection from infection through production of natural Ig, which is germline-like due to minimal insertion of N region additions. We have previously demonstrated peritoneal B-1a cell-derived phosphorylcholine-specific and total IgM moves away from germline (as evidenced by an increase in N-additions) with age as a result of selection. In young mice, anti-phosphatidylcholine Abs, like anti-phosphorylcholine Abs, contain few N-additions, and have been shown to be essential in protection from bacterial sepsis. In this study, we demonstrate the germline-like status of phosphatidylcholine (PtC)-specific (PtC+) peritoneal B-1a cell IgM does not change with age. In direct contrast, the splenic PtC+ B-1a cell population does not preserve its IgM germline status in the aged mice. Furthermore, splenic PtC+ B-1a cells displayed more diverse variable gene segments of the H chain (VH) use in both the young and aged mice as compared with peritoneal PtC+ B-1a cells. Whereas the peritoneal PtC+ population increased VH12 use with age, we observed differential use of VH11, VH12, and VH2 between the peritoneal and splenic PtC+ populations with age. These results suggest disparate selection pressures occur with age upon B-1a cells expressing different specificities in distinct locations. Overall, these results illuminate the need to further elucidate how B-1a cells are influenced over time in terms of production and selection, both of which contribute to the actual and available natural IgM repertoire with increasing age. Such studies would aid in the development of more effective vaccination and therapeutic strategies in the aged population.
Collapse
Affiliation(s)
- Naomi Tsuji
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| | - Nichol E Holodick
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007; and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49007
| |
Collapse
|
21
|
Hahn AM, Winkler TH. Resolving the mystery-How TCR transgenic mouse models shed light on the elusive case of gamma delta T cells. J Leukoc Biol 2020; 107:993-1007. [PMID: 32068302 DOI: 10.1002/jlb.1mr0120-237r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
Cutting-edge questions in αβ T cell biology were addressed by investigating a range of different genetically modified mouse models. In comparison, the γδ T cell field lacks behind on the availability of such models. Nevertheless, transgenic mouse models proved useful for the investigation of γδ T cell biology and their stepwise development in the thymus. In general, animal models and especially mouse models give access to a wide range of opportunities of modulating γδ T cells, which is unachievable in human beings. Because of their complex biology and specific tissue tropism, it is especially challenging to investigate γδ T cells in in vitro experiments since they might not reliably reflect their behavior and phenotype under physiologic conditions. This review aims to provide a comprehensive historical overview about how different transgenic mouse models contributed in regards of the understanding of γδ T cell biology, whereby a special focus is set on studies including the elusive role of the γδTCR. Furthermore, evolutionary and translational remarks are discussed under the aspect of future implications for the field. The ultimate full understanding of γδ T cells will pave the way for their usage as a powerful new tool in immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Cell Movement
- Founder Effect
- Gene Expression
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic/genetics
- Mice, Transgenic/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- Species Specificity
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Anne M Hahn
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
22
|
Honjo K, Won WJ, King RG, Ianov L, Crossman DK, Easlick JL, Shakhmatov MA, Khass M, Vale AM, Stephan RP, Li R, Davis RS. Fc Receptor-Like 6 (FCRL6) Discloses Progenitor B Cell Heterogeneity That Correlates With Pre-BCR Dependent and Independent Pathways of Natural Antibody Selection. Front Immunol 2020; 11:82. [PMID: 32117244 PMCID: PMC7033751 DOI: 10.3389/fimmu.2020.00082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/13/2020] [Indexed: 11/24/2022] Open
Abstract
B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6- pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6+ progenitors, yielded VH repertoires with biased distal Ighv segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences. Beyond nascent autoreactivity, VH11 productivity, which predominates phosphatidylcholine-specific B-1a B cell receptors (BCRs), was higher for FCRL6+ cells as was pre-BCR formation, which was required for Myc induction and VH11, but not VH12, B-1a development. Thus, FCRL6 revealed unexpected heterogeneity in the developmental origins, regulation, and selection of natural Abs at the pre-BCR checkpoint with implications for autoimmunity and lymphoproliferative disorders.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylcholines/immunology
- Phosphatidylcholines/metabolism
- Precursor Cells, B-Lymphoid/immunology
- Precursor Cells, B-Lymphoid/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Woong-Jai Won
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rodney G. King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juliet L. Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mikhail A. Shakhmatov
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Andre M. Vale
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Robert P. Stephan
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Sadarangani M. Protection Against Invasive Infections in Children Caused by Encapsulated Bacteria. Front Immunol 2018; 9:2674. [PMID: 30515161 PMCID: PMC6255856 DOI: 10.3389/fimmu.2018.02674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulated bacteria Streptococcus pneumoniae, Neisseria meningitis, Haemophilus influenzae, and Streptococcus agalactiae (Group B Streptococcus) have been responsible for the majority of severe infections in children for decades, specifically bacteremia and meningitis. Isolates which cause invasive disease are usually surrounded by a polysaccharide capsule, which is a major virulence factor and the key antigen in protective protein-polysaccharide conjugate vaccines. Protection against these bacteria is largely mediated via polysaccharide-specific antibody and complement, although the contribution of these and other components, and the precise mechanisms, vary between species and include opsonophagocytosis and complement-dependent bacteriolysis. Further studies are required to more precisely elucidate mechanisms of protection against non-type b H. influenzae and Group B Streptococcus.
Collapse
Affiliation(s)
- Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Funck T, Barnkob MB, Holm N, Ohm-Laursen L, Mehlum CS, Möller S, Barington T. Nucleotide Composition of Human Ig Nontemplated Regions Depends on Trimming of the Flanking Gene Segments, and Terminal Deoxynucleotidyl Transferase Favors Adding Cytosine, Not Guanosine, in Most VDJ Rearrangements. THE JOURNAL OF IMMUNOLOGY 2018; 201:1765-1774. [PMID: 30097530 DOI: 10.4049/jimmunol.1800100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023]
Abstract
The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
Collapse
Affiliation(s)
- Tina Funck
- Department of Clinical Biochemistry, Zealand University Hospital, Roskilde 4000, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxfordshire OX3 9DS, United Kingdom
| | - Nanna Holm
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark
| | - Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Camilla Slot Mehlum
- Department of Otorhinolaryngology-Head and Neck Surgery, Odense University Hospital, Odense 5000, Denmark
| | - Sören Möller
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense 5000, Denmark; and.,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense 5000, Denmark; .,Clinical Department, University of Southern Denmark, Odense 5000, Denmark
| |
Collapse
|
25
|
Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, Oxenius A, Stadler T, Reddy ST. Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics 2018; 33:3938-3946. [PMID: 28968873 DOI: 10.1093/bioinformatics/btx533] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/30/2017] [Indexed: 01/13/2023] Open
Abstract
Motivation The evolution of antibody repertoires represents a hallmark feature of adaptive B-cell immunity. Recent advancements in high-throughput sequencing have dramatically increased the resolution to which we can measure the molecular diversity of antibody repertoires, thereby offering for the first time the possibility to capture the antigen-driven evolution of B cells. However, there does not exist a repertoire simulation framework yet that enables the comparison of commonly utilized phylogenetic methods with regard to their accuracy in inferring antibody evolution. Results Here, we developed AbSim, a time-resolved antibody repertoire simulation framework, which we exploited for testing the accuracy of methods for the phylogenetic reconstruction of B-cell lineages and antibody molecular evolution. AbSim enables the (i) simulation of intermediate stages of antibody sequence evolution and (ii) the modeling of immunologically relevant parameters such as duration of repertoire evolution, and the method and frequency of mutations. First, we validated that our repertoire simulation framework recreates replicates topological similarities observed in experimental sequencing data. Second, we leveraged Absim to show that current methods fail to a certain extent to predict the true phylogenetic tree correctly. Finally, we formulated simulation-validated guidelines for antibody evolution, which in the future will enable the development of accurate phylogenetic methods. Availability and implementation https://cran.r-project.org/web/packages/AbSim/index.html. Contact sai.reddy@ethz.ch. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Andreas Dounas
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Enkelejda Miho
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | | | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Egorov ES, Kasatskaya SA, Zubov VN, Izraelson M, Nakonechnaya TO, Staroverov DB, Angius A, Cucca F, Mamedov IZ, Rosati E, Franke A, Shugay M, Pogorelyy MV, Chudakov DM, Britanova OV. The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging. Front Immunol 2018; 9:1618. [PMID: 30087674 PMCID: PMC6066563 DOI: 10.3389/fimmu.2018.01618] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Human aging is associated with a profound loss of thymus productivity, yet naïve T lymphocytes still maintain their numbers by division in the periphery for many years. The extent of such proliferation may depend on the cytokine environment, including IL-7 and T-cell receptor (TCR) “tonic” signaling mediated by self pMHCs recognition. Additionally, intrinsic properties of distinct subpopulations of naïve T cells could influence the overall dynamics of aging-related changes within the naïve T cell compartment. Here, we investigated the differences in the architecture of TCR beta repertoires for naïve CD4, naïve CD8, naïve CD4+CD25−CD31+ (enriched with recent thymic emigrants, RTE), and mature naïve CD4+CD25−CD31− peripheral blood subsets between young and middle-age/old healthy individuals. In addition to observing the accumulation of clonal expansions (as was shown previously), we reveal several notable changes in the characteristics of T cell repertoire. We observed significant decrease of CDR3 length, NDN insert, and number of non-template added N nucleotides within TCR beta CDR3 with aging, together with a prominent change of physicochemical properties of the central part of CDR3 loop. These changes were similar across CD4, CD8, RTE-enriched, and mature CD4 subsets of naïve T cells, with minimal or no difference observed between the latter two subsets for individuals of the same age group. We also observed an increase in “publicity” (fraction of shared clonotypes) of CD4, but not CD8 naïve T cell repertoires. We propose several explanations for these phenomena built upon previous studies of naïve T-cell homeostasis, and call for further studies of the mechanisms causing the observed changes and of consequences of these changes in respect of the possible holes formed in the landscape of naïve T cell TCR repertoire.
Collapse
Affiliation(s)
- Evgeny S Egorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Sofya A Kasatskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vasiliy N Zubov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Mark Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | | | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Ilgar Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Mikhail Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | - Dmitriy M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
27
|
Lemke H. Immune Response Regulation by Antigen Receptors' Clone-Specific Nonself Parts. Front Immunol 2018; 9:1471. [PMID: 30034389 PMCID: PMC6026803 DOI: 10.3389/fimmu.2018.01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen determinants (epitopes) are recognized by the combining sites (paratopes) of B and T cell antigen receptors (BCR/TCR), which again express clone-specific epitopes (idiotopes) that can be recognized by BCR/TCR not only of genetically different donors but also within the autologous immune system. While xenogeneic and allogeneic anti-idiotypic BCR/TCR are broadly cross-reactive, only autologous anti-idiotypes are truly specific and of functional regulatory relevance within a particular immune system. Autologous BCR/TCR idiotopes are (a) somatically created at the third complementarity-determining regions, (b) through mutations introduced into BCRs during adaptive immune responses, and (c) through the conformational impact of both. As these idiotypic characters have no genomic counterparts they have to be regarded as antigen receptor-intrinsic nonself-portions. Although foreign, however, they are per se non-immunogenic, but in conjunction with immunogenicity- and adjuvanticity-providing antigen-induced immune responses, they induce abating regulatory idiotypic chain reactions. The dualistic nature of antigen receptors of seeing antigens (self and nonself alike) and being nonself at the same time has far reaching consequences for an understanding of the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Hilmar Lemke
- Biochemical Institute of the Medical Faculty, Christian-Albrechts-University at Kiel, Kiel, Germany
| |
Collapse
|
28
|
Rosado MM, Aranburu A, Scarsella M, Cascioli S, Giorda E, Del Chierico F, Mortera SL, Mortari EP, Petrini S, Putignani L, Carsetti R. Spleen development is modulated by neonatal gut microbiota. Immunol Lett 2018; 199:1-15. [PMID: 29715493 DOI: 10.1016/j.imlet.2018.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/27/2018] [Indexed: 01/11/2023]
Abstract
The full development of the mammalian immune system occurs after birth upon exposure to non self-antigens. The gut is the first site of bacterial colonization where it is crucial to create the appropriate microenvironment able to balance effector or tolerogenic responses to external stimuli. It is a well-established fact that at mucosal sites bacteria play a key role in developing the immune system but we ignore how colonising bacteria impact the maturation of the spleen. Here we addressed this issue. Taking advantage of the fact that milk SIgA regulates bacterial colonization of the newborn intestine, we generated immunocompetent mice born either from IgA pro-efficient or IgA deficient females. Having demonstrated that SIgA in maternal milk modulates neonatal gut microbiota by promoting an increased diversity of the colonizing species we also found that immunocompetent pups, not exposed to milk SIgA, fail to properly develop the FDC network and primary follicles in the spleen compromising the response to T-dependent antigens. The presence of a less diverse microbiota with a higher representation of pathogenic species leads to a fast replenishment of the marginal zone and the IgM plasma cell compartment of the spleen as well as IgA plasma cells in the gut.
Collapse
Affiliation(s)
- M Manuela Rosado
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy.
| | - Alaitz Aranburu
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Marco Scarsella
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Simona Cascioli
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Ezio Giorda
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Federica Del Chierico
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Levi Mortera
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| |
Collapse
|
29
|
Prohaska TA, Que X, Diehl CJ, Hendrikx S, Chang MW, Jepsen K, Glass CK, Benner C, Witztum JL. Massively Parallel Sequencing of Peritoneal and Splenic B Cell Repertoires Highlights Unique Properties of B-1 Cell Antibodies. THE JOURNAL OF IMMUNOLOGY 2018; 200:1702-1717. [PMID: 29378911 PMCID: PMC5821571 DOI: 10.4049/jimmunol.1700568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 01/03/2018] [Indexed: 12/26/2022]
Abstract
B-1 cells are a unique subset of B cells that are positively selected for expressing autoreactive BCRs. We isolated RNA from peritoneal (B-1a, B-1b, B-2) and splenic (B-1a, marginal zone, follicular) B cells from C57BL/6 mice and used 5'-RACE to amplify the IgH V region using massively parallel sequencing. By analyzing 379,000 functional transcripts, we demonstrate that B-1a cells use a distinct and restricted repertoire. All B-1 cell subsets, especially peritoneal B-1a cells, had a high proportion of sequences without N additions, suggesting predominantly prenatal development. Their transcripts differed markedly and uniquely contained VH11 and VH12 genes, which were rearranged only with a restricted selection of D and J genes, unlike other V genes. Compared to peritoneal B-1a, the peritoneal B-1b repertoire was larger, had little overlap with B-1a, and most sequences contained N additions. Similarly, the splenic B-1a repertoire differed from peritoneal B-1a sequences, having more unique sequences and more frequent N additions, suggesting influx of B-1a cells into the spleen from nonperitoneal sites. Two CDR3s, previously described as Abs to bromelain-treated RBCs, comprised 43% of peritoneal B-1a sequences. We show that a single-chain variable fragment designed after the most prevalent B-1a sequence bound oxidation-specific epitopes such as the phosphocholine of oxidized phospholipids. In summary, we provide the IgH V region library of six murine B cell subsets, including, to our knowledge for the first time, a comparison between B-1a and B-1b cells, and we highlight qualities of B-1 cell Abs that indicate unique selection processes.
Collapse
Affiliation(s)
- Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Xuchu Que
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cody J Diehl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sabrina Hendrikx
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Max W Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Christopher K Glass
- Department of Medicine, University of California San Diego, La Jolla, CA 92093.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093
| | - Christopher Benner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Joseph L Witztum
- Department of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
30
|
Cohn M. Somatic diversification of the B cell repertoire requires two cell subsets. Scand J Immunol 2018; 87. [DOI: 10.1111/sji.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Affiliation(s)
- M. Cohn
- Conceptual Immunology Group; The Salk Institute; La Jolla CA USA
| |
Collapse
|
31
|
On being the right size: antibody repertoire formation in the mouse and human. Immunogenetics 2017; 70:143-158. [DOI: 10.1007/s00251-017-1049-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
32
|
Baumgarth N. A Hard(y) Look at B-1 Cell Development and Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:3387-3394. [PMID: 29109178 DOI: 10.4049/jimmunol.1700943] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
Abstract
A small population of B cells exists in lymphoid tissues and body cavities of mice that is distinct in development, phenotype, and function from the majority (B-2) B cell population. This population, originally termed "Ly-1" and now "B-1," has received renewed interest as an innate-like B cell population of fetal-derived hematopoiesis, responsible for natural Ab production and rapid immune responses. Molecular analyses have begun to define fetal and adult hematopoiesis, while cell-fate mapping studies have revealed complex developmental origins of B-1 cells. Together the studies provide a more detailed understanding of B-1 cell regulation and function. This review outlines studies that defined B-1 cells as natural Ab- and cytokine-producing B cells of fetal origin, with a focus on work conducted by R.R. Hardy, an early pioneer and codiscoverer of B-1 cells, whose seminal contributions enhanced our understanding of this enigmatic B cell population.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA 95616
| |
Collapse
|
33
|
Progenitor B-1 B-cell acute lymphoblastic leukemia is associated with collaborative mutations in 3 critical pathways. Blood Adv 2017; 1:1749-1759. [PMID: 29296821 DOI: 10.1182/bloodadvances.2017009837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
Abstract
B-1 and B-2 lymphocytes are derived from distinct developmental pathways and represent layered arms of the innate and adaptive immune systems, respectively. In contrast to a majority of murine B-cell malignancies, which stain positive with the B220 antibody, we discovered a novel form of B-cell leukemia in NUP98-PHF23 (NP23) transgenic mice. The immunophenotype (Lin- B220- CD19+ AA4.1+) was identical to that of progenitor (pro) B-1 cells, and VH gene usage was skewed toward 3' V regions, similar to murine fetal liver B cells. Moreover, the gene expression profile of these leukemias was most similar to that of fetal liver pro-B fraction BC, a known source of B-1 B cells, further supporting a pro-B-1 origin of these leukemias. The NP23 pro-B-1 acute lymphoblastic leukemias (ALLs) acquired spontaneous mutations in both Bcor and Janus kinase (Jak) pathway (Jak1/2/3 and Stat5a) genes, supporting a hypothesis that mutations in 3 critical pathways (stem-cell self-renewal, B-cell differentiation, and cytokine signaling) collaborate to induce B-cell precursor (BCP) ALL. Finally, the thymic stromal lymphopoietin (Tslp) cytokine is required for murine B-1 development, and chromosomal rearrangements resulting in overexpression of the TSLP receptor (CRLF2) are present in some patients with high-risk BCP-ALL (referred to as CRLF2r ALL). Gene expression profiles of NP23 pro-B-1 ALL were more similar to that of CRLF2r ALL than non-CRLF2r ALL, and analysis of VH gene usage from patients with CRLF2r ALL demonstrated preferential usage of VH regions used by human B-1 B cells, leading to the suggestion that this subset of patients with BCP-ALL has a malignancy of B-1, rather than B-2, B-cell origin.
Collapse
|
34
|
Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining Natural Antibodies. Front Immunol 2017; 8:872. [PMID: 28798747 PMCID: PMC5526850 DOI: 10.3389/fimmu.2017.00872] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of Nabs may be required. Defining Nabs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined.
Collapse
Affiliation(s)
- Nichol E Holodick
- Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nely Rodríguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| | - Ana María Hernández
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
35
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Insights into immune system development and function from mouse T-cell repertoires. Proc Natl Acad Sci U S A 2017; 114:2253-2258. [PMID: 28196891 DOI: 10.1073/pnas.1700241114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of the adaptive immune system to respond to arbitrary pathogens stems from the broad diversity of immune cell surface receptors. This diversity originates in a stochastic DNA editing process (VDJ recombination) that acts on the surface receptor gene each time a new immune cell is created from a stem cell. By analyzing T-cell receptor (TCR) sequence repertoires taken from the blood and thymus of mice of different ages, we quantify the changes in the VDJ recombination process that occur from embryo to young adult. We find a rapid increase with age in the number of random insertions and a dramatic increase in diversity. Because the blood accumulates thymic output over time, blood repertoires are mixtures of different statistical recombination processes, and we unravel the mixture statistics to obtain a picture of the time evolution of the early immune system. Sequence repertoire analysis also allows us to detect the statistical impact of selection on the output of the VDJ recombination process. The effects we find are nearly identical between thymus and blood, suggesting that our analysis mainly detects selection for proper folding of the TCR receptor protein. We further find that selection is weaker in laboratory mice than in humans and it does not affect the diversity of the repertoire.
Collapse
|
37
|
Quách TD, Hopkins TJ, Holodick NE, Vuyyuru R, Manser T, Bayer RL, Rothstein TL. Human B-1 and B-2 B Cells Develop from Lin-CD34+CD38lo Stem Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:3950-3958. [PMID: 27815443 DOI: 10.4049/jimmunol.1600630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 12/24/2022]
Abstract
The B-1 B cell population is an important bridge between innate and adaptive immunity primarily because B-1 cells produce natural Ab. Murine B-1 and B-2 cells arise from distinct progenitors; however, in humans, in part because it has been difficult to discriminate between them phenotypically, efforts to pinpoint the developmental origins of human B-1 and B-2 cells have lagged. To characterize progenitors of human B-1 and B-2 cells, we separated cord blood and bone marrow Lin-CD34+ hematopoietic stem cells into Lin-CD34+CD38lo and Lin-CD34+CD38hi populations. We found that transplanted Lin-CD34+CD38lo cells, but not Lin-CD34+CD38hi cells, generated a CD19+ B cell population after transfer into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1wjl/SxJ neonates. The emergent CD19+ B cell population was found in spleen, bone marrow, and peritoneal cavity of humanized mice and included distinct populations displaying the B-1 or the B-2 cell phenotype. Engrafted splenic B-1 cells exhibited a mature phenotype, as evidenced by low-to-intermediate expression levels of CD24 and CD38. The engrafted B-1 cell population expressed a VH-DH-JH composition similar to cord blood B-1 cells, including frequent use of VH4-34 (8 versus 10%, respectively). Among patients with hematologic malignancies who underwent hematopoietic stem cell transplantation, B-1 cells were found in the circulation as early as 8 wk posttransplantation. Altogether, our data demonstrate that human B-1 and B-2 cells develop from a Lin-CD34+CD38lo stem cell population, and engrafted B-1 cells in humanized mice exhibit an Ig-usage pattern comparable to B-1 cells in cord blood.
Collapse
Affiliation(s)
- Tâm D Quách
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Raja Vuyyuru
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Tim Manser
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ruthee-Lu Bayer
- Monter Cancer Center, North Shore University Hospital, Northwell Health, Lake Success, NY 11042; and
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; .,Hofstra-Northwell Health School of Medicine, Hempstead, NY 11549
| |
Collapse
|
38
|
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, Mamedov IZ, Pogorelyy MV, Bolotin DA, Izraelson M, Davydov AN, Egorov ES, Kasatskaya SA, Rebrikov DV, Lukyanov S, Chudakov DM. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. THE JOURNAL OF IMMUNOLOGY 2016; 196:5005-13. [PMID: 27183615 DOI: 10.4049/jimmunol.1600005] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/16/2016] [Indexed: 01/29/2023]
Abstract
The diversity, architecture, and dynamics of the TCR repertoire largely determine our ability to effectively withstand infections and malignancies with minimal mistargeting of immune responses. In this study, we have employed deep TCRβ repertoire sequencing with normalization based on unique molecular identifiers to explore the long-term dynamics of T cell immunity. We demonstrate remarkable stability of repertoire, where approximately half of all T cells in peripheral blood are represented by clones that persist and generally preserve their frequencies for 3 y. We further characterize the extremes of lifelong TCR repertoire evolution, analyzing samples ranging from umbilical cord blood to centenarian peripheral blood. We show that the fetal TCR repertoire, albeit structurally maintained within regulated borders due to the lower numbers of randomly added nucleotides, is not limited with respect to observed functional diversity. We reveal decreased efficiency of nonsense-mediated mRNA decay in umbilical cord blood, which may reflect specific regulatory mechanisms in development. Furthermore, we demonstrate that human TCR repertoires are functionally more similar at birth but diverge during life, and we track the lifelong behavior of CMV- and EBV-specific T cell clonotypes. Finally, we reveal gender differences in dynamics of TCR diversity constriction, which come to naught in the oldest age. Based on our data, we propose a more general explanation for the previous observations on the relationships between longevity and immunity.
Collapse
Affiliation(s)
- Olga V Britanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail Shugay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ekaterina M Merzlyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy B Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina V Putintseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria A Turchaninova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Ilgar Z Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mikhail V Pogorelyy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitriy A Bolotin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Mark Izraelson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Alexey N Davydov
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Evgeny S Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| | - Sofya A Kasatskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Denis V Rebrikov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitriy M Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; Pirogov Russian National Research Medical University, Moscow 117997, Russia; Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; and
| |
Collapse
|
39
|
Holodick NE, Vizconde T, Hopkins TJ, Rothstein TL. Age-Related Decline in Natural IgM Function: Diversification and Selection of the B-1a Cell Pool with Age. THE JOURNAL OF IMMUNOLOGY 2016; 196:4348-57. [PMID: 27183643 DOI: 10.4049/jimmunol.1600073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 01/21/2023]
Abstract
Streptococcus pneumoniae is the most common cause of pneumonia, which claims the lives of people over the age of 65 y seven times more frequently than those aged 5-49 y. B-1a cells provide immediate and essential protection from S. pneumoniae through production of natural Ig, which has minimal insertion of N-region additions added by the enzyme TdT. In experiments with SCID mice infected with S. pneumoniae, we found passive transfer of IgG-depleted serum from aged (18-24 mo old) mice had no effect whereas IgG-depleted serum from young (3 mo old) mice was protective. This suggests protective natural IgM changes with age. Using single cell PCR we found N-region addition, which is initially low in fetal-derived B-1a cell IgM developing in the absence of TdT, increased in 7- to 24-mo-old mice as compared with 3-mo-old mice. To determine the mechanism responsible for the age related change in B-1a cell IgM, we established a mixed chimera system in which mice were reconstituted with allotype-marked mature peritoneal B-1a cells and adult bone marrow cells. We demonstrated even in the presence of mature peritoneal B-1a cells, adult bone marrow contributed to the mature B-1a cell pool. More importantly, using this system we found over a 10-mo-period peritoneal B-1a cell IgM changed, showing the number of cells lacking N-region additions at both junctions fell from 49 to 29% of sequences. These results strongly suggest selection-induced skewing alters B-1a cell-derived natural Ab, which may in turn be responsible for the loss of natural IgM-mediated protection against pneumococcal infection.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Manhasset, NY 11030;
| | - Teresa Vizconde
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Manhasset, NY 11030
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Manhasset, NY 11030
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Hofstra Northwell School of Medicine, Manhasset, NY 11030; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, NY 11030; and Department of Molecular Medicine, Hofstra Northwell School of Medicine, Manhasset, NY 11030
| |
Collapse
|
40
|
Holodick NE, Zeumer L, Rothstein TL, Morel L. Expansion of B-1a Cells with Germline Heavy Chain Sequence in Lupus Mice. Front Immunol 2016; 7:108. [PMID: 27047495 PMCID: PMC4805591 DOI: 10.3389/fimmu.2016.00108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
B6.Sle1.Sle2.Sle3 (B6.TC) lupus-prone mice carrying the NZB allele of Cdkn2c, encoding for the cyclin-dependent kinase inhibitor P18(INK4), accumulate B-1a cells due to a higher rate of proliferative self-renewal. However, it is unclear whether this affects primarily early-appearing B-1a cells of fetal origin or later-appearing B-1a cells that emerge from bone marrow. B-1a cells are the major source of natural autoantibodies, and it has been shown that their protective nature is associated with a germline-like sequence, which is characterized by few N-nucleotide insertions and a repertoire skewed toward rearrangements predominated during fetal life, VH11 and VH12. To determine the nature of B-1a cells expanded in B6.TC mice, we amplified immunoglobulin genes by PCR from single cells in mice. Sequencing showed a significantly higher proportion of B-1a cell antibodies that display fewer N-additions in B6.TC mice than in B6 control mice. Following this lower number of N-insertions within the CDR-H3 region, the B6.TC B-1a cells display shorter CDR-H3 length than B6 B-1a cells. The absence of N-additions is a surrogate for fetal origin, as TdT expression starts after birth in mice. Therefore, our results suggest that the B-1a cell population is not only expanded in autoimmune B6.TC mice but also qualitatively different with the majority of cells from fetal origin. Accordingly, our sequencing results also demonstrated the overuse of VH11 and VH12 in autoimmune B6.TC mice as compared to B6 controls. These results suggest that the development of lupus autoantibodies in these mice is coupled with skewing of the B-1a cell repertoire and possible retention of protective natural antibodies.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Leilani Zeumer
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, FL , USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, USA; Department of Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, USA; Department of Molecular Medicine, The Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida , Gainesville, FL , USA
| |
Collapse
|
41
|
Quách TD, Rodríguez-Zhurbenko N, Hopkins TJ, Guo X, Hernández AM, Li W, Rothstein TL. Distinctions among Circulating Antibody-Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood. THE JOURNAL OF IMMUNOLOGY 2016; 196:1060-9. [PMID: 26740107 DOI: 10.4049/jimmunol.1501843] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022]
Abstract
Human Ab-secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20(+)CD27(+)CD38(lo/int)CD43(+)) cell and conventional plasmablast (PB) (CD20-CD27(hi)CD38(hi)) cell populations, in this study, we identified a novel B cell population termed 20(+)38(hi) B cells (CD20(+)CD27(hi)CD38(hi)) that spontaneously secretes Ab. At steady-state, 20(+)38(hi) B cells are distinct from PBs on the basis of CD20 expression, amount of Ab production, frequency of mutation, and diversity of BCR repertoire. However, cytokine treatment of 20(+)38(hi) B cells induces loss of CD20 and acquisition of CD138, suggesting that 20(+)38(hi) B cells are precursors to PBs or pre-PBs. We then evaluated similarities and differences among CD20(+)CD27(+)CD38(lo/int)CD43(+) B-1 cells, CD20(+)CD27(hi)CD38(hi) 20(+)38(hi) B cells, CD20(-)CD27(hi)CD38(hi) PBs, and CD20(+)CD27(+)CD38(lo/int)CD43(-) memory B cells. We found that B-1 cells differ from 20(+)38(hi) B cells and PBs in a number of ways, including Ag expression, morphological appearance, transcriptional profiling, Ab skewing, Ab repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20(+)38(hi) B cells or PBs, but differ in that memory B cells do not express Ab secretion-related genes. We found that B-1 cell Abs use Vh4-34, which is often associated with autoreactivity, 3- to 6-fold more often than other B cell populations. Along with selective production of IgM anti-phosphoryl choline, these data suggest that human B-1 cells might be preferentially selected for autoreactivity/natural specificity. In summary, our results indicate that human healthy adult peripheral blood at steady-state consists of three distinct ASC populations.
Collapse
Affiliation(s)
- Tâm D Quách
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Nely Rodríguez-Zhurbenko
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; Tumor Immunology Direction, Center for Molecular Immunology, Havana 11600, Cuba; and
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Xiaoti Guo
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Ana María Hernández
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; Tumor Immunology Direction, Center for Molecular Immunology, Havana 11600, Cuba; and
| | - Wentian Li
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030;
| |
Collapse
|
42
|
Kidd MJ, Jackson KJL, Boyd SD, Collins AM. DJ Pairing during VDJ Recombination Shows Positional Biases That Vary among Individuals with Differing IGHD Locus Immunogenotypes. THE JOURNAL OF IMMUNOLOGY 2015; 196:1158-64. [PMID: 26700767 DOI: 10.4049/jimmunol.1501401] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
Abstract
Human IgH diversity is influenced by biases in the pairing of IGHD and IGHJ genes, but these biases have not been described in detail. We used high-throughput sequencing of VDJ rearrangements to explore DJ pairing biases in 29 individuals. It was possible to infer three contrasting IGHD-IGHJ haplotypes in nine of these individuals, and two of these haplotypes include deletion polymorphisms involving multiple contiguous IGHD genes. Therefore, we were able to explore how the underlying genetic makeup of the H chain locus influences the formation of particular DJ pairs. Analysis of nonproductive rearrangements demonstrates that 3' IGHD genes tend to pair preferentially with 5' IGHJ genes, whereas 5' IGHD genes pair preferentially with 3' IGHJ genes; the relationship between IGHD gene pairing frequencies and IGHD gene position is a near linear one for each IGHJ gene. However, striking differences are seen in individuals who carry deletion polymorphisms in the D locus. The absence of different blocks of IGHD genes leads to increases in the utilization frequencies of just a handful of genes, and these genes have no clear positional relationships to the deleted genes. This suggests that pairing frequencies may be influenced by additional complex positional relationships that perhaps arise from chromatin structure. In contrast to IGHD gene usage, IGHJ gene usage is unaffected by the IGHD gene-deletion polymorphisms. Such an outcome would be expected if the recombinase complex associates with an IGHJ gene before associating with an IGHD gene partner.
Collapse
Affiliation(s)
- Marie J Kidd
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia; and
| | - Katherine J L Jackson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia; and Department of Pathology, Stanford University, Stanford, CA 94305
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia; and
| |
Collapse
|
43
|
Yang Y, Wang C, Yang Q, Kantor AB, Chu H, Ghosn EE, Qin G, Mazmanian SK, Han J, Herzenberg LA. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife 2015; 4:e09083. [PMID: 26422511 PMCID: PMC4714975 DOI: 10.7554/elife.09083] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022] Open
Abstract
Processes that define immunoglobulin repertoires are commonly presumed to be the same for all murine B cells. However, studies here that couple high-dimensional FACS sorting with large-scale quantitative IgH deep-sequencing demonstrate that B-1a IgH repertoire differs dramatically from the follicular and marginal zone B cells repertoires and is defined by distinct mechanisms. We track B-1a cells from their early appearance in neonatal spleen to their long-term residence in adult peritoneum and spleen. We show that de novo B-1a IgH rearrangement mainly occurs during the first few weeks of life, after which their repertoire continues to evolve profoundly, including convergent selection of certain V(D)J rearrangements encoding specific CDR3 peptides in all adults and progressive introduction of hypermutation and class-switching as animals age. This V(D)J selection and AID-mediated diversification operate comparably in germ-free and conventional mice, indicating these unique B-1a repertoire-defining mechanisms are driven by antigens that are not derived from microbiota. DOI:http://dx.doi.org/10.7554/eLife.09083.001 Our immune system protects us by recognizing and destroying invading viruses, bacteria and other microbes. B cells are immune cells that produce protective proteins called antibodies to stop infections. These cells are activated by ‘antigens’, which are fragments of molecules from the microbes or from our own cells. When an antigen binds to a B cell, the cell matures, multiplies and produces proteins called antibodies. These antibodies can bind to the antigen, which marks the microbe for attack and removal by other cells in the immune system. Each antibody consists of two ‘heavy chain’ and two ‘light chain’ proteins. B cells are able to produce a large variety of different antibodies due to the rearrangement of the gene segments that encode the heavy and light chains. In mice, there are two kinds of B cells – known as B-1a and B-2 cells – that play different roles in immune responses. B-1a cells have long been known to produce the ‘natural’ antibodies that are present in the blood prior to an infection. On the other hand, B-2 cells produce antibodies that are specifically stimulated by an infection and are better adapted to fighting it. Previous studies have shown that both types of antibodies are required to allow animals to successfully fight the flu virus. Here, Yang, Wang et al. used a technique called fluorescence-activated cell sorting (or FACS) and carried out extensive genomic sequencing to study how the B-1a and B-2 populations rearrange their genes to produce heavy chains. This approach made it possible to separate the different types of B cells and then sequence the gene for the heavy chain within the individual cells. The experiments show that the “repertoire” of heavy chains in the antibodies of the B-1a cells is much less random and more repetitive than that of B-2 populations. Furthermore, Yang, Wang et al. show that B-1a cells produce and maintain their repertoire of heavy chains in a different way to other B-2 populations. B-1a cells develop earlier and the major genetic rearrangements in the gene that encodes the heavy chain occur within the first few weeks of life. Although the gene rearrangements have mostly stopped by adulthood, the B-1a antibody repertoire continues to evolve profoundly as the B-1a cells divide over the life of the animal. On the other hand, the gene rearrangements that make the heavy chains in the B-2 cells continue throughout the life of the animal to produce the wider repertoire of antibodies found in these cells. In addition, the processes that continue to change the antibody reperotire in the B-1a cells during adulthood do not occur in the B-2 populations. Importantly, the these reperotire-changing processes in B-1a cells also occur in mice that have been raised in germ-free conditions, which demonstrates that – unlike other B cells – the repertoire of heavy chains in B-1a cells is not influenced by antigens from microbes. Instead, it is mainly driven by antigens that are expressed by normal cells in the body. These findings open the way to future work aimed at understanding how B-1a cells help to protect us against infection, and their role in autoimmune diseases, where immune cells attack the body’s own healthy cells. DOI:http://dx.doi.org/10.7554/eLife.09083.002
Collapse
Affiliation(s)
- Yang Yang
- Genetics Department, Stanford University, Stanford, United States
| | - Chunlin Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Qunying Yang
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - Aaron B Kantor
- Genetics Department, Stanford University, Stanford, United States
| | - Hiutung Chu
- Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
| | - Eliver Eb Ghosn
- Genetics Department, Stanford University, Stanford, United States
| | - Guang Qin
- Genetics Department, Stanford University, Stanford, United States
| | - Sarkis K Mazmanian
- Biology and Biological Engineering Department, California Institute of Technology, Pasadena, United States
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | | |
Collapse
|
44
|
Silva-Sanchez A, Liu CR, Vale AM, Khass M, Kapoor P, Elgavish A, Ivanov II, Ippolito GC, Schelonka RL, Schoeb TR, Burrows PD, Schroeder HW. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies. PLoS One 2015; 10:e0118171. [PMID: 25706374 PMCID: PMC4338297 DOI: 10.1371/journal.pone.0118171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022] Open
Abstract
Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.
Collapse
Affiliation(s)
- Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cun Ren Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andre M. Vale
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Program in Immunobiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mohamed Khass
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Genetic Engineering Division, National Research Center of Egypt, Ad Doqi, Egypt
| | - Pratibha Kapoor
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ada Elgavish
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ivaylo I. Ivanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gregory C. Ippolito
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert L. Schelonka
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Trenton R. Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Harry W. Schroeder
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kearney JF, Patel P, Stefanov EK, King RG. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu Rev Immunol 2015; 33:475-504. [PMID: 25622195 DOI: 10.1146/annurev-immunol-032713-120140] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma.
Collapse
Affiliation(s)
- John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294;
| | | | | | | |
Collapse
|
46
|
Battista JM, Tallmadge RL, Stokol T, Felippe MJB. Hematopoiesis in the equine fetal liver suggests immune preparedness. Immunogenetics 2014; 66:635-49. [PMID: 25179685 PMCID: PMC4198492 DOI: 10.1007/s00251-014-0799-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/19/2014] [Indexed: 01/26/2023]
Abstract
We investigated how the equine fetus prepares its pre-immune humoral repertoire for an imminent exposure to pathogens in the neonatal period, particularly how the primary hematopoietic organs are equipped to support B cell hematopoiesis and immunoglobulin (Ig) diversity. We demonstrated that the liver and the bone marrow at approximately 100 days of gestation (DG) are active sites of hematopoiesis based on the expression of signature messenger RNA (mRNA) (c-KIT, CD34, IL7R, CXCL12, IRF8, PU.1, PAX5, NOTCH1, GATA1, CEBPA) and protein markers (CD34, CD19, IgM, CD3, CD4, CD5, CD8, CD11b, CD172A) of hematopoietic development and leukocyte differentiation molecules, respectively. To verify Ig diversity achieved during the production of B cells, V(D)J segments were sequenced in primary lymphoid organs of the equine fetus and adult horse, revealing that similar heavy chain VDJ segments and CDR3 lengths were most frequently used independent of life stage. In contrast, different lambda light chain segments were predominant in equine fetal compared to adult stage, and surprisingly, the fetus had less restricted use of variable gene segments to construct the lambda chain. Fetal Igs also contained elements of sequence diversity, albeit to a smaller degree than that of the adult horse. Our data suggest that the B cells produced in the liver and bone marrow of the equine fetus generate a wide repertoire of pre-immune Igs for protection, and the more diverse use of different lambda variable gene segments in fetal life may provide the neonate an opportunity to respond to a wider range of antigens at birth.
Collapse
Affiliation(s)
- JM Battista
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - RL Tallmadge
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - T Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA,
| | - MJB Felippe
- Equine Immunology Lab, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
47
|
Liljavirta J, Niku M, Pessa-Morikawa T, Ekman A, Iivanainen A. Expansion of the preimmune antibody repertoire by junctional diversity in Bos taurus. PLoS One 2014; 9:e99808. [PMID: 24926997 PMCID: PMC4057420 DOI: 10.1371/journal.pone.0099808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022] Open
Abstract
Cattle have a limited range of immunoglobulin genes which are further diversified by antigen independent somatic hypermutation in fetuses. Junctional diversity generated during somatic recombination contributes to antibody diversity but its relative significance has not been comprehensively studied. We have investigated the importance of terminal deoxynucleotidyl transferase (TdT) -mediated junctional diversity to the bovine immunoglobulin repertoire. We also searched for new bovine heavy chain diversity (IGHD) genes as the information of the germline sequences is essential to define the junctional boundaries between gene segments. New heavy chain variable genes (IGHV) were explored to address the gene usage in the fetal recombinations. Our bioinformatics search revealed five new IGHD genes, which included the longest IGHD reported so far, 154 bp. By genomic sequencing we found 26 new IGHV sequences that represent potentially new IGHV genes or allelic variants. Sequence analysis of immunoglobulin heavy chain cDNA libraries of fetal bone marrow, ileum and spleen showed 0 to 36 nontemplated N-nucleotide additions between variable, diversity and joining genes. A maximum of 8 N nucleotides were also identified in the light chains. The junctional base profile was biased towards A and T nucleotide additions (64% in heavy chain VD, 52% in heavy chain DJ and 61% in light chain VJ junctions) in contrast to the high G/C content which is usually observed in mice. Sequence analysis also revealed extensive exonuclease activity, providing additional diversity. B-lymphocyte specific TdT expression was detected in bovine fetal bone marrow by reverse transcription-qPCR and immunofluorescence. These results suggest that TdT-mediated junctional diversity and exonuclease activity contribute significantly to the size of the cattle preimmune antibody repertoire already in the fetal period.
Collapse
Affiliation(s)
- Jenni Liljavirta
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mikael Niku
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Anna Ekman
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
48
|
Holodick NE, Vizconde T, Rothstein TL. Splenic B-1a Cells Expressing CD138 Spontaneously Secrete Large Amounts of Immunoglobulin in Naïve Mice. Front Immunol 2014; 5:129. [PMID: 24734034 PMCID: PMC3975111 DOI: 10.3389/fimmu.2014.00129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023] Open
Abstract
B-1a cells constitutively secrete natural antibody that provides immediate protection against microbial pathogens and functions homeostatically to speed removal of apoptotic cell debris. Although B-1a cells are especially prominent in the peritoneal and pleural cavities, some B-1a cells reside in the spleen. A small subset of splenic B-1a cells in naïve, unimmunized mice express CD138, a recognized plasma cell antigen, whereas the bulk of splenic B-1a cells are CD138 negative. Splenic B-1a cells in toto have been shown to generate much more antibody per cell than peritoneal B-1a cells; however, specific functional information regarding CD138+ splenic B-1a cells has been lacking. Here, we find a higher proportion of CD138+ splenic B-1a cells spontaneously secrete more IgM as compared to CD138− B-1a cells. Moreover, IgM secreted by CD138+ splenic B-1a cells is skewed with respect to N-region addition, and some aspects of VH and JH utilization, as compared to CD138− splenic B-1a cells and peritoneal B-1a cells. The small population of CD138+ splenic B-1a cells is likely responsible for a substantial portion of natural IgM and differs from IgM produced by other B-1a cell subsets.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Teresa Vizconde
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research , Manhasset, NY , USA ; Departments of Medicine and Molecular Medicine, Hofstra North Shore-LIJ School of Medicine , Manhasset, NY , USA
| |
Collapse
|
49
|
Holodick NE, Vizconde T, Rothstein TL. B-1a cell diversity: nontemplated addition in B-1a cell Ig is determined by progenitor population and developmental location. THE JOURNAL OF IMMUNOLOGY 2014; 192:2432-41. [PMID: 24477911 DOI: 10.4049/jimmunol.1300247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural Abs produced by B-1a cells are required for immediate protection against infection. The protective capacity of natural Abs is attributed to germline-like structure, which includes the relative absence of N-region addition. Previous studies have shown B-1a cell Ig from aged mice contains abundant nontemplated (N)-additions. B-1a cells have been shown to derive from a specific lineage-negative (Lin(-))CD45R(low/-)CD19(+) progenitor found both in fetal liver and adult bone marrow. In this study, we report identification of a fetal liver population characterized phenotypically as Lin(-)CD45R(-)CD19(-), which gives rise to IgM(+)IgD(low)CD45R(low)CD5(+)Mac-1(+)CD19(high)CD43(+)CD23(low) B-1a cells upon adoptive transfer to SCID recipients. These B-1a cells derived from the Lin(-)CD45R(-)CD19(-) fetal liver population produce natural Ab that binds pneumococcal Ags, but this Ig contains substantial N-addition despite initial absence of TdT. Furthermore, we show extensive N-addition is also present in B-1a cells derived from the Lin(-)CD45R(low/-)CD19(+) B-1 progenitor found in the bone marrow. Together these results demonstrate B-1a cell N-addition depends on the type of progenitor and the location of the progenitor during its development. These findings have implications for how regulation of different progenitors from fetal liver and bone marrow may play a role in the age-related increase in N-region addition by B-1a cells in normal animals.
Collapse
Affiliation(s)
- Nichol E Holodick
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | | | | |
Collapse
|
50
|
Abstract
γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection.
Collapse
|