1
|
Silver RM. E Carwile LeRoy, MD. Rheum Dis Clin North Am 2024; 50:33-45. [PMID: 37973284 DOI: 10.1016/j.rdc.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
E. Carwile LeRoy, M.D. was a pioneer in the study of systemic sclerosis (SSc, scleroderma). His early medical training was strongly influenced by notable clinical investigators including Dr Kenneth Brinkhous, Dr Charles Christian and Dr Albert Sjoerdsma. Dr LeRoy is remembered for his seminal observations on the over-production of collagen by scleroderma fibroblasts and for his vascular hypothesis on the pathogenesis of scleroderma. The Division of Rheumatology & Immunology at the Medical University of South Carolina, established by Dr LeRoy, is world renowned for its clinical and translational studies of scleroderma and has produced many of the leaders in the international scleroderma community.
Collapse
Affiliation(s)
- Richard M Silver
- Division of Rheumatology & Immunology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 822, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Curtiss P, Svigos K, Schwager Z, Lo Sicco K, Franks AG. Part I: Epidemiology, pathophysiology, and clinical considerations of primary and secondary Raynaud's phenomenon. J Am Acad Dermatol 2024; 90:223-234. [PMID: 35809798 DOI: 10.1016/j.jaad.2022.06.1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
Abstract
Raynaud's phenomenon (RP) is a relatively common disease with both primary and secondary forms. It is well understood as a vasospastic condition affecting the acral and digital arteries, resulting in characteristic, well-demarcated color changes typically in the hands and feet in response to cold or stress. Secondary RP (SRP) has been described in association with a variety of rheumatologic and nonrheumatologic diseases, environmental exposures, and/or medications. While both primary RP and SRP may impact the quality of life, SRP may lead to permanent and potentially devastating tissue destruction when undiagnosed and untreated. It is therefore crucial for dermatologists to distinguish between primary and secondary disease forms early in clinical evaluation, investigate potential underlying causes, and risk stratify SRP patients for the development of associated autoimmune connective tissue disease. The epidemiology, pathogenesis, and clinical presentation and diagnosis of both forms of RP are described in detail in this review article.
Collapse
Affiliation(s)
- Paul Curtiss
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Katerina Svigos
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Zachary Schwager
- Department of Dermatology, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Kristen Lo Sicco
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York.
| | - Andrew G Franks
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York; Department of Internal Medicine, Division of Rheumatology, New York University School of Medicine, New York, New York
| |
Collapse
|
3
|
Jimenez SA, Piera-Velazquez S. Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis. Curr Rheumatol Rev 2024; 20:388-404. [PMID: 37921216 DOI: 10.2174/0115733971261932231025045400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 11/04/2023]
Abstract
Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.
Collapse
Affiliation(s)
- Sergio A Jimenez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| | - Sonsoles Piera-Velazquez
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia 19107, USA
| |
Collapse
|
4
|
Moccaldi B, De Michieli L, Binda M, Famoso G, Depascale R, Perazzolo Marra M, Doria A, Zanatta E. Serum Biomarkers in Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24044178. [PMID: 36835590 PMCID: PMC9967966 DOI: 10.3390/ijms24044178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of connective tissue diseases (CTDs) characterised by increased pulmonary arterial pressure and pulmonary vascular resistance. CTD-PAH is the result of a complex interplay among endothelial dysfunction and vascular remodelling, autoimmunity and inflammatory changes, ultimately leading to right heart dysfunction and failure. Due to the non-specific nature of the early symptoms and the lack of consensus on screening strategies-except for systemic sclerosis, with a yearly transthoracic echocardiography as recommended-CTD-PAH is often diagnosed at an advanced stage, when the pulmonary vessels are irreversibly damaged. According to the current guidelines, right heart catheterisation is the gold standard for the diagnosis of PAH; however, this technique is invasive, and may not be available in non-referral centres. Hence, there is a need for non-invasive tools to improve the early diagnosis and disease monitoring of CTD-PAH. Novel serum biomarkers may be an effective solution to this issue, as their detection is non-invasive, has a low cost and is reproducible. Our review aims to describe some of the most promising circulating biomarkers of CTD-PAH, classified according to their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Beatrice Moccaldi
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marco Binda
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Famoso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Depascale
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-0498212190
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
5
|
Arrhythmias and Conduction Disturbances in Patients with Systemic Sclerosis—A Systematic Literature Review. Int J Mol Sci 2022; 23:ijms232112963. [PMID: 36361752 PMCID: PMC9658897 DOI: 10.3390/ijms232112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin and internal organ fibrosis and microvascular impairment, which can affect major organs, including the heart. Arrhythmias are responsible for approximately 6% of deaths in patients with SSc, and mainly occur due to myocardial fibrosis, which causes electrical inhomogeneity. The aim of this study was to determine the frequency of arrhythmias and conduction disturbances in SSc cohorts, and to identify the characteristics and risk factors associated with the occurrence of dysrhythmias in patients with SSc. A systematic literature review using PubMed, Embase, Web of Science and Scopus databases was performed. Full-text articles in English with arrhythmias as the main topic published until 21 April 2022 were included. Most prevalent arrhythmias were premature supraventricular and ventricular contractions, while the most frequent conduction disturbance was represented by right bundle branch block (RBBB). Elevated concentrations of N-terminal prohormones of brain natriuretic peptides (NT-pro BNP) were associated with numerous types of atrial and ventricular arrhythmias, and with the occurrence of RBBB. A lower value of the turbulence slope (TS) emerged as an independent predictor for ventricular arrhythmias. In conclusion, dysrhythmias are frequent in SSc cohorts. Paraclinical and laboratory parameters are useful instruments that could lead to early diagnosis in the course of the disease.
Collapse
|
6
|
Paolini C, Agarbati S, Benfaremo D, Mozzicafreddo M, Svegliati S, Moroncini G. PDGF/PDGFR: A Possible Molecular Target in Scleroderma Fibrosis. Int J Mol Sci 2022; 23:ijms23073904. [PMID: 35409263 PMCID: PMC8999630 DOI: 10.3390/ijms23073904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous disorder of the connective tissue characterized by vascular alterations, immune/inflammatory manifestations, and organ fibrosis. SSc pathogenesis is complex and still poorly understood. Therefore, effective therapies are lacking and remain nonspecific and limited to disease symptoms. In the last few years, many molecular and cellular mediators of SSc fibrosis have been described, providing new potential options for targeted therapies. In this review: (i) we focused on the PDGF/PDGFR pathway as key signaling molecules in the development of tissue fibrosis; (ii) we highlighted the possible role of stimulatory anti-PDGFRα autoantibodies in the pathogenesis of SSc; (iii) we reported the most promising PDGF/PDGFR targeting therapies.
Collapse
Affiliation(s)
- Chiara Paolini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Devis Benfaremo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (C.P.); (S.A.); (D.B.); (M.M.); (S.S.)
- Department of Internal Medicine, Clinica Medica, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy
- Correspondence:
| |
Collapse
|
7
|
Rosendahl AH, Schönborn K, Krieg T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J Med Sci 2022; 38:187-195. [PMID: 35234358 DOI: 10.1002/kjm2.12505] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (scleroderma) is an autoimmune-triggered chronic fibrosing disease that affects the skin and many other organs. Its pathophysiology is complex and involves an early endothelial damage, an inflammatory infiltrate and a resulting fibrotic reaction. Based on a predisposing genetic background, an altered balance of the acquired and the innate immune system leads to the release of many cytokines and chemokines as well as autoantibodies, which induce the activation of fibroblasts with the formation of myofibroblasts and the deposition of a stiff and rigid connective tissue. A curative treatment is still not available but remarkable progress has been made in the management of organ complications. In addition, several breakthroughs in the pathophysiology have led to new therapeutic concepts. Based on these, many new compounds have been developed during the last years, which target these different pathways and offer specific therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Helen Rosendahl
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Dermatology, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cytokines Involved in the Pathogenesis of SSc and Problems in the Development of Anti-Cytokine Therapy. Cells 2021; 10:cells10051104. [PMID: 34064515 PMCID: PMC8147957 DOI: 10.3390/cells10051104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology. SSc causes damage to the skin and various organs including the lungs, heart, and digestive tract, but the extent of the damage varies from patient to patient. The pathology of SSc includes ischemia, inflammation, and fibrosis, but the degree of progression varies from case to case. Many cytokines have been reported to be involved in the pathogenesis of SSc: interleukin-6 is associated with inflammation and transforming growth factor-β and interleukin-13 are associated with fibrosis. Therapeutic methods to control these cytokines have been proposed; however, which cytokines have a dominant role in SSc might differ depending on the extent of visceral lesions and the stage of disease progression. Therefore, it is necessary to consider the disease state of the patient to be targeted and the type of evaluation method when an anti-cytokine therapy is conducted. Here, we review the pathology of SSc and potential cytokine targets, especially interleukin-6, as well as the use of anti-cytokine therapy for SSc.
Collapse
|
10
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
11
|
TGFβ-1 Induced Cross-Linking of the Extracellular Matrix of Primary Human Dermal Fibroblasts. Int J Mol Sci 2021; 22:ijms22030984. [PMID: 33498156 PMCID: PMC7863744 DOI: 10.3390/ijms22030984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.
Collapse
|
12
|
Ravi S, Sayed CJ. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. CURRENT GERIATRICS REPORTS 2019. [DOI: 10.1007/s13670-019-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Mirsaeidi M, Barletta P, Glassberg MK. Systemic Sclerosis Associated Interstitial Lung Disease: New Directions in Disease Management. Front Med (Lausanne) 2019; 6:248. [PMID: 31737640 PMCID: PMC6834642 DOI: 10.3389/fmed.2019.00248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
A subgroup of patients with systemic sclerosis (SSc) develop interstitial lung disease (ILD), characterized by inflammation and progressive scarring of the lungs that can lead to respiratory failure. Although ILD remains the major cause of death in these individuals, there is no consensus statement regarding the classification and characterization of SSc-related ILD (SSc-ILD). Recent clinical trials address the treatment of SSc-ILD and the results may lead to new disease-altering therapies. In this review, we provide an update to the diagnosis, management and treatment of SSc-ILD.
Collapse
Affiliation(s)
- Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pamela Barletta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn K Glassberg
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
14
|
Almadori A, Griffin M, Ryan CM, Hunt DF, Hansen E, Kumar R, Abraham DJ, Denton CP, Butler PEM. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis. PLoS One 2019; 14:e0218068. [PMID: 31314805 PMCID: PMC6636710 DOI: 10.1371/journal.pone.0218068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Oro-facial fibrosis in systemic sclerosis (Scleroderma;SSc) has a major impact on mouth function, facial appearance, and patient quality of life. Lipotransfer is a method of reconstruction that can be used in the treatment of oro-facial fibrosis. The effect of this treatment not only restores oro-facial volume but has also been found to reverse the effects of oro-facial fibrosis. Adipose derived stem cells (ADSCs) within the engrafted adipose tissue have been shown to be anti-fibrotic in SSc and are proposed as the mechanism of the anti-fibrotic effect of lipotransfer. A cohort of 62 SSc patients with oro-facial fibrosis were assessed before and after stem cell enriched lipotransfer treatment. Clinical evaluation included assessment of mouth function using a validated assessment tool (Mouth Handicap in Systemic Sclerosis Scale-MHISS), validated psychological measurements and pre and post-operative volumetric assessment. In addition, to understand the mechanism by which the anti-fibrotic effect of ADSCs occur, SSc derived fibroblasts and ADSCs from this cohort of patients were co-cultured in direct and indirect culture systems and compared to monoculture controls. Cell viability, DNA content, protein secretion of known fibrotic mediators including growth factor- β1 (TGF β-1) and connective tissue growth factor (CTGF) using ELISA analysis and fibrosis gene expression using a fibrosis pathway specific qPCR array were evaluated. Mouth function (MHISS) was significantly improved (6.85±5.07) (p<0.0001) after treatment. All psychological measures were significantly improved: DAS 24 (12.1±9.5) (p<0.0001); HADS-anxiety (2.8±3.2) (p<0.0001), HADS-depression (2.0±3.1) (p<0.0001); BFNE (2.9 ± 4.3) (p<0.0001); VAS (3.56±4.1) (p<0.0001). Multiple treatments further improved mouth function (p<0.05), DAS (p<0.0001) and VAS (p = 0.01) scores. SSc fibroblast viability and proliferation was significantly reduced in co-culture compared to monoculture via a paracrine effect over 14 days (p < 0.0001). Protein secretion of transforming growth factor (TGF-β1) and connective tissue growth factor (CTGF) was significantly reduced in co-culture compared to monoculture (p < 0.0001). Multiple fibrosis associated genes were down regulated in SSc co-culture compared to monoculture after 14 days including Matrix metalloproteinase-8 (MMMP-8), Platelet derived growth factor-β (PDGF-β) and Integrin Subunit Beta 6 (ITG-β6). Autologous stem cell enriched lipotransfer significantly improved the effects of oro-facial fibrosis in SSc in this open cohort study. Lipotransfer may reduce dermal fibrosis through the suppression of fibroblast proliferation and key regulators of fibrogenesis including TG-β1 and CTGF. Our findings warrant further investigation in a randomised controlled trial.
Collapse
Affiliation(s)
- Aurora Almadori
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Michelle Griffin
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- * E-mail: (MG); (PEMB)
| | - Caroline M. Ryan
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Debbie F. Hunt
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Esther Hansen
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Ravi Kumar
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - David J. Abraham
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Christopher P. Denton
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
| | - Peter E. M. Butler
- UCL Division of Surgery & Interventional Science, University College London, London, United Kingdom
- Department of Plastic Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- The Charles Wolfson Center for Reconstructive Surgery, Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- Centre for Rheumatology, UCL Division of Medicine and Royal Free London NHS Foundation Trust Hospital, London, United Kingdom
- * E-mail: (MG); (PEMB)
| |
Collapse
|
15
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
16
|
Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, Morando S, Trojano M, Kerlero de Rosbo N, Uccelli A, Virgintino D. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS One 2019; 14:e0213508. [PMID: 30870435 PMCID: PMC6417733 DOI: 10.1371/journal.pone.0213508] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/24/2019] [Indexed: 01/09/2023] Open
Abstract
During experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis associated with blood-brain barrier (BBB) disruption, oligodendrocyte precursor cells (OPCs) overexpress proteoglycan nerve/glial antigen 2 (NG2), proliferate, and make contacts with the microvessel wall. To explore whether OPCs may actually be recruited within the neurovascular unit (NVU), de facto intervening in its cellular and molecular composition, we quantified by immunoconfocal morphometry the presence of OPCs in contact with brain microvessels, during postnatal cerebral cortex vascularization at postnatal day 6, in wild-type (WT) and NG2 knock-out (NG2KO) mice, and in the cortex of adult naïve and EAE-affected WT and NG2KO mice. As observed in WT mice during postnatal development, a higher number of juxtavascular and perivascular OPCs was revealed in adult WT mice during EAE compared to adult naïve WT mice. In EAE-affected mice, OPCs were mostly associated with microvessels that showed altered claudin-5 and occludin tight junction (TJ) staining patterns and barrier leakage. In contrast, EAE-affected NG2KO mice, which did not show any significant increase in vessel-associated OPCs, seemed to retain better preserved TJs and BBB integrity. As expected, absence of NG2, in both OPCs and pericytes, led to a reduced content of vessel basal lamina molecules, laminin, collagen VI, and collagen IV. In addition, analysis of the major ligand/receptor systems known to promote OPC proliferation and migration indicated that vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor-AA (PDGF-AA), and the transforming growth factor-β (TGF-β) were the molecules most likely involved in proliferation and recruitment of vascular OPCs during EAE. These results were confirmed by real time-PCR that showed Fgf2, Pdgfa and Tgfb expression on isolated cerebral cortex microvessels and by dual RNAscope-immunohistochemistry/in situ hybridization (IHC/ISH), which detected Vegfa and Vegfr2 transcripts on cerebral cortex sections. Overall, this study suggests that vascular OPCs, in virtue of their developmental arrangement and response to neuroinflammation and growth factors, could be integrated among the classical NVU cell components. Moreover, the synchronized activation of vascular OPCs and pericytes during both BBB development and dysfunction, points to NG2 as a key regulator of vascular interactions.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Carlotta Alias
- B+LabNet—Environmental Sustainability Lab, University of Brescia, Brescia, Italy
| | - Giovanni Ferrara
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Sara Morando
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
| | - Nicole Kerlero de Rosbo
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
| | - Antonio Uccelli
- Department of Neurosciences, Ophthalmology, Genetics, Rehabilitation and Child Health, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino–IRCCS, Genoa, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail: (DV); (FG)
| |
Collapse
|
17
|
Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E, Rossi FM, Brandan E. The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors’ fate. J Cell Sci 2019; 132:jcs.232157. [DOI: 10.1242/jcs.232157] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Meilyn Cruz-Soca
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lin Wei Tung
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. Rossi
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
19
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Moroncini G, Svegliati Baroni S, Gabrielli A. Agonistic antibodies in systemic sclerosis. Immunol Lett 2017; 195:83-87. [PMID: 29032187 DOI: 10.1016/j.imlet.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Systemic sclerosis (SSc) is characterized by microangiopathy, excessive fibrosis, and the presence of circulating autoantibodies to several cellular and extracellular components. The role of autoimmunity in generating the clinical and pathologic phenotypes in SSc has been long debated and is still matter of controversy. Distinct specificities of antinuclear antibodies (ANAs) are selectively detected in SSc patients and are associated with unique disease manifestations, but do not have a proven pathogenic role. A new group of autoantibodies reactive with cell surface receptors have been identified in SSc patients. They have been shown to directly activate pathways that may contribute to tissue and vascular damage. As such, they are proposed to have a role as agonistic autoantibodies in SSc. According to Koch's third postulate, the autoantibodies in question should cause disease when introduced into a healthy subject. Therefore, our review will focus on those autoantibodies for which agonistic activity has already been demonstrated not only in vitro, but, at least partly, also in vivo. These include the antibodies anti-endothelial cells (AECA), anti-Platelet-Derived Growth Factor Receptor (PDGFR), anti-Angiotensin II type 1 receptor (AT1R) and anti-endothelin-1 type A receptor (ETaR). In this review, we will discuss also a class of antagonistic autoantibodies, the anti-muscarinic-3 receptor (M3R) antibodies, since they seem to fulfill the aforementioned requirements.
Collapse
Affiliation(s)
- Gianluca Moroncini
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, 60126, Italy
| | - Silvia Svegliati Baroni
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, 60126, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, 60126, Italy.
| |
Collapse
|
21
|
Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000249] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by early microvascular abnormalities, immune dysregulation and chronic inflammation, and subsequent fibrosis of the skin and internal organs. Excessive fibrosis, distinguishing hallmark of SSc, is the end result of a complex series of interlinked vascular injury and immune activation, and represents a maladaptive repair process. Activated vascular, epithelial, and immune cells generate pro-fibrotic cytokines, chemokines, growth factors, lipid mediators, autoantibodies, and reactive oxygen species. These paracrine and autocrine cues in turn induce activation, differentiation, and survival of mesenchymal cells, ensuing tissue fibrosis through increased collagen synthesis, matrix deposition, tissue rigidity and remodeling, and vascular rarefaction. This review features recent insights of the pathogenic process of SSc, highlighting three major characteristics of SSc, microvasculopathy, excessive fibrosis, and immune dysregulation, and sheds new light on the understanding of molecular and cellular mechanisms contributing to the pathogenesis of SSc and providing novel avenues for targeted therapies.
Collapse
|
22
|
Makino K, Makino T, Stawski L, Mantero JC, Lafyatis R, Simms R, Trojanowska M. Blockade of PDGF Receptors by Crenolanib Has Therapeutic Effect in Patient Fibroblasts and in Preclinical Models of Systemic Sclerosis. J Invest Dermatol 2017; 137:1671-1681. [PMID: 28433542 DOI: 10.1016/j.jid.2017.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/21/2017] [Accepted: 03/10/2017] [Indexed: 01/02/2023]
Abstract
Systemic sclerosis (SSc) is a multi-organ fibrotic disease with few treatment options. Activated fibroblasts are the key effector cells in SSc responsible for the excessive production of collagen and the development of fibrosis. Platelet-derived growth factor (PDGF), a potent mitogen for cells of mesenchymal origin, has been implicated in the activation of SSc fibroblasts. Our aim was to examine the therapeutic potential of crenolanib, an inhibitor of PDGF receptor signaling, in cultured fibroblasts and in angiotensin II-induced skin and heart fibrosis. Crenolanib effectively inhibited proliferation and migration of SSc and healthy control fibroblasts and attenuated basal and transforming growth factor-β-induced expression of CCN2/CTGF and periostin. In contrast to healthy control fibroblasts, SSc fibroblasts proliferated in response to PDGFAA, whereas a combination of PDGFAA and CCN2 was required to elicit a similar response in healthy control fibroblasts. PDGF receptor α mRNA correlated with CCN2 and other fibrotic markers in the skin of SSc patients. In mice challenged with angiotensin II, PDGF receptor α-positive cells were increased in the skin and heart. These PDGF receptor α-positive cells co-localized with PDGF receptor β, procollagen, and periostin. Treatment with crenolanib attenuated the skin and heart fibrosis. Our data indicate that inhibition of PDGF signaling presents an attractive therapeutic approach for SSc.
Collapse
Affiliation(s)
- Katsunari Makino
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tomoko Makino
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Julio C Mantero
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Robert Simms
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
23
|
Marcelin G, Ferreira A, Liu Y, Atlan M, Aron-Wisnewsky J, Pelloux V, Botbol Y, Ambrosini M, Fradet M, Rouault C, Hénégar C, Hulot JS, Poitou C, Torcivia A, Nail-Barthelemy R, Bichet JC, Gautier EL, Clément K. A PDGFRα-Mediated Switch toward CD9 high Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis. Cell Metab 2017; 25:673-685. [PMID: 28215843 DOI: 10.1016/j.cmet.2017.01.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/24/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
Obesity-induced white adipose tissue (WAT) fibrosis is believed to accelerate WAT dysfunction. However, the cellular origin of WAT fibrosis remains unclear. Here, we show that adipocyte platelet-derived growth factor receptor-α-positive (PDGFRα+) progenitors adopt a fibrogenic phenotype in obese mice prone to visceral WAT fibrosis. More specifically, a subset of PDGFRα+ cells with high CD9 expression (CD9high) originates pro-fibrotic cells whereas their CD9low counterparts, committed to adipogenesis, are almost completely lost in the fibrotic WAT. PDGFRα pathway activation promotes a phenotypic shift toward PDGFRα+CD9high fibrogenic cells, driving pathological remodeling and altering WAT function in obesity. These findings translated to human obesity as the frequency of CD9high progenitors in omental WAT (oWAT) correlates with oWAT fibrosis level, insulin-resistance severity, and type 2 diabetes. Collectively, our data demonstrate that in addition to representing a WAT adipogenic niche, different PDGFRα+ cell subsets modulate obesity-induced WAT fibrogenesis and are associated with loss of metabolic fitness.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France.
| | - Adaliene Ferreira
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Yuejun Liu
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Michael Atlan
- Assistance Publique Hôpitaux de Paris, Aesthetic Plastic Reconstructive Unit, Tenon Hospital, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, 75020 Paris, France
| | - Judith Aron-Wisnewsky
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Véronique Pelloux
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Yair Botbol
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc Ambrosini
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Magali Fradet
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Christine Rouault
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Corneliu Hénégar
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Jean-Sébastien Hulot
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Christine Poitou
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Adriana Torcivia
- Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France
| | - Raphael Nail-Barthelemy
- Assistance Publique Hôpitaux de Paris, Aesthetic Plastic Reconstructive Unit, Tenon Hospital, Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, 75020 Paris, France
| | - Jean-Christophe Bichet
- Assistance Publique Hôpitaux de Paris, Plastic Surgery and Mammary Cancer Department, Pitié-Salpêtrière Hospital, F-75013 Paris, France
| | - Emmanuel L Gautier
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, F-75013 Paris, France; INSERM, UMRS 1166 (teams 2, 4, and 6 NutriOmics), F-75013 Paris, France; Assistance Publique Hopitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department and Hepato-biliary and Digestive Surgery Department, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1166, F-75013 Paris, France.
| |
Collapse
|
24
|
Rosenbloom J, Macarak E, Piera-Velazquez S, Jimenez SA. Human Fibrotic Diseases: Current Challenges in Fibrosis Research. Methods Mol Biol 2017; 1627:1-23. [PMID: 28836191 DOI: 10.1007/978-1-4939-7113-8_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human fibrotic diseases constitute a major health problem worldwide owing to the large number of affected individuals, the incomplete knowledge of the fibrotic process pathogenesis, the marked heterogeneity in their etiology and clinical manifestations, the absence of appropriate and fully validated biomarkers, and, most importantly, the current void of effective disease-modifying therapeutic agents. The fibrotic disorders encompass a wide spectrum of clinical entities including systemic fibrotic diseases such as systemic sclerosis (SSc), sclerodermatous graft vs. host disease, and nephrogenic systemic fibrosis, as well as numerous organ-specific disorders including radiation-induced fibrosis and cardiac, pulmonary, liver, and kidney fibrosis. Although their causative mechanisms are quite diverse and in several instances have remained elusive, these diseases share the common feature of an uncontrolled and progressive accumulation of fibrotic tissue in affected organs causing their dysfunction and ultimate failure. Despite the remarkable heterogeneity in the etiologic mechanisms responsible for the development of fibrotic diseases and in their clinical manifestations, numerous studies have identified activated myofibroblasts as the common cellular element ultimately responsible for the replacement of normal tissues with nonfunctional fibrotic tissue. Critical signaling cascades, initiated primarily by transforming growth factor-β (TGF-β), but also involving numerous cytokines and signaling molecules which stimulate profibrotic reactions in myofibroblasts, offer potential therapeutic targets. Here, we briefly review the current knowledge of the molecular mechanisms involved in the development of tissue fibrosis and point out some of the most important challenges to research in the fibrotic diseases and to the development of effective therapeutic approaches for this often fatal group of disorders. Efforts to further clarify the complex pathogenetic mechanisms of the fibrotic process should be encouraged to attain the elusive goal of developing effective therapies for these serious, untreatable, and often fatal disorders.
Collapse
Affiliation(s)
- Joel Rosenbloom
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edward Macarak
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonsoles Piera-Velazquez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sergio A Jimenez
- The Joan and Joel Rosenbloom Center for Fibrotic Diseases and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Abstract
Systemic sclerosis is a heterogeneous condition characterized by microvascular damage, dysregulation of the immune system, and progressive fibrosis affecting skin and internal organs. Currently, there are no approved disease-modifying therapies, and management mostly involves treatment of organ-specific complications. In recent years, major advances have greatly improved our understanding of the disease process, especially the molecular mechanisms by which fibrosis becomes self-sustaining. We discuss selected aspects of these mechanisms with a focus on those relevant to ongoing efforts to develop disease-modifying therapies. We also discuss advances in identification of patient subtypes, and selected examples of potential disease-modifying therapies in clinical development.
Collapse
|
26
|
Kumar R, Griffin M, Adigbli G, Kalavrezos N, Butler PEM. Lipotransfer for radiation-induced skin fibrosis. Br J Surg 2016; 103:950-61. [PMID: 27169866 DOI: 10.1002/bjs.10180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Radiation-induced fibrosis (RIF) is a late complication of radiotherapy that results in progressive functional and cosmetic impairment. Autologous fat has emerged as an option for soft tissue reconstruction. There are also sporadic reports suggesting regression of fibrosis following regional lipotransfer. This systematic review aimed to identify cellular mechanisms driving RIF, and the potential role of lipotransfer in attenuating these processes. METHODS PubMed, OVID and Google Scholar databases were searched to identify all original articles regarding lipotransfer for RIF. All articles describing irradiated fibroblast or myofibroblast behaviour were included. Data elucidating the mechanisms of RIF, role of lipotransfer in RIF and methods to quantify fibrosis were extracted. RESULTS Ninety-eight studies met the inclusion criteria. A single, definitive model of RIF is yet to be established, but four cellular mechanisms were identified through in vitro studies. Twenty-one studies identified connective tissue growth factor and transforming growth factor β1 cytokines as drivers of fibrotic cascades. Hypoxia was demonstrated to propagate fibrogenesis in three studies. Oxidative stress from the release of reactive oxygen species and free radicals was also linked to RIF in 11 studies. Purified autologous fat grafts contain cellular and non-cellular properties that potentially interact with these processes. Six methods for quantifying fibrotic changes were evaluated including durometry, ultrasound shear wave elastography, thermography, dark field imaging, and laser Doppler and laser speckle flowmetry. CONCLUSION Understanding how lipotransfer causes regression of RIF remains unclear; there are a number of new hypotheses for future research.
Collapse
Affiliation(s)
- R Kumar
- Division of Surgery and Interventional Science, Royal Free Campus, London, UK.,Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, UK
| | - M Griffin
- Division of Surgery and Interventional Science, Royal Free Campus, London, UK.,Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK.,Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, UK
| | - G Adigbli
- Division of Surgery and Interventional Science, Royal Free Campus, London, UK.,Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, UK
| | - N Kalavrezos
- Head and Neck Unit, Macmillan Cancer Centre, University College London Hospital, London, UK.,Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, UK
| | - P E M Butler
- Division of Surgery and Interventional Science, Royal Free Campus, London, UK.,Head and Neck Unit, Macmillan Cancer Centre, University College London Hospital, London, UK.,Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, UK.,Charles Wolfson Centre for Reconstructive Surgery, Royal Free Hospital, London, UK
| |
Collapse
|
27
|
Heinzelmann K, Noskovičová N, Merl-Pham J, Preissler G, Winter H, Lindner M, Hatz R, Hauck SM, Behr J, Eickelberg O. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion. Int J Biochem Cell Biol 2016; 74:44-59. [PMID: 26905437 DOI: 10.1016/j.biocel.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 02/19/2016] [Indexed: 12/14/2022]
Abstract
Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.
Collapse
Affiliation(s)
- Katharina Heinzelmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nina Noskovičová
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science/Helmholtz Zentrum München, Neuherberg, Germany
| | - Gerhard Preissler
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Rudolf Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany; Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science/Helmholtz Zentrum München, Neuherberg, Germany
| | - Jürgen Behr
- Asklepios Fachkliniken München-Gauting, Munich, Germany; Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that mediate mRNA cleavage, translational repression or mRNA destabilisation and are around 22–25 nucleotides in length via partial complementary binding to the 3′ untranslated region in target transcripts. They are master regulators of gene expression. Fibrosis is an important cause of morbidity and mortality in the world, and there are currently no accepted treatments for fibrosis. Many novel miRNAs are now associated with fibrosis, both organ-specific and systemic, as in the prototypical fibrotic disease systemic sclerosis. Recently, the targets of these altered miRNAs have been validated and defined new biochemical pathways. Dysregulated miRNAs are amenable to therapeutic modulation. This review will examine the role of miRNAs in fibrosis and the opportunities and challenges of targeting them.
Collapse
Affiliation(s)
- Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Place, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
29
|
Abstract
Systemic sclerosis is a multisystem disorder with a high associated mortality. The hallmark abnormalities of the disease are in the immune system, vasculature, and connective tissue. Systemic sclerosis occurs in susceptible individuals and is stimulated by initiating events that are poorly understood at present. In order for the disease phenotype to appear there is dysfunction in the homoeostatic mechanisms of immune tolerance, endothelial physiology, and extracellular matrix turnover. The progression of disease is not sequential but requires simultaneous dysfunction in these normal regulatory mechanisms. Better understanding of the interplay of these factors is likely to contribute to improved treatment options.
Collapse
Affiliation(s)
- Edward P Stern
- Centre for Rheumatology, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - Christopher P Denton
- Centre for Rheumatology, UCL Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
30
|
Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. ACTA ACUST UNITED AC 2015; 63:61-8. [DOI: 10.1016/j.patbio.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/06/2015] [Indexed: 12/18/2022]
|
31
|
Ciechomska M, van Laar J, O'Reilly S. Current frontiers in systemic sclerosis pathogenesis. Exp Dermatol 2015; 24:401-6. [DOI: 10.1111/exd.12673] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Marzena Ciechomska
- Institute of Cellular Medicine; Newcastle University; Newcastle Upon Tyne UK
- L. Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Science; Wroclaw Poland
| | - Jacob van Laar
- Institute of Cellular Medicine; Newcastle University; Newcastle Upon Tyne UK
- Department of Rheumatology and Clinical Immunology; University Medical Centre; Utrecht The Netherlands
| | - Steven O'Reilly
- School of Biological and Biomedical Sciences; Durham University; Durham UK
| |
Collapse
|
32
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Kikuchi A, Monga SP. PDGFRα in liver pathophysiology: emerging roles in development, regeneration, fibrosis, and cancer. Gene Expr 2015; 16:109-27. [PMID: 25700367 PMCID: PMC4410163 DOI: 10.3727/105221615x14181438356210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is an isoform of the PDGFR family of tyrosine kinase receptors involved in cell proliferation, survival, differentiation, and growth. In this review, we highlight the role of PDGFRα and the current evidence of its expression and activities in liver development, regeneration, and pathology-including fibrosis, cirrhosis, and liver cancer. Studies elucidating PDGFRα signaling in processes ranging from profibrotic signaling, angiogenesis, and oxidative stress to epithelial-to-mesenchymal transition point toward PDGFRα as a potential therapeutic target in various hepatic pathologies, including hepatic fibrosis and liver cancer. Furthermore, PDGFRα localization and modulation during liver development and regeneration may lend insight into its potential roles in various pathologic states. We will also briefly discuss some of the current targeted treatments for PDGFRα, including multi receptor tyrosine kinase inhibitors and PDGFRα-specific inhibitors.
Collapse
Affiliation(s)
- Alexander Kikuchi
- Department of Pathology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
34
|
Marie I. [CXCL4: a new biomarker of diagnosis and severity in systemic sclerosis?]. Rev Med Interne 2014; 36:69-72. [PMID: 25458865 DOI: 10.1016/j.revmed.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022]
Affiliation(s)
- I Marie
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France.
| |
Collapse
|
35
|
Charni Chaabane S, Coomans de Brachène A, Essaghir A, Velghe A, Lo Re S, Stockis J, Lucas S, Khachigian LM, Huaux F, Demoulin JB. PDGF-D expression is down-regulated by TGFβ in fibroblasts. PLoS One 2014; 9:e108656. [PMID: 25280005 PMCID: PMC4184810 DOI: 10.1371/journal.pone.0108656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/24/2014] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is a key mediator of fibrogenesis. TGFβ is overexpressed and activated in fibrotic diseases, regulates fibroblast differentiation into myofibroblasts and induces extracellular matrix deposition. Platelet-derived growth factor (PDGF) is also a regulator of fibrogenesis. Some studies showed a link between TGFβ and PDGF in certain fibrotic diseases. TGFβ induces PDGF receptor alpha expression in scleroderma fibroblasts. PDGF-C and -D are the most recently discovered ligands and also play a role in fibrosis. In this study, we report the first link between TGFβ and PDGF-D and -C ligands. In normal fibroblasts, TGFβ down-regulated PDGF-D expression and up-regulated PDGF-C expression at the mRNA and protein levels. This phenomenon is not limited to TGFβ since other growth factors implicated in fibrosis, such as FGF, EGF and PDGF-B, also regulated PDGF-D and PDGF-C expression. Among different kinase inhibitors, only TGFβ receptor inhibitors and the IκB kinase (IKK) inhibitor BMS-345541 blocked the effect of TGFβ. However, activation of the classical NF-κB pathway was not involved. Interestingly, in a model of lung fibrosis induced by either bleomycin or silica, PDGF-D was down-regulated, which correlates with the production of TGFβ and other fibrotic growth factors. In conclusion, the down-regulation of PDGF-D by TGFβ and other growth factors may serve as a negative feedback in the network of cytokines that control fibrosis.
Collapse
Affiliation(s)
| | | | - Ahmed Essaghir
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amélie Velghe
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sandra Lo Re
- Louvain center of Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Julie Stockis
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Levon M. Khachigian
- Center of Vascular Research, University of New South Wales, Sydney, Australia
| | - François Huaux
- Louvain center of Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
36
|
Liu C, Li J, Xiang X, Guo L, Tu K, Liu Q, Shah VH, Kang N. PDGF receptor-α promotes TGF-β signaling in hepatic stellate cells via transcriptional and posttranscriptional regulation of TGF-β receptors. Am J Physiol Gastrointest Liver Physiol 2014; 307:G749-59. [PMID: 25169976 PMCID: PMC4187064 DOI: 10.1152/ajpgi.00138.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) signaling are required for hepatic stellate cell (HSC) activation under pathological conditions such as liver metastatic tumor growth. These two signaling pathways are functionally divergent; PDGF signaling promotes proliferation and migration of HSCs, and TGF-β induces transdifferentiation of quiescent HSCs into myofibroblasts. Although PDGF signaling is implicated in TGF-β-mediated epithelial mesenchymal transition of tumor cells, the role of PDGF receptors in TGF-β activation of HSCs has not been investigated. Here we report that PDGF receptor-α (PDGFR-α) is required for TGF-β signaling of cultured human HSCs although HSCs express both PDGF-α and -β receptors. PDGFR-α knockdown inhibits TGF-β-induced phosphorylation and nuclear accumulation of SMAD2 with no influence on AKT or ERK phosphorylation associated with noncanonical TGF-β signaling. PDGFR-α knockdown suppresses TGF-β receptor I (TβRI) but increases TβRII gene transcription. At the protein level, PDGFR-α is recruited to TβRI/TβRII complexes by TGF-β stimulation. PDGFR-α knockdown blocks TGF-β-mediated internalization of TβRII and induces accumulation of TβRII at the plasma membrane, thereby inhibiting TGF-β phosphorylation of SMAD2. Functionally, knockdown of PDGFR-α reduces paracrine effects of HSCs on colorectal cancer cell proliferation and migration in vitro. In mice and patients, colorectal cancer cell invasion of the liver induces upregulation of PDGFR-α of HSCs. In summary, our finding that PDGFR-α knockdown inhibits SMAD-dependent TGF-β signaling by repressing TβRI transcriptionally and blocking endocytosis of TGF-β receptors highlights a convergence of PDGF and TGF-β signaling for HSC activation and PDGFR-α as a therapeutic target for liver metastasis and other settings of HSC activation.
Collapse
Affiliation(s)
- Chunsheng Liu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Jiachu Li
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; ,2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota; ,3Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China;
| | - Xiaoyu Xiang
- 2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| | - Luyang Guo
- 2Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| | - Kangsheng Tu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; ,4Department of Hepatobillary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Liu
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Vijay H. Shah
- 1GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota;
| | - Ningling Kang
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, Minnesota; Tumor Microenvironment and Metastasis Section, the Hormel Institute/University of Minnesota, Austin, Minnesota;
| |
Collapse
|
37
|
Cipriani P, Di Benedetto P, Ruscitti P, Campese AF, Liakouli V, Carubbi F, Pantano I, Berardicurt O, Screpanti I, Giacomelli R. Impaired endothelium-mesenchymal stem cells cross-talk in systemic sclerosis: a link between vascular and fibrotic features. Arthritis Res Ther 2014; 16:442. [PMID: 25248297 PMCID: PMC4206764 DOI: 10.1186/s13075-014-0442-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION To assess if an impaired cross-talk between endothelial cells (ECs) and perivascular/multipotent mesenchymal stem cells (MSCs) might induce a perturbation of vascular repair and leading to a phenotypic switch of MSC toward myofibroblast in Systemic Sclerosis (SSc). METHODS We investigated different angiogenic and profibrotic molecules in a tridimentional matrigel assay, performing co-cultures with endothelial cells (ECs) and bone marrow derived MSCs from patients and healthy controls (HC). After 48 hours of co-culture, cells were sorted and analyzed for mRNA and protein expression. RESULTS ECs-SSc showed a decreased tube formation ability which is not improved by co-cultures with different MSCs. After sorting, we showed: i. an increased production of vascular endothelial growth factor A (VEGF-A) in SSc-MSCs when co-cultured with SSc-ECs; ii. an increased level of transforming growth factor beta (TGF-β) and platelet growth factor BB (PDGF-BB) in SSc-ECs when co-cultured with both HC- and SSc-MSCs; iii. an increase of TGF-β, PDGF-R, alpha smooth muscle actin (α-SMA) and collagen 1 (Col1) in both HC- and SSc-MSCs when co-cultured with SSc-ECs. CONCLUSION We showed that during SSc, the ECs-MSCs crosstalk resulted in an altered expression of different molecules involved in the angiogenic processes, and mainly SSc-ECs seem to modulate the phenotypic switch of perivascular MSCs toward a myofibroblast population, thus supporting the fibrotic process.
Collapse
Affiliation(s)
- Paola Cipriani
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Paola Di Benedetto
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Piero Ruscitti
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Antonio Francesco Campese
- />Department of Molecular Medicine, School of Medicine ‘Sapienza’ University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Vasiliki Liakouli
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Francesco Carubbi
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Ilenia Pantano
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Onorina Berardicurt
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| | - Isabella Screpanti
- />Department of Molecular Medicine, School of Medicine ‘Sapienza’ University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Roberto Giacomelli
- />Department of Applied Clinical Sciences and Biotechnology, Rheumatology Unit, School of Medicine, University of L’Aquila, Delta 6 Building, Via dell’Ospedale, 67100 L’Aquila, Italy
| |
Collapse
|
38
|
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease of unclear aetiology. A multitude of genetic studies, ranging from candidate-gene studies to genome-wide association studies, have identified a large number of genetic susceptibility factors for SSc and its clinical phenotypes, but the contribution of these factors to disease susceptibility is only modest. However, in an endeavour to explore how the environment might affect genetic susceptibility, epigenetic research into SSc is rapidly expanding. Orchestrated by environmental factors, epigenetic modifications can drive genetically predisposed individuals to develop autoimmunity, and are thought to represent the crossroads between the environment and genetics in SSc. Therefore, in addition to providing a comprehensive description of the current understanding of genetic susceptibility underlying SSc, this Review describes the involvement of epigenetic phenomena, including DNA methylation patterns, histone modifications and microRNAs, in SSc.
Collapse
|
39
|
Pope J, Walker KM, de Leon F, Vanderhoek L, Seney S, Summers KL. Correlations between changes in cytokines and clinical outcomes for early phase (proof of concept) trials in active diffuse systemic sclerosis using data from an imatinib study. Rheumatology (Oxford) 2014; 53:1830-4. [PMID: 24850877 DOI: 10.1093/rheumatology/keu216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Data from a small study testing imatinib to treat SSc were used to determine if cytokine changes were related to differences in clinical parameters to model future early phase trials pairing cytokine changes and clinical parameters. METHODS Plasma and punch skin biopsy specimens collected at baseline and 6 months were analysed for levels of 26 fibrotic and inflammatory cytokines using multiplexed immunoassays and ELISA. Seven of nine patients on active treatment had paired data. Biopsies were biopulverized and standardized to protein levels in the tissue homogenate. Plasma was frozen at -80°C and analysed using multiplexed immunoassays or ELISAs standardized to CRP. Correlations between fold changes in cytokines and differences in clinical parameters (skin score, physician and patient global assessments and HAQ) were performed. P < 0.01 was considered significant. RESULTS After 6 months of imatinib treatment, plasma levels of soluble vascular cell adhesion molecule 1 decreased significantly (P < 0.001), while tissue levels of soluble intercellular adhesion molecule 1 increased (P < 0.01). Some significant correlations between fold changes in certain plasma fibrotic and inflammatory cytokines and changes in clinical parameters after 6 months of treatment were found: patient global scores and IL-13 (r = 0.964, P < 0.0001); ESR and IL-12p70 (r = -0.903, P < 0.01); in tissue samples, patient global score and soluble E-selectin (r = 0.913, P < 0.01); and physician global score with sCD40L (r = -0.883, P < 0.01). CONCLUSION Some serum and tissue cytokines may have a role in early phase clinical trials of SSc, correlating with changes in clinical parameters. Serum and tissue samples could be analysed in early phase trials to determine whether they support the clinical observations. TRIAL REGISTRATION http://clinicaltrials.gov/show/NCT01545427.
Collapse
Affiliation(s)
- Janet Pope
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Kyle M Walker
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Faye de Leon
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Louise Vanderhoek
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Shannon Seney
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Kelly L Summers
- Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada Division of Rheumatology, Department of Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, Medical School, Trinity College Dublin, Dublin, Ireland, Department of Mathematics/Statistics, McMaster University, Hamilton, Lawson Health Research Institute and Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
40
|
Maurer B, Distler A, Suliman YA, Gay RE, Michel BA, Gay S, Distler JHW, Distler O. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann Rheum Dis 2013; 73:1880-7. [PMID: 23918036 DOI: 10.1136/annrheumdis-2013-203535] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES High levels of vascular endothelial growth factor (VEGF), a key angiogenic factor, are present in patients with systemic sclerosis (SSc), but its role in the pathogenesis of fibrosis and its contribution to the disturbed angiogenesis of SSc remains hypothetical. METHODS Mono (+/-) and double (+/+) VEGF transgenic (tg) mice and their wildtype (wt) controls were analysed. The bleomycin model was applied to VEGF tg mice to evaluate effects of VEGF under proinflammatory conditions. Additionally, tight skin (TSK) 1/VEGF+/+ mice were generated to mimic later non-inflammatory stages of SSc. RESULTS VEGF+/+, but not VEGF+/- tg mice, spontaneously developed significant skin fibrosis, indicating profibrotic effect of VEGF in a gene-dosing manner. In the proinflammatory bleomycin model, the profibrotic effect became more pronounced with induction of skin fibrosis in VEGF+/- tg mice and even more enhanced fibrosis in VEGF+/+ tg mice. Analysis in TSK1/VEGF+/+ mice showed similar profibrotic effects of VEGF also under non-inflammatory in vivo conditions. In vitro analysis revealed that VEGF is able to directly induce collagen synthesis in dermal fibroblasts. Additionally, there was an inverse gene-dosing effect on the efficacy of angiogenesis in that a higher number of microvessels was observed in VEGF+/- tg mice than in VEGF+/+ tg mice. CONCLUSIONS These data provide the first evidence for VEGF as a novel molecular link between fibrosis and vasculopathy in the pathogenesis of SSc. They suggest that high levels of VEGF potently induce fibrosis in inflammatory and non-inflammatory stages, and also contribute to the relatively insufficient angiogenesis characteristic for SSc.
Collapse
Affiliation(s)
- Britta Maurer
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Alfiya Distler
- Department of Internal Medicine 3, University of Erlangen, Erlangen, Germany
| | - Yossra A Suliman
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assuit University Hospitals, Assuit, Egypt
| | - Renate E Gay
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Beat A Michel
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Steffen Gay
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen, Erlangen, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Liu T, Zhang J, Zhang J, Mu X, Su H, Hu X, Liu W, Zhao E, Li W. RNA interference against platelet-derived growth factor receptor α mRNA inhibits fibroblast transdifferentiation in skin lesions of patients with systemic sclerosis. PLoS One 2013; 8:e60414. [PMID: 23577108 PMCID: PMC3618422 DOI: 10.1371/journal.pone.0060414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/26/2013] [Indexed: 11/18/2022] Open
Abstract
Objective To down-regulate expression of mRNA for the platelet-derived growth factor receptor (PDGFR)-α, block the signalling pathway of PDGF and its receptor, and study their influence on fibroblast transdifferentiation to myofibroblasts in systemic sclerosis (SSc). Methods Fibroblasts from skin lesions of SSc patients and health adult controls were cultured in vitro, and α-smooth muscle actin (α-SMA) expression was determined by immunocytochemistry. Both groups of fibroblasts were stimulated with PDGF-AA, transforming growth factor β1 (TGF-β1), and costimulated with PDGF-AA and TGF-β1, then PDGFR-α and α-SMA mRNA and protein expression were detected with RT-PCR and WB respectively. Three pairs of siRNAs targeting different PDGFR-α mRNA sequences were synthesized for RNAi. SSc and control fibroblasts were transfected with PDGFR-α siRNA; stimulated with PDGF-AA; and assessed for PDGFR-α and α-SMA mRNA and protein expression. Results Although the fibroblasts from both groups had similar morphology, the SSc skin lesions had significantly more myofibroblasts than control skin lesions. PDGF-AA stimulation, TGF-β1 stimulation, and costimulation significantly up-regulated PDGFR-α and α-SMA mRNA and protein expression in SSc fibroblasts compared to control (P<0.05), and costimulation had the strongest effects (P<0.05). All three pairs of siRNAs suppressed PDGFR-α mRNA and protein expression (P<0.05), but siRNA1495 had the highest gene-silencing efficiency (P<0.05). PDGFR-α siRNA attenuated the effects of PDGF-AA through up-regulating PDGFR-α and α-SMA mRNA and protein expression and inhibiting fibroblast transdifferentiation to myofibroblasts in SSc (P<0.05). Conclusions PDGFR-α over-expression in SSc fibroblasts bound PDGF-AA more efficiently and promoted fibroblast transdifferentiation, which was enhanced by TGF-β1. PDGFR-α siRNA down-regulated PDGFR-α expression, blocked binding to PDGF-AA, and inhibited fibroblast transdifferentiation to myofibroblasts.
Collapse
Affiliation(s)
- Tong Liu
- Department of Dermatology, First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xìan City, Shaanxi Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Strategies for anti-fibrotic therapies. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1088-103. [PMID: 23266403 DOI: 10.1016/j.bbadis.2012.12.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 02/07/2023]
Abstract
The fibrotic diseases encompass a wide spectrum of entities including such multisystemic diseases as systemic sclerosis, nephrogenic systemic fibrosis and sclerodermatous graft versus host disease, as well as organ-specific disorders such as pulmonary, liver, and kidney fibrosis. Collectively, given the wide variety of affected organs, the chronic nature of the fibrotic processes, and the large number of individuals suffering their devastating effects, these diseases pose one of the most serious health problems in current medicine and a serious economic burden to society. Despite these considerations there is currently no accepted effective treatment. However, remarkable progress has been achieved in the elucidation of their pathogenesis including the identification of the critical role of myofibroblasts and the determination of molecular mechanisms that result in the transcriptional activation of the genes responsible for the fibrotic process. Here we review the origin of the myofibroblast and discuss the crucial regulatory pathways involving multiple growth factors and cytokines that participate in the pathogenesis of the fibrotic process. Potentially effective therapeutic strategies based upon this new information are considered in detail and the major challenges that remain and their possible solutions are presented. It is expected that translational efforts devoted to convert this new knowledge into novel and effective anti-fibrotic drugs will be forthcoming in the near future. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
43
|
Welsh N. Does the small tyrosine kinase inhibitor Imatinib mesylate counteract diabetes by affecting pancreatic islet amyloidosis and fibrosis? Expert Opin Investig Drugs 2012; 21:1743-50. [PMID: 22998750 DOI: 10.1517/13543784.2012.724398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The small tyrosine kinase inhibitor Imatinib Mesylate (Gleevec) protects against diabetes, but it is not known how. AREAS COVERED It has been suggested that islet amyloid and fibrotic deposits promote beta-cell failure and death, leading to Type-2 diabetes. As Imatinib is known to possess anti-fibrotic/amyloid properties, in for example systemic sclerosis and mouse models for Alzheimer's disease, the present review will discuss the possibility that Imatinib acts, at least in part, by ameliorating islet hyalinization and its consequences in the pathogenesis of Type-2 diabetes. EXPERT OPINION A better understanding of how Imatinib counteracts Type-2 diabetes will possibly help to clarify the pathogenic role of islet amyloid and fibrosis, and hopefully lead to improved treatment of the disease.
Collapse
Affiliation(s)
- Nils Welsh
- Uppsala University, Department of Medical Cell Biology, Biomedicum, P.O. Box 571, S-751 23, Uppsala, Sweden.
| |
Collapse
|
44
|
Pauling JD, O’Donnell VB, Mchugh NJ. The contribution of platelets to the pathogenesis of Raynaud's phenomenon and systemic sclerosis. Platelets 2012; 24:503-15. [DOI: 10.3109/09537104.2012.719090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Tyrosine kinase signaling in fibrotic disorders: Translation of basic research to human disease. Biochim Biophys Acta Mol Basis Dis 2012; 1832:897-904. [PMID: 22728287 DOI: 10.1016/j.bbadis.2012.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 12/13/2022]
Abstract
Tyrosine kinases regulate a broad variety of physiological cell processes, including metabolism, growth, differentiation and apoptosis. Abnormal tyrosine kinase activity disturbs the physiological cell homeostasis and can lead to cancer, vascular disease, and fibrosis. In regard to fibrosis, different tyrosine kinases have been identified as determinants of disease progression and potential targets for anti-fibrotic therapies. This includes both receptor tyrosine kinases (e.g., PDGF receptor, VEGF receptor, EGF receptor, and JAK kinases) as well as non-receptor tyrosine kinases (e.g., c-Abl, c-Kit, and Src kinases). Given their central role in the pathogenesis of fibrosis, researchers of our field study the anti-fibrotic effects of monoclonal antibodies or small-molecule inhibitors to block the aberrant tyrosine kinase activity and treat fibrosis in preclinical models of various fibrotic diseases (e.g., idiopathic pulmonary fibrosis, renal fibrosis, liver fibrosis, and dermal fibrosis). The results of these studies were promising and prompted clinical trials with different compounds in fibrotic diseases. So far, results from studies with intedanib in idiopathic pulmonary fibrosis and imatinib in idiopathic pulmonary fibrosis and systemic sclerosis have been reported. Although none of these studies reported a positive primary outcome, promising trends in anti-fibrotic efficacy awaken our hopes for a new class of effective anti-fibrotic targeted therapies. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
46
|
VOLNUKHIN VA, MURADYAN NL, KATUNINA OR. Оn the role of pro-fibrous cytokines in the pathogenesis of localized scleroderma. VESTNIK DERMATOLOGII I VENEROLOGII 2012. [DOI: 10.25208/vdv645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The content and skin distribution of the transforming growth factor β 1 (TGF-β 1), transforming growth factor-β receptor type I receptor (TGF-βRI) and platelet-derived growth factor receptor a (PDGFR-α), which are key fibrosis mediators, were examined in ten patients with localized scleroderma and ten healthy volunteers by using the immunohistochemistry method. A reduced derma concentration of TGF-β 1+ cells (р = 0.007) and increased amount of TGF-βRI+ (р = 0.001) and PDGFR-α+ (р < 0.001) cells was discovered in the patients vs. the control group. Te reduced amount of TGF-β 1 in the affected loci can be apparently explained by its reduced production by cells taking part in the immune inflammation. Increased expression of TGF-βRI receptors (р = 0.001) and PDGFR-α in the foci of localized scleroderma confirms their important role in the pathogenesis of the disease and activation of the fibrosis process in the skin.
Collapse
|
47
|
Kavian N, Servettaz A, Marut W, Nicco C, Chéreau C, Weill B, Batteux F. Sunitinib inhibits the phosphorylation of platelet-derived growth factor receptor β in the skin of mice with scleroderma-like features and prevents the development of the disease. ACTA ACUST UNITED AC 2011; 64:1990-2000. [PMID: 22213155 DOI: 10.1002/art.34354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by fibrosis of the skin and visceral organs, vascular dysfunction, and immunologic dysregulation. Platelet-derived growth factors (PDGFs) have been implicated in the development of fibrosis and dysregulation of vascular function. We investigated the effects of sunitinib and sorafenib, two tyrosine kinase inhibitors that interfere with PDGF signaling, in a mouse model of diffuse SSc. METHODS SSc was induced in BALB/c mice by subcutaneous injections of HOCl daily for 6 weeks. Mice were randomized to treatment with sunitinib, sorafenib, or vehicle. The levels of native and phosphorylated PDGF receptor β (PDGFRβ) and vascular endothelial growth factor receptor (VEGFR) in the skin were assessed by Western blot and immunohistochemical analyses. Skin and lung fibrosis were evaluated by histologic and biochemical methods. Autoantibodies were detected by enzyme-linked immunosorbent assay, and spleen cell populations were analyzed by flow cytometry. RESULTS Phosphorylation of PDGFRβ and VEGFR was higher in fibrotic skin from HOCl-injected mice with SSc than from PBS-injected mice. Injections of HOCl induced cutaneous and lung fibrosis, increased the proliferation rate of fibroblasts in areas of fibrotic skin, increased splenic B cell and T cell counts, and increased anti-DNA topoisomerase I autoantibody levels in BALB/c mice. All of these features were reduced by sunitinib but not by sorafenib. Sunitinib significantly reduced the phosphorylation of both PDGF and VEGF receptors. CONCLUSION Inhibition of the hyperactivated PDGF and VEGF pathways by sunitinib prevented the development of fibrosis in HOCl-induced murine SSc and may represent a new SSc treatment for testing in clinical trials.
Collapse
Affiliation(s)
- Niloufar Kavian
- Université Paris Descartes, Hôpital Cochin, AP-HP, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Tsou PS, Talia NN, Pinney AJ, Kendzicky A, Piera-Velazquez S, Jimenez SA, Seibold JR, Phillips K, Koch AE. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. ACTA ACUST UNITED AC 2011; 64:1978-89. [PMID: 22161819 DOI: 10.1002/art.34336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Usategui A, del Rey MJ, Pablos JL. Fibroblast abnormalities in the pathogenesis of systemic sclerosis. Expert Rev Clin Immunol 2011; 7:491-8. [PMID: 21790292 DOI: 10.1586/eci.11.39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease characterized by autoimmunity, vascular lesions and progressive fibrosis. The fibrotic component is dominant in SSc compared with other vascular or autoimmune diseases and determines its prognosis and therapeutic refractoriness. Fibroblasts are responsible for abnormal extracellular matrix accumulation. Studies in cultured SSc skin fibroblasts have facilitated the identification of potential pathways involved in their profibrotic phenotype. Profibrotic fibroblasts characterized by abnormal growth and extracellular matrix synthesis may differentiate or expand from normal resident fibroblasts. Recruitment of bone marrow-derived progenitors and transdifferentiation of different cell lineages might also be involved. Multiple factors and signaling pathways appear to be involved in the development or persistence of the SSc fibroblast phenotype. Although their relative relevance and interplay are unclear, aberrant TGF-β signaling seems pivotal and constitutes the best characterized therapeutic target.
Collapse
Affiliation(s)
- Alicia Usategui
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | | | | |
Collapse
|
50
|
Yamamoto T. Autoimmune mechanisms of scleroderma and a role of oxidative stress. SELF NONSELF 2011; 2:4-10. [PMID: 21776329 DOI: 10.4161/self.2.1.14058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 10/31/2010] [Indexed: 11/19/2022]
Abstract
Scleroderma is a fibrotic condition characterized by immunological abnormalities, vascular injury and increased accumulation of extracellular matrix proteins in the skin. Although the etiology of scleroderma has not yet been fully elucidated, a growing body of evidence suggests that extracellular matrix overproduction by activated fibroblasts results from complex interactions among endothelial cells, lymphocytes, macrophages and fibroblasts via a number of mediators, such as cytokines, chemokines and growth factors. Recent investigations have further suggested that reactive oxygen species (ROS) are involved and play a role of autoimmunology in scleroderma. In this review, current findings on the autoimmune mechanisms in the pathophysiology of scleroderma are described.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Department of Dermatology; Fukushima Medical University; Fukushima, Japan
| |
Collapse
|