1
|
Garrido-Mesa J, Brown MA. Antigen-driven T cell responses in rheumatic diseases: insights from T cell receptor repertoire studies. Nat Rev Rheumatol 2025; 21:157-173. [PMID: 39920282 DOI: 10.1038/s41584-025-01218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/09/2025]
Abstract
Advances in T cell receptor (TCR) profiling techniques have substantially improved our ability to investigate T cell responses to antigens that are presented on HLA class I and class II molecules and associations between autoimmune T cells and rheumatic diseases. Early-stage studies in axial spondyloarthritis (axSpA) identified disease-associated T cell clonotypes, benefiting from the relative genetic homogeneity of the disease. However, both the genetic and the T cell immunological landscape are more complex in other rheumatic diseases. The diversity or redundancy in the TCR repertoire, epitope spreading over disease duration, genetic heterogeneity of HLA genes or other loci, and the diversity of epitopes contributing to disease pathogenesis and persistent inflammation are all likely to contribute to this complexity. TCR profiling holds promise for identifying key antigenic drivers and phenotypic T cell states that sustain autoimmunity in rheumatic diseases. Here, we review key findings from TCR repertoire studies in axSpA and other chronic inflammatory rheumatic diseases including psoriatic arthritis, rheumatoid arthritis, systemic lupus erythematosus and Sjögren syndrome. We explore how TCR profiling technologies, if applied to better controlled studies focused on early disease stages and genetically homogeneous subsets, can facilitate disease monitoring and the development of therapeutics targeting autoimmune T cells, their cognate antigens, or their underlying biology.
Collapse
Affiliation(s)
- Jose Garrido-Mesa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Matthew A Brown
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Genomics England, London, UK.
| |
Collapse
|
2
|
Ramirez GA, Tassi E, Noviello M, Mazzi BA, Moroni L, Citterio L, Zagato L, Tombetti E, Doglio M, Baldissera EM, Bozzolo EP, Bonini C, Dagna L, Manfredi AA. Histone-Specific CD4 + T Cell Plasticity in Active and Quiescent Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:739-750. [PMID: 38111123 DOI: 10.1002/art.42778] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether circulating histone-specific T cells represent tools for precision medicine in systemic lupus erythematosus (SLE). METHODS Seroprevalence of autoantibodies and HLA-DR beta (DRB) 1 profile were assessed among 185 patients with SLE and combined with bioinformatics and literature evidence to identify HLA-peptide autoepitope couples for ex vivo detection of antigen-specific T cells through flow cytometry. T cell differentiation and polarization was investigated in patients with SLE, patients with Takayasu arteritis, and healthy controls carrying HLA-DRB1*03:01 and/or HLA-DRB1*11:01. SLE Disease Activity Index 2000 and Lupus Low Disease Activity State were used to estimate disease activity and remission. RESULTS Histone-specific CD4+ T cells were selectively detected in patients with SLE. Among patients with a history of anti-DNA antibodies, 77% had detectable histone-specific T cells, whereas 50% had lymphocytes releasing cytokines or upregulating activation markers after in vitro challenge with histone peptide antigens. Histone-specific regulatory and effector T helper (Th) 1-, Th2-, and atypical Th1/Th17 (Th1*)-polarized cells were significantly more abundant in patients with SLE with quiescent disease. In contrast, total Th1-, Th2-, and Th1*-polarized and regulatory T cells were similarly represented between patients and controls or patients with SLE with active versus quiescent disease. Histone-specific effector memory T cells accumulated in the blood of patients with quiescent SLE, whereas total effector memory T cell counts did not change. Immunosuppressants were associated with expanded CD4+ histone-specific naive T (TN) and terminally differentiated T cells. CONCLUSION Histone-specific T cells are selectively detected in patients with SLE, and their concentration in the blood varies with disease activity, suggesting that they represent innovative tools for patient stratification and therapy.
Collapse
Affiliation(s)
- Giuseppe A Ramirez
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | - Luca Moroni
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | - Chiara Bonini
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lorenzo Dagna
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, Milan, and IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
3
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
4
|
Bauer CJ, Karakostas P, Weber N, Behning C, Stoffel-Wagner B, Brossart P, Dolscheid-Pommerich R, Schäfer VS. Comparative analysis of contemporary anti-double stranded DNA antibody assays for systemic lupus erythematosus. Front Immunol 2023; 14:1305865. [PMID: 38130723 PMCID: PMC10733465 DOI: 10.3389/fimmu.2023.1305865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Objective Elevated double-stranded DNA (dsDNA) antibody levels in blood serum are considered a disease-specific marker in systemic lupus erythematosus (SLE), correlate with disease activity and the incidence of lupus nephritis, and can be detected in up to 86% of all SLE cases. Despite the high clinical relevance, the variety of dsDNA antibody testing methods with heterogenous performance in clinical use remains challenging. This study is the first to prospectively investigate the performance of two of today's most commonly applied anti-dsDNA testing methods head-to-head under real-world conditions, as well as their correlation with other clinical and serological disease parameters in SLE patients. Methods In this prospective study, all SLE patients undergoing treatment at the Department of Rheumatology at the University Hospital Bonn within a 13-months period (n=41) and control patients without connective-tissue disease (n=51) were consecutively enrolled and examined. For all study participants' serum samples both anti-dsDNA-NcX enzyme-linked immunoassay testing EUROIMMUN, Luebeck, Germany) and the fluorescence immunoassay ELiA dsDNA (Thermo Fisher Scientific, Waltham, USA) were performed. In addition, demographic data, further laboratory values and disease activity parameters were recorded. Clinical disease activity was assessed by SLEDAI-2K. Results Both assays showed high specificity (anti-dsDNA-NcX ELISA: 0.9, ELiA dsDNA: 0.959), but there were notable differences in sensitivity (anti-dsDNA-NcX ELISA: 0.51, ELiA dsDNA: 0.38). Pearsons's correlation yielded a positive correlation between anti-dsDNA concentrations and CRP concentrations for the anti-dsDNA-NcX ELISA (R=0.22; p=0.038) and a mild-to-moderate inverse correlation between concentrations of anti-dsDNA and complement C4 for the ELiA dsDNA test (R=-0.22; p=0.045) when SLE and control patients were considered together. Other than, no significant correlation between anti-dsDNA concentrations and clinical or laboratory findings was found for either test procedure. Conclusion Both anti-dsDNA antibody assays represent reliable examination methods with high specificity for the diagnosis of SLE that fulfill EULAR/ACR requirements. However, the anti-dsDNA-NcX ELISA showed superior sensitivity and significant correlation with disease activity (as measured by CRP concentrations).
Collapse
Affiliation(s)
- Claus-Juergen Bauer
- Department of Oncology, Hematology, Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Department of Oncology, Hematology, Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| | - Nadine Weber
- Department of Oncology, Hematology, Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| | - Charlotte Behning
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| | | | - Valentin Sebastian Schäfer
- Department of Oncology, Hematology, Rheumatology and Clinical Immunology, Clinic of Internal Medicine III, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Duan L, Shi Y, Feng Y. Systemic lupus erythematosus and thyroid disease: a Mendelian randomization study. Clin Rheumatol 2023:10.1007/s10067-023-06598-5. [PMID: 37067649 DOI: 10.1007/s10067-023-06598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVES To clarify the controversy between systemic lupus erythematosus (SLE) and thyroid disease, our study was designed to determine whether or not thyroid problems are associated with SLE. METHODS We obtained the IEU GWAS database for summary information on genome-wide association studies (GWAS) of SLE and thyroid disease (hypothyroidism and hyperthyroidism) in people with European ancestry. Three approaches were employed to assess the causal link between SLE and thyroid disease: MR-Egger, weighted median (WM), and inverse variance weighted (IVW). The pleiotropy and heterogeneity were examined using a variety of techniques, including the MR-Egger intercept, the MR-PRESSO approach, and the Cochran's Q test. RESULTS MR analysis revealed a relationship between SLE and an elevated incidence of hypothyroidism (IVW OR: 1.004, 95% CI: [1.003, 1.005], P = 8.45E-16) and hyperthyroidism (IVW OR: 1.0009, 95% CI: [1.0005, 1.0010], P = 1.30E-5). Neither horizontal pleiotropy nor heterogeneity was detected in the sensitivity analysis. CONCLUSION Our MR study presents strong evidence demonstrating a link between SLE and an elevated risk of thyroid illness. This could help us learn more about what causes SLE and give people with SLE more thorough thyroid function tests and evaluations. Key points • We did not discover modest heterogeneity and pleiotropy in our study. •The findings of this study indicate that SLE is related to an elevated risk of hypothyroidism and hyperthyroidism.
Collapse
Affiliation(s)
- Lincheng Duan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Spiliopoulou P, Janse van Rensburg HJ, Avery L, Kulasingam V, Razak A, Bedard P, Hansen A, Chruscinski A, Wang B, Kulikova M, Chen R, Speers V, Nguyen A, Lee J, Coburn B, Spreafico A, Siu LL. Longitudinal efficacy and toxicity of SARS-CoV-2 vaccination in cancer patients treated with immunotherapy. Cell Death Dis 2023; 14:49. [PMID: 36670100 PMCID: PMC9853486 DOI: 10.1038/s41419-022-05548-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023]
Abstract
Despite more than 2 years having elapsed since the onset of SARS-CoV-2 pandemic, a level of hesitation around increased SARS-CoV-2 vaccine toxicity in cancer patients receiving immunotherapy (IO) remains. This hesitation stems from the idea that IO agents could elicit an overwhelming immune stimulation post vaccination and therefore increase the risk of vaccine-related toxicity. The aim of our study was to explore serological responses to SARS-CoV-2 vaccination in patients treated with IO and describe the level of immune stimulation using parameters such as blood cytokines, autoantibody levels and immune related adverse events (irAEs) post vaccination. Fifty-one evaluable patients were enrolled in this longitudinal study. Absolute levels and neutralization potential of anti-SARS-CoV-2 antibodies were not significantly different in the IO group compared to non-IO. Chemotherapy adversely affected seroconversion when compared to IO and/or targeted treatment. Following vaccination, the prevalence of grade ≥2 irAEs in patients treated with IO was not higher than the usual reported IO toxicity. We report, for the first time, that anti-SARS-CoV-2 vaccination, elicited the generation of five autoantibodies. The significantly increased autoantibodies were IgM autoantibodies against beta-2 glycoprotein (p = 0.02), myeloperoxidase (p = 0.03), nucleosome (p = 0.041), SPLUNC2 (p < 0.001) and IgG autoantibody against Myosin Heavy Chain 6 (MYH6) (p < 0.001). Overall, comprehensive analysis of a small cohort showed that co-administration of SARS-CoV-2 vaccine and IO is not associated with increased irAEs. Nevertheless, the detection of autoantibodies post anti-SARS-CoV-2 vaccination warrants further investigation (NCT03702309).
Collapse
Affiliation(s)
| | | | - Lisa Avery
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Vathany Kulasingam
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Albiruni Razak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrzej Chruscinski
- Mutli-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Ben Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maria Kulikova
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Rachel Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vanessa Speers
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alisa Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jasmine Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bryan Coburn
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
8
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Gordon RA, Giannouli C, Raparia C, Bastacky SI, Marinov A, Hawse W, Cattley R, Tilstra JS, Campbell AM, Nickerson KM, Davidson A, Shlomchik MJ. Rubicon promotes rather than restricts murine lupus and is not required for LC3-associated phagocytosis. JCI Insight 2022; 7:155537. [PMID: 35192551 PMCID: PMC9057630 DOI: 10.1172/jci.insight.155537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 01/03/2023] Open
Abstract
NADPH oxidase deficiency exacerbates lupus in murine models and patients, but the mechanisms remain unknown. It is hypothesized that NADPH oxidase suppresses autoimmunity by facilitating dead cell clearance via LC3-associated phagocytosis (LAP). The absence of LAP reportedly causes an autoinflammatory syndrome in aged, nonautoimmune mice. Prior work implicated cytochrome b-245, β polypeptide (CYBB), a component of the NADPH oxidase complex, and the RUN and cysteine-rich domain-containing Beclin 1-interacting protein (RUBICON) as requisite for LAP. To test the hypothesis that NADPH oxidase deficiency exacerbates lupus via a defect in LAP, we deleted Rubicon in the B6.Sle1.Yaa and MRL.Faslpr lupus mouse models. Under this hypothesis, RUBICON deficiency should phenocopy NADPH oxidase deficiency, as both work in the same pathway. However, we observed the opposite - RUBICON deficiency resulted in reduced mortality, renal disease, and autoantibody titers to RNA-associated autoantigens. Given that our data contradict the published role for LAP in autoimmunity, we assessed whether CYBB and RUBICON are requisite for LAP. We found that LAP is not dependent on either of these 2 pathways. To our knowledge, our data reveal RUBICON as a novel regulator of SLE, possibly by a B cell-intrinsic mechanism, but do not support a role for LAP in lupus.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christina Giannouli
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Jeremy S. Tilstra
- Department of Immunology and,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven Connecticut, USA
| | | | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | |
Collapse
|
10
|
Quach TD, Huang W, Sahu R, Diadhiou CM, Raparia C, Johnson R, Leung TM, Malkiel S, Ricketts PG, Gallucci S, Tükel Ç, Jacob CO, Lesser ML, Zou YR, Davidson A. Context dependent induction of autoimmunity by TNF signaling deficiency. JCI Insight 2022; 7:149094. [PMID: 35104241 PMCID: PMC8983147 DOI: 10.1172/jci.insight.149094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
TNF inhibitors are widely used to treat inflammatory diseases; however, 30%–50% of treated patients develop new autoantibodies, and 0.5%–1% develop secondary autoimmune diseases, including lupus. TNF is required for formation of germinal centers (GCs), the site where high-affinity autoantibodies are often made. We found that TNF deficiency in Sle1 mice induced TH17 T cells and enhanced the production of germline encoded, T-dependent IgG anti-cardiolipin antibodies but did not induce GC formation or precipitate clinical disease. We then asked whether a second hit could restore GC formation or induce pathogenic autoimmunity in TNF-deficient mice. By using a range of immune stimuli, we found that somatically mutated autoantibodies and clinical disease can arise in the setting of TNF deficiency via extrafollicular pathways or via atypical GC-like pathways. This breach of tolerance may be due to defects in regulatory signals that modulate the negative selection of pathogenic autoreactive B cells.
Collapse
Affiliation(s)
- Tam D Quach
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Weiqing Huang
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Ranjit Sahu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Catherine Mm Diadhiou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Chirag Raparia
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Roshawn Johnson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Tung Ming Leung
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Susan Malkiel
- Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Peta-Gay Ricketts
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Çagla Tükel
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, United States of America
| | - Chaim O Jacob
- Department of Medicine, University of Southern California, Los Angeles, United States of America
| | - Martin L Lesser
- Biostatistics Unit, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, United States of America
| |
Collapse
|
11
|
Disease criteria of systemic lupus erythematosus (SLE); the potential role of non-criteria autoantibodies. J Transl Autoimmun 2022; 5:100143. [PMID: 35072035 PMCID: PMC8761754 DOI: 10.1016/j.jtauto.2022.100143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with SLE show a broad spectrum of more than 200 autoantibodies. They can be pathogenic, predictive, prognostic or even an epiphenomenon. Here, we discuss different autoantibodies that have not been included in EULAR/ACR 2019 classification criteria. Most of them have been addressed to monitor and detect disease activity and not specifically as classification criteria. Indeed, markers to assess disease activity fluctuate as compared with classification criteria and their validation is different. The development of new methods will probably bring new clinical associations and be evaluated as potential classification criteria. Most of the autoantibodies described in SLE are of utility in monitoring disease activity. The validation of activity biomarkers is different from classification criteria biomarkers. The new methods coming into the clinical routine will bring new associations and potentially classification criteria.
Collapse
|
12
|
Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun 2021; 12:6687. [PMID: 34795279 PMCID: PMC8602266 DOI: 10.1038/s41467-021-27035-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune disease. Follicular T cells are central regulators of germinal centers, although their contribution to autoantibody-mediated disease remains unclear. Here we perform single cell RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased TCRαβ repertoires at single cell resolution. A minority of clonotypes are preferentially shared amongst autoimmune follicular T cells and clonotypic expansion is associated with differential gene signatures in autoimmune disease. Antigen prediction using algorithmic and machine learning approaches indicates convergence towards shared specificities between non-autoimmune and autoimmune follicular T cells. However, differential autoimmune transcriptional signatures are preserved even amongst follicular T cells with shared predicted specificities. These results demonstrate that follicular T cells are phenotypically distinct in B cell-driven autoimmune disease, providing potential therapeutic targets to modulate autoantibody development.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells/immunology
- Clone Cells/metabolism
- Gene Expression Profiling/methods
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Mice, Inbred C57BL
- Microscopy, Confocal
- RNA-Seq/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Single-Cell Analysis/methods
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Mice
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Theo van den Broek
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lea Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Robinson S, Thomas R. Potential for Antigen-Specific Tolerizing Immunotherapy in Systematic Lupus Erythematosus. Front Immunol 2021; 12:654701. [PMID: 34335564 PMCID: PMC8322693 DOI: 10.3389/fimmu.2021.654701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic complex systemic autoimmune disease characterized by multiple autoantibodies and clinical manifestations, with the potential to affect nearly every organ. SLE treatments, including corticosteroids and immunosuppressive drugs, have greatly increased survival rates, but there is no curative therapy and SLE management is limited by drug complications and toxicities. There is an obvious clinical need for safe, effective SLE treatments. A promising treatment avenue is to restore immunological tolerance to reduce inflammatory clinical manifestations of SLE. Indeed, recent clinical trials of low-dose IL-2 supplementation in SLE patients showed that in vivo expansion of regulatory T cells (Treg cells) is associated with dramatic but transient improvement in SLE disease markers and clinical manifestations. However, the Treg cells that expanded were short-lived and unstable. Alternatively, antigen-specific tolerance (ASIT) approaches that establish long-lived immunological tolerance could be deployed in the context of SLE. In this review, we discuss the potential benefits and challenges of nanoparticle ASIT approaches to induce prolonged immunological tolerance in SLE.
Collapse
Affiliation(s)
- Sean Robinson
- School of Medicine, Faculty of Medicine and Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
15
|
Nevinsky GA, Zakharova OD, Kompaneets IY, Timofeeva AM, Dmitrenok PS, Menzorova NI. Six catalytic activities and cytotoxicity of immunoglobulin G and secretory immunoglobulin A from human milk. J Dairy Sci 2021; 104:6431-6448. [PMID: 33741158 DOI: 10.3168/jds.2020-19897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 01/28/2023]
Abstract
In the milk of healthy women, antibodies were found with different catalytic activities (abzymes), which are absent in the sera of other healthy people. Moreover, it was previously shown that DNase antibodies-abzymes of patients with autoimmune diseases are cytotoxic to cancer cells. In this work, it was first shown that IgG and secretory IgA (sIgA) do not possess embryotoxicity; they practically do not affect the development of fertilized eggs of sea urchins but demonstrate sperm toxicity. After addition to the eggs of sperm preincubated with IgG and sIgA, the number of unfertilized eggs was increased, in the case of sIgA 1.6-fold higher than that for IgG. The suppression of the growth of MCF-7 breast cancer cells by sIgA was 2.2 times more effective than with IgG antibodies. The relative enzymatic activity of milk sIgA was higher than IgG (-fold): 1.9 (DNase), 4.6 (amylase), 1.7 (peroxidase), 1.3 (protease), 3.7 [hydrolysis of poly(C)], 3.3 [hydrolysis of poly(U)], and 1.7 (oxidation of 3,3'-diaminobenzidine). One of the possible reasons for the observed difference between sIgA and IgG could be that all 6 catalytic activities of sIgA were, on average, 2.6 times higher than that for IgG. Correlation coefficients between all the relative 6 enzymatic activities of IgG and sIgA and their toxicity to sea urchin sperm and to cancer cells were calculated. Maximum correlation coefficients were observed for DNase (+0.71), protease (+0.64) activities for sIgA, as well as protease (+0.59) and RNase (+0.77) of IgG with their toxicity toward sperm. The correlation coefficients were also high between peroxidase activity (+0.85) of sIgA and poly(U) hydrolysis by IgG (+0.58) with their suppression of tumor cell growth. It has been suggested that the catalytic activities of abzymes may be important in the manifestation of their sperm toxicity and inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Ol'ga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Ivan Yu Kompaneets
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia I Menzorova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
16
|
Elbagir S, Sohrabian A, Elshafie AI, Elagib EM, Mohammed NEA, Nur MAM, Svenungsson E, Gunnarsson I, Rönnelid J. Accumulation of antinuclear associated antibodies in circulating immune complexes is more prominent in SLE patients from Sudan than Sweden. Sci Rep 2020; 10:21126. [PMID: 33273662 PMCID: PMC7712658 DOI: 10.1038/s41598-020-78213-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
The role of anti-nuclear autoantibody (ANA) specificities in immune complexes (IC) formation has been studied to a limited extent in SLE, and not at all in African SLE patients. We compared ANA in IC from Sudanese and Swedish SLE patients. We included 93 Sudanese and 332 Swedish SLE patients fulfilling the 1982 ACR criteria. IC were captured using C1q-coated beads. ANA specificities were quantified in sera and IC. Results were related to modified SLEDAI. Whereas serum levels of anti-Sm, anti-dsDNA and anti-ribosomal P were higher in Swedish patients, IC levels of most ANA specificities were higher among Sudanese patients. This difference was especially prominent for anti-chromatin antibodies, which remained after adjustment for age, disease duration and treatment. Total levels of C1q-binding IC correlated with levels of specific ANA in IC, with highest correlations for anti-chromatin antibodies among Sudanese patients. Whereas occurrence of anti- SSA/Ro60, anti-histone and anti-U1RNP in both serum and IC associated with high SLEDAI score, anti-dsDNA in IC but not in serum associated with high SLEDAI. ANA, especially antibodies targeting chromatin, accumulate more in IC from Sudanese SLE patients. If the autoantibody fraction forming IC is pathogenically important, this might explain the generally described severe SLE in black populations.
Collapse
Affiliation(s)
- Sahwa Elbagir
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden.
| | - Azita Sohrabian
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| | - Amir I Elshafie
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| | | | | | - Musa A M Nur
- Rheumatology Unit, Alribat University Hospital, Khartoum, Sudan
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory C5, 751 85, Uppsala, Sweden
| |
Collapse
|
17
|
Rekvig OP. Autoimmunity and SLE: Factual and Semantic Evidence-Based Critical Analyses of Definitions, Etiology, and Pathogenesis. Front Immunol 2020; 11:569234. [PMID: 33123142 PMCID: PMC7573073 DOI: 10.3389/fimmu.2020.569234] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
One cannot discuss anti-dsDNA antibodies and lupus nephritis without discussing the nature of Systemic lupus erythematosus (SLE). SLE is insistently described as a prototype autoimmune syndrome, with anti-dsDNA antibodies as a central biomarker and a pathogenic factor. The two entities, "SLE" and "The Anti-dsDNA Antibody," have been linked in previous and contemporary studies although serious criticism to this mutual linkage have been raised: Anti-dsDNA antibodies were first described in bacterial infections and not in SLE; later in SLE, viral and parasitic infections and in malignancies. An increasing number of studies on classification criteria for SLE have been published in the aftermath of the canonical 1982 American College of Rheumatology SLE classification sets of criteria. Considering these studies, it is surprising to observe a nearby complete absence of fundamental critical/theoretical discussions aimed to explain how and why the classification criteria are linked in context of etiology, pathogenicity, or biology. This study is an attempt to prioritize critical comments on the contemporary definition and classification of SLE and of anti-dsDNA antibodies in context of lupus nephritis. Epidemiology, etiology, pathogenesis, and measures of therapy efficacy are implemented as problems in the present discussion. In order to understand whether or not disparate clinical SLE phenotypes are useful to determine its basic biological processes accounting for the syndrome is problematic. A central problem is discussed on whether the clinical role of anti-dsDNA antibodies from principal reasons can be accepted as a biomarker for SLE without clarifying what we define as an anti-dsDNA antibody, and in which biologic contexts the antibodies appear. In sum, this study is an attempt to bring to the forum critical comments on the contemporary definition and classification of SLE, lupus nephritis and anti-dsDNA antibodies. Four concise hypotheses are suggested for future science at the end of this analytical study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Fürst Medical Laboratory, Oslo, Norway
| |
Collapse
|
18
|
Kondo-Ishikawa S, Fujii T, Ishigooka N, Murakami K, Nakashima R, Hashimoto M, Yoshifuji H, Tanaka M, Ohmura K, Mimori T. Association of anti-NR2 and U1RNP antibodies with neurotoxic inflammatory mediators in cerebrospinal fluid from patients with neuropsychiatric systemic lupus erythematosus. Lupus 2020; 29:1673-1682. [PMID: 32883159 DOI: 10.1177/0961203320954918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Autoantibodies (auto Abs) and inflammatory mediators (IMs) in cerebrospinal fluid (CSF) may be involved in the pathogenesis of neuropsychiatric systemic lupus erythematosus (NPSLE). It is suggested that anti-N-methyl D-aspartate receptor NR2 subunit (NR2) Ab can develop NP manifestation after blood-brain barrier (BBB) abruption. We also reported the association between NPSLE and CSF anti-U1RNP Ab. In the present study, combined effects of CSF anti-NR2 and anti-U1RNP Abs on IMs in patients with NPSLE were examined. METHODS CSF samples were collected from 69 patients with NPSLE and 13 non-NPSLE controls. CSF anti-NR2 and anti-U1RNP Abs were determined using ELISA. Levels of IL-6, IL-8, and monokine induced by IFN-γ (MIG) in CSF were measured by quantitative multiplex cytokine analysis. RESULTS CSF IL-6 levels were higher in CSF anti-NR2-positive than in CSF anti-NR2-negative patients (p = 0.003) and non-NPSLE controls (p = 0.015) and were positively correlated with anti-NR2 titer (r = 0.42). CSF IL-8 levels were higher in CSF anti-U1RNP-positive than in CSF anti-U1RNP-negative patients (p = 0.041). CSF MIG levels were more elevated in CSF anti-NR2-positive (p = 0.043) and anti-U1RNP-positive patients (p = 0.029) than in non-NPSLE controls. Additionally, in double positive (DP; both anti-NR2 and U1RNP Ab positive) group, CSF IL-6 and MIG levels were significantly higher than in the double negative (DN; both anti-NR2 and U1RNP Ab negative) group. However, combined effect of both Abs on IM elevation and clinical manifestation was not clear. CONCLUSIONS CSF anti-NR2 and anti-U1RNP Abs have different effects on the elevation of CSF IM levels in patients with NPSLE. Additional effect of anti-U1RNP Abs on anti-NR2 Ab-mediated NP manifestation, however, was not recognized in our study.
Collapse
Affiliation(s)
- Seiko Kondo-Ishikawa
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Rheumatology, National Hospital Organization Utano Hospital, Kyoto, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Nozomi Ishigooka
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motomu Hashimoto
- Department of the Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Tanaka
- Department of the Advanced Medicine for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Anti-nucleosome antibodies increase the risk of renal relapse in a prospective cohort of patients with clinically inactive systemic lupus erythematosus. Sci Rep 2020; 10:12698. [PMID: 32728051 PMCID: PMC7391650 DOI: 10.1038/s41598-020-69608-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/15/2020] [Indexed: 11/26/2022] Open
Abstract
An important goal in the management of systemic lupus erythematosus (SLE) is the prediction of relapses. This study assesses whether anti-nucleosome antibodies (anti-NCS) increase the risk of renal relapse in inactive SLE. A prospective cohort of 115 patients with inactive SLE (M-SLEDAI ≤ 2) were followed for 12 months to assess the development of relapse (increase of M-SLEDAI ≥ 4) and specific renal flare (renal SLEDAI ≥ 4). At baseline, we identified potential risk factors for relapse, including anti-NCS. At baseline, 18 (16%) of the 115 patients with inactive SLE were anti-NCS positive. At the 12-month follow-up, anti-NCS-positive patients had a higher incidence of renal relapse compared to anti-NCS-negative patients (38.9% vs 13.4%, respectively). In Cox regression analysis, after adjusting for age, disease duration, anti-dsDNA, and immunosuppressive drugs, the presence of anti-NCS positivity at baseline increased the risk of renal relapse (HR: 5.31, 95% CI 2.03–13.92). Nevertheless, there were no differences in the incidence of other relapses in anti-NCS-positive versus anti-NCS-negative. Our results indicate that in inactive SLE, anti-NCS determination can be useful for identifying patients with a higher risk of developing renal relapse. Interestingly, this study identified that continued use of oral immunosuppressive therapy in patients with inactive SLE can reduce the risk of renal relapse.
Collapse
|
20
|
Jin YH, Kim CX, Huang J, Kim BS. Infection and Activation of B Cells by Theiler's Murine Encephalomyelitis Virus (TMEV) Leads to Autoantibody Production in an Infectious Model of Multiple Sclerosis. Cells 2020; 9:cells9081787. [PMID: 32727036 PMCID: PMC7465974 DOI: 10.3390/cells9081787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV) induces immune-mediated inflammatory demyelinating disease in susceptible mice that is similar to human multiple sclerosis (MS). In light of anti-CD20 therapies for MS, the susceptibility of B cells to TMEV infection is particularly important. In our study, direct viral exposure to macrophages and lymphocytes resulted in viral replication and cellular stimulation in the order of DCs, macrophages, B cells, and T cells. Notably, B cells produced viral proteins and expressed elevated levels of CD69, an activation marker. Similarly, the expression of major histocompatibility complex class II and costimulatory molecules in B cells was upregulated. Moreover, TMEV-infected B cells showed elevated levels of antigen-presenting function and antibody production. TMEV infection appeared to polyclonally activate B cells to produce autoantibodies and further T cell stimulation. Thus, the viral infection might potentially affect the outcome of autoimmune diseases, and/or the development of other chronic infections, including the protection and/or pathogenesis of TMEV-induced demyelinating disease.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
- Correspondence: (Y.-H.J.); (B.S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +1-312-503-8693 (B.S.K.)
| | - Charles X. Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- M Health Fairview Heart Clinic, University of Minnesota Health, Edina, MN 55435, USA
| | - Jocelin Huang
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- M Health Cancer Care, University of Minnesota Health, Edina, MN 55435, USA
| | - Byung S. Kim
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
- Correspondence: (Y.-H.J.); (B.S.K.); Tel.: +82-42-610-8850 (Y.-H.J.); +1-312-503-8693 (B.S.K.)
| |
Collapse
|
21
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
22
|
Pisetsky DS. Evolving story of autoantibodies in systemic lupus erythematosus. J Autoimmun 2020; 110:102356. [PMID: 31810857 PMCID: PMC8284812 DOI: 10.1016/j.jaut.2019.102356] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by antinuclear antibody (ANA) production. ANAs bind to DNA, RNA and complexes of proteins and nucleic acids and are important markers for diagnosis and activity. According to current models, ANAs originate from antigen-driven processes; nevertheless, antibody responses to both DNA and RNA binding proteins display features unexpected in terms of current paradigms for antigenicity. These differences may reflect disturbances in both B and T cells critical for autoreactivity. Clinically, ANA testing has new uses for determining classification as well as assessing eligibility for clinical trials. Studies of patients with established disease show frequent seronegativity. In this setting, seronegativity may indicate a stage of disease called post-autoimmunity in which the natural history of disease or effects of immunosuppressive therapies modifies responses. The new uses of ANA testing highlight the importance of understanding autoantigenicity and developing sensitive and informative assays for clinical assessments.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center and Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA.
| |
Collapse
|
23
|
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020; 21:605-614. [PMID: 32367037 PMCID: PMC8135909 DOI: 10.1038/s41590-020-0677-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune system contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigenetic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique 'interactome', which will dictate specific treatment.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
24
|
Elevated interleukin-25 and its association to Th2 cytokines in systemic lupus erythematosus with lupus nephritis. PLoS One 2019; 14:e0224707. [PMID: 31697750 PMCID: PMC6837487 DOI: 10.1371/journal.pone.0224707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that is associated with lupus nephritis, initiated by the deposition of immune complexes in the kidney; subsequently, this induces the overexpression of cytokines. Lupus nephritis is known as one of the major clinical manifestations that affect the disease severity in SLE patients. An increased number of resident periglomerular and immune cells in the kidney has the potential to affect the equilibrium of different immune cell subsets, such as Th1, Th2, Th17, and Tregs, which may be central to the induction of tissue damage in kidney by exerting either proinflammatory or anti-inflammatory effects, or both. This equilibrium has yet to be confirmed, as new players such as IL-25 remain undiscovered. IL-25 is a cytokine of the IL-17 family, which stimulates Th2-mediated immune response when overly expressed. Thus, the aim of this research is to determine the plasma levels of IL-25 and Th2-associated cytokines (IL-4, IL-5, IL-6, IL-9, IL-10, IL-13) in SLE patients with (SLE-LN) and without lupus nephritis. Sixty-four (n = 64) SLE patients and fifteen (n = 15) healthy individuals were recruited. This study demonstrated that the IL-9, IL-10 and IL-25 had significantly increased expressions in SLE-LN, followed by SLE without LN, compared to healthy controls. Meanwhile, IL-5 and IL-6 had significantly reduced. No significant difference was observed with IL-13, while the level of IL-4 was undetectable. Furthermore, IL-9 and IL-10 were significantly correlated with the IL-25, and IL-25, IL-9 and IL-10 were positively correlated with the disease severity score, SLEDAI. In conclusion, IL-25 and its associated Th2 cytokines (IL-9 and IL-10) may be involved in SLE pathogenesis. These cytokines could be potential biomarkers in monitoring and predicting the disease severity during SLE pathogenesis.
Collapse
|
25
|
Yadav R, Yoo DG, Kahlenberg JM, Bridges SL, Oni O, Huang H, Stecenko A, Rada B. Systemic levels of anti-PAD4 autoantibodies correlate with airway obstruction in cystic fibrosis. J Cyst Fibros 2019; 18:636-645. [PMID: 30638826 PMCID: PMC6620172 DOI: 10.1016/j.jcf.2018.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) airway disease is characterized by the long-term presence of neutrophil granulocytes. Formation of neutrophil extracellular traps (NETs) and/or autoantibodies directed against extracellular components of NETs are possible contributors to neutrophil-mediated lung damage in CF. The goal of this study was to measure their levels in CF adults compared to healthy controls and subjects with rheumatologic diseases known to develop NET-related autoantibodies and pathologies, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Sera were analyzed from the following number of subjects: 37 CF, 23 healthy controls (HC), 20 RA, and 21 SLE. CF had elevated serum myeloperoxidase (MPO) concentrations (347.5±56.1 ng/ml, mean+/-S.E.M., p = .0132) compared to HC (144.5±14.6 ng/ml) but not of neutrophil elastase (NE) complexed with alpha-1-antitrypsin, cell-free DNA or NE-DNA complexes. The peptidylarginine deiminase 4 (PAD4) enzyme is required for NET formation and associated DNA release in neutrophils. Serum levels of anti-PAD4 antibodies (Ab) were elevated in CF (p = .0147) compared to HC and showed an inverse correlation with a measure of lung function, FEV1% predicted (r = -0.5020, p = .015), as did MPO levels (r = -0.4801, p = .0026). Anti-PAD4 Ab levels in CF sera associated with lung infection by P. aeruginosa, but not that by S. aureus, age, sex, CF-related diabetes or the presence of musculoskeletal pain. Serum levels of anti-citrullinated protein Abs (ACPAs) and anti-nucleosome Abs were not elevated in CF compared to HC (p = .7498, p = .0678). In summary, adult CF subjects develop an autoimmune response against NET components that correlates with worsening lung disease.
Collapse
Affiliation(s)
- Ruchi Yadav
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Dae-Goon Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - S Louis Bridges
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Oluwadamilola Oni
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Hanwen Huang
- Department of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, GA, USA
| | - Arlene Stecenko
- Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
26
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Xu MM, Murphy PA, Vella AT. Activated T-effector seeds: cultivating atherosclerotic plaque through alternative activation. Am J Physiol Heart Circ Physiol 2019; 316:H1354-H1365. [PMID: 30925075 PMCID: PMC6620674 DOI: 10.1152/ajpheart.00148.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory pathology that precipitates substantial morbidity and mortality. Although initiated by physiological patterns of low and disturbed flow that differentially prime endothelial cells at sites of vessel branch points and curvature, the chronic, smoldering inflammation of atherosclerosis is accelerated by comorbidities involving inappropriate activation of the adaptive immune system, such as autoimmunity. The innate contributions to atherosclerosis, especially in the transition of monocyte to lipid-laden macrophage, are well established, but the mechanisms underpinning the infiltration, persistence, and effector dynamics of CD8 T cells in particular are not well understood. Adaptive immunity is centered on a classical cascade of antigen recognition and activation, costimulation, and effector cytokine secretion upon recall of antigen. However, chronic inflammation can generate alternative cues that supplant this behavior pattern and promote the retention and activation of peripherally activated T cells. Furthermore, the atherogenic foci that activated immune cell infiltrate are unique lipid-laden environments that offer a diverse array of stimuli, including those of survival, antigen hyporesponsiveness, and inflammatory cytokine expression. This review will focus on how known cardiovascular comorbidities may be influencing CD8 T-cell activation and how, once infiltrated within atherogenic foci, these T cells face a multitude of cues that skew the classical cascade of T-cell behavior, highlighting alternative modes of activation that may help contextualize associations of autoimmunity, viral infection, and immunotherapy with cardiovascular morbidity.
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
28
|
Matsuhisa A, Okui A, Horiuchi Y. [Viewing sepsis and autoimmune disease in relation with infection and NETs-formation]. Nihon Saikingaku Zasshi 2018; 73:171-191. [PMID: 29863035 DOI: 10.3412/jsb.73.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophil has been widely recognized as body's first line of defence against pathogens. NETosis was first reported in 2004 as a programmed cell death of neutrophil and distinguished from apoptosis and necrosis. This phenomenon has been already observed in both basic and clinical research. NETosis is induced by various stimulants such as PMA, IL-8, DAMPs/PAMPs, bacteria, and antigen-antibody complex including self-antibody such as ANCA. It is known that there are two types of NETosis following bacterial infections. Although both of them have the ability to capture and kill bacteria, they also damage the host tissues. The inhibition of the NETs-related enzymes prevents the NETs formation at that time. The production of O2- from respiratory burst of neutrophils triggers NETs formation. In the first type of NETosis, neutrophils are completely collapsed, while in the second type, they maintain the morphology and the ability of phagocytosis. However, bacteria can escape from NETs by degrading NETs with their secreting nucleases. Thus the animal models of infection, using these bacteria, oftentimes suffer from severe infectious diseases. Human CGD (Chronic Granulomatosis Disease) patients who do not have Nox2 are immunocompromised, and highly susceptible to infection due to the defect of NETs formation. On the other hand, SLE patients are unable to break down the NETs as their serum inhibits the DNase1 activity, which results in autoantibody generation against NETs as well as self-DNA. It is getting clear that there is a relationship between inflammatory diseases, including infectious diseases, Sepsis and autoimmune diseases, and NETs. Therefore, it is important to re-evaluate the inflammatory disorders from NETs' perspective, and to incorporate the emerging concepts for better understanding the mechanisms involved.
Collapse
Affiliation(s)
- Akio Matsuhisa
- Medical Device & Deagnostic Dept., Fuso Pharmaceutical Industries, Ltd
| | - Akira Okui
- Research & Development Center, Fuso Pharmaceutical Industries, Ltd
| | | |
Collapse
|
29
|
Zhong W, Jiang Z, Wu J, Jiang Y, Zhao L. CCR6 + Th cell distribution differentiates systemic lupus erythematosus patients based on anti-dsDNA antibody status. PeerJ 2018; 6:e4294. [PMID: 29441231 PMCID: PMC5808313 DOI: 10.7717/peerj.4294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) disease has been shown to be associated with the generation of multiple auto-antibodies. Among these, anti-dsDNA antibodies (anti-DNAs) are specific and play a pathogenic role in SLE. Indeed, anti-DNA+ SLE patients display a worse disease course. The generation of these pathogenic anti-DNAs has been attributed to the interaction between aberrant T helper (Th) cells and autoimmune B cells. Thus, in this study we have investigated whether CCR6+Th cells have the ability to differentiate SLE patients based on anti-DNA status, and if their distribution has any correlation with disease activity. Methods We recruited 25 anti-DNA+ and 25 anti-DNA− treatment-naive onset SLE patients, matched for various clinical characteristics in our nested matched case-control study. CCR6+ Th cells and their additional subsets were analyzed in each patient by flow cytometry. Results Anti-DNA+ SLE patients specifically had a higher percentage of Th cells expressing CCR6 and CXCR3. Further analysis of CCR6+ Th cell subsets showed that anti-DNA+ SLE patients had elevated proportions of Th9, Th17, Th17.1 and CCR4/CXCR3 double-negative (DN) cells. However, the proportions of CCR6− Th subsets, including Th1 and Th2 cells, did not show any association with anti-DNA status. Finally, we identified a correlation between CCR6+ Th subsets and clinical indicators, specifically in anti-DNA+ SLE patients. Conclusions Our data indicated that CCR6+ Th cells and their subsets were elevated and correlated with disease activity in anti-DNA+ SLE patients. We speculated that CCR6+ Th cells may contribute to distinct disease severity in anti-DNA+ SLE patients.
Collapse
Affiliation(s)
- Wei Zhong
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Jiang Wu
- College of Electrical Engineering and Instrumentation, Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ling Zhao
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
30
|
Jain S, Ward JM, Shin DM, Wang H, Naghashfar Z, Kovalchuk AL, Morse HC. Associations of Autoimmunity, Immunodeficiency, Lymphomagenesis, and Gut Microbiota in Mice with Knockins for a Pathogenic Autoantibody. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2020-2033. [PMID: 28727987 DOI: 10.1016/j.ajpath.2017.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023]
Abstract
A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.
Collapse
Affiliation(s)
- Shweta Jain
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Jerrold M Ward
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University, Seoul, Republic of Korea
| | - Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Zohreh Naghashfar
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Alexander L Kovalchuk
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland.
| |
Collapse
|
31
|
Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2017; 53:181-197. [DOI: 10.1007/s12016-017-8605-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Niu Y, Sengupta M, Titov AA, Choi SC, Morel L. The PBX1 lupus susceptibility gene regulates CD44 expression. Mol Immunol 2017; 85:148-154. [PMID: 28257976 PMCID: PMC5389453 DOI: 10.1016/j.molimm.2017.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
Abstract
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions.
Collapse
Affiliation(s)
- Yuxin Niu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610-0275, USA
| | - Mayami Sengupta
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610-0275, USA
| | - Anton A Titov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610-0275, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610-0275, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610-0275, USA.
| |
Collapse
|
33
|
Giles JR, Neves AT, Marshak-Rothstein A, Shlomchik MJ. Autoreactive helper T cells alleviate the need for intrinsic TLR signaling in autoreactive B cell activation. JCI Insight 2017; 2:e90870. [PMID: 28239656 PMCID: PMC5313065 DOI: 10.1172/jci.insight.90870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.
Collapse
Affiliation(s)
- Josephine R. Giles
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adriana Turqueti Neves
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ann Marshak-Rothstein
- Division of Rheumatology, Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Mark J. Shlomchik
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Fujikura D, Ikesue M, Endo T, Chiba S, Higashi H, Uede T. Death receptor 6 contributes to autoimmunity in lupus-prone mice. Nat Commun 2017; 8:13957. [PMID: 28045014 PMCID: PMC5216082 DOI: 10.1038/ncomms13957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/15/2016] [Indexed: 01/20/2023] Open
Abstract
Expansion of autoreactive follicular helper T (Tfh) cells is tightly restricted to prevent induction of autoantibody-dependent immunological diseases, such as systemic lupus erythematosus (SLE). Here we show expression of an orphan immune regulator, death receptor 6 (DR6/TNFRSF21), on a population of Tfh cells that are highly expanded in lupus-like disease progression in mice. Genome-wide screening reveals an interaction between syndecan-1 and DR6 resulting in immunosuppressive functions. Importantly, syndecan-1 is expressed specifically on autoreactive germinal centre (GC) B cells that are critical for maintenance of Tfh cells. Syndecan-1 expression level on GC B cells is associated with Tfh cell expansion and disease progression in lupus-prone mouse strains. In addition, Tfh cell suppression by DR6-specific monoclonal antibody delays disease progression in lupus-prone mice. These findings suggest that the DR6/syndecan-1 axis regulates aberrant GC reactions and could be a therapeutic target for autoimmune diseases such as SLE. Germinal centre (GC) reactions are driven by T follicular helper (Tfh) cells and their dysregulation can cause autoimmune disease. Here the authors show that the orphan receptor DR6 is a Tfh cell marker that binds syndecan-1 on GC B cells driving autoimmunity in lupus-prone mice.
Collapse
Affiliation(s)
- Daisuke Fujikura
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan.,Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan.,Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Masahiro Ikesue
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| | - Tsutomu Endo
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| | - Satoko Chiba
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan.,Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, Hokkaido University Research Center for Zoonosis Control, North-20, West-10, Kita-ku, Sapporo 001-0020, Japan
| | - Toshimitsu Uede
- Division of Molecular Immunology, Hokkaido University Institute for Genetic Medicine, North-15, West-7, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
35
|
Ferrari SM, Elia G, Virili C, Centanni M, Antonelli A, Fallahi P. Systemic Lupus Erythematosus and Thyroid Autoimmunity. Front Endocrinol (Lausanne) 2017; 8:138. [PMID: 28674523 PMCID: PMC5474463 DOI: 10.3389/fendo.2017.00138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022] Open
Abstract
Most of the studies present in the literature show a high prevalence, and incidence, of new cases of hypothyroidism and autoimmune thyroiditis (AT) in systemic lupus erythematosus (SLE) patients, overall in female gender. A limited number of cases of Graves' disease have been also reported in SLE patients, in agreement with the higher prevalence of thyroid autoimmunity. It has been also demonstrated that a Th1 predominance is associated with AT in SLE patients. Furthermore, a higher prevalence of papillary thyroid cancer has been recently reported in SLE, in particular in the presence of thyroid autoimmunity. However, studies in larger number of SLE patients are needed to confirm findings about thyroid cancer. On the whole, data from literature strongly suggest that female SLE patients, with a high risk (a normal but at the higher limit thyroid-stimulating hormone value, positive antithyroid peroxidase antibodies, a hypoechoic pattern, and small thyroid), should undergo periodic thyroid function follow-up, and appropriate treatments when needed. A careful thyroid monitoring would be opportune during the follow-up of these patients.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Silvia Martina Ferrari,
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, Latina, Italy
| | - Marco Centanni
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, Latina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Liu X, Qin H, Xu J. The role of autophagy in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2016; 40:351-361. [DOI: 10.1016/j.intimp.2016.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/15/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
|
37
|
Soliman S, Mohan C. Lupus nephritis biomarkers. Clin Immunol 2016; 185:10-20. [PMID: 27498110 DOI: 10.1016/j.clim.2016.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
Lupus nephritis (LN), a potentially destructive outcome of SLE, is a real challenge in the management of SLE because of the difficulty in diagnosing its subclinical onset and identifying relapses before serious complications set in. Conventional clinical parameters such as proteinuria, GFR, urine sediments, anti-dsDNA and complement levels are not sensitive or specific enough for detecting ongoing disease activity in lupus kidneys and early relapse of nephritis. There has long been a need for biomarkers of disease activity in LN. Such markers ideally should be capable of predicting early sub-clinical flares and could be used to gauge response to therapy, thus obviating the need for serial renal biopsies with their possible hazardous complications. Since urine can be readily obtained, it lends itself as an obvious biological substrate. In this review, the use of urine and serum as sources of lupus nephritis biomarkers is described, and the results of biomarker discovery studies using candidate and proteomic approaches are summarized.
Collapse
Affiliation(s)
- Samar Soliman
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States; Rheumatology & Rehabilitation Dept., Faculty of Medicine, Minya University, Egypt
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
38
|
Orme JJ, Du Y, Vanarsa K, Mayeux J, Li L, Mutwally A, Arriens C, Min S, Hutcheson J, Davis LS, Chong BF, Satterthwaite AB, Wu T, Mohan C. Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE. Clin Immunol 2016; 169:58-68. [PMID: 27237127 PMCID: PMC5193537 DOI: 10.1016/j.clim.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by antibody-mediated chronic inflammation in the kidney, lung, skin, and other organs to cause inflammation and damage. Several inflammatory pathways are dysregulated in SLE, and understanding these pathways may improve diagnosis and treatment. In one such pathway, Axl tyrosine kinase receptor responds to Gas6 ligand to block inflammation in leukocytes. A soluble form of the Axl receptor ectodomain (sAxl) is elevated in serum from patients with SLE and lupus-prone mice. We hypothesized that sAxl in SLE serum originates from the surface of leukocytes and that the loss of leukocyte Axl contributes to the disease. We determined that macrophages and B cells are a source of sAxl in SLE and in lupus-prone mice. Shedding of the Axl ectodomain from the leukocytes of lupus-prone mice is mediated by the matrix metalloproteases ADAM10 and TACE (ADAM17). Loss of Axl from lupus-prone macrophages renders them unresponsive to Gas6-induced anti-inflammatory signaling in vitro. This phenotype is rescued by combined ADAM10/TACE inhibition. Mice with Axl-deficient macrophages develop worse disease than controls when challenged with anti-glomerular basement membrane (anti-GBM) sera in an induced model of nephritis. ADAM10 and TACE also mediate human SLE PBMC Axl cleavage. Collectively, these studies indicate that increased metalloprotease-mediated cleavage of leukocyte Axl may contribute to end organ disease in lupus. They further suggest dual ADAM10/TACE inhibition as a potential therapeutic modality in SLE.
Collapse
Affiliation(s)
- Jacob J Orme
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Yong Du
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Kamala Vanarsa
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Jessica Mayeux
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Li Li
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Azza Mutwally
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Cristina Arriens
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Soyoun Min
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jack Hutcheson
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Laurie S Davis
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Benjamin F Chong
- The Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Anne B Satterthwaite
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Tianfu Wu
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States
| | - Chandra Mohan
- The Department of Internal Medicine, Rheumatic Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; The Department of Biomedical Engineering, University of Houston, Houston, TX 77204-5060, United States.
| |
Collapse
|
39
|
Campos LMA, Kiss MHB, Scheinberg MA, Mangueira CLP, Silva CA. Antinucleosome Antibodies in Patients with Juvenile Systemic Lupus Erythematosus. Lupus 2016; 15:496-500. [PMID: 16942001 DOI: 10.1191/0961203306lu2317oa] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Our objective was to evaluate the frequency of antinucleosome antibodies (anti-Ncs) in juvenile systemic lupus erythematosus (JSLE) comparing it to that observed for anti-DNA and to correlate the presence of these antibodies with clinical manifestations and disease activity. Anti-Ncs and anti-DNA were detected by ELISA in 74 patients with JSLE and 64 normal controls. Clinical records were reviewed. Disease activity was assessed by SLEDAI score. Anti-Ncs and anti-DNA showed sensitivity of 52.7% and 54% and specificity of 98.4% and 95.3%, respectively. Disagreement between the two assays was found in 25.7% of the cases: isolated positive Anti-Ncs in nine cases (12.2%) and isolated positive anti-DNA in 10 cases (13.5%). Agreement was found in 74.3%: both positive antibodies in 30 cases and both negative in 25. The presence of anti-Ncs was significantly associated with malar erythema, hemolytic anemia, anti-DNA and low complement levels, but not with renal manifestations. The presence of anti-Ncs was associated with a higher SLEDAI median ( P < 0.001) and its titers correlated with the SLEDAI score ( r = 0.504; P < 0.001). The frequency, sensitivity and specificity values were similar between anti-Ncs and anti-DNA antibodies in patients with JSLE. Nevertheless, the discordance of 25.7% between the two assays suggests that both antibodies may have a complementary diagnostic role. The association and correlation between anti-Ncs and several disease activity parameters demonstrated its usufulness in the follow-up of these patients.
Collapse
Affiliation(s)
- L M A Campos
- Department of Pediatrics, University of São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
40
|
Li ZG, Mu R, Dai ZP, Gao XM. T cell vaccination in systemic lupus erythematosus with autologous activated T cells. Lupus 2016; 14:884-9. [PMID: 16335580 DOI: 10.1191/0961203305lu2239oa] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoreactive T cell mediated autoimmune disease. Immunization with inactivated autoreactive T cells may induce idiotype anti-idiotypic reaction to deplete specific subsets of autoreactive T cells involved in SLE. Six SLE patients unsuitable or refused to use immunosuppressants were treated with T cell vaccination. Their clinical manifestations and laboratory parameters including mixed lymphocyte reactions were evaluated. Autoreactive T cell clones were derived from peripheral blood mononuclear cells of the patients and 1 × 107 irradiated T cells were inoculated subcutaneously at 0, two, six and eight weeks, respectively. The enrolled patients were followed up for 32-40 months at an interval of three to six months. The clinical characteristics and laboratory abnormalities improved after inoculation without increasing the dose of corticosteroids and immunosuppressants in most patients. SLE disease activity index (SLEDAI) scores decreased. Proliferative responses against the T cell vaccine were observed in four of six patients. At the time of this report, the six patients remain in clinical remission. No significant side effect from the vaccination was noticed during the follow-up period. The results of this pilot study indicate that T cell vaccination is a safe and effective treatment in SLE.
Collapse
Affiliation(s)
- Z G Li
- Department of Rheumatology and Immunology, People's Hospital, Beijing, China.
| | | | | | | |
Collapse
|
41
|
Ghillani-Dalbin P, Amoura Z, Cacoub P, Charuel JL, Diemert MC, Piette JC, Musset L. Testing for anti-nucleosome antibodies in daily practice: a monocentric evaluation in 1696 patients. Lupus 2016; 12:833-7. [PMID: 14667099 DOI: 10.1191/0961203303lu475oa] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective was to report our experience of the detection of anti-nucleosome (anti-Nuc) antibodies (Ab) in a large series of consecutive patients, and to compare these results with those of anti-nuclear and anti-dsDNA Ab. In total, 1696 consecutive patients with suspected or confirmed autoimmune disease were tested over a two-year period. The biological investigation included detection of anti-nuclear, anti-dsDNA and anti-Nuc Ab. Among 1696 sera, 382 (23%) were negative for all Ab tested (anti-nuclear, anti-dsDNA and anti-Nuc) and 1314 (77%) were positive for at least one Ab. Anti-Nuc Ab were positive in 350/1314 patients. In this group, 249/350 (71%) also had positive anti-nuclear and anti-dsDNA, 97/350 (28%) had only positive anti-nuclear Ab without anti-dsDNA Ab and 4/350 (1%) had both anti-dsDNA and anti-Nuc Ab without anti-nuclear Ab. No patient had ‘isolated’ anti-Nuc Ab. Clinical data were available for 307/350 anti-Nuc positive patients. Systemic lupus erythematosus (SLE) was diagnosed in 240/307 (78%) patients, including 43 SLE patients with negative anti-dsDNA Ab. In conclusion, this study extends the relevance of anti-Nuc Ab to routine use for the diagnosis of connective tissue diseases, mainly anti-dsDNA Ab negative SLE.
Collapse
|
42
|
Smith C, Buhlmann JE, Wang X, Bartlett A, Lim B, Barrington RA. CD275-Independent IL-17-Producing T Follicular Helper-like Cells in Lymphopenic Autoimmune-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2016; 196:4935-46. [PMID: 27183569 DOI: 10.4049/jimmunol.1402193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 04/15/2016] [Indexed: 12/27/2022]
Abstract
T cells undergo homeostatic expansion and acquire an activated phenotype in lymphopenic microenvironments. Restoration of normal lymphocyte numbers typically re-establishes normal homeostasis, and proinflammatory cytokine production returns to baseline. Mice deficient in guanine nucleotide exchange factor RasGRP1 exhibit dysregulated homeostatic expansion, which manifests as lymphoproliferative disease with autoantibody production. Our previous work revealed that autoreactive B cells lacking RasGRP1 break tolerance early during development, as well as during germinal center responses, suggesting that T cell-independent and T cell-dependent mechanisms are responsible. Examination of whether a particular T cell subset is involved in the breach of B cell tolerance revealed increased Th17 cells in Rasgrp1-deficient mice relative to control mice. Rasgrp1-deficient mice lacking IL-17R had fewer germinal centers, and germinal centers that formed contained fewer autoreactive B cells, suggesting that IL-17 signaling is required for a break in B cell tolerance in germinal centers. Interestingly, a fraction of Th17 cells from Rasgrp1-deficient mice were CXCR5(+) and upregulated levels of CD278 coordinate with their appearance in germinal centers, all attributes of T follicular helper cells (Tfh17). To determine whether CD278-CD275 interactions were required for the development of Tfh17 cells and for autoantibody, Rasgrp1-deficient mice were crossed with CD275-deficient mice. Surprisingly, mice deficient in RasGRP1 and CD275 formed Tfh17 cells and germinal centers and produced similar titers of autoantibodies as mice deficient in only RasGRP1. Therefore, these studies suggest that requirements for Tfh cell development change in lymphopenia-associated autoimmune settings.
Collapse
Affiliation(s)
- Christopher Smith
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688; and
| | - Janet E Buhlmann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Xiaogan Wang
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688; and
| | - Amber Bartlett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688; and
| | - Bing Lim
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Robert A Barrington
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688; and
| |
Collapse
|
43
|
Ding M, Zhang J. Epitope spreading induced by immunization with synthetic SSB peptides. Exp Ther Med 2016; 12:147-150. [PMID: 27347030 PMCID: PMC4906616 DOI: 10.3892/etm.2016.3267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Sjogren's syndrome type B (SSB)/La antibody is an autoantibody generally observed in connective tissue diseases whereas double-stranded deoxyribonucleic acid (dsDNA) antibodies are the most characteristic autoantibodies found in systemic lupus erythematosus (SLE) patients. The relationship of these autoantibodies remains unclear. The aim of the study was to determine the profile of antibody production in rabbits immunized with synthetic SSB peptides alone or with dsDNA. For this purpose, 214–225aa peptide of SSB antigen was synthesized based on the organic chemistry solid-phase peptide synthesis. Rabbits were immunized with the following antigens: i) synthetic SSB peptides linked with keyhole limpet hemocyanin (KLH); ii) dsDNA; iii) SSB plus dsDNA; iv) KLH; and v) phosphate-buffered saline. SSB peptide antibody was measured using the enzyme-linked immunosorbent assay while extractable nuclear antigens (ENA) antibody and dsDNA antibody were measured by immunoblotting and immunofluorescence, respectively. The results showed that a specific anti-SSB peptide antibody was produced following immunization with SSB epitope alone or with dsDNA. The SSB peptide antibody titer in the coimmunization group was higher than that of the SSB alone group. In addition, antibodies against ribonucleoprotein (RNP), Smith and/or dsDNA were detected in rabbits of the coimmunization group. The presence of anti-dsDNA antibodies in the rabbits immunized with SSB peptide suggested the induction of epitope spreading. In conclusions, SSB antibodies were produced in rabbits immunized with SSB peptide or SSB+dsDNA, whereas SSB antibody titers were higher in the coimmunization group. Furthermore, coimmunization was associated with epitope spreading.
Collapse
Affiliation(s)
- Min Ding
- Department of Dermatology, Peking University People's Hospital, Beijing 100044, P.R. China; Department of Dermatology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
44
|
Rosen A, Casciola-Rosen L. Autoantigens as Partners in Initiation and Propagation of Autoimmune Rheumatic Diseases. Annu Rev Immunol 2016; 34:395-420. [PMID: 26907212 DOI: 10.1146/annurev-immunol-032414-112205] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic autoimmune diseases are characterized by specific targeting of a limited group of ubiquitously expressed autoantigens by the immune system. This review examines the mechanisms underlying their selection as immune targets. Initiation of autoimmune responses likely reflects the presentation of antigens with a distinct structure not previously encountered by the immune system, in a proimmune context (injury, malignancy, or infection). Causes of modified structure include somatic mutation and posttranslational modifications (including citrullination and proteolysis). Many autoantigens are components of multimolecular complexes, and some of the other components may provide adjuvant activity. Propagation of autoimmune responses appears to reflect a bidirectional interaction between the immune response and the target tissues in a mutually reinforcing cycle: Immune effector pathways generate additional autoantigen, which feeds further immune response. We propose that this resonance may be a critical principle underlying disease propagation, with specific autoantigens functioning as the hubs around which amplification occurs.
Collapse
Affiliation(s)
- Antony Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224; ,
| | - Livia Casciola-Rosen
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224; ,
| |
Collapse
|
45
|
Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies (Basel) 2016; 5:antib5010002. [PMID: 31557984 PMCID: PMC6698872 DOI: 10.3390/antib5010002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by a wide spectrum of auto-antibodies which recognize several cellular components. The production of these self-reactive antibodies fluctuates during the course of the disease and the involvement of different antibody-secreting cell populations are considered highly relevant for the disease pathogenesis. These cells are developed and stimulated through different ways leading to the secretion of a variety of isotypes, affinities and idiotypes. Each of them has a particular mechanism of action binding to a specific antigen and recognized by distinct receptors. The effector responses triggered lead to a chronic tissue inflammation. DsDNA autoantibodies are the most studied as well as the first in being characterized for its pathogenic role in Lupus nephritis. However, others are of growing interest since they have been associated with other organ-specific damage, such as anti-NMDAR antibodies in neuropsychiatric clinical manifestations or anti-β2GP1 antibodies in vascular symptomatology. In this review, we describe the different auto-antibodies reported to be involved in SLE. How autoantibody isotypes and affinity-binding to their antigen might result in different pathogenic responses is also discussed.
Collapse
Affiliation(s)
- Barbara Dema
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| | - Nicolas Charles
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, DHU FIRE, Paris 75018, France.
| |
Collapse
|
46
|
Rother N, van der Vlag J. Disturbed T Cell Signaling and Altered Th17 and Regulatory T Cell Subsets in the Pathogenesis of Systemic Lupus Erythematosus. Front Immunol 2015; 6:610. [PMID: 26648939 PMCID: PMC4663269 DOI: 10.3389/fimmu.2015.00610] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nuclear components. Circulating immune complexes of chromatin and autoantibodies deposit in various tissues leading to inflammation and tissue damage. It has been well documented that autoimmunity in SLE depends on autoreactive T cells. In this review, we summarize the literature that addresses the roles of T cell signaling, and Th17 and regulatory T cells (Tregs) in the development of SLE. T cell receptor (TCR) signaling appears to be aberrant in T cells of patients with SLE. In particular, defects in the TCRζ chain, Syk kinase, and calcium signaling molecules have been associated with SLE, which leads to hyperresponsive autoreactive T cells. Furthermore, in patients with SLE increased numbers of autoreactive Th17 cells have been documented, and Th17 cells appear to be responsible for tissue inflammation and damage. In addition, reduced numbers of Tregs as well as Tregs with an impaired regulatory function have been associated with SLE. The altered balance between the number of Tregs and Th17 cells in SLE may result from changes in the cytokine milieu that favors the development of Th17 cells over Tregs.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences , Nijmegen , Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Radboud Institute of Molecular Life Sciences , Nijmegen , Netherlands
| |
Collapse
|
47
|
Abstract
Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody-antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency--in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain--determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.
Collapse
Affiliation(s)
- David S Pisetsky
- Medical Research Service, Durham Veterans Administration Medical Center, Box 151G, 508 Fulton Street, Durham, North Carolina 27705, USA
| |
Collapse
|
48
|
Chen CI, Zhang L, Datta SK. Hematopoietic stem and multipotent progenitor cells produce IL-17, IL-21 and other cytokines in response to TLR signals associated with late apoptotic products and augment memory Th17 and Tc17 cells in the bone marrow of normal and lupus mice. Clin Immunol 2015; 162:9-26. [PMID: 26521071 DOI: 10.1016/j.clim.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/05/2023]
Abstract
We studied effects of early and late apoptotic (necroptotic) cell products, related damage associated alarmins and TLR agonists, on hematopoietic stem and progenitor cells (HSPC). Surprisingly, normal HSPC themselves produced IL-17 and IL-21 after 1½days of stimulation, and the best stimulators were TLR 7/8 agonist; HMGB1-DNA; TLR 9 agonist, and necroptotic B cells. The stimulated HSPC expressed additional cytokines/mediators, directly causing rapid expansion of IL-17(+) memory CD4 T (Th17), and CD8 T (Tc17) cells, and antigen-experienced IL-17(+) T cells with "naïve" phenotype. In lupus marrow, HSPC were spontaneously pre-stimulated by endogenous signals to produce IL-17 and IL-21. In contrast to HSPC, megakaryocyte progenitors (MKP) did not produce IL-17, and unlike HSPC, they could process and present particulate apoptotic autoantigens to augment autoimmune memory Th17 response. Thus abnormally stimulated primitive hematopoietic progenitors augment expansion of IL-17 producing immune and autoimmune memory T cells in the bone marrow, which may affect central tolerance.
Collapse
Affiliation(s)
- Ching-I Chen
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Zhang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Syamal K Datta
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
49
|
Nelson RK, Gould KA. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice. Lupus 2015; 25:137-54. [PMID: 26385218 DOI: 10.1177/0961203315603139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system.
Collapse
Affiliation(s)
- R K Nelson
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - K A Gould
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
50
|
Soloviova K, Puliaiev M, Haas M, Dalgard CL, Schaefer BC, Via CS. Intrinsic Differences in Donor CD4 T Cell IL-2 Production Influence Severity of Parent-into-F1 Murine Lupus by Skewing the Immune Response Either toward Help for B Cells and a Sustained Autoantibody Response or toward Help for CD8 T Cells and a Downregulatory Th1 Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:2985-3000. [PMID: 26320249 DOI: 10.4049/jimmunol.1402782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/28/2015] [Indexed: 01/06/2023]
Abstract
Using the parent-into-F1 model of induced lupus and (C57BL/6 × DBA2) F1 mice as hosts, we compared the inherent lupus-inducing properties of the two parental strain CD4 T cells. To control for donor CD4 recognition of alloantigen, we used H-2(d) identical DBA/2 and B10.D2 donor T cells. We demonstrate that these two normal, nonlupus-prone parental strains exhibit two different T cell activation pathways in vivo. B10.D2 CD4 T cells induce a strong Th1/CMI pathway that is characterized by IL-2/IFN-γ expression, help for CD8 CTLs, and skewing of dendritic cell (DC) subsets toward CD8a DCs, coupled with reduced CD4 T follicular helper cells and transient B cell help. In contrast, DBA/2 CD4 T cells exhibit a reciprocal, lupus-inducing pathway that is characterized by poor IL-2/IFN-γ expression, poor help for CD8 CTLs, and skewing of DC subsets toward plasmacytoid DCs, coupled with greater CD4 T follicular helper cells, prolonged B cell activation, autoantibody formation, and lupus-like renal disease. Additionally, two distinct in vivo splenic gene-expression signatures were induced. In vitro analysis of TCR signaling revealed defective DBA CD4 T cell induction of NF-κB, reduced degradation of IκBα, and increased expression of the NF-κB regulator A20. Thus, attenuated NF-κB signaling may lead to diminished IL-2 production by DBA CD4 T cells. These results indicate that intrinsic differences in donor CD4 IL-2 production and subsequent immune skewing could contribute to lupus susceptibility in humans. Therapeutic efforts to skew immune function away from excessive help for B cells and toward help for CTLs may be beneficial.
Collapse
Affiliation(s)
- Kateryna Soloviova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Maksym Puliaiev
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Charles S Via
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814;
| |
Collapse
|