1
|
Bühler M, Li D, Li L, Runft S, Waltl I, Pavlou A, Kalinke U, Ciurkiewicz M, Huehn J, Floess S, Beineke A, Baumgärtner W, Gerhauser I. IFNAR signaling of neuroectodermal cells is essential for the survival of C57BL/6 mice infected with Theiler's murine encephalomyelitis virus. J Neuroinflammation 2023; 20:58. [PMID: 36872323 PMCID: PMC9985866 DOI: 10.1186/s12974-023-02737-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Theiler's murine encephalomyelitis virus (TMEV) is a single-stranded RNA virus that causes encephalitis followed by chronic demyelination in SJL mice and spontaneous seizures in C57BL/6 mice. Since earlier studies indicated a critical role of type I interferon (IFN-I) signaling in the control of viral replication in the central nervous system (CNS), mouse strain-specific differences in pathways induced by the IFN-I receptor (IFNAR) might determine the outcome of TMEV infection. METHODS Data of RNA-seq analysis and immunohistochemistry were used to compare the gene and protein expression of IFN-I signaling pathway members between mock- and TMEV-infected SJL and C57BL/6 mice at 4, 7 and 14 days post-infection (dpi). To address the impact of IFNAR signaling in selected brain-resident cell types, conditional knockout mice with an IFNAR deficiency in cells of the neuroectodermal lineage (NesCre±IFNARfl/fl), neurons (Syn1Cre±IFNARfl/fl), astrocytes (GFAPCre±IFNARfl/fl), and microglia (Sall1CreER±IFNARfl/fl) on a C57BL/6 background were tested. PCR and an immunoassay were used to quantify TMEV RNA and cytokine and chemokine expression in their brain at 4 dpi. RESULTS RNA-seq analysis revealed upregulation of most ISGs in SJL and C57BL/6 mice, but Ifi202b mRNA transcripts were only increased in SJL and Trim12a only in C57BL/6 mice. Immunohistochemistry showed minor differences in ISG expression (ISG15, OAS, PKR) between both mouse strains. While all immunocompetent Cre-negative control mice and the majority of mice with IFNAR deficiency in neurons or microglia survived until 14 dpi, lack of IFNAR expression in all cells (IFNAR-/-), neuroectodermal cells, or astrocytes induced lethal disease in most of the analyzed mice, which was associated with unrestricted viral replication. NesCre±IFNARfl/fl mice showed more Ifnb1, Tnfa, Il6, Il10, Il12b and Ifng mRNA transcripts than Cre-/-IFNARfl/fl mice. IFNAR-/- mice also demonstrated increased IFN-α, IFN-β, IL1-β, IL-6, and CXCL-1 protein levels, which highly correlated with viral load. CONCLUSIONS Ifi202b and Trim12a expression levels likely contribute to mouse strain-specific susceptibility to TMEV-induced CNS lesions. Restriction of viral replication is strongly dependent on IFNAR signaling of neuroectodermal cells, which also controls the expression of key pro- and anti-inflammatory cytokines during viral brain infection.
Collapse
Affiliation(s)
- Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Lin Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
- c/o School of Basic Medical Sciences, Shanxi Medical University, Shanxi, China
| | - Sandra Runft
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Centre for Systems Neuroscience (ZSN), Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
2
|
Kim BS. Critical role of TLR activation in viral replication, persistence, and pathogenicity of Theiler's virus. Front Immunol 2023; 14:1167972. [PMID: 37153539 PMCID: PMC10157096 DOI: 10.3389/fimmu.2023.1167972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes persistent viral infections in the central nervous system and induces chronic inflammatory demyelinating disease in susceptible mice. TMEV infects dendritic cells, macrophages, B cells, and glial cells. The state of TLR activation in the host plays a critical role in initial viral replication and persistence. The further activation of TLRs enhances viral replication and persistence, leading to the pathogenicity of TMEV-induced demyelinating disease. Various cytokines are produced via TLRs, and MDA-5 signals linked with NF-κB activation following TMEV infection. In turn, these signals further amplify TMEV replication and the persistence of virus-infected cells. The signals further elevate cytokine production, promoting the development of Th17 responses and preventing cellular apoptosis, which enables viral persistence. Excessive levels of cytokines, particularly IL-6 and IL-1β, facilitate the generation of pathogenic Th17 immune responses to viral antigens and autoantigens, leading to TMEV-induced demyelinating disease. These cytokines, together with TLR2 may prematurely generate functionally deficient CD25-FoxP3+ CD4+ T cells, which are subsequently converted to Th17 cells. Furthermore, IL-6 and IL-17 synergistically inhibit the apoptosis of virus-infected cells and the cytolytic function of CD8+ T lymphocytes, prolonging the survival of virus-infected cells. The inhibition of apoptosis leads to the persistent activation of NF-κB and TLRs, which continuously provides an environment of excessive cytokines and consequently promotes autoimmune responses. Persistent or repeated infections of other viruses such as COVID-19 may result in similar continuous TLR activation and cytokine production, leading to autoimmune diseases.
Collapse
|
3
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Excessive Innate Immunity Steers Pathogenic Adaptive Immunity in the Development of Theiler's Virus-Induced Demyelinating Disease. Int J Mol Sci 2021; 22:ijms22105254. [PMID: 34067536 PMCID: PMC8156427 DOI: 10.3390/ijms22105254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/05/2023] Open
Abstract
Several virus-induced models were used to study the underlying mechanisms of multiple sclerosis (MS). The infection of susceptible mice with Theiler’s murine encephalomyelitis virus (TMEV) establishes persistent viral infections and induces chronic inflammatory demyelinating disease. In this review, the innate and adaptive immune responses to TMEV are discussed to better understand the pathogenic mechanisms of viral infections. Professional (dendritic cells (DCs), macrophages, and B cells) and non-professional (microglia, astrocytes, and oligodendrocytes) antigen-presenting cells (APCs) are the major cell populations permissive to viral infection and involved in cytokine production. The levels of viral loads and cytokine production in the APCs correspond to the degrees of susceptibility of the mice to the TMEV-induced demyelinating diseases. TMEV infection leads to the activation of cytokine production via TLRs and MDA-5 coupled with NF-κB activation, which is required for TMEV replication. These activation signals further amplify the cytokine production and viral loads, promote the differentiation of pathogenic Th17 responses, and prevent cellular apoptosis, enabling viral persistence. Among the many chemokines and cytokines induced after viral infection, IFN α/β plays an essential role in the downstream expression of costimulatory molecules in APCs. The excessive levels of cytokine production after viral infection facilitate the pathogenesis of TMEV-induced demyelinating disease. In particular, IL-6 and IL-1β play critical roles in the development of pathogenic Th17 responses to viral antigens and autoantigens. These cytokines, together with TLR2, may preferentially generate deficient FoxP3+CD25- regulatory cells converting to Th17. These cytokines also inhibit the apoptosis of TMEV-infected cells and cytolytic function of CD8+ T lymphocytes (CTLs) and prolong the survival of B cells reactive to viral and self-antigens, which preferentially stimulate Th17 responses.
Collapse
|
6
|
Tee HK, Zainol MI, Sam IC, Chan YF. Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Rev Anti Infect Ther 2021; 19:733-747. [PMID: 33183118 DOI: 10.1080/14787210.2021.1851194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Hand, foot, and mouth disease caused by enterovirus A71 (EV-A71) is more frequently associated with neurological complications and deaths compared to other enteroviruses.Areas covered: The authors discuss current understanding of the neuropathogenesis of EV-A71 based on various clinical, human, and animal model studies. The authors discuss the important advancements in virus entry, virus dissemination, and neuroinvasion. The authors highlight the role of host immune system, host genetic factors, viral quasispecies, and heparan sulfate in EV-A71 neuropathogenesis.Expert opinion: Comparison of EV-A71 with EV-D68 and PV shows similarity in primary target sites and dissemination to the central nervous system. More research is needed to understand cellular tropisms, persistence of EV-A71, and other possible invasion routes. EV-A71 infection has varied clinical manifestations which may be attributed to multiple receptors usage. Future development of antivirals and vaccines should target neurotropic enteroviruses. Repurposing drug and immunomodulators used in combination could reduce the severity of EV-A71 infection. Only a few drugs have been tested in clinical trials, and in the absence of antiviral and vaccines (except China), active virus surveillance, good hand hygiene, and physical distancing should be advocated. A better understanding of EV-A71 neuropathogenesis is critical for antiviral and multivalent vaccines development.
Collapse
Affiliation(s)
- Han Kang Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Izwan Zainol
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Neurotropism of Enterovirus D68 Isolates Is Independent of Sialic Acid and Is Not a Recently Acquired Phenotype. mBio 2019; 10:mBio.02370-19. [PMID: 31641090 PMCID: PMC6805996 DOI: 10.1128/mbio.02370-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since 2014, numerous outbreaks of childhood infections with enterovirus D68 (EV-D68) have occurred worldwide. Most infections are associated with flu-like symptoms, but paralysis may develop in young children. It has been suggested that infection only with recent viral isolates can cause paralysis. To address the hypothesis that EV-D68 has recently acquired neurotropism, murine organotypic brain slice cultures, induced human motor neurons and astrocytes, and mice lacking the alpha/beta interferon receptor were infected with multiple virus isolates. All EV-D68 isolates, from 1962 to the present, can infect neural cells, astrocytes, and neurons. Furthermore, our results show that sialic acid binding does not play a role in EV-D68 neuropathogenesis. The study of EV-D68 infection in organotypic brain slice cultures, induced motor neurons, and astrocytes will allow for the elucidation of the mechanism by which the virus infection causes disease. Acute flaccid myelitis (AFM) is a rare but serious illness of the nervous system, specifically affecting the gray matter of the spinal cord, motor-controlling regions of the brain, and cranial nerves. Most cases of AFM are pathogen associated, typically with poliovirus and enterovirus infections, and occur in children under the age of 6 years. Enterovirus D68 (EV-D68) was first isolated from children with pneumonia in 1962, but an association with AFM was not observed until the 2014 outbreak. Organotypic mouse brain slice cultures generated from postnatal day 1 to 10 mice and adult ifnar knockout mice were used to determine if neurotropism of EV-D68 is shared among virus isolates. All isolates replicated in organotypic mouse brain slice cultures, and three isolates replicated in primary murine astrocyte cultures. All four EV-D68 isolates examined caused paralysis and death in adult ifnar knockout mice. In contrast, no viral disease was observed after intracranial inoculation of wild-type mice. Six of the seven EV-D68 isolates, including two from 1962 and four from the 2014 outbreak, replicated in induced human neurons, and all of the isolates replicated in induced human astrocytes. Furthermore, a putative viral receptor, sialic acid, is not required for neurotropism of EV-D68, as viruses replicated within neurons and astrocytes independent of binding to sialic acid. These observations demonstrate that EV-D68 is neurotropic independent of its genetic lineage and can infect both neurons and astrocytes and that neurotropism is not a recently acquired characteristic as has been suggested. Furthermore, the results show that in mice the innate immune response is critical for restricting EV-D68 disease.
Collapse
|
8
|
Gerhauser I, Hansmann F, Ciurkiewicz M, Löscher W, Beineke A. Facets of Theiler's Murine Encephalomyelitis Virus-Induced Diseases: An Update. Int J Mol Sci 2019; 20:ijms20020448. [PMID: 30669615 PMCID: PMC6358740 DOI: 10.3390/ijms20020448] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/31/2022] Open
Abstract
Theiler’s murine encephalomyelitis virus (TMEV), a naturally occurring, enteric pathogen of mice is a Cardiovirus of the Picornaviridae family. Low neurovirulent TMEV strains such as BeAn cause a severe demyelinating disease in susceptible SJL mice following intracerebral infection. Furthermore, TMEV infections of C57BL/6 mice cause acute polioencephalitis initiating a process of epileptogenesis that results in spontaneous recurrent epileptic seizures in approximately 50% of affected mice. Moreover, C3H mice develop cardiac lesions after an intraperitoneal high-dose application of TMEV. Consequently, TMEV-induced diseases are widely used as animal models for multiple sclerosis, epilepsy, and myocarditis. The present review summarizes morphological lesions and pathogenic mechanisms triggered by TMEV with a special focus on the development of hippocampal degeneration and seizures in C57BL/6 mice as well as demyelination in the spinal cord in SJL mice. Furthermore, a detailed description of innate and adaptive immune responses is given. TMEV studies provide novel insights into the complexity of organ- and mouse strain-specific immunopathology and help to identify factors critical for virus persistence.
Collapse
Affiliation(s)
- Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| | - Wolfgang Löscher
- Center for System Neuroscience, 30559 Hannover, Germany.
- Department of Pharmacology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany.
- Center for System Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
9
|
Abstract
Infection with Human Immunodeficiency Virus (HIV)-1 continues to cause HIV-associated neurocognitive disorders despite combined antiretroviral therapy. Interferons (IFNs) are important for any antiviral immune response, but the lasting production of IFNα causes exhaustive activation leading eventually to progression to AIDS. Expression of IFNα in the HIV-exposed central nervous system has been linked to cognitive impairment and inflammatory neuropathology. In contrast, IFNβ exerts anti-inflammatory effects, appears to control, at least temporarily, lentiviral infection in the brain and provides neuroprotection. The dichotomy of type I IFN effects on HIV-1 infection and the associated brain injury will be discussed in this review, because the underlying mechanisms require further investigation to allow harnessing these innate immune factors for therapeutic purposes.
Collapse
Affiliation(s)
- Victoria E Thaney
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California
| | - Marcus Kaul
- 1 Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California.,2 Division of Biomedical Sciences, School of Medicine, University of California , Riverside, Riverside, California
| |
Collapse
|
10
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
11
|
Kulkarni A, Scully TJ, O'Donnell LA. The antiviral cytokine interferon-gamma restricts neural stem/progenitor cell proliferation through activation of STAT1 and modulation of retinoblastoma protein phosphorylation. J Neurosci Res 2016; 95:1582-1601. [PMID: 27862183 PMCID: PMC5432422 DOI: 10.1002/jnr.23987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Neural stem/progenitor cells (NPSCs) express receptors for many inflammatory cytokines, with varying effects on differentiation and proliferation depending on the stage of development and the milieu of inflammatory mediators. In primary neurons and astrocytes, we recently showed that interferon gamma (IFNγ), a potent antiviral cytokine that is required for the control and clearance of many central nervous system (CNS) infections, could differentially affect cell survival and cell cycle progression depending upon the cell type and the profile of activated intracellular signaling molecules. Here, we show that IFNγ inhibits proliferation of primary NSPCs through dephosphorylation of the tumor suppressor Retinoblastoma protein (pRb), which is dependent on activation of signal transducers and activators of transcription‐1 (STAT1) signaling pathways. Our results show i) IFNγ inhibits neurosphere growth and proliferation rate in a dose‐dependent manner; ii) IFNγ blocks cell cycle progression through a late‐stage G1/S phase restriction; iii) IFNγ induces phosphorylation and expression of STAT1 and STAT3; iv) IFNγ decreases cyclin E/cdk2 expression and reduces phosphorylation of cyclin D1 and pRb on serine residue 795; and v) the effects of IFNγ on NSPC proliferation, cell cycle protein expression, and pRb phosphorylation are STAT1‐dependent. These data define a mechanism by which IFNγ could contribute to a reduction in NSPC proliferation in inflammatory conditions. Further delineation of the effects of inflammatory cytokines on NSPC growth could improve our understanding of how CNS infections and other inflammatory events disrupt brain development and NSPC function. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Taylor J Scully
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Lauren A O'Donnell
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| |
Collapse
|
12
|
Tan SZK, Tan MZY, Prabakaran M. Saffold virus, an emerging human cardiovirus. Rev Med Virol 2016; 27. [PMID: 27723176 PMCID: PMC7169152 DOI: 10.1002/rmv.1908] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023]
Abstract
Saffold virus (SAFV) is an emerging human cardiovirus that has been shown to be ubiquitous. Initial studies of SAFV focused on respiratory and gastrointestinal infection; however, it has also recently been associated with diverse clinical symptoms including the endocrine, cardiovascular, and neurological systems. Given the systemic nature of SAFV, and its high prevalence, understanding its pathogenicity and clinical impact is of utmost importance. This comprehensive review highlights and discusses recent developments in epidemiology, human pathogenicity, animal, and molecular studies related to SAFV. It also provides detailed insights into the neuropathogenicity of SAFV. We argue that human studies have been confounded by coinfections and therefore require support from robust molecular and animal research. Thereby, we aim to provide foresight into further research to better understand this emerging virus.
Collapse
Affiliation(s)
- Shawn Zheng Kai Tan
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| | - Mark Zheng Yi Tan
- Critical Care Unit, Central Manchester Foundation NHS Trust, Manchester, UK
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
13
|
Tan SZK, Chua KB, Xu Y, Prabakaran M. The Pathogenesis of Saffold Virus in AG129 Mice and the Effects of Its Truncated L Protein in the Central Nervous System. Viruses 2016; 8:v8020024. [PMID: 26901216 PMCID: PMC4776182 DOI: 10.3390/v8020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/03/2022] Open
Abstract
Saffold Virus (SAFV) is a human cardiovirus that has been suggested to cause severe infection of the central nervous system (CNS). Compared to a similar virus, Theiler’s murine encephalomyelitis virus (TMEV), SAFV has a truncated Leader (L) protein, a protein essential in the establishment of persistent CNS infections. In this study, we generated a chimeric SAFV by replacing the L protein of SAFV with that of TMEV. We then compared the replication in cell cultures and pathogenesis in a mouse model. We showed that both SAFV and chimeric SAFV are able to infect Vero and Neuro2a cells well, but only chimeric SAFV was able to infect RAW264.7. We then showed that mice lacking IFN-α/β and IFN-γ receptors provide a good animal model for SAFV infection, and further identified the locality of the infection to the ventral horn of the spine and several locations in the brain. Lastly, we showed that neither SAFV nor chimeric SAFV causes persistence in this model. Overall, our results provide a strong basis on which the mechanisms underlying Saffold virus induced neuropathogenesis can be further studied and, hence, facilitating new information about its pathogenesis.
Collapse
Affiliation(s)
- Shawn Zheng Kai Tan
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Kaw Bing Chua
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Yishi Xu
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
14
|
O'Donnell LA, Henkins KM, Kulkarni A, Matullo CM, Balachandran S, Pattisapu AK, Rall GF. Interferon gamma induces protective non-canonical signaling pathways in primary neurons. J Neurochem 2015; 135:309-22. [PMID: 26190522 DOI: 10.1111/jnc.13250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons. To identify the pathways induced by IFNγ in neurons, the activation of alternative signal transducers associated with IFNγ signaling was assessed. Rapid and pronounced activation of extracellular signal regulated kinase (Erk1/2) was observed in neurons, compared to a modest response in fibroblasts. Moreover, the absence of Stat1 in primary fibroblasts led to enhanced Erk activation following IFNγ addition, implying that the cell-specific availability of signal transducers can diversify the cellular response following IFN engagement.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA.,Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kristen M Henkins
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Siddharth Balachandran
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Anil K Pattisapu
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Simon WL, Salk HM, Ovsyannikova IG, Kennedy RB, Poland GA. Cytokine production associated with smallpox vaccine responses. Immunotherapy 2015; 6:1097-112. [PMID: 25428648 DOI: 10.2217/imt.14.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Smallpox was eradicated 34 years ago due to the success of the smallpox vaccine; yet, the vaccine continues to be studied because of its importance in responding to potential biological warfare and the adverse events associated with current smallpox vaccines. Interindividual variations in vaccine response are observed and are, in part, due to genetic variation. In some cases, these varying responses lead to adverse events, which occur at a relatively high rate for the smallpox vaccine compared with other vaccines. Here, we aim to summarize the cytokine responses associated with smallpox vaccine response to date. Along with a description of each of these cytokines, we describe the genetic and adverse event data associated with cytokine responses to smallpox vaccination.
Collapse
Affiliation(s)
- Whitney L Simon
- Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
16
|
Olson JK. Effect of the innate immune response on development of Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 2014; 20:427-36. [PMID: 24981833 DOI: 10.1007/s13365-014-0262-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 05/13/2014] [Accepted: 06/03/2014] [Indexed: 11/24/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of susceptible mice leads to the development of demyelinating disease in the central nervous system (CNS) associated with an inflammatory immune response. The demyelinating disease in mice has similarities to multiple sclerosis in humans and is used as an experimental model for the human disease. The innate immune response initiates the immune response to TMEV through innate immune receptors on cells that recognize components of the virus and activate intracellular signaling that leads to the expression of innate immune cytokines, chemokines, and effector molecules. The innate immune response directly affects the development of the adaptive immune response, especially the T cell response, which mediates viral clearance. However, infection of Swiss Jim Laboratory (SJL) mice with TMEV leads to a persistent virus infection of the microglia/macrophage in the CNS which contributes to the development of demyelinating disease. Susceptibility to demyelinating disease has been linked to the T cell response against the virus. However, the current studies will examine the role of the innate immune response to TMEV and the affect it has on the adaptive immune response and development of demyelinating disease following TMEV infection. The innate immune cytokines, chemokines, and effector molecules as well as the innate immune cells, both CNS resident and infiltrating peripheral cells, all contribute to the innate immune response following TMEV and may affect susceptibility to demyelinating disease.
Collapse
Affiliation(s)
- Julie K Olson
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA,
| |
Collapse
|
17
|
Vitour D, Doceul V, Ruscanu S, Chauveau E, Schwartz-Cornil I, Zientara S. Induction and control of the type I interferon pathway by Bluetongue virus. Virus Res 2013; 182:59-70. [PMID: 24211608 PMCID: PMC7114367 DOI: 10.1016/j.virusres.2013.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
A general review describing the current knowledge on the type I IFN pathway. Description of several mechanisms evolved by viruses to counteract this antiviral response. An up-to-date review on the interaction of BTV and the type I IFN pathway in vivo and in vitro. Description of the cellular sensors involved in the induction of IFN-α/β synthesis upon BTV infection in haematopoietic and non-haematopoietic cells. Description of the strategies evolved by BTV to counteract this cellular antiviral response.
The innate immune response is the first line of defence against viruses, involving the production of type I IFN (IFN-α/β) and other pro-inflammatory cytokines that control the infection. It also shapes the adaptive immune response generated by both T and B cells. Production of type I IFN occurs both in vivo and in vitro in response to Bluetongue virus (BTV), an arthropod-borne virus. However, the mechanisms responsible for the production of IFN-β in response to BTV remained unknown until recently and are still not completely understood. In this review, we describe the recent advances in the identification of cellular sensors and signalling pathways involved in this process. The RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) were shown to be involved in the expression of IFN-β as well as in the control of BTV infection in non-haematopoietic cells. In contrast, induction of IFN-α/β synthesis in sheep primary plasmacytoid dendritic cells (pDCs) required the MyD88 adaptor independently of the Toll-like receptor 7 (TLR7), as well as the kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK). As type I IFN is essential for the establishment of an antiviral cellular response, most of viruses have elaborated counteracting mechanisms to hinder its action. This review also addresses the ability of BTV to interfere with IFN-β synthesis and the recent findings describing the non-structural viral protein NS3 as a powerful antagonist of the host cellular response.
Collapse
Affiliation(s)
- Damien Vitour
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Virginie Doceul
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Suzana Ruscanu
- Virologie et Immunologie Moléculaires, UR892 INRA, Jouy-en-Josas, France.
| | - Emilie Chauveau
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | | | - Stéphan Zientara
- UMR1161 ANSES-INRA-ENVA, 23 Avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| |
Collapse
|
18
|
Ifit2 deficiency results in uncontrolled neurotropic coronavirus replication and enhanced encephalitis via impaired alpha/beta interferon induction in macrophages. J Virol 2013; 88:1051-64. [PMID: 24198415 DOI: 10.1128/jvi.02272-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Type I interferons (IFN-α/β) limit viral dissemination prior to the emergence of adaptive immune responses through the concerted action of interferon-stimulated genes (ISGs). Although IFN-α/β induction by coronaviruses is modest, it effectively limits viral spread within the central nervous system (CNS) and protects against mortality. The protective roles of specific ISGs against the mouse hepatitis virus (MHV) members of the coronaviruses are largely unknown. This study demonstrates a protective role of the ISG Ifit2 in encephalitis induced by the dual hepato- and neurotropic MHV-A59. Contrasting the mild encephalitis and 100% survival of MHV-A59-infected wild-type (wt) mice, nearly 60% of infected Ifit2(-/-) mice exhibited severe encephalitis and succumbed between 6 and 8 days postinfection. Increased clinical disease in Ifit2(-/-) mice coincided with higher viral loads and enhanced viral spread throughout the CNS parenchyma. Ifit2(-/-) mice also expressed significantly reduced IFN-α/β and downstream ISG mRNAs Ifit1, Isg15, and Pkr, while expression of proinflammatory cytokines and chemokines was only modestly affected in the CNS. Impaired IFN-α/β induction in the absence of Ifit2 was confirmed by ex vivo mRNA analysis of microglia and macrophages, the prominent cell types producing IFN-α/β following MHV CNS infection. Furthermore, both IFN-α/β mRNA and protein production were significantly reduced in MHV-infected Ifit2(-/-) relative to wt bone marrow-derived macrophages. Collectively, the data implicate Ifit2 as a positive regulator of IFN-α/β expression, rather than direct antiviral mediator, during MHV-induced encephalitis.
Collapse
|
19
|
Abstract
Although type I interferons (IFN-I) were initially defined as potent antiviral agents, they can also cause decreased host resistance to some bacterial and viral infections. The many antiviral functions of the IFN-I include direct suppression of viral replication and activation of the immune response against viruses. In addition to their antiviral effects, IFN-I are also protective against several extracellular bacterial infections, in part, by promoting the induction of TNF-α and nitric oxide. In contrast, there is a negative effect of IFN-I on host resistance during chronic infection with lymphocytic choriomeningitis virus (LCMV) and acute infections with intracellular bacteria. In the case of LCMV, chronic IFN-I signaling induces adaptive immune system suppression. Blockade of IFN-I signaling removes the suppression and allows CD4 T-cell- and IFN-γ-mediated resolution of the infection. During acute intracellular bacterial infection, IFN-I suppress innate immunity by at least two defined mechanisms. During Francisella infection, IFN-I prevent IL-17 upregulation on γδ T cells and neutrophil recruitment. Following Listeria infection, IFN-I promote the cell death of macrophages and lymphocytes, which leads to innate immune suppression. These divergent findings for the role of IFN-I on pathogen control emphasize the complexity of the interferons system and force more mechanistic evaluation of its role in pathogenesis. This review evaluates IFN-I during infection with an emphasis on work carried out IFN-I-receptor-deficient mice.
Collapse
Affiliation(s)
- Javier Antonio Carrero
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
20
|
Lee EY, Schultz KLW, Griffin DE. Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One 2013; 8:e76412. [PMID: 24204622 PMCID: PMC3811984 DOI: 10.1371/journal.pone.0076412] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/23/2013] [Indexed: 11/25/2022] Open
Abstract
Interferon (IFN)-gamma is an important component of the immune response to viral infections that can have a role both in controlling virus replication and inducing inflammatory damage. To determine the role of IFN-gamma in fatal alphavirus encephalitis, we have compared the responses of wild type C57BL/6 (WTB6) mice with mice deficient in either IFN-gamma (GKO) or the alpha-chain of the IFN-gamma receptor (GRKO) after intranasal infection with a neuroadapted strain of sindbis virus. Mortalities of GKO and GRKO mice were similar to WTB6 mice. Both GKO and GRKO mice had delayed virus clearance from the brain and spinal cord, more infiltrating perforin(+) cells and lower levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 mRNAs than WTB6 mice. However, inflammation was more intense in GRKO mice than WTB6 or GKO mice with more infiltrating CD3(+) T cells, greater expression of major histocompatibility complex-II and higher levels of interleukin-17A mRNA. Fibroblasts from GRKO embryos did not develop an antiviral response after treatment with IFN-gamma, but showed increases in TNF-alpha, IL-6, CXCL9 and CXCL10 mRNAs although these increases developed more slowly and were less intense than those of WTB6 fibroblasts. These data indicate that both GKO and GRKO mice fail to develop an IFN-gamma-mediated antiviral response, but differ in regulation of the inflammatory response to infection. Therefore, GKO and GRKO cannot be considered equivalent when assessing the role of IFN-gamma in CNS viral infections.
Collapse
Affiliation(s)
- Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kimberly L. W. Schultz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
21
|
Ortego J, de la Poza F, Marín-López A. Interferon α/β receptor knockout mice as a model to study bluetongue virus infection. Virus Res 2013; 182:35-42. [PMID: 24100234 DOI: 10.1016/j.virusres.2013.09.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
Abstract
Bluetongue is an arthropod-borne disease caused by a virus of the genus Orbivirus, the bluetongue virus (BTV), which affects ruminant livestock such as cattle, sheep, and goats and wild ruminants such as deer, and camelids. Recently, adult mice with gene knockouts of the interferon α/β receptor (IFNAR-/-) have been described as a model of lethal BTV infection. IFNAR(-/-) mice are highly susceptible to BTV-1, BTV-4 and BTV-8 infection when the virus is administered intravenously or subcutaneosuly. Disease progression and pathogenesis closely mimics signs of bluetongue disease in ruminants. In the present paper we review the studies where IFNAR(-/-) mice have been used as an animal model to study BTV transmission, pathogenesis, virulence, and protective efficacy of inactivated and new recombinant marker BTV vaccines. Furthermore, we report new data on protective efficacy of different strategies of BTV vaccination and also on induction of interferon α/β and proinflammatory immune responses in IFNAR(-/-) mice infected with BTV.
Collapse
Affiliation(s)
- Javier Ortego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid, Spain.
| | | | | |
Collapse
|
22
|
Bowen JL, Olson JK. IFNγ influences type I interferon response and susceptibility to Theiler's virus-induced demyelinating disease. Viral Immunol 2013; 26:223-38. [PMID: 23829778 DOI: 10.1089/vim.2013.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) induces a demyelinating disease in susceptible SJL mice that has similarities to multiple sclerosis in humans. TMEV infection of susceptible mice leads to a persistent virus infection of the central nervous system (CNS), which promotes the development of demyelinating disease associated with an inflammatory immune response in the CNS. TMEV infection of resistant C57BL6 mice results in viral clearance without development of demyelinating disease. Interestingly, TMEV infection of resistant mice deficient in IFNγ leads to a persistent virus infection in the CNS and development of demyelinating disease. We have previously shown that the innate immune response affects development of TMEV- induced demyelinating disease, thus we wanted to determine the role of IFNγ during the innate immune response. TMEV-infected IFNγ-deficient mice had an altered innate immune response, including reduced expression of innate immune cytokines, especially type I interferons. Administration of type I interferons, IFNα and IFNß, to TMEV-infected IFNγ-deficient mice during the innate immune response restored the expression of innate immune cytokines. Most importantly, administration of type I interferons to IFNγ-deficient mice during the innate immune response decreased the virus load in the CNS and decreased development of demyelinating disease. Microglia are the CNS resident immune cells that express innate immune receptors. In TMEV-infected IFNγ-deficient mice, microglia had reduced expression of innate immune cytokines, and administration of type I interferons to these mice restored the innate immune response by microglia. In the absence of IFNγ, microglia from TMEV-infected mice had reduced expression of some innate immune receptors and signaling molecules, especially IRF1. These results suggest that IFNγ plays an important role in the innate immune response to TMEV by enhancing the expression of innate immune cytokines, especially type I interferons, which directly affects the development of demyelinating disease.
Collapse
Affiliation(s)
- Jenna L Bowen
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
23
|
A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio 2013; 4:e00385-13. [PMID: 23781071 PMCID: PMC3684836 DOI: 10.1128/mbio.00385-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The type I interferon (IFN) signaling pathway restricts infection of many divergent families of RNA and DNA viruses by inducing hundreds of IFN-stimulated genes (ISGs), some of which have direct antiviral activity. We screened 813 short hairpin RNA (shRNA) constructs targeting 245 human ISGs using a flow cytometry approach to identify genes that modulated infection of West Nile virus (WNV) in IFN-β-treated human cells. Thirty ISGs with inhibitory effects against WNV were identified, including several novel genes that had antiviral activity against related and unrelated positive-strand RNA viruses. We also defined one ISG, activating signal cointegrator complex 3 (ASCC3), which functioned as a negative regulator of the host defense response. Silencing of ASCC3 resulted in upregulation of multiple antiviral ISGs, which correlated with inhibition of infection of several positive-strand RNA viruses. Reciprocally, ectopic expression of human ASCC3 or mouse Ascc3 resulted in downregulation of ISGs and increased viral infection. Mechanism-of-action and RNA sequencing studies revealed that ASCC3 functions to modulate ISG expression in an IRF-3- and IRF-7-dependent manner. Compared to prior ectopic ISG expression studies, our shRNA screen identified novel ISGs that restrict infection of WNV and other viruses and defined a new counterregulatory ISG, ASCC3, which tempers cell-intrinsic immunity. West Nile virus (WNV) is a mosquito-transmitted virus that continues to pose a threat to public health. Innate immune responses, especially those downstream of type I interferon (IFN) signaling, are critical for controlling virus infection and spread. We performed a genetic screen using a gene silencing approach and identified 30 interferon-stimulated genes (ISGs) that contributed to the host antiviral response against WNV. As part of this screen, we also identified a novel negative regulatory protein, ASCC3, which dampens expression of ISGs, including those with antiviral or proinflammatory activity. In summary, our studies define a series of heretofore-uncharacterized ISGs with antiviral effects against multiple viruses or counterregulatory effects that temper IFN signaling and likely minimize immune-mediated pathology.
Collapse
|
24
|
Jabbar TK, Calvo-Pinilla E, Mateos F, Gubbins S, Bin-Tarif A, Bachanek-Bankowska K, Alpar O, Ortego J, Takamatsu HH, Mertens PPC, Castillo-Olivares J. Protection of IFNAR (-/-) mice against bluetongue virus serotype 8, by heterologous (DNA/rMVA) and homologous (rMVA/rMVA) vaccination, expressing outer-capsid protein VP2. PLoS One 2013; 8:e60574. [PMID: 23593251 PMCID: PMC3625202 DOI: 10.1371/journal.pone.0060574] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/28/2013] [Indexed: 01/21/2023] Open
Abstract
The protective efficacy of recombinant vaccines expressing serotype 8 bluetongue virus (BTV-8) capsid proteins was tested in a mouse model. The recombinant vaccines comprised plasmid DNA or Modified Vaccinia Ankara viruses encoding BTV VP2, VP5 or VP7 proteins. These constructs were administered alone or in combination using either a homologous prime boost vaccination regime (rMVA/rMVA) or a heterologous vaccination regime (DNA/rMVA). The DNA/rMVA or rMVA/rMVA prime-boost were administered at a three week interval and all of the animals that received VP2 generated neutralising antibodies. The vaccinated and non-vaccinated-control mice were subsequently challenged with a lethal dose of BTV-8. Mice vaccinated with VP7 alone were not protected. However, mice vaccinated with DNA/rMVA or rMVA/rMVA expressing VP2, VP5 and VP7 or VP2 alone were all protected.
Collapse
Affiliation(s)
| | | | - Francisco Mateos
- Centro en Investigación y Sanidad Animal, Valdeolmos, Madrid, Spain
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | | | | | - Oya Alpar
- Centre for Drug Delivery Research, London School of Pharmacy, London, United Kingdom
| | - Javier Ortego
- Centro en Investigación y Sanidad Animal, Valdeolmos, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Sorgeloos F, Kreit M, Hermant P, Lardinois C, Michiels T. Antiviral type I and type III interferon responses in the central nervous system. Viruses 2013; 5:834-57. [PMID: 23503326 PMCID: PMC3705299 DOI: 10.3390/v5030834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.
Collapse
Affiliation(s)
- Frédéric Sorgeloos
- Université catholique de Louvain, de Duve Institute, VIRO B1.74.07, 74 avenue Hippocrate, B-1200, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
26
|
Colton CA. Immune heterogeneity in neuroinflammation: dendritic cells in the brain. J Neuroimmune Pharmacol 2012; 8:145-62. [PMID: 23114889 PMCID: PMC4279719 DOI: 10.1007/s11481-012-9414-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/22/2012] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DC) are critical to an integrated immune response and serve as the key link between the innate and adaptive arms of the immune system. Under steady state conditions, brain DC’s act as sentinels, continually sampling their local environment. They share this function with macrophages derived from the same basic hemopoietic (bone marrow-derived) precursor and with parenchymal microglia that arise from a unique non-hemopoietic origin. While multiple cells may serve as antigen presenting cells (APCs), dendritic cells present both foreign and self-proteins to naïve T cells that, in turn, carry out effector functions that serve to protect or destroy. The resulting activation of the adaptive response is a critical step to resolution of injury or infection and is key to survival. In this review we will explore the critical roles that DCs play in the brain’s response to neuroinflammatory disease with emphasis on how the brain’s microenvironment impacts these actions.
Collapse
Affiliation(s)
- Carol A Colton
- Neurology, Duke University Medical Center, Box 2900, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Chronic social stress impairs virus specific adaptive immunity during acute Theiler's virus infection. J Neuroimmunol 2012; 254:19-27. [PMID: 23021485 DOI: 10.1016/j.jneuroim.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/12/2023]
Abstract
Prior exposure to social disruption (SDR) stress exacerbates Theiler's murine encephalomyelitis virus (TMEV) infection, a model of multiple sclerosis. Here we examined the impact of SDR on T cell responses to TMEV infection in SJL mice. SDR impaired viral clearance and exacerbated acute disease. Moreover, TMEV infection alone increased CD4 and CD8 mRNA expression in brain and spleen while SDR impaired this response. SDR decreased both CD4(+) and CD8(+) virus-specific T cells in CNS, but not spleen. These findings suggest that SDR-induced suppression of virus-specific T cell responses contributes to impairments in viral clearance and exacerbation of acute disease.
Collapse
|
28
|
Kummerfeld M, Seehusen F, Klein S, Ulrich R, Kreutzer R, Gerhauser I, Herder V, Baumgärtner W, Beineke A. Periventricular demyelination and axonal pathology is associated with subependymal virus spread in a murine model for multiple sclerosis. Intervirology 2012; 55:401-16. [PMID: 22538300 DOI: 10.1159/000336563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Theiler's murine encephalomyelitis virus (TMEV) infection of mice is a widely used animal model for demyelinating disorders, such as multiple sclerosis (MS). The aim of the present study was to identify topographical differences of TMEV spread and demyelination in the brain of experimentally infected susceptible SJL/J mice and resistant C57BL/6 mice. METHODS Demyelination was confirmed by Luxol fast blue and cresyl violet staining and axonal damage by neurofilament-specific and β-amyloid precursor protein-specific immunohistochemistry. Viral dissemination within the central nervous system (CNS) was quantified by immunohistochemistry and in situ hybridization. Further, the phenotype of infected cells was determined by confocal laser scanning microscopy. RESULTS An early transient infection of periventricular cells followed by demyelination and axonopathies around the fourth ventricle in SJL/J mice was noticed. Periventricular and brain stem demyelination was associated with a predominant infection of microglia/macrophages and oligodendrocytes. CONCLUSIONS Summarized, the demonstration of ependymal infection and subjacent spread into the brain parenchyma as well as regional virus clearance despite ongoing demyelination and axonal damage in other CNS compartments allows new insights into TME pathogenesis. This novel aspect of TMEV CNS interaction will enhance the understanding of region-specific susceptibilities to injury and regenerative capacities of the brain in this MS model.
Collapse
Affiliation(s)
- Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
O'Donnell LA, Conway S, Rose RW, Nicolas E, Slifker M, Balachandran S, Rall GF. STAT1-independent control of a neurotropic measles virus challenge in primary neurons and infected mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:1915-23. [PMID: 22246627 DOI: 10.4049/jimmunol.1101356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurons are chiefly nonrenewable; thus, cytolytic immune strategies to clear or control neurotropic viral infections could have lasting neurologic consequences. IFN-γ is a potent antiviral cytokine that is critical for noncytolytic clearance of multiple neurotropic viral infections, including measles virus (MV); however, the downstream pathways through which IFN-γ functions in neurons have not been defined. Unlike most cell types studied to date in which IFN-γ affects gene expression via rapid and robust activation of STAT1, basal STAT1 levels in primary hippocampal neurons are constitutively low, resulting in attenuated STAT1 activation and consequently slower kinetics of IFN-γ-driven STAT1-dependent gene expression. Given this altered expression and activation of STAT1 in neurons, we sought to determine whether STAT1 was required for IFN-γ-mediated protection from infection in neurons. To do so, we evaluated the consequences of MV challenge of STAT1-deficient mice and primary hippocampal neurons explanted from these mice. Surprisingly, the absence of STAT1 did not restrict the ability of IFN-γ to control viral infection either in vivo or ex vivo. Moreover, the canonical IFN-γ-triggered STAT1 gene expression profile was not induced in STAT1-deficient neurons, suggesting that IFN-γ regulates neuronal STAT1-independent pathways to control viral replication.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Program in Immune Cell Development and Host Defense, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Jin YH, Kaneyama T, Kang MH, Kang HS, Koh CS, Kim BS. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection. J Neuroinflammation 2011; 8:178. [PMID: 22189096 PMCID: PMC3293102 DOI: 10.1186/1742-2094-8-178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022] Open
Abstract
Background We have previously shown that toll-like receptor 3 (TLR3)-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler's murine encephalomyelitis virus (TMEV) infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods SJL/J and B6;129S-Tlr3tm1Flv/J (TLR3KO-B6) mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler's murine encephalomyelitis virus (2 × 105 PFU) with or without treatment with 50 μg of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4+ and CD8+ T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-γ-producing CD4+ and CD8+ T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and regulatory FoxP3+ CD4+ T cells in the CNS, while poly IC-post-treated mice expressed reduced levels of PDL-1 and FoxP3+ CD4+ T cells. Conclusions These results suggest that TLR3-mediated signaling during viral infection protects against demyelinating disease by reducing the viral load and modulating immune responses. In contrast, premature activation of TLR3 signal transduction prior to viral infection leads to pathogenesis via over-activation of the pathogenic immune response.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
31
|
Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW. Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 2011; 239:44-52. [PMID: 22000153 DOI: 10.1016/j.jneuroim.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Chronic social disruption stress (SDR) exacerbates acute and chronic phase Theiler's murine encephalomyelitis virus (TMEV) infection, a mouse model of multiple sclerosis. However, the precise mechanism by which this occurs remains unknown. The present study suggests that SDR exacerbates TMEV disease course by priming virus-induced neuroinflammation. It was demonstrated that IL-1β mRNA expression increases following acute SDR; however, IL-6 mRNA expression, but not IL-1β, is upregulated in response to chronic SDR. Furthermore, this study demonstrated SDR prior to infection increases infection related central IL-6 and IL-1β mRNA expression, and administration of IL-6 neutralizing antibody during SDR reverses this increase in neuroinflammation.
Collapse
Affiliation(s)
- E G Vichaya
- Dept. of Psychology, College of Liberal Arts, Texas A&M University, United States
| | | | | | | | | | | |
Collapse
|
32
|
Dionne KR, Galvin JM, Schittone SA, Clarke P, Tyler KL. Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection. J Neurovirol 2011; 17:314-26. [PMID: 21671121 PMCID: PMC3163031 DOI: 10.1007/s13365-011-0038-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/02/2011] [Accepted: 05/09/2011] [Indexed: 12/24/2022]
Abstract
In vivo and ex vivo models of reoviral encephalitis were utilized to delineate the contribution of type I interferon (IFN) to the host’s defense against local central nervous system (CNS) viral infection and systemic viral spread. Following intracranial (i.c.) inoculation with either serotype 3 (T3) or serotype 1 (T1) reovirus, increased expression of IFN-α, IFN-β, and myxovirus-resistance protein (Mx1; a prototypical IFN stimulated gene) was observed in mouse brain tissue. Type I IFN receptor deficient mice (IFNAR−/−) had accelerated lethality, compared to wildtype (B6wt) controls, following i.c. T1 or T3 challenge. Although viral titers in the brain and eyes of reovirus infected IFNAR−/− mice were significantly increased, these mice did not develop neurologic signs or brain injury. In contrast, increased reovirus titers in peripheral tissues (liver, spleen, kidney, heart, and blood) of IFNAR−/− mice were associated with severe intestinal and liver injury. These results suggest that reovirus-infected IFNAR−/− mice succumb to peripheral disease rather than encephalitis per se. To investigate the potential role of type I IFN in brain tissue, brain slice cultures (BSCs) were prepared from IFNAR−/− mice and B6wt controls for ex vivo T3 reovirus infection. Compared to B6wt controls, reoviral replication and virus-induced apoptosis were enhanced in IFNAR−/− BSCs indicating that a type I IFN response, initiated by resident CNS cells, mediates innate viral immunity within the brain. T3 reovirus tropism was extended in IFNAR−/− brains to include dentate neurons, ependymal cells, and meningeal cells indicating that reovirus tropism within the CNS is dependent upon type I interferon signaling.
Collapse
Affiliation(s)
- Kalen R Dionne
- Medical Scientist Training Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
33
|
Holzer GW, Coulibaly S, Aichinger G, Savidis-Dacho H, Mayrhofer J, Brunner S, Schmid K, Kistner O, Aaskov JG, Falkner FG, Ehrlich H, Barrett PN, Kreil TR. Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine 2011; 29:4132-41. [PMID: 21477673 DOI: 10.1016/j.vaccine.2011.03.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease.
Collapse
Affiliation(s)
- Georg W Holzer
- Baxter Bioscience, Biomedical Research Center, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses 2010; 2:2443-80. [PMID: 21994626 PMCID: PMC3185579 DOI: 10.3390/v2112443] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses merit interest both as tractable experimental model systems to study acute and persistent viral infections, and as clinically-important human pathogens. Several arenaviruses cause hemorrhagic fever (HF) disease in humans. In addition, evidence indicates that the globally-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a human pathogen of clinical significance in congenital infections, and also poses a great danger to immunosuppressed individuals. Arenavirus persistence and pathogenesis are facilitated by their ability to overcome the host innate immune response. Mammalian hosts have developed both membrane toll-like receptors (TLR) and cytoplasmic pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs), resulting in activation of the transcription factors IRF3 or IRF7, or both, which together with NF-κB and ATF-2/c-JUN induce production of type I interferon (IFN-I). IFN-I plays a key role in host anti-microbial defense by mediating direct antiviral effects via up-regulation of IFN-I stimulated genes (ISGs), activating dendritic cells (DCs) and natural killer (NK) cells, and promoting the induction of adaptive responses. Accordingly, viruses have developed a plethora of strategies to disrupt the IFN-I mediated antiviral defenses of the host, and the viral gene products responsible for these disruptions are often major virulence determinants. IRF3- and IRF7-dependent induction of host innate immune responses is frequently targeted by viruses. Thus, the arenavirus nucleoprotein (NP) was shown to inhibit the IFN-I response by interfering with the activation of IRF3. This NP anti-IFN activity, together with alterations in the number and function of DCs observed in mice chronically infected with LCMV, likely play an important role in LCMV persistence in its murine host. In this review we will discuss current knowledge about the cellular and molecular mechanisms by which arenaviruses can subvert the host innate immune response and their implications for understanding HF arenaviral disease as well as arenavirus persistence in their natural hosts.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, The Jenner Institute, University of Oxford, Compton, Newbury, Berkshire RG20 7NN, UK; E-Mail:
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Himeda T, Okuwa T, Muraki Y, Ohara Y. Cytokine/chemokine profile in J774 macrophage cells persistently infected with DA strain of Theiler's murine encephalomyelitis virus (TMEV). J Neurovirol 2010; 16:219-29. [PMID: 20515433 DOI: 10.3109/13550284.2010.484040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) is a picornavirus and persists in the spinal cords of mice, followed by inflammatory demyelinating disease. Viral persistence is a key determinant for the TMEV-induced demyelination. Macrophages are thought to serve as the site of TMEV persistence during the chronic demyelinating phase. We previously demonstrated that two nonstructural proteins of TMEV, L and L(*), were important for virus growth in J774.1 macrophage cells. However, the key factors of macrophage cells related to virus persistence and demyelination remain poorly understood. The inflammatory response is heavily dependent on cytokine and chemokine production by cell of both the immune system and the central nervous system (CNS). In this study, we established the macrophage cells persistently infected with DA strain, and then analyzed the cytokine expression pattern in those cells. The present results are the first to demonstrate the up-regulation of B-lymphocyte chemoattractant (BLC) and granulocyte colony-stimulating factor (G-CSF) in the macrophage cells persistently infected with DA strain. Furthermore, up-regulation of interleukin (IL)-10 and down-regulation of interferon (IFN)-alpha 4, IFN-beta, and IFN-gamma were shown in those cells. The data suggest that these cytokines/chemokines may contribute to the virus persistence and the acceleration of TMEV-induced demyelination.
Collapse
Affiliation(s)
- Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Uchinada, Ishikawa, Japan
| | | | | | | |
Collapse
|
36
|
Jin YH, Hou W, Kim SJ, Fuller AC, Kang B, Goings G, Miller SD, Kim BS. Type I interferon signals control Theiler's virus infection site, cellular infiltration and T cell stimulation in the CNS. J Neuroimmunol 2010; 226:27-37. [PMID: 20538350 PMCID: PMC2937062 DOI: 10.1016/j.jneuroim.2010.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 02/08/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) establishes a persistent infection in the central nervous system (CNS). To examine the role of type I interferon (IFN-I)-mediated signals in TMEV infection, mice lacking a subunit of the type I IFN receptor (IFN-IR KO mice) were utilized. In contrast to wild type mice, IFN-IR KO mice developed rapid fatal encephalitis accompanied with greater viral load and infiltration of immune cells to the CNS. The proportion of virus-specific CD4(+) and CD8(+) T cell responses in the CNS was significantly lower in IFN-IR KO mice during the early stage of infection. Levels of IFN-γ and IL-17 produced by isolated primed CD4(+) T cells in response to DCs from TMEV-infected IFN-IR KO mice were also lower than those stimulated by DCs from TMEV-infected wild type control mice. The less efficient stimulation of virus-specific T cells by virus-infected antigen-presenting cells is attributable in part to the low level expression of activation markers on TMEV-infected cells from IFN-IR KO mice. However, due to high levels of cellular infiltration and viral loads in the CNS, the overall numbers of virus-specific T cells are higher in IFN-IR KO mice during the later stage of viral infection. These results suggest that IFN-I-mediated signals play important roles in controlling cellular infiltration to the CNS and shaping local T cell immune responses.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Wanqiu Hou
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Seung Jae Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Alyson C. Fuller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Bongsu Kang
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Gwen Goings
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| | - Byung S. Kim
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E. Chicago, IL 60611
| |
Collapse
|
37
|
Rubio N, Palomo M, Alcami A. Interferon-alpha/beta genes are up-regulated in murine brain astrocytes after infection with Theiler's murine encephalomyelitis virus. J Interferon Cytokine Res 2010; 30:253-62. [PMID: 20038206 DOI: 10.1089/jir.2009.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article reports the production of interferon alpha/beta (IFN-alpha/beta) by SJL/J mouse brain astrocyte cultures infected with Theiler's murine encephalomyelitis virus (TMEV). cRNA from mock- and TMEV-infected SJL/J astrocytes was hybridized to the Affymetrix whole murine genome DNA microarray. Analysis revealed the up-regulation of 3 sequences coding for the IFN-alpha/beta domain. Increased expression of mRNA coding for IFN-alpha was shown by conventional RT-PCR and quantitative real-time RT-PCR. According to ELISA, the concentration of IFN-alpha in the supernatants of infected astrocyte cultures varied with the multiplicity of infection and post-infection time. The IFN-alpha/beta secreted was biologically active, as shown by a virus-based IFN bioassay involving Cocal virus and TMEV infection. The contribution to total interferon activity was 29% +/- 3.0% for IFN-alpha and 52% +/- 3.6% for IFN-beta. IFN-alpha/beta was induced by whole TMEV virions; induction was not achieved with either purified isolated virion capsid proteins or UV-inactivated virus. Further, induction was inhibited by specific anti-TMEV antibodies. The receptor for IFN-alpha/beta, which is absent in uninfected astrocytes, was up-regulated after infection, as suggested by DNA hybridization analysis. The brains of infected mice contained IFN-alpha/beta mRNA during the acute encephalitis phase, peaking at day 5 post-infection. Our findings could have significance for human diseases such as viral encephalitis and multiple sclerosis.
Collapse
|
38
|
Different strains of Theiler's murine encephalomyelitis virus antagonize different sites in the type I interferon pathway. J Virol 2010; 84:9181-9. [PMID: 20610716 DOI: 10.1128/jvi.00603-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The DA strain of Theiler's murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus of the family Picornaviridae, causes persistent infection in susceptible mice, associated with restricted expression of viral proteins, and induces a demyelinating disease of the central nervous system. DA-induced demyelinating disease serves as a model of human multiple sclerosis because of similarities in pathology and because host immune responses contribute to pathogenesis in both disorders. In contrast, the GDVII strain of TMEV causes acute lethal encephalitis with no virus persistence. Cardiovirus L is a multifunctional protein that blocks beta interferon (IFN-beta) gene transcription. We show that both DA L and GDVII L disrupt IFN-beta gene transcription induction by IFN regulatory factor 3 (IRF-3) but do so at different points in the signaling pathway. DA L blocks IFN-beta gene transcription downstream of mitochondrial antiviral signaling protein (MAVS) but upstream of IRF-3 activation, while GDVII L acts downstream of IRF-3 activation. Both DA L and GDVII L block IFN-beta gene transcription in infected mice; however, IFN-beta mRNA is expressed at low levels in the central nervous systems of mice persistently infected with DA. The particular level of IFN-beta mRNA expression set by DA L as well as other factors in the IRF-3 pathway may play a role in virus persistence, inflammation, and the restricted expression of viral proteins during the late stage of demyelinating disease.
Collapse
|
39
|
Lancaster KZ, Pfeiffer JK. Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog 2010; 6:e1000791. [PMID: 20221252 PMCID: PMC2832671 DOI: 10.1371/journal.ppat.1000791] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle-sciatic nerve-spinal cord-brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) alpha/beta receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN alpha/beta receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.
Collapse
MESH Headings
- Animals
- Axonal Transport/immunology
- Central Nervous System/cytology
- Central Nervous System/immunology
- Central Nervous System/virology
- HeLa Cells
- Humans
- Injections, Intramuscular
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Skeletal/injuries
- Muscle, Skeletal/innervation
- Muscle, Skeletal/virology
- Neurons/immunology
- Neurons/virology
- Poliomyelitis/immunology
- Poliomyelitis/physiopathology
- Poliomyelitis/virology
- Poliovirus/growth & development
- Poliovirus/immunology
- Poliovirus/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sciatic Nerve/cytology
- Sciatic Nerve/immunology
- Sciatic Nerve/virology
- Virus Replication/immunology
Collapse
Affiliation(s)
- Karen Z. Lancaster
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Julie K. Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
40
|
Pfeiffer JK. Innate host barriers to viral trafficking and population diversity: lessons learned from poliovirus. Adv Virus Res 2010; 77:85-118. [PMID: 20951871 PMCID: PMC3234684 DOI: 10.1016/b978-0-12-385034-8.00004-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Poliovirus is an error-prone enteric virus spread by the fecal-oral route and rarely invades the central nervous system (CNS). However, in the rare instances when poliovirus invades the CNS, the resulting damage to motor neurons is striking and often permanent. In the prevaccine era, it is likely that most individuals within an epidemic community were infected; however, only 0.5% of infected individuals developed paralytic poliomyelitis. Paralytic poliomyelitis terrified the public and initiated a huge research effort, which was rewarded with two outstanding vaccines. During research to develop the vaccines, many questions were asked: Why did certain people develop paralysis? How does the virus move from the gut to the CNS? What limits viral trafficking to the CNS in the vast majority of infected individuals? Despite over 100 years of poliovirus research, many of these questions remain unanswered. The goal of this chapter is to review our knowledge of how poliovirus moves within and between hosts, how host barriers limit viral movement, how viral population dynamics impact viral fitness and virulence, and to offer hypotheses to explain the rare incidence of paralytic poliovirus disease.
Collapse
Affiliation(s)
- Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
41
|
Abstract
Poliomyelitis is an acute disease of the central nervous system (CNS) caused by poliovirus (PV). In humans, an infection is initiated by oral ingestion of the virus, followed by multiplication in the alimentary mucosa, from which the virus spreads through the bloodstream. Paralytic poliomyelitis initiates from the invasion of the central nervous system by circulating poliovirus, probably via the blood-brain barrier. After the virus enters the central nervous system, it replicates in neurons, especially in motor neurons, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, a neuron-specific pathway has been reported in humans, monkeys, and PV-sensitive transgenic (Tg) mice carrying the PV receptor (hPVR/CD155) gene. It is important for the efficient virus dissemination to overcome the barriers as follows; i) to access the target tissue, ii) to enter the cells, iii) to reach the place for the replication, iv) to replicate efficiently. PV is easily transferred to humans orally; however, no rodent model for oral infections has been developed. We analyzed the each barrier above, and showed that PV is inactivated by the low pH of the gastric contents in mice. We also demonstrated that type 1 interferon signaling plays an important role in determining permissivity in the alimentary tract. As for the neural pathway, we demonstrated that direct efficient interaction between the cytoplasmic domain and cytoplasmic dynein is essential for the efficient retrograde transport of PV-containing vesicles along microtubules for the hPVR-dependent PV transport. On the other hand, we found that hPVR-independent axonal transport of PV was also observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist.
Collapse
|
42
|
Transgenic expression of the 3D polymerase inhibits Theiler's virus infection and demyelination. J Virol 2009; 83:12279-89. [PMID: 19759133 DOI: 10.1128/jvi.00664-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RNA-dependent RNA polymerase 3D(pol) is required for the elongation of positive- and negative-stranded picornavirus RNA. During the course of investigating the effect of the transgenic expression of viral genes on the host immune response, we evaluated the viral load present in the host after infection. To our surprise, we found that 3D transgenic expression in genetically susceptible FVB mice led to substantially lower viral loads after infection with Theiler's murine encephalomyelitis virus (TMEV). As a result, spinal cord damage caused by chronic viral infection in the central nervous system was reduced in FVB mice that expressed 3D. This led to the preservation of large-diameter axons and motor function in these mice. The 3D transgene also lowered early viral loads when expressed in FVB-D(b) mice resistant to persistent TMEV infection. The protective effect of 3D transgenic expression was not altered in FVB-Rag(-/-).3D mice that are deficient in T and B cells, thus ruling out a mechanism by which the overexpression of 3D enhanced the adaptive immune clearance of the virus. Understanding how endogenously overexpressed 3D polymerase inhibits viral replication may lead to new strategies for targeting therapies to all picornaviruses.
Collapse
|
43
|
Abstract
The specificity of a given virus for a cell type, tissue or species - collectively known as viral tropism - is an important factor in determining the outcome of viral infection in any particular host. Owing to the increased prevalence of zoonotic infections and the threat of emerging and re-emerging pathogens, gaining a better understanding of the factors that determine viral tropism has become particularly important. In this Review, we summarize our current understanding of the central role of antiviral and pro-inflammatory cytokines, particularly the interferons and tumour necrosis factor, in dictating viral tropism and how these cytokine pathways can be exploited therapeutically for cancer treatment and to better counter future threats from emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Academic Research Building, Room R4-295, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
44
|
Green NM, Laws A, Kiefer K, Busconi L, Kim YM, Brinkmann MM, Trail EH, Yasuda K, Christensen SR, Shlomchik MJ, Vogel S, Connor JH, Ploegh H, Eilat D, Rifkin IR, van Seventer JM, Marshak-Rothstein A. Murine B cell response to TLR7 ligands depends on an IFN-beta feedback loop. THE JOURNAL OF IMMUNOLOGY 2009; 183:1569-76. [PMID: 19587008 DOI: 10.4049/jimmunol.0803899] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs play an important, yet poorly characterized, role in systemic lupus erythematosus. To better understand the interplay between type I IFNs and the activation of autoreactive B cells, we evaluated the effect of type I IFN receptor (IFNAR) deficiency in murine B cell responses to common TLR ligands. In comparison to wild-type B cells, TLR7-stimulated IFNAR(-/-) B cells proliferated significantly less well and did not up-regulate costimulatory molecules. By contrast, IFNAR1(-/-) B cells did not produce cytokines, but did proliferate and up-regulate activation markers in response to other TLR ligands. These defects were not due to a difference in the distribution of B cell populations or a failure to produce a soluble factor other than a type I IFN. Instead, the compromised response pattern reflected the disruption of an IFN-beta feedback loop and constitutively low expression of TLR7 in the IFNAR1(-/-) B cells. These results highlight subtle differences in the IFN dependence of TLR7 responses compared with other TLR-mediated B cell responses.
Collapse
Affiliation(s)
- Nathaniel M Green
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Calvo-Pinilla E, Rodríguez-Calvo T, Anguita J, Sevilla N, Ortego J. Establishment of a bluetongue virus infection model in mice that are deficient in the alpha/beta interferon receptor. PLoS One 2009; 4:e5171. [PMID: 19357779 PMCID: PMC2663843 DOI: 10.1371/journal.pone.0005171] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 03/12/2009] [Indexed: 11/18/2022] Open
Abstract
Bluetongue (BT) is a noncontagious, insect-transmitted disease of ruminants caused by the bluetongue virus (BTV). A laboratory animal model would greatly facilitate the studies of pathogenesis, immune response and vaccination against BTV. Herein, we show that adult mice deficient in type I IFN receptor (IFNAR(−/−)) are highly susceptible to BTV-4 and BTV-8 infection when the virus is administered intravenously. Disease was characterized by ocular discharges and apathy, starting at 48 hours post-infection and quickly leading to animal death within 60 hours of inoculation. Infectious virus was recovered from the spleen, lung, thymus, and lymph nodes indicating a systemic infection. In addition, a lymphoid depletion in spleen, and severe pneumonia were observed in the infected mice. Furthermore, IFNAR(−/−) adult mice immunized with a BTV-4 inactivated vaccine showed the induction of neutralizing antibodies against BTV-4 and complete protection against challenge with a lethal dose of this virus. The data indicate that this mouse model may facilitate the study of BTV pathogenesis, and the development of new effective vaccines for BTV.
Collapse
Affiliation(s)
| | | | - Juan Anguita
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
46
|
Ricour C, Delhaye S, Hato SV, Olenyik TD, Michel B, van Kuppeveld FJM, Gustin KE, Michiels T. Inhibition of mRNA export and dimerization of interferon regulatory factor 3 by Theiler's virus leader protein. J Gen Virol 2009; 90:177-86. [PMID: 19088287 DOI: 10.1099/vir.0.005678-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV or Theiler's virus) is a neurotropic picornavirus that can persist lifelong in the central nervous system of infected mice, causing a chronic inflammatory demyelinating disease. The leader (L) protein of the virus is an important determinant of viral persistence and has been shown to inhibit transcription of type I interferon (IFN) genes and to cause nucleocytoplasmic redistribution of host proteins. In this study, it was shown that expression of the L protein shuts off synthesis of the reporter proteins green fluorescent protein and firefly luciferase, suggesting that it induces a global shut-off of host protein expression. The L protein did not inhibit transcription or translation of the reporter genes, but blocked cellular mRNA export from the nucleus. This activity correlated with the phosphorylation of nucleoporin 98 (Nup98), an essential component of the nuclear pore complex. In contrast, the data confirmed that the L protein inhibited IFN expression at the transcriptional level, and showed that transcription of other chemokine or cytokine genes was affected by the L protein. This transcriptional inhibition correlated with inhibition of interferon regulatory factor 3 (IRF-3) dimerization. Whether inhibition of IRF-3 dimerization and dysfunction of the nuclear pore complex are related phenomena remains an open question. In vivo, IFN antagonism appears to be an important role of the L protein early in infection, as a virus bearing a mutation in the zinc finger of the L protein replicated as efficiently as the wild-type virus in type I IFN receptor-deficient mice, but had impaired fitness in IFN-competent mice.
Collapse
Affiliation(s)
- Céline Ricour
- Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Storts R, Welsh TH, Meagher MW. Neuroimmune interactions in a model of multiple sclerosis. Ann N Y Acad Sci 2009; 1153:209-19. [PMID: 19236344 PMCID: PMC2862309 DOI: 10.1111/j.1749-6632.2008.03984.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychological stress has been implicated in both the onset and exacerbation of multiple sclerosis (MS). Our research has focused on the role of stress at the onset of MS, using the mouse model Theiler's murine encephalomyelitis virus-induced demyelination. Theiler's virus is a natural pathogen of mice that causes a persistent infection of the central nervous system (CNS) and inflammatory immune-mediated demyelination that is very similar to MS. Our research has shown that restraint stress sufficiently increases corticosterone secretion to cause immunosuppression. Stressed mice develop decreased innate and adaptive immune responses, including decreased chemokine and cytokine responses, to virus, which leads to increased viral replication within the CNS. Higher levels of virus then cause increased later demyelinating disease. These findings may have important implications in our understanding of the interactions between stress and the development of autoimmune diseases induced by infectious agents.
Collapse
Affiliation(s)
- C Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Reovirus mu2 protein inhibits interferon signaling through a novel mechanism involving nuclear accumulation of interferon regulatory factor 9. J Virol 2008; 83:2178-87. [PMID: 19109390 DOI: 10.1128/jvi.01787-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The secreted cytokine alpha/beta interferon (IFN-alpha/beta) binds its receptor to activate the Jak-STAT signal transduction pathway, leading to formation of the heterotrimeric IFN-stimulated gene factor 3 (ISGF3) transcription complex for induction of IFN-stimulated genes (ISGs) and establishment of an antiviral state. Many viruses have evolved countermeasures to inhibit the IFN pathway, thereby subverting the innate antiviral response. Here, we demonstrate that the mildly myocarditic reovirus type 1 Lang (T1L), but not the nonmyocarditic reovirus type 3 Dearing, represses IFN induction of a subset of ISGs and that this repressor function segregates with the T1L M1 gene. Concordantly, the T1L M1 gene product, mu2, dramatically inhibits IFN-beta-induced reporter gene expression. Surprisingly, T1L infection does not degrade components of the ISGF3 complex or interfere with STAT1 or STAT2 nuclear translocation as has been observed for other viruses. Instead, infection with T1L or reassortant or recombinant viruses containing the T1L M1 gene results in accumulation of interferon regulatory factor 9 (IRF9) in the nucleus. This effect has not been previously described for any virus and suggests that mu2 modulates IRF9 interactions with STATs for both ISGF3 function and nuclear export. The M1 gene is a determinant of virus strain-specific differences in the IFN response, which are linked to virus strain-specific differences in induction of murine myocarditis. We find that virus-induced myocarditis is associated with repression of IFN function, providing new insights into the pathophysiology of this disease. Together, these data provide the first report of an increase in IRF9 nuclear accumulation associated with viral subversion of the IFN response and couple virus strain-specific differences in IFN antagonism to the pathogenesis of viral myocarditis.
Collapse
|
49
|
Kyle JL, Balsitis SJ, Zhang L, Beatty PR, Harris E. Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model. Virology 2008; 380:296-303. [PMID: 18774583 DOI: 10.1016/j.virol.2008.08.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/10/2008] [Accepted: 08/05/2008] [Indexed: 01/23/2023]
Abstract
The four serotypes of dengue virus (DENV1-4) are causative agents of dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Previous DENV infection is a risk factor for DHF/DSS during subsequent infection by a different serotype. Nonetheless, most primary and secondary DENV infections are asymptomatic. To investigate the possible mechanisms of immune protection in vivo, 129/Pas mice lacking IFN-alpha/beta and -gamma receptors (AG129) were used to model secondary infection using both DENV1-DENV2 and DENV2-DENV4 sequences. At intervals between sequential infections of 4 to 52 weeks, protection against secondary heterologous DENV infection was observed. Passive transfer of DENV-immune serum was protective against replication of heterologous challenge virus in all tissues tested, whereas adoptive transfer of DENV-immune cells significantly protected mice from replication of the challenge virus only when a lower inoculum was administered. These findings are relevant for understanding both natural and vaccine-induced immunity to DENV.
Collapse
Affiliation(s)
- Jennifer L Kyle
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, 1 Barker Hall #424, Berkeley, CA 94720-7354, USA
| | | | | | | | | |
Collapse
|
50
|
Steurbaut S, Merckx E, Rombaut B, Vrijsen R. Modulation of viral replication in macrophages persistently infected with the DA strain of Theiler's murine encephalomyelitis virus. Virol J 2008; 5:89. [PMID: 18680564 PMCID: PMC2515842 DOI: 10.1186/1743-422x-5-89] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/04/2008] [Indexed: 11/30/2022] Open
Abstract
Background Demyelinating strains of Theiler's murine encephalomyelitis virus (TMEV) such as the DA strain are the causative agents of a persistent infection that induce a multiple sclerosis-like disease in the central nervous system of susceptible mice. Viral persistence, mainly associated with macrophages, is considered to be an important disease determinant that leads to chronic inflammation, demyelination and autoimmunity. In a previous study, we described the establishment of a persistent DA infection in RAW macrophages, which were therefore named DRAW. Results In the present study we explored the potential of diverse compounds to modulate viral persistence in these DRAW cells. Hemin was found to increase viral yields and to induce cell lysis. Enviroxime and neutralizing anti-TMEV monoclonal antibody were shown to decrease viral yields, whereas interferon-α and interferon-γ completely cleared the persistent infection. We also compared the cytokine pattern secreted by uninfected RAW, DRAW and interferon-cured DRAW macrophages using a cytokine protein array. The chemokine RANTES was markedly upregulated in DRAW cells and restored to a normal expression level after abrogation of the persistent infection with interferon-α or interferon-γ. On the other hand, the chemokine MCP-1 was upregulated in the interferon-cured DRAW cells. Conclusion We have identified several compounds that modulate viral replication in an in vitro model system for TMEV persistence. These compounds now await further testing in an in vivo setting to address fundamental questions regarding persistent viral infection and immunopathogenesis.
Collapse
Affiliation(s)
- Stephane Steurbaut
- Department of Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|