1
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
2
|
Rodrigues CF, Santos FA, Amorim LAA, da Silva ALC, Marques LGA, Rocha BAM. Galectin-9 is a target for the treatment of cancer: A patent review. Int J Biol Macromol 2024; 254:127768. [PMID: 38287577 DOI: 10.1016/j.ijbiomac.2023.127768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Galectins, which correspond to a group of proteins capable of recognizing and reversibly binding to β-galactoside carbohydrates, have been the subject of innovation and development of technological products. Galectins play biological roles, such as cell proliferation and apoptosis, and some studies showed differences in the concentrations of galectins dispersed in serum of patients with cancer. For this reason, different studies have evaluated the biotechnological potential of these proteins as biomarkers for the prognosis and/or diagnosis of physiological disorders. Thus, this review discusses recent technological advancements in targeting galectins for the treatment of cancer and using galectins for cancer prognosis and diagnosis. Data mining was performed using the search descriptors "Galectin 9* and cancer*" and the ESPACENET and Cortellis Drug Discovery Intelligence (CDDI) databases. PRISMA guidelines were followed as a basis for literature review which aimed to conduct a systematic study of galectin-9 patents related to cancer prognosis, diagnosis and treatment. Results showed the importance of galectin-9 protein patents in furthering biomedical advancements in the global fight against cancer.
Collapse
Affiliation(s)
| | - Francisco Alves Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bruno Anderson Matias Rocha
- RENORBIO, Federal University of Ceara, Fortaleza, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
3
|
Guo Q, Yang C, Gao F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J 2022; 289:7970-7986. [PMID: 34478583 DOI: 10.1111/febs.16179] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/20/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
CD44, a non-kinase transmembrane glycoprotein, is ubiquitously expressed on various types of cells, especially cancer stem cells (CSCs), and has been implicated in cancer onset and aggressiveness. The major ligand for the CD44, hyaluronan (HA), binds to and interacts with CD44, which in turn triggers downstream signaling cascades, thereby promoting cellular behaviors such as proliferation, motility, invasiveness and chemoresistance. The CD44-HA interaction is cell-specific and strongly affected by the state of CD44 activation. Therefore, the binding of HA to CD44 is essential for the activation of CD44 during which the detailed regulatory mechanism needs to be clarified. Different CD44 activation states distribute in human carcinoma and normal tissue; however, whether CD44 activation is a critical requirement for tumor initiation, progression and notorious CSC properties remains to be clarified. A deeper understanding of the regulation of CD44 activation may facilitate the development of novel targeted drugs in the future. Here, we review the current findings concerning the states of CD44 activation on the cell surface, the underlying regulatory mechanisms of CD44 activation, the known role for CD44 activation in tumor progression and CSC hallmarks, as well as the potential of HA-coated nanoparticle for targeting activated CD44 for cancer therapy.
Collapse
Affiliation(s)
- Qian Guo
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
Cao L, Fang H, Yan D, Wu XM, Zhang J, Chang MX. CD44a functions as a regulator of p53 signaling, apoptosis and autophagy in the antibacterial immune response. Commun Biol 2022; 5:889. [PMID: 36042265 PMCID: PMC9427754 DOI: 10.1038/s42003-022-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
The cell adhesion molecule CD44 has been implicated in diverse biological functions including the pathological responses to infections and inflammatory diseases. The variable forms of CD44 contribute to functional variations, which are not yet defined in teleost. Here, we show that zebrafish CD44a plays a protective role in the host defense against Edwardsiella piscicida infection. Zebrafish CD44a deficiency inhibits cell growth and proliferation, impairs cell growth and death pathways, and regulates the expression levels of many genes involved in p53 signaling, apoptosis and autophagy. In addition, CD44a gene disruption in zebrafish leads to inhibition of apoptosis and induction of autophagy, with the increased susceptibility to E. piscicida infection. Furthermore, we show that zebrafish CD44a variants including CD44a_tv1 and CD44a_tv2 promote the translocation of p53 from the nucleus to the cytoplasm and interact with p53 in the cytoplasm. Mechanistically, zebrafish CD44a_tv1 mediates the beneficial effect for larvae survival infected with E. piscicida is depending on the CASP8-mediated apoptosis. However, the antibacterial effect of zebrafish CD44a_tv2 depends on the cytoplasmic p53-mediated inhibition of autophagy. Collectively, our results identify that different mechanisms regulate CD44a variants-mediated antibacterial responses.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hong Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
6
|
Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 Glycosylation as a Therapeutic Target in Oncology. Front Oncol 2022; 12:883831. [PMID: 35936713 PMCID: PMC9351704 DOI: 10.3389/fonc.2022.883831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The interaction of non-kinase transmembrane glycoprotein CD44 with ligands including hyaluronic acid (HA) is closely related to the occurrence and development of tumors. Changes in CD44 glycosylation can regulate its binding to HA, Siglec-15, fibronectin, TM4SF5, PRG4, FGF2, collagen and podoplanin and activate or inhibit c-Src/STAT3/Twist1/Bmi1, PI3K/AKT/mTOR, ERK/NF-κB/NANOG and other signaling pathways, thereby having a profound impact on the tumor microenvironment and tumor cell fate. However, the glycosylation of CD44 is complex and largely unknown, and the current understanding of how CD44 glycosylation affects tumors is limited. These issues must be addressed before targeted CD44 glycosylation can be applied to treat human cancers.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Linlin Xiao, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
7
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Katoh S. Critical Involvement of CD44 in T Helper Type 2 Cell-Mediated Eosinophilic Airway Inflammation in a Mouse Model of Acute Asthma. Front Immunol 2022; 12:811600. [PMID: 35069598 PMCID: PMC8777095 DOI: 10.3389/fimmu.2021.811600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Interactions between CD44 and hyaluronan (HA) are crucial for recruiting leukocytes to inflamed tissues. This review summarizes findings from our studies of the roles of CD44-HA interactions in leukocyte trafficking, with a particular focus on airway T helper type 2 (Th2) cells in mouse models of acute asthma. In a mite allergen-induced model of acute asthma, intraperitoneal injection of anti-CD44 monoclonal antibodies blocked lymphocytes and eosinophils from accumulating in the lung, and suppressed both the antigen-induced increase in Th2 cytokines in the bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness (AHR). CD44 deficiency was associated with decreased mite allergen-induced Th2 cell-mediated airway inflammation and AHR in sensitized mice. Asthmatic responses to antigen-sensitized splenic CD4+ T cells transferred from CD44-deficient mice were weaker than in wild-type mice. Administration of anti-CD44 monoclonal antibodies preferentially suppressed the airway accumulation of antigen-specific Th2 cells induced by antigen challenge, without affecting Th1 and Th17 cells. Increased HA-binding ability of CD44 and expression of Neu1 sialidase were observed on antigen-specific Th2 cells compared with antigen-specific Th1 and Th17 cells. Finally, in a mouse model of acute asthma, neuraminidase 1-deficient SM/J mice exhibited a lower Th2 cytokine concentration and a lower absolute Th2 cell number in the BALF, as well as an attenuated AHR. Our findings indicate that CD44 critically contributes to the antigen challenge-induced airway accumulation of antigen-specific Th2 cells, without affecting Th1 and Th17 cells, in mice. Furthermore, neuraminidase 1 activity is necessary for the interaction between HA and CD44, and Th2 cell-mediated airway inflammation.
Collapse
Affiliation(s)
- Shigeki Katoh
- Department of Respiratory Medicine, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
9
|
Walker MR, Goel HL, Mukhopadhyay D, Chhoy P, Karner ER, Clark JL, Liu H, Li R, Zhu JL, Chen S, Mahal LK, Bensing BA, Mercurio AM. O-linked α2,3 sialylation defines stem cell populations in breast cancer. SCIENCE ADVANCES 2022; 8:eabj9513. [PMID: 34995107 PMCID: PMC8741191 DOI: 10.1126/sciadv.abj9513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
We pursued the hypothesis that specific glycans can be used to distinguish breast cancer stem cells (CSCs) and influence their function. Comparison of CSCs and non-CSCs from multiple breast cancer models revealed that CSCs are distinguished by expression of α2,3 sialylated core2 O-linked glycans. We identified a lectin, SLBR-N, which binds to O-linked α2,3 sialic acids, that was able to enrich for CSCs in vitro and in vivo. This O-glycan is expressed on CD44 and promotes its interaction with hyaluronic acid, facilitating CD44 signaling and CSC properties. In contrast, FUT3, which contributes to sialyl Lewis X (sLeX) production, is preferentially expressed in the non-CSC population, and it antagonizes CSC function. Collectively, our data indicate that SLBR-N can be more efficient at enriching for CSCs than CD44 itself because its use avoids the issues of CD44 splicing and glycan status. These data also reveal how differential glycosylation influences CSC fate.
Collapse
Affiliation(s)
- Melanie R. Walker
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter Chhoy
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emmet R. Karner
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L. Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julie Lihua Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shuhui Chen
- Biomedical Research Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Lara K. Mahal
- Biomedical Research Institute, Department of Chemistry, New York University, New York, NY, USA
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, San Francisco, CA, USA
| | - Arthur M. Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
10
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
11
|
Zhang X, Dou P, Akhtar ML, Liu F, Hu X, Yang L, Yang D, Zhang X, Li Y, Qiao S, Li K, Tang R, Zhan C, Ma Y, Cheng Q, Bai Y, Han F, Nie H, Li Y. NEU4 inhibits motility of HCC cells by cleaving sialic acids on CD44. Oncogene 2021; 40:5427-5440. [PMID: 34282273 DOI: 10.1038/s41388-021-01955-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an extremely metastatic tumor. Sialic acids (SAs) are associated with cancer development and metastasis. NEU4 is a sialidase that removes SAs from glycoconjugates, while the function of the NEU4 in HCC has not been clearly explored. In our research, we found the NEU4 expression was significantly down-regulated in HCC tissues, which was correlated with high grades and poor outcomes of HCC. The NEU4 expression could be regulated by histone acetylation. In the functional analysis of NEU4, the cell motility was inhibited when NEU4 was overexpressed, and restored when NEU4 expression was down-regulated. Similarly, NEU4 over-expressed HCC cells showed less metastasis in athymic nude mice. Further study revealed that NEU4 could inhibit cell migration by enzymatic decomposition of SAs. Our results verified a NEU4 active site (NEU4E235) and overexpressing inactivates NEU4E235A that weakens the inhibition ability to cell migration. Further, 70 kinds of specific interacting proteins of NEU4 including CD44 were identified through mass spectrum. Moreover, the α2,3-linked SAs on CD44 were decreased and the hyaluronic acid (HA) binding ability was increased when NEU4 over-expressed or activated. Additionally, the mutation of CD44 with six N-glycosylation sites showed less sensibility to NEU4 on cell migration compared with wild-type CD44. In summary, our results revealed the mechanism of low expression of NEU4 in HCC and its inhibitory effect on cell migration by removal of SAs on CD44, which may provide new treatment strategies to control the motility and metastasis of HCC.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Peng Dou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Muhammad Luqman Akhtar
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fei Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xibo Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Lijun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Depeng Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Xiaohan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Ran Tang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Chao Zhan
- The third affiliated hospital, Harbin Medical University, Harbin, Heilongjiang Provence, China, 150006
| | - Yue Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Qixiang Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Yan Bai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Provence, China, 150008.
| |
Collapse
|
12
|
Goerdeler F, Seeberger PH, Moscovitz O. Unveiling the Sugary Secrets of Plasmodium Parasites. Front Microbiol 2021; 12:712538. [PMID: 34335547 PMCID: PMC8322443 DOI: 10.3389/fmicb.2021.712538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites cause malaria disease, one of the leading global health burdens for humanity, infecting hundreds of millions of people each year. Different glycans on the parasite and the host cell surface play significant roles in both malaria pathogenesis and host defense mechanisms. So far, only small, truncated N- and O-glycans have been identified in Plasmodium species. In contrast, complex glycosylphosphatidylinositol (GPI) glycolipids are highly abundant on the parasite’s cell membrane and are essential for its survival. Moreover, the parasites express lectins that bind and exploit the host cell surface glycans for different aspects of the parasite life cycle, such as adherence, invasion, and evasion of the host immune system. In parallel, the host cell glycocalyx and lectin expression serve as the first line of defense against Plasmodium parasites and directly dictate susceptibility to Plasmodium infection. This review provides an overview of the glycobiology involved in Plasmodium-host interactions and its contribution to malaria pathogenesis. Recent findings are presented and evaluated in the context of potential therapeutic exploitation.
Collapse
Affiliation(s)
- Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
13
|
N-Glycosylation can selectively block or foster different receptor-ligand binding modes. Sci Rep 2021; 11:5239. [PMID: 33664400 PMCID: PMC7933184 DOI: 10.1038/s41598-021-84569-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.
Collapse
|
14
|
Guo Q, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 activation state regulated by the CD44v10 isoform determines breast cancer proliferation. Oncol Rep 2021; 45:7. [PMID: 33649828 PMCID: PMC7876991 DOI: 10.3892/or.2021.7958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 12/27/2022] Open
Abstract
The cell surface glycoprotein CD44 displays different active statuses; however, it remains unknown whether the activation process of CD44 is critical for tumor development and progression. The aim of the present study was to investigate whether breast cancer (BCa) cells with different activation states of CD44 show similar or distinct functional characteristics and to further examine the mechanisms regulating CD44 activities. A feature for the ‘activated’ state of CD44 is that it can bind to its principal ligand hyaluronan (HA). The binding of CD44 with HA is usually influenced by CD44 alternative splicing, resulting in multiple CD44 isoforms that determine CD44 activities. Flow cytometry was used to sort BCa cell subsets based on CD44-HA binding abilities (HA−/low vs. HAhigh). Subsequently, cell proliferation and colony formation assays were performed in vitro, and CD44 expression patterns were analyzed via western blotting. The results demonstrated that the CD44 variant isoform 10 (CD44v10) was highly expressed in a HA−/low binding subset of BCa cells, which exhibited a significantly higher proliferation capacity compared with the HAhigh binding subpopulation. Knockdown of CD44v10 isoform in HA−/low binding subpopulation induced an increase in HA binding ability and markedly inhibited proliferation. Furthermore, the mechanistic analysis identified that CD44v10 facilitated cell proliferation via activation of ERK/p38 MAPK and AKT/mTOR signaling. Moreover, the knockdown of CD44v10 expression downregulated the phosphorylation of ERK, AKT and mTOR, while no alteration was observed in p38 phosphorylation. Collectively, the present study identified a subset of fast-growing BCa cells characterized by CD44v10 expression, which may serve as a specific therapeutic target for BCa.
Collapse
Affiliation(s)
- Qian Guo
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiwen Liu
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiqing He
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Du
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoliang Zhang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Cuixia Yang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Feng Gao
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
15
|
Sun F, Suttapitugsakul S, Wu R. Unraveling the surface glycoprotein interaction network by integrating chemical crosslinking with MS-based proteomics. Chem Sci 2021; 12:2146-2155. [PMID: 34163979 PMCID: PMC8179341 DOI: 10.1039/d0sc06327d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell plasma membrane provides a highly interactive platform for the information transfer between the inside and outside of cells. The surface glycoprotein interaction network is extremely important in many extracellular events, and aberrant protein interactions are closely correlated with various diseases including cancer. Comprehensive analysis of cell surface protein interactions will deepen our understanding of the collaborations among surface proteins to regulate cellular activity. In this work, we developed a method integrating chemical crosslinking, an enzymatic reaction, and MS-based proteomics to systematically characterize proteins interacting with surface glycoproteins, and then constructed the surfaceome interaction network. Glycans covalently bound to proteins were employed as “baits”, and proteins that interact with surface glycoproteins were connected using chemical crosslinking. Glycans on surface glycoproteins were oxidized with galactose oxidase (GAO) and sequentially surface glycoproteins together with their interactors (“prey”) were enriched through hydrazide chemistry. In combination with quantitative proteomics, over 300 proteins interacting with surface glycoproteins were identified. Many important domains related to extracellular events were found on these proteins. Based on the protein–protein interaction database, we constructed the interaction network among the identified proteins, in which the hub proteins play more important roles in the interactome. Through analysis of crosslinked peptides, specific interactors were identified for glycoproteins on the cell surface. The newly developed method can be extensively applied to study glycoprotein interactions on the cell surface, including the dynamics of the surfaceome interactions in cells with external stimuli. Proteins interacting with glycoproteins on the cell surface were systematically characterized by integrating chemical crosslinking, enzymatic oxidation, and MS-based proteomics. The surface glycoprotein interaction network was then constructed.![]()
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta Georgia 30332 USA +1-404-894-7452 +1-404-385-1515
| |
Collapse
|
16
|
Dai Y, Yu X, Wei J, Zeng F, Li Y, Yang X, Luo Q, Zhang Z. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. LIGHT, SCIENCE & APPLICATIONS 2020; 9:164. [PMID: 33014359 PMCID: PMC7494891 DOI: 10.1038/s41377-020-00399-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 05/08/2023]
Abstract
Detection of sentinel lymph nodes (SLNs) is critical to guide the treatment of breast cancer. However, distinguishing metastatic SLNs from normal and inflamed lymph nodes (LNs) during surgical resection remains a challenge. Here, we report a CD44 and scavenger receptor class B1 dual-targeting hyaluronic acid nanoparticle (5K-HA-HPPS) loaded with the near-infra-red fluorescent dye DiR-BOA for SLN imaging in breast cancer. The small sized (~40 nm) self-assembled 5K-HA-HPPSs accumulated rapidly in the SLNs after intradermal injection. Compared with normal popliteal LNs (N-LN), there were ~3.2-fold and ~2.4-fold increases in fluorescence intensity in tumour metastatic SLNs (T-MLN) and inflamed LNs (Inf-LN), respectively, 6 h after nanoparticle inoculation. More importantly, photoacoustic microscopy (PAM) of 5K-HA-HPPS showed a significantly distinct distribution in T-MLN compared with N-LN and Inf-LN. Signals were mainly distributed at the centre of T-MLN but at the periphery of N-LN and Inf-LN. The ratio of PA intensity (R) at the centre of the LNs compared with that at the periphery was 5.93 ± 0.75 for T-MLNs of the 5K-HA-HPPS group, which was much higher than that for the Inf-LNs (R = 0.2 ± 0.07) and N-LNs (R = 0.45 ± 0.09). These results suggest that 5K-HA-HPPS injection combined with PAM provides a powerful tool for distinguishing metastatic SLNs from pLNs and inflamed LNs, thus guiding the removal of SLNs during breast cancer surgery.
Collapse
Affiliation(s)
- Yanfeng Dai
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiang Yu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Jianshuang Wei
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Fanxin Zeng
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Yiran Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Xiaoquan Yang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
| | - Qingming Luo
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228 China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics–Huazhong University of Science and Technology, Wuhan, Hubei 430074 China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228 China
| |
Collapse
|
17
|
Kawaguchi M, Dashzeveg N, Cao Y, Jia Y, Liu X, Shen Y, Liu H. Extracellular Domains I and II of cell-surface glycoprotein CD44 mediate its trans-homophilic dimerization and tumor cluster aggregation. J Biol Chem 2020; 295:2640-2649. [PMID: 31969394 PMCID: PMC7049959 DOI: 10.1074/jbc.ra119.010252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/16/2020] [Indexed: 01/09/2023] Open
Abstract
CD44 molecule (CD44) is a well-known surface glycoprotein on tumor-initiating cells or cancer stem cells. However, its utility as a therapeutic target for managing metastases remains to be fully evaluated. We previously demonstrated that CD44 mediates homophilic interactions for circulating tumor cell (CTC) cluster formation, which enhances cancer stemness and metastatic potential in association with an unfavorable prognosis. Furthermore, CD44 self-interactions activate the P21-activated kinase 2 (PAK2) signaling pathway. Here, we further examined the biochemical properties of CD44 in homotypic tumor cell aggregation. The standard CD44 form (CD44s) mainly assembled as intercellular homodimers (trans-dimers) in tumor clusters rather than intracellular dimers (cis-dimers) present in single cells. Machine learning-based computational modeling combined with experimental mutagenesis tests revealed that the extracellular Domains I and II of CD44 are essential for its trans-dimerization and predicted high-score residues to be required for dimerization. Substitutions of 10 these residues in Domain I (Ser-45, Glu-48, Phe-74, Cys-77, Arg-78, Tyr-79, Ile-88, Arg-90, Asn-94, and Cys-97) or 5 residues in Domain II (Ile-106, Tyr-155, Val-156, Gln-157, and Lys-158) abolished CD44 dimerization and reduced tumor cell aggregation in vitro Importantly, the substitutions in Domain II dramatically inhibited lung colonization in mice. The CD44 dimer-disrupting substitutions decreased downstream PAK2 activation without affecting the interaction between CD44 and PAK2, suggesting that PAK2 activation in tumor cell clusters is CD44 trans-dimer-dependent. These results shed critical light on the biochemical mechanisms of CD44-mediated tumor cell cluster formation and may help inform the development of therapeutic strategies to prevent tumor cluster formation and block cluster-mediated metastases.
Collapse
Affiliation(s)
- Madoka Kawaguchi
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 6068501, Japan
| | - Nurmaa Dashzeveg
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yue Cao
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843
| | - Yuzhi Jia
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky 40536.
| | - Yang Shen
- Department of Electrical and Computer Engineering, TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas 77843.
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
18
|
White EJ, Gyulay G, Lhoták Š, Szewczyk MM, Chong T, Fuller MT, Dadoo O, Fox-Robichaud AE, Austin RC, Trigatti BL, Igdoura SA. Sialidase down-regulation reduces non-HDL cholesterol, inhibits leukocyte transmigration, and attenuates atherosclerosis in ApoE knockout mice. J Biol Chem 2018; 293:14689-14706. [PMID: 30097518 DOI: 10.1074/jbc.ra118.004589] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Indexed: 01/01/2023] Open
Abstract
Atherosclerosis is a complex disease that involves alterations in lipoprotein metabolism and inflammation. Protein and lipid glycosylation events, such as sialylation, contribute to the development of atherosclerosis and are regulated by specific glycosidases, including sialidases. To evaluate the effect of the sialidase neuraminidase 1 (NEU1) on atherogenesis, here we generated apolipoprotein E (ApoE)-deficient mice that express hypomorphic levels of NEU1 (Neu1hypoApoe-/-). We found that the hypomorphic NEU1 expression in male Apoe-/- mice reduces serum levels of very-low-density lipoprotein (VLDL) and LDL cholesterol, diminishes infiltration of inflammatory cells into lesions, and decreases aortic sinus atherosclerosis. Transplantation of Apoe-/- bone marrow (BM) into Neu1hypoApoe-/- mice significantly increased atherosclerotic lesion development and had no effect on serum lipoprotein levels. Moreover, Neu1hypoApoe-/- mice exhibited a reduction in circulating monocyte and neutrophil levels and had reduced hyaluronic acid and P-selectin adhesion capability on monocytes/neutrophils and T cells. Consistent with these findings, administration of a sialidase inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, had a significant anti-atherogenic effect in the Apoe-/- mice. In summary, the reduction in NEU1 expression or function decreases atherosclerosis in mice via its significant effects on lipid metabolism and inflammatory processes. We conclude that NEU1 may represent a promising target for managing atherosclerosis.
Collapse
Affiliation(s)
| | | | - Šárka Lhoták
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | | | | | - Mark T Fuller
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Omid Dadoo
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Alison E Fox-Robichaud
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Richard C Austin
- the Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, Canada.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Bernardo L Trigatti
- Biochemistry and Biomedical Sciences.,Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 and
| | - Suleiman A Igdoura
- From the Departments of Biology, .,Pathology and Molecular Medicine, and
| |
Collapse
|
19
|
Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun 2018; 9:2436. [PMID: 29934525 PMCID: PMC6015004 DOI: 10.1038/s41467-018-04846-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells in secondary lymphoid organs, the major sites for HIV-1 infection of CD4+ T cells. Although FRCs regulate T cell survival, proliferation, and migration, whether they play any role in HIV-1 spread has not been studied. Here, we show that FRCs enhance HIV-1 spread via trans-infection in which FRCs capture HIV-1 and facilitate infection of T cells that come into contact with FRCs. FRCs mediate trans-infection in both two- and three-dimensional culture systems and in a manner dependent on the virus producer cells. This producer cell dependence, which was also observed for virus spread in secondary lymphoid tissues ex vivo, is accounted for by CD44 incorporated into virus particles and hyaluronan bound to such CD44 molecules. This virus-associated hyaluronan interacts with CD44 expressed on FRCs, thereby promoting virus capture by FRCs. Overall, our results reveal a novel role for FRCs in promoting HIV-1 spread. Fibroblastic reticular cells (FRCs) are important regulators of T cell survival, proliferation, and migration in secondary lymphoid organs, but their role in HIV infection isn’t studied. Here, Murakami et al. show that FRCs enhance HIV spread via CD44- and hyaluronan-mediated trans-infection.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiwon Kim
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Li
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Glenn Edward Green
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
21
|
Hou H, Ge C, Sun H, Li H, Li J, Tian H. Tunicamycin inhibits cell proliferation and migration in hepatocellular carcinoma through suppression of CD44s and the ERK1/2 pathway. Cancer Sci 2018; 109:1088-1100. [PMID: 29377347 PMCID: PMC5891198 DOI: 10.1111/cas.13518] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Tunicamycin (TM) is an N‐linked glycosylation (NLG) inhibitor with strong antitumor activity, the exact underlying molecular mechanism of which remains to be elucidated. In our previous studies, we found that TM reversed drug resistance and improved the efficacy of combination treatments for hepatocellular carcinomas (HCC). Here, we investigated the effects of TM on HCC cell proliferation and migration as well as the mechanism of those effects. Our results showed that TM inhibited cell proliferation and migration as well as induced apoptosis of hepatocellular carcinoma cells. TM inhibited proliferation of HCC cells by inducing cell apoptosis and cell cycle arrest at the G2/M phase. Meanwhile, TM inhibited migration of HCC cells by suppressing CD44s‐mediated epithelial‐mesenchymal transition (EMT). TM inhibited migration and invasion of HCC cells by decreasing CD44 expression and altering its glycosylation. In addition, CD44s is involved in promoting EMT and is associated with a poor prognosis in HCC patients. Overexpression of CD44s promoted tumor migration and activated phosphorylation of ERK1/2 in HCC cells, whereas TM inhibited CD44s overexpression‐associated cell migration. The ability of TM to inhibit cell migration and invasion was enhanced or reversed in CD44s knockdown cells and cells overexpressing CD44s, respectively. The MEK/ERK inhibitor U0126 and TM inhibited hyaluronic acid‐induced cell migration in HCC cells. Furthermore, TM inhibited exogenous transforming growth factor beta (TGF‐β)‐mediated EMT by an ERK1/2‐dependent mechanism and restored the TGF‐β‐mediated loss of E‐cadherin. In summary, our study provides evidence that TM inhibits proliferation and migration of HCC cells through inhibition of CD44s and the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Helei Hou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hefen Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Karakocak BB, Liang J, Biswas P, Ravi N. Hyaluronate coating enhances the delivery and biocompatibility of gold nanoparticles. Carbohydr Polym 2018; 186:243-251. [PMID: 29455984 DOI: 10.1016/j.carbpol.2018.01.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 01/06/2023]
Abstract
For targeted delivery with nanoparticles (NPs) as drug carriers, it is imperative that the NPs are internalized into the targeted cell. Surface properties of NPs influence their interactions with cells. We examined the responses of retinal pigment epithelial cells, NIH 3T3 fibroblast cells, and Chinese hamster ovary cells to gold nanoparticles (Au NPs) in their nascent form as well as coated with end-thiolated hyaluronate (HS-HA). The grafting density of HS-HA on Au NPs was calculated based on total organic carbon measurements and thermal gravimetric analysis. We imaged the intracellular NPs by 3D confocal microscopy. We quantified viability and generation of reactive oxygen species (ROS) of the cells to Au NPs and monitored cell-surface attachment via electrical cell-substrate impedance sensing. The results confirmed that receptors on cell surfaces, for HA, are critical in internalizing HS-HA-Au NPs, and HA may mitigate ROS pathways known to lead to cell death. The 50- and 100-nm HS-HA-Au NPs were able to enter the cells; however, their nascent forms could not. This study shows that the delivery of larger Au NPs is enhanced with HS-HA coating and illustrates the potential of HA-coated NPs as a drug delivery agent for inflamed, proliferating, and cancer cells that express CD44 receptors.
Collapse
Affiliation(s)
- Bedia Begum Karakocak
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Jue Liang
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Pratim Biswas
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Nathan Ravi
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, MO 63130, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Veterans Affairs Medical Center, St. Louis, MO 63106, USA.
| |
Collapse
|
23
|
Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Sasaki N, Itakura Y, Toyoda M. Sialylation regulates myofibroblast differentiation of human skin fibroblasts. Stem Cell Res Ther 2017; 8:81. [PMID: 28420408 PMCID: PMC5395757 DOI: 10.1186/s13287-017-0534-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/26/2017] [Accepted: 03/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. Methods The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. Results A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast differentiation in LP fibroblasts was restored by a sialidase inhibitor. Conclusions Desialylation of CD44 with increased sialidase during the process to senescence reduced the localization of CD44 in lipid rafts after TGF-β1 stimulation, leading to the inhibition of myofibroblast differentiation. Thus, regulation of sialylation may be an attractive strategy for the prevention and regenerative therapy of age-related skin diseases, cosmetic skin alterations, and chronic wounds caused by delayed healing in elderly people. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0534-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Sakaecho 35-2, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
25
|
Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X. Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 2017; 5:752-761. [DOI: 10.1039/c6bm00933f] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip are able to effectively capture cancer cells.
Collapse
Affiliation(s)
- Gangwei Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Yulong Tan
- Department of Thoracic Surgery
- Huashan Hospital
- Fudan University
- Shanghai 200040
- P. R. China
| | - Tiegang Xu
- State Key Laboratory of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- People's Republic of China
| | - Di Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mengyuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiaofeng Chen
- Department of Thoracic Surgery
- Huashan Hospital
- Fudan University
- Shanghai 200040
- P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiaoyue Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
26
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1560] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
27
|
Lawrance W, Banerji S, Day AJ, Bhattacharjee S, Jackson DG. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization. J Biol Chem 2016; 291:8014-30. [PMID: 26823460 PMCID: PMC4825007 DOI: 10.1074/jbc.m115.708305] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo.
Collapse
Affiliation(s)
- William Lawrance
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Suneale Banerji
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Anthony J Day
- the Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Shaumick Bhattacharjee
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - David G Jackson
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| |
Collapse
|
28
|
Roles of Proteoglycans and Glycosaminoglycans in Wound Healing and Fibrosis. Int J Cell Biol 2015; 2015:834893. [PMID: 26448760 PMCID: PMC4581578 DOI: 10.1155/2015/834893] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
A wound is a type of injury that damages living tissues. In this review, we will be referring mainly to healing responses in the organs including skin and the lungs. Fibrosis is a process of dysregulated extracellular matrix (ECM) production that leads to a dense and functionally abnormal connective tissue compartment (dermis). In tissues such as the skin, the repair of the dermis after wounding requires not only the fibroblasts that produce the ECM molecules, but also the overlying epithelial layer (keratinocytes), the endothelial cells, and smooth muscle cells of the blood vessel and white blood cells such as neutrophils and macrophages, which together orchestrate the cytokine-mediated signaling and paracrine interactions that are required to regulate the proper extent and timing of the repair process. This review will focus on the importance of extracellular molecules in the microenvironment, primarily the proteoglycans and glycosaminoglycan hyaluronan, and their roles in wound healing. First, we will briefly summarize the physiological, cellular, and biochemical elements of wound healing, including the importance of cytokine cross-talk between cell types. Second, we will discuss the role of proteoglycans and hyaluronan in regulating these processes. Finally, approaches that utilize these concepts as potential therapies for fibrosis are discussed.
Collapse
|
29
|
Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery. Int J Cell Biol 2015; 2015:537560. [PMID: 26448753 PMCID: PMC4581573 DOI: 10.1155/2015/537560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.
Collapse
|
30
|
Abstract
Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.
Collapse
Affiliation(s)
- Salomé S Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
31
|
Murai T. Lipid Raft-Mediated Regulation of Hyaluronan-CD44 Interactions in Inflammation and Cancer. Front Immunol 2015; 6:420. [PMID: 26347743 PMCID: PMC4542320 DOI: 10.3389/fimmu.2015.00420] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/01/2015] [Indexed: 01/19/2023] Open
Abstract
Hyaluronan is a major component of the extracellular matrix and plays pivotal roles in inflammation and cancer. Hyaluronan oligomers are frequently found in these pathological conditions, in which they exert their effects via association with the transmembrane receptor CD44. Lipid rafts are cholesterol- and glycosphingolipid-enriched membrane microdomains that may regulate membrane receptors while serving as platforms for transmembrane signaling at the cell surface. This article focuses on the recent discovery that lipid rafts regulate the interaction between CD44 and hyaluronan, which depends largely on hyaluronan's size. Lipid rafts regulate CD44's ability to bind hyaluronan in T cells, control the rolling adhesion of lymphocytes on vascular endothelial cells, and regulate hyaluronan- and CD44-mediated cancer cell migration. The implications of these findings for preventing inflammatory disorders and cancer are also discussed.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University , Suita , Japan
| |
Collapse
|
32
|
Guvench O. Revealing the Mechanisms of Protein Disorder and N-Glycosylation in CD44-Hyaluronan Binding Using Molecular Simulation. Front Immunol 2015; 6:305. [PMID: 26136744 PMCID: PMC4468915 DOI: 10.3389/fimmu.2015.00305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
The extracellular N-terminal hyaluronan binding domain (HABD) of CD44 is a small globular domain that confers hyaluronan (HA) binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA-binding site from a low affinity to a high affinity state; in the partially disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy , Portland, ME , USA
| |
Collapse
|
33
|
Monslow J, Govindaraju P, Puré E. Hyaluronan - a functional and structural sweet spot in the tissue microenvironment. Front Immunol 2015; 6:231. [PMID: 26029216 PMCID: PMC4432798 DOI: 10.3389/fimmu.2015.00231] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022] Open
Abstract
Transition from homeostatic to reactive matrix remodeling is a fundamental adaptive tissue response to injury, inflammatory disease, fibrosis, and cancer. Alterations in architecture, physical properties, and matrix composition result in changes in biomechanical and biochemical cellular signaling. The dynamics of pericellular and extracellular matrices, including matrix protein, proteoglycan, and glycosaminoglycan modification are continually emerging as essential regulatory mechanisms underlying cellular and tissue function. Nevertheless, the impact of matrix organization on inflammation and immunity in particular and the consequent effects on tissue healing and disease outcome are arguably under-studied aspects of adaptive stress responses. Herein, we review how the predominant glycosaminoglycan hyaluronan (HA) contributes to the structure and function of the tissue microenvironment. Specifically, we examine the evidence of HA degradation and the generation of biologically active smaller HA fragments in pathological settings in vivo. We discuss how HA fragments versus nascent HA via alternate receptor-mediated signaling influence inflammatory cell recruitment and differentiation, resident cell activation, as well as tumor growth, survival, and metastasis. Finally, we discuss how HA fragmentation impacts restoration of normal tissue function and pathological outcomes in disease.
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Priya Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Orian-Rousseau V, Sleeman J. CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res 2015; 123:231-54. [PMID: 25081532 DOI: 10.1016/b978-0-12-800092-2.00009-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reception and integration of the plethora of signals a cell receives from its microenvironment is decisive in determining cell behavior. Perturbation of extracellular cues, or an inappropriate response to or integration of these signals lies at the root of many diseases such as cancer. The transmembrane protein CD44 contributes to the reception of a broad variety of microenvironmental components, including extracellular matrix constituents such as hyaluronic acid, as well as growth factors and cytokines. In this chapter, we review the range of extracellular cues that are recognized by CD44, and show how CD44 serves to integrate this information at several levels through the mechanisms by which it contributes to transduction of these various microenvironmental signals.
Collapse
Affiliation(s)
| | - Jonathan Sleeman
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
35
|
Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res 2015; 123:277-317. [PMID: 25081534 DOI: 10.1016/b978-0-12-800092-2.00011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
36
|
Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 2015; 6:150. [PMID: 25926830 PMCID: PMC4396519 DOI: 10.3389/fimmu.2015.00150] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 01/04/2023] Open
Abstract
Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.
Collapse
Affiliation(s)
- Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Yifei Dong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Kelly L Brown
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
37
|
Ramakrishna S, Suresh B, Baek KH. Biological functions of hyaluronan and cytokine-inducible deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2014; 1855:83-91. [PMID: 25481051 DOI: 10.1016/j.bbcan.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/12/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
The modification of proteins through post-translation and degradation by the ubiquitin-proteasome system plays a pivotal role in a broad array of biological processes. Reversal of this process by deubiquitination is a central step in the maintenance and regulation of cellular homeostasis. It now appears that the regulation of ubiquitin pathways by deubiquitinating enzymes (DUBs) could be used as targets for anticancer therapy. Recent success in inducing apoptosis in cancerous cells by USP17, a cytokine-inducible DUB encoding two hyaluronan binding motifs (HABMs) showing direct interaction with hyaluronan (HA), could prove a promising step in the development of DUBs containing HABMs as agents in anticancer therapeutics. In this review, we summarize the importance of hyaluronan (HA) in cancer, the role played by DUBs in apoptosis, and a possible relationship between DUBs and HA in cancerous cells, suggesting new strategies for applying DUB enzymes as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Bundang CHA Hospital, Gyeonggi-Do 463-400, Republic of Korea.
| |
Collapse
|
38
|
Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins 2014; 82:3079-89. [PMID: 25116630 DOI: 10.1002/prot.24668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 01/29/2023]
Abstract
Specific sugar residues and their linkages form the basis of molecular recognition for interactions of glycoproteins with other biomolecules. Seemingly small changes, like the addition of a single monosaccharide in the covalently attached glycan component of glycoproteins, can greatly affect these interactions. For instance, the sialic acid capping of glycans affects protein-ligand binding involved in cell-cell and cell-matrix interactions. CD44 is a single-pass transmembrane glycoprotein whose binding with its carbohydrate ligand hyaluronan (HA), an extracellular matrix component, mediates processes such as leukocyte homing, cell adhesion, and tumor metastasis. This binding is highly regulated by glycosylation of the N-terminal extracellular hyaluronan-binding domain (HABD); specifically, sialic acid capped N-glycans of HABD inhibit ligand binding. However, the molecular mechanism behind this sialic acid mediated regulation has remained unknown. Two of the five N-glycosyation sites of HABD have been previously identified as having the greatest inhibitory effect on HA binding, but only if the glycans contain terminal sialic acid residues. These two sites, Asn25 and Asn120, were chosen for in silico glycosylation in this study. Here, from extensive standard molecular dynamics simulations and biased simulations, we propose a molecular mechanism for this behavior based on spontaneously-formed charge-paired hydrogen bonding interactions between the negatively-charged sialic acid residues and positively-charged Arg sidechains known to be critically important for binding to HA, which itself is negatively charged. Such intramolecular hydrogen bonds would preclude associations critical to hyaluronan binding. This observation suggests how CD44 and related glycoprotein binding is regulated by sialylation as cellular environments fluctuate.
Collapse
Affiliation(s)
- Christina E Faller
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, ortland, Maine, 04103
| | | |
Collapse
|
39
|
Pandey MS, Weigel PH. A hyaluronan receptor for endocytosis (HARE) link domain N-glycan is required for extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) signaling in response to the uptake of hyaluronan but not heparin, dermatan sulfate, or acetylated low density lipoprotein (LDL). J Biol Chem 2014; 289:21807-17. [PMID: 24942734 DOI: 10.1074/jbc.m114.565846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn(2280)), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991-1001). Also, NF-κB-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756-1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-κB and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-κB activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-κB-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-κB by endogenous degradation of IκB-α was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-κB-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake.
Collapse
Affiliation(s)
- Madhu S Pandey
- From the Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center and The Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73104
| | - Paul H Weigel
- From the Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center and The Oklahoma Center for Medical Glycobiology, Oklahoma City, Oklahoma 73104
| |
Collapse
|
40
|
CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand. Biophys J 2014; 105:1217-26. [PMID: 24010665 DOI: 10.1016/j.bpj.2013.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 12/19/2022] Open
Abstract
The extracellular carbohydrate-binding domain of the Type I transmembrane receptor CD44 is known to undergo affinity switching, where change in conformation leads to enhanced binding of its carbohydrate ligand hyaluronan. Separate x-ray crystallographic and NMR experiments have led to competing explanations, with the former supporting minor conformational changes at the binding site and the latter a major order-to-disorder unfolding transition distant from the binding site. Here, all-atom explicit-solvent molecular dynamics studies employing adaptive biasing force sampling revealed a substantial favorable free-energy change associated with contact formation between the Arg(41) side chain and hyaluronan at the binding site, independent of whether the distant site was ordered or disordered. Analogous computational experiments on Arg(41)Ala mutants showed loss of this favorable free-energy change, consistent with existing experimental data. More provocatively, the simulation data revealed the molecular mechanism by which the order-to-disorder transition enhances hyaluronan binding: in the disordered state, a number of basic residues gain sufficient conformational freedom-lacking in the ordered state-to spontaneously form side-chain contacts with hyaluronan. Mutation of these residues to Ala had been known to decrease binding affinity, but there had previously been no structural explanation, given their lack of proximity to the carbohydrate-binding site in existing structures of the complex.
Collapse
|
41
|
Petrey AC, de la Motte CA. Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5:101. [PMID: 24653726 PMCID: PMC3949149 DOI: 10.3389/fimmu.2014.00101] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 02/25/2014] [Indexed: 12/30/2022] Open
Abstract
Hyaluronan (HA), a major component of the extracellular matrix (ECM), plays a key role in regulating inflammation. Inflammation is associated with accumulation and turnover of HA polymers by multiple cell types. Increasingly through the years, HA has become recognized as an active participant in inflammatory, angiogenic, fibrotic, and cancer promoting processes. HA and its binding proteins regulate the expression of inflammatory genes, the recruitment of inflammatory cells, the release of inflammatory cytokines, and can attenuate the course of inflammation, providing protection against tissue damage. A growing body of evidence suggests the cell responses are HA molecular weight dependent. HA fragments generated by multiple mechanisms throughout the course of inflammatory pathologies, elicit cellular responses distinct from intact HA. This review focuses on the role of HA in the promotion and resolution of inflammation.
Collapse
Affiliation(s)
- Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, OH , USA
| |
Collapse
|
42
|
Hanke M, Hoffmann I, Christophis C, Schubert M, Hoang VT, Zepeda-Moreno A, Baran N, Eckstein V, Wuchter P, Rosenhahn A, Ho AD. Differences between healthy hematopoietic progenitors and leukemia cells with respect to CD44 mediated rolling versus adherence behavior on hyaluronic acid coated surfaces. Biomaterials 2014; 35:1411-9. [DOI: 10.1016/j.biomaterials.2013.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/02/2013] [Indexed: 01/13/2023]
|
43
|
Almalik A, Donno R, Cadman CJ, Cellesi F, Day PJ, Tirelli N. Hyaluronic acid-coated chitosan nanoparticles: Molecular weight-dependent effects on morphology and hyaluronic acid presentation. J Control Release 2013; 172:1142-50. [DOI: 10.1016/j.jconrel.2013.09.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
44
|
McDonald B, Jenne CN, Zhuo L, Kimata K, Kubes P. Kupffer cells and activation of endothelial TLR4 coordinate neutrophil adhesion within liver sinusoids during endotoxemia. Am J Physiol Gastrointest Liver Physiol 2013; 305:G797-806. [PMID: 24113769 DOI: 10.1152/ajpgi.00058.2013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A key pathological feature of the systemic inflammatory response of sepsis/endotoxemia is the accumulation of neutrophils within the microvasculature of organs such as the liver, where they cause tissue damage and vascular dysfunction. There is emerging evidence that the vascular endothelium is critical to the orchestration of inflammatory responses to blood-borne microbes and microbial products in sepsis/endotoxemia. In this study, we aimed to understand the role of endothelium, and specifically endothelial TLR4 activation, in the regulation of neutrophil recruitment to the liver during endotoxemia. Intravital microscopy of bone marrow chimeric mice revealed that TLR4 expression by non-bone marrow-derived cells was required for neutrophil recruitment to the liver during endotoxemia. Furthermore, LPS-induced neutrophil adhesion in liver sinusoids was equivalent between wild-type mice and transgenic mice that express TLR4 only on endothelium (tlr4(-/-)Tie2(tlr4)), revealing that activation of endothelial TLR4 alone was sufficient to initiate neutrophil adhesion. Neutrophil arrest within sinusoids of endotoxemic mice requires adhesive interactions between neutrophil CD44 and endothelial hyaluronan. Intravital immunofluorescence imaging demonstrated that stimulation of endothelial TLR4 alone was sufficient to induce the deposition of serum-derived hyaluronan-associated protein (SHAP) within sinusoids, which was required for CD44/hyaluronan-dependent neutrophil adhesion. In addition to endothelial TLR4 activation, Kupffer cells contribute to neutrophil recruitment via a distinct CD44/HA/SHAP-independent mechanism. This study sheds new light on the control of innate immune activation within the liver vasculature during endotoxemia, revealing a key role for endothelial cells as sentinels in the detection of intravascular infections and coordination of neutrophil recruitment to the liver.
Collapse
Affiliation(s)
- Braedon McDonald
- Director, Snyder Institute for Chronic Disease, Dept. of Physiology and Pharmacology, Univ. of Calgary, Alberta, Canada, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| | | | | | | | | |
Collapse
|
45
|
Almalik A, Day PJ, Tirelli N. HA-Coated Chitosan Nanoparticles for CD44-Mediated Nucleic Acid Delivery. Macromol Biosci 2013; 13:1671-80. [DOI: 10.1002/mabi.201300302] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/19/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Abdulaziz Almalik
- School of Pharmacy and Pharmaceutical Sciences; University of Manchester; Manchester M13 9PT UK
| | - Philip J. Day
- Institute of Population Health and Manchester Institute of Biotechnology; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair and School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
46
|
Kobayashi K, Ding G, Nishikawa SI, Kataoka H. Role of Etv2-positive cells in the remodeling morphogenesis during vascular development. Genes Cells 2013; 18:704-21. [PMID: 23795570 DOI: 10.1111/gtc.12070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023]
Abstract
Etv2 is a critical determinant for the commitment of endothelial (EC) and hematopoietic (HPC) cells from mesoderm. Etv2 is assumed to be transiently required for EC commitment but dispensable after most ECs differentiate around E9.5. To confirm the time window of Etv2 requirement, Etv2 was ablated at different time points using ROSA26CreER mice. Unexpectedly, Etv2 ablation at E9.5 caused vascular remodeling defects in cranial and yolk sac vasculature. Immunostaining showed that Etv2+/VE-cadherin (VECAD)- cells were present around forming vasculature, mostly co-expressing Flk-1 with a small number of Etv2+/VECAD+ cells, indicating that Etv2+/Flk-1+/VECAD- cells are the major Etv2+ population promoting vascular remodeling around E9.5. Gene expression analysis showed up-regulation of Fgf proteins, Il-6, Glypican-3 and matrix metalloproteases in Etv2+/VEDAC- cells over Etv2-/VECAD+ mature ECs. Blockade of those factors caused reduced EC sprouting in ex vivo explant culture from E9.5 embryos, suggesting the functional significance of environmental factors derived from Etv2+ cells. Altogether, we propose that Etv2+/VEDAC- cells around E9.5-E10.5 provide extracellular factors to complete vascular morphogenesis in addition to becoming differentiated ECs incorporated into vessels. This insight for the new role of Ets protein in perivascular Flk-1+/VECAD-/(Etv2+) cells to induce expression of angiogenic factors may provide another strategy to control angiogenesis.
Collapse
Affiliation(s)
- Kumiko Kobayashi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
47
|
Murai T, Sato C, Sato M, Nishiyama H, Suga M, Mio K, Kawashima H. Membrane cholesterol modulates the hyaluronan-binding ability of CD44 in T lymphocytes and controls rolling under shear flow. J Cell Sci 2013; 126:3284-94. [PMID: 23729731 DOI: 10.1242/jcs.120014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The adhesion of circulating lymphocytes to the surface of vascular endothelial cells is important for their recruitment from blood to secondary lymphoid organs and to inflammatory sites. CD44 is a key adhesion molecule for this interaction and its ligand-binding ability is tightly regulated. Here we show that the hyaluronan-binding ability of CD44 in T cells is upregulated by the depletion of membrane cholesterol with methyl-β-cyclodextrin (MβCD), which disintegrates lipid rafts, i.e. cholesterol- and sphingolipid-enriched membrane microdomains. Increasing concentrations of MβCD led to a dose-dependent decrease in cellular cholesterol content and to upregulation of hyaluronan binding. Additionally, a cholesterol-binding agent filipin also increased hyaluronan binding. Cholesterol depletion caused CD44 to be dispersed from cholesterol-enriched membrane microdomains. Cholesterol depletion also increased the number of cells undergoing rolling adhesion under physiological flow conditions. Our results suggest that the ligand-binding ability of CD44 is governed by its cholesterol-dependent allocation to membrane microdomains at the cell surface. These findings provide novel insight into the regulation of T cell adhesion under blood flow.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Hyaluronan fragments induce IFNβ via a novel TLR4-TRIF-TBK1-IRF3-dependent pathway. JOURNAL OF INFLAMMATION-LONDON 2013; 10:23. [PMID: 23721397 PMCID: PMC3682892 DOI: 10.1186/1476-9255-10-23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 05/23/2013] [Indexed: 12/16/2022]
Abstract
Background The extracellular matrix plays a critical role in insuring tissue integrity and water homeostasis. However, breakdown products of the extracellular matrix have emerged as endogenous danger signals, designed to rapidly activate the immune system against a potential pathogen breach. Type I interferons play a critical role in the immune response against viral infections. In the lungs, hylauronan (HA) exists as a high molecular weight, biologically inert extracellular matrix component that is critical for maintaining lung function. When lung tissue is injured, HA is broken down into lower molecular weight fragments that alert the immune system to the breach in tissue integrity by activating innate immune responses. HA fragments are known to induce inflammatory gene expression via TLR-MyD88-dependent pathways. Methods Primary peritoneal macrophages from C57BL/6 wild type, TLR4 null, TLR3 null, MyD88 null, and TRIF null mice as well as alveolar and peritoneal macrophage cell lines were stimulated with HA fragments and cytokine production was assessed by rt-PCR and ELISA. Western blot analysis for IRF3 was preformed on cell lysates from macrophages stimulate with HA fragments Results We demonstrate for the first time that IFNβ is induced in murine macrophages by HA fragments. We also show that HA fragments induce IFNβ using a novel pathway independent of MyD88 but dependent on TLR4 via TRIF and IRF-3. Conclusions Overall our findings reveal a novel signaling pathway by which hyaluronan can modulate inflammation and demonstrate the ability of hyaluronan fragments to induce the expression of type I interferons in response to tissue injury even in the absence of viral infection. This is independent of the pathway of the TLR2-MyD88 used by these matrix fragments to induce inflammatory chemokines. Thus, LMW HA may be modifying the inflammatory milieu simultaneously via several pathways.
Collapse
|
49
|
Weber GF. Gene therapy--why can it fail? Med Hypotheses 2013; 80:613-6. [PMID: 23484673 DOI: 10.1016/j.mehy.2013.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/10/2013] [Accepted: 01/26/2013] [Indexed: 11/16/2022]
Abstract
The success of reductionism in medicine has enabled the experimental expression of individual genes in complex living systems. The promise of gene therapy, permanent reversal or amelioration of disease symptoms without dependence on a long-lasting intake of drugs, has come within reach because of these conceptual and technical advances in molecular biology. However, there have been setbacks posing serious questions for the medical community. The incidents came at a time when technical advances in the manipulation of DNA had led to wide-spread testing of gene based therapies. In fact, the major limiting factor of this approach had been perceived to be gene delivery rather than toxicity. Here we discuss the hypothesis that knowledge of DNA sequences for relevant genes alone will not be sufficient to allow this promise to come to fruition, unless additional factors are recognized and addressed. The physiologic consequences of gene expression depend on gene dosage, transcriptional regulation by promoters, posttranscriptional editing, and interdependence among gene products, all of which vary among cells. The success of gene therapy will depend, in part, on insight into the factors summarized here, very much like successful drug therapy has depended on an understanding of the manifold influences of pharmacokinetics and pharmacodynamics. In principle, these considerations apply to all transfections, gene disruptions, and transgenic approaches and to potential clinical applications derived from them. Gaining insight and control over those factors may allow gene therapy to live up to current expectations.
Collapse
Affiliation(s)
- Georg F Weber
- University of Cincinnati Medical Center, Winkle College of Pharmacy, Cincinnati, OH 45267-0004, USA.
| |
Collapse
|
50
|
Yang C, Cao M, Liu H, He Y, Xu J, Du Y, Liu Y, Wang W, Cui L, Hu J, Gao F. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem 2012; 287:43094-107. [PMID: 23118219 PMCID: PMC3522304 DOI: 10.1074/jbc.m112.349209] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.
Collapse
Affiliation(s)
- Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Jiaotong University School of Medicine, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|