1
|
Cieslak SG, Shahbazi R. Gamma delta T cells and their immunotherapeutic potential in cancer. Biomark Res 2025; 13:51. [PMID: 40148988 PMCID: PMC11951843 DOI: 10.1186/s40364-025-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Gamma-delta (γδ) T cells are a unique subset of T lymphocytes that play diverse roles in immune responses, bridging innate and adaptive immunity. With growing interest in their potential for cancer immunotherapy, a comprehensive and inclusive exploration of γδ T cell families, their development, activation mechanisms, functions, therapeutic implications, and current treatments is essential. This review aims to provide an inclusive and thorough discussion of these topics. Through our discussion, we seek to uncover insights that may harbinger innovative immunotherapeutic strategies. Beginning with an overview of γδ T cell families including Vδ1, Vδ2, and Vδ3, this review highlights their distinct functional properties and contributions to anti-tumor immunity. Despite γδ T cells exhibiting both anti-tumor and pro-tumor activities, our review elucidates strategies to harness the anti-tumor potential of γδ T cells for therapeutic benefit. Moreover, our paper discusses the structural intricacies of the γδ T cell receptor and its significance in tumor recognition. Additionally, this review examines conventional and emerging γδ T cell therapies, encompassing both non-engineered and engineered approaches, with a focus on their efficacy and safety profiles in clinical trials. From multifunctional capabilities to diverse tissue distribution, γδ T cells play a pivotal role in immune regulation and surveillance. By analyzing current research findings, this paper offers insights into the dynamic landscape of γδ T cell-based immunotherapies, underscoring their promise as a potent armamentarium against cancer. Furthermore, by dissecting the complex biology of γδ T cells, we learn valuable information about the anti-cancer contributions of γδ T cells, as well as potential targets for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Stephen G Cieslak
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA
| | - Reza Shahbazi
- Division of Hematology/Oncology, Department of Medicine, Indiana University, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, USA.
- Tumor Microenvironment & Metastasis, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Brown Center for Immunotherapy, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Ran R, Trapecar M, Brubaker DK. Systematic analysis of human colorectal cancer scRNA-seq revealed limited pro-tumoral IL-17 production potential in gamma delta T cells. Neoplasia 2024; 58:101072. [PMID: 39454432 PMCID: PMC11539345 DOI: 10.1016/j.neo.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Gamma delta T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin-17 (IL-17) within the tumor microenvironment of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including poised effector-like T cells, tissue-resident memory T cells, progenitor exhausted-like T cells, and exhausted T cells, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. We proposed anti-tumor γδ T effector cells may arise from tissue-resident progenitor cells based on the trajectory analysis. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ran R, Trapecar M, Brubaker DK. Systematic Analysis of Human Colorectal Cancer scRNA-seq Revealed Limited Pro-tumoral IL-17 Production Potential in Gamma Delta T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604156. [PMID: 39071278 PMCID: PMC11275756 DOI: 10.1101/2024.07.18.604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Gamma delta (γδ) T cells play a crucial role in anti-tumor immunity due to their cytotoxic properties. However, the role and extent of γδ T cells in production of pro-tumorigenic interleukin- 17 (IL-17) within the tumor microenvironment (TME) of colorectal cancer (CRC) remains controversial. In this study, we re-analyzed nine published human CRC whole-tissue single-cell RNA sequencing (scRNA-seq) datasets, identifying 18,483 γδ T cells out of 951,785 total cells, in the neoplastic or adjacent normal tissue of 165 human CRC patients. Our results confirm that tumor-infiltrating γδ T cells exhibit high cytotoxicity-related transcription in both tumor and adjacent normal tissues, but critically, none of the γδ T cell clusters showed IL-17 production potential. We also identified various γδ T cell subsets, including Teff, TRM, Tpex, and Tex, and noted an increased expression of cytotoxic molecules in tumor-infiltrating γδ T cells compared to their normal area counterparts. Our work demonstrates that γδ T cells in CRC primarily function as cytotoxic effector cells rather than IL-17 producers, mitigating the concerns about their potential pro-tumorigenic roles in CRC, highlighting the importance of accurately characterizing these cells for cancer immunotherapy research and the unneglectable cross-species discrepancy between the mouse and human immune system in the study of cancer immunology.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| | - Martin Trapecar
- Department of Medicine, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH
| |
Collapse
|
4
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
5
|
Abstract
Current cancer immunotherapies are primarily predicated on αβ T cells, with a stringent dependence on MHC-mediated presentation of tumour-enriched peptides or unique neoantigens that can limit their efficacy and applicability in various contexts. After two decades of preclinical research and preliminary clinical studies involving very small numbers of patients, γδ T cells are now being explored as a viable and promising approach for cancer immunotherapy. The unique features of γδ T cells, including their tissue tropisms, antitumour activity that is independent of neoantigen burden and conventional MHC-dependent antigen presentation, and combination of typical properties of T cells and natural killer cells, make them very appealing effectors in multiple cancer settings. Herein, we review the main functions of γδ T cells in antitumour immunity, focusing on human γδ T cell subsets, with a particular emphasis on the differences between Vδ1+ and Vδ2+ γδ T cells, to discuss their prognostic value in patients with cancer and the key therapeutic strategies that are being developed in an attempt to improve the outcomes of these patients.
Collapse
|
6
|
Rampoldi F, Donato E, Ullrich L, Deseke M, Janssen A, Demera A, Sandrock I, Bubke A, Juergens AL, Swallow M, Sparwasser T, Falk C, Tan L, Trumpp A, Prinz I. γδ T cells license immature B cells to produce a broad range of polyreactive antibodies. Cell Rep 2022; 39:110854. [PMID: 35613579 DOI: 10.1016/j.celrep.2022.110854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022] Open
Abstract
Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anna-Lena Juergens
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
7
|
Charmetant X, Bachelet T, Déchanet-Merville J, Walzer T, Thaunat O. Innate (and Innate-like) Lymphoid Cells: Emerging Immune Subsets With Multiple Roles Along Transplant Life. Transplantation 2021; 105:e322-e336. [PMID: 33859152 DOI: 10.1097/tp.0000000000003782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transplant immunology is currently largely focused on conventional adaptive immunity, particularly T and B lymphocytes, which have long been considered as the only cells capable of allorecognition. In this vision, except for the initial phase of ischemia/reperfusion, during which the role of innate immune effectors is well established, the latter are largely considered as "passive" players, recruited secondarily to amplify graft destruction processes during rejection. Challenging this prevalent dogma, the recent progresses in basic immunology have unraveled the complexity of the innate immune system and identified different subsets of innate (and innate-like) lymphoid cells. As most of these cells are tissue-resident, they are overrepresented among passenger leukocytes. Beyond their role in ischemia/reperfusion, some of these subsets have been shown to be capable of allorecognition and/or of regulating alloreactive adaptive responses, suggesting that these emerging immune players are actively involved in most of the life phases of the grafts and their recipients. Drawing upon the inventory of the literature, this review synthesizes the current state of knowledge of the role of the different innate (and innate-like) lymphoid cell subsets during ischemia/reperfusion, allorecognition, and graft rejection. How these subsets also contribute to graft tolerance and the protection of chronically immunosuppressed patients against infectious and cancerous complications is also examined.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Thomas Bachelet
- Clinique Saint-Augustin-CTMR, ELSAN, Bordeaux, France
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Thierry Walzer
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
8
|
Biradar S, Lotze MT, Mailliard RB. The Unknown Unknowns: Recovering Gamma-Delta T Cells for Control of Human Immunodeficiency Virus (HIV). Viruses 2020; 12:v12121455. [PMID: 33348583 PMCID: PMC7766279 DOI: 10.3390/v12121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances in γδ T cell biology have focused on the unique attributes of these cells and their role in regulating innate and adaptive immunity, promoting tissue homeostasis, and providing resistance to various disorders. Numerous bacterial and viral pathogens, including human immunodeficiency virus-1 (HIV), greatly alter the composition of γδ T cells in vivo. Despite the effectiveness of antiretroviral therapy (ART) in controlling HIV and restoring health in those affected, γδ T cells are dramatically impacted during HIV infection and fail to reconstitute to normal levels in HIV-infected individuals during ART for reasons that are not clearly understood. Importantly, their role in controlling HIV infection, and the implications of their failure to rebound during ART are also largely unknown and understudied. Here, we review important aspects of human γδ T cell biology, the effector and immunomodulatory properties of these cells, their prevalence and function in HIV, and their immunotherapeutic potential.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Michael T. Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Correspondence:
| |
Collapse
|
9
|
Reduction in the percentage of circulating variable delta 2 T cells in systemic lupus erythematosus. Clin Immunol 2020; 220:108577. [PMID: 32858205 DOI: 10.1016/j.clim.2020.108577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/24/2022]
|
10
|
Rampoldi F, Ullrich L, Prinz I. Revisiting the Interaction of γδ T-Cells and B-Cells. Cells 2020; 9:E743. [PMID: 32197382 PMCID: PMC7140609 DOI: 10.3390/cells9030743] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Right after the discovery of γδ T-cells in 1984, people started asking how γδ T-cells interact with other immune cells such as B-cells. Early reports showed that γδ T-cells are able to help B-cells to produce antibodies and to sustain the production of germinal centers. Interestingly, the presence of γδ T-cells seems to promote the generation of antibodies against "self" and less against challenging pathogens. More recently, these hypotheses were supported using γδ T-cell-deficient mouse strains, in different mouse models of systemic lupus erythematous, and after induction of epithelial cell damage. Together, these studies suggest that the link between γδ T-cells and the production of autoantibodies may be more relevant for the development of autoimmune diseases than generally acknowledged and thus targeting γδ T-cells could represent a new therapeutic strategy. In this review, we focus on what is known about the communication between γδ T-cells and B-cells, and we discuss the importance of this interaction in the context of autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (L.U.); (I.P.)
| | | | | |
Collapse
|
11
|
Beucke N, Wesch D, Oberg HH, Peters C, Bochem J, Weide B, Garbe C, Pawelec G, Sebens S, Röcken C, Hashimoto H, Löffler MW, Nocerino P, Kordasti S, Kabelitz D, Schilbach K, Wistuba-Hamprecht K. Pitfalls in the characterization of circulating and tissue-resident human γδ T cells. J Leukoc Biol 2020; 107:1097-1105. [PMID: 31967358 DOI: 10.1002/jlb.5ma1219-296r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 01/11/2023] Open
Abstract
Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles.
Collapse
Affiliation(s)
- Nicola Beucke
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Jonas Bochem
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Claus Garbe
- Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hisayoshi Hashimoto
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Paola Nocerino
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Shahram Kordasti
- Systems Cancer Immunology, Comprehensive Cancer Centre, King's College London, London, UK
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Karin Schilbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tübingen, Tübingen, Germany
| | | |
Collapse
|
12
|
Silva-Santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019; 19:392-404. [PMID: 31209264 PMCID: PMC7614706 DOI: 10.1038/s41568-019-0153-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The potential of cancer immunotherapy relies on the mobilization of immune cells capable of producing antitumour cytokines and effectively killing tumour cells. These are major attributes of γδ T cells, a lymphoid lineage that is often underestimated despite its major role in tumour immune surveillance, which has been established in a variety of preclinical cancer models. This situation notwithstanding, in particular instances the tumour microenvironment seemingly mobilizes γδ T cells with immunosuppressive or tumour-promoting functions, thus emphasizing the importance of regulating γδ T cell responses in order to realize their translation into effective cancer immunotherapies. In this Review we outline both seminal work and recent advances in our understanding of how γδ T cells participate in tumour immunity and how their functions are regulated in experimental models of cancer. We also discuss the current strategies aimed at maximizing the therapeutic potential of human γδ T cells, on the eve of their exploration in cancer clinical trials that may position them as key players in cancer immunotherapy.
Collapse
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow and Cancer Research UK Beatson Institute, Glasgow, UK.
| |
Collapse
|
13
|
Kotov JA, Jenkins MK. Cutting Edge: T Cell-Dependent Plasmablasts Form in the Absence of Single Differentiated CD4 + T Cell Subsets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:401-405. [PMID: 30552165 PMCID: PMC6324993 DOI: 10.4049/jimmunol.1801349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/17/2018] [Indexed: 12/23/2022]
Abstract
The T follicular helper (Tfh) cell subset of CD4+ Th cells promotes affinity maturation by B cells in germinal centers. The contribution of other Th cell subsets to B cell responses has not been fully explored in vivo. We addressed this issue by analyzing the T cell-dependent B cell response to the protein Ag PE in mice lacking specific Th cell subsets. As expected, PE-specific germinal center B cell production required Tfh cells. However, Tfh, Th1, or Th17 cell-deficient mice produced as many PE-specific, isotype-switched plasmablasts as wild-type mice. This response depended on Th cell expression of CD154 and Ag presentation by B cells. These results indicate that many Th cell subsets can promote plasmablast formation by providing CD40 signals to naive B cells.
Collapse
Affiliation(s)
- Jessica A Kotov
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
14
|
Park C, Kim TJ. Expansion and Sub-Classification of T Cell-Dependent Antibody Responses to Encompass the Role of Innate-Like T Cells in Antibody Responses. Immune Netw 2018; 18:e34. [PMID: 30402329 PMCID: PMC6215906 DOI: 10.4110/in.2018.18.e34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022] Open
Abstract
In addition to T cell-dependent (TD) Ab responses, T cells can also regulate T cell-independent (TI) B cell responses in the absence of a specific major histocompatibility complex (MHC) class II and antigenic peptide-based interaction between T and B cells. The elucidation of T cells capable of supporting TI Ab responses is important for understanding the cellular mechanism of different types of TI Ab responses. Natural killer T (NKT) cells represent 1 type of helper T cells involved in TI Ab responses and more candidate helper T cells responsible for TI Ab responses may also include γδ T cells and recently reported B-1 helper CD4+ T cells. Marginal zone (MZ) B and B-1 cells, 2 major innate-like B cell subsets considered to function independently of T cells, interact with innate-like T cells. Whereas MZ B and NKT cells interact mutually for a rapid response to blood-borne infection, peritoneal memory phenotype CD49dhighCD4+ T cells support natural Ab secretion by B-1 cells. Here the role of innate-like T cells in the so-called TI Ab response is discussed. To accommodate the involvement of T cells in the TI Ab responses, we suggest an expanded classification of TD Ab responses that incorporate cognate and non-cognate B cell help by innate-like T cells.
Collapse
Affiliation(s)
- Chanho Park
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Tae Jin Kim
- Division of Immunobiology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
15
|
Crawford G, Hayes MD, Seoane RC, Ward S, Dalessandri T, Lai C, Healy E, Kipling D, Proby C, Moyes C, Green K, Best K, Haniffa M, Botto M, Dunn-Walters D, Strid J. Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response. Nat Immunol 2018; 19:859-870. [PMID: 30013146 PMCID: PMC6071860 DOI: 10.1038/s41590-018-0161-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development.
Collapse
MESH Headings
- Animals
- Anthracenes/toxicity
- B-Lymphocytes/physiology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/immunology
- Cell Death
- Cells, Cultured
- Complementarity Determining Regions/genetics
- DNA Damage
- Epithelial Cells/physiology
- Female
- High-Throughput Nucleotide Sequencing
- Immunoglobulin Class Switching
- Immunoglobulin E/genetics
- Immunoglobulin E/metabolism
- Immunologic Surveillance
- Intraepithelial Lymphocytes/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/immunology
- Piperidines/toxicity
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, IgE/metabolism
Collapse
Affiliation(s)
- Greg Crawford
- Department of Medicine, Imperial College London, London, UK
| | | | | | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | | | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Charlotte Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Colin Moyes
- Department of Pathology, Greater Glasgow and Clyde NHS, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katie Best
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and Newcastle Biomedical Research Centre, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and Newcastle Biomedical Research Centre, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marina Botto
- Department of Medicine, Imperial College London, London, UK
| | - Deborah Dunn-Walters
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
16
|
Chen Q, Wen K, Lv A, Liu M, Ni K, Xiang Z, Liu Y, Tu W. Human Vγ9Vδ2-T Cells Synergize CD4 + T Follicular Helper Cells to Produce Influenza Virus-Specific Antibody. Front Immunol 2018; 9:599. [PMID: 29670614 PMCID: PMC5893649 DOI: 10.3389/fimmu.2018.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
Human Vγ9Vδ2-T cells recognize nonpeptidic antigens and exert effector functions against microorganisms and tumors, but little is known about their roles in humoral immune response against influenza virus infection. Herein, in the coculture of autologous human B cells, dendritic cells and/or naïve CD4 T cells, and Vγ9Vδ2-T cells, we demonstrated that Vγ9Vδ2-T cells could facilitate H9N2 influenza virus-specific IgG and IgM productions in a CD4 T cell-dependent manner. Vγ9Vδ2-T cells promoted the differentiation of CXCR5+PD1+CD4+ T follicular helper (Tfh) cells, CD19+IgD−CD38++ plasma cells (PCs), and drove B cell proliferation as well as immunoglobulin class switching. Interestingly, Vγ9Vδ2-T cells acquired Tfh-associated molecules such as CXCR5, PD1, CD40L, and ICOS during influenza virus stimulation, especially in the presence of CD4 T cells. Moreover, Vγ9Vδ2-T cells promoted CD4 T cells to secrete IL-13 and IL-21, and neutralizing IL-13 and IL-21 significantly reduced the number of CD19+IgD−CD38++ PCs. Using humanized mice, we further demonstrated that Vγ9Vδ2-T cells could synergize CD4 T cells to produce influenza virus-specific antibody. Our findings provide a greater scope for Vγ9Vδ2-T cells in adaptive immunity, especially for the Tfh development and humoral immune responses against influenza virus infection.
Collapse
Affiliation(s)
- Qingyun Chen
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Kun Wen
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Aizhen Lv
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ke Ni
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Yinping Liu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
17
|
Zaidi I, Diallo H, Conteh S, Robbins Y, Kolasny J, Orr-Gonzalez S, Carter D, Butler B, Lambert L, Brickley E, Morrison R, Sissoko M, Healy SA, Sim BKL, Doumbo OK, Hoffman SL, Duffy PE. γδ T Cells Are Required for the Induction of Sterile Immunity during Irradiated Sporozoite Vaccinations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3781-3788. [PMID: 29079696 PMCID: PMC5698172 DOI: 10.4049/jimmunol.1700314] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
Abstract
Whole-sporozoite vaccines confer sterilizing immunity to malaria-naive individuals by unknown mechanisms. In the first PfSPZ Vaccine trial ever in a malaria-endemic population, Vδ2 γδ T cells were significantly elevated and Vγ9/Vδ2 transcripts ranked as the most upregulated in vaccinees who were protected from Plasmodium falciparum infection. In a mouse model, absence of γδ T cells during vaccination impaired protective CD8 T cell responses and ablated sterile protection. γδ T cells were not required for circumsporozoite protein-specific Ab responses, and γδ T cell depletion before infectious challenge did not ablate protection. γδ T cells alone were insufficient to induce protection and required the presence of CD8α+ dendritic cells. In the absence of γδ T cells, CD8α+ dendritic cells did not accumulate in the livers of vaccinated mice. Altogether, our results show that γδ T cells were essential for the induction of sterile immunity during whole-organism vaccination.
Collapse
Affiliation(s)
- Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Hama Diallo
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Yvette Robbins
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jacqueline Kolasny
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Dariyen Carter
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Brandi Butler
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Elizabeth Brickley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Mahamadou Sissoko
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | | - Ogobara K Doumbo
- Malaria Research and Training Center, Mali-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali; and
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
18
|
D'Souza L, Gupta SL, Bal V, Rath S, George A. CD73 expression identifies a subset of IgM + antigen-experienced cells with memory attributes that is T cell and CD40 signalling dependent. Immunology 2017; 152:602-612. [PMID: 28746783 DOI: 10.1111/imm.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM+ cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73+ IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory.
Collapse
Affiliation(s)
| | | | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
19
|
Taniguchi T, Md Mannoor K, Nonaka D, Toma H, Li C, Narita M, Vanisaveth V, Kano S, Takahashi M, Watanabe H. A Unique Subset of γδ T Cells Expands and Produces IL-10 in Patients with Naturally Acquired Immunity against Falciparum Malaria. Front Microbiol 2017; 8:1288. [PMID: 28769886 PMCID: PMC5515829 DOI: 10.3389/fmicb.2017.01288] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023] Open
Abstract
Although expansions in γδ T cell populations are known to occur in the peripheral blood of patients infected with Plasmodium falciparum, the role of these cells in people with naturally acquired immunity against P. falciparum who live in malaria-endemic areas is poorly understood. We used a cross-sectional survey to investigate the role of peripheral blood γδ T cells in people living in Lao People's Democratic Republic, a malaria-endemic area. We found that the proportion of non-Vγ9 γδ T cells was higher in non-hospitalized uncomplicated falciparum malaria patients (UMPs) from this region. Notably, we found that the non-Vγ9 γδ T cells in the peripheral blood of UMPs and negative controls from this region had the potential to expand and produce IL-10 and interferon-γ when cultured in the presence of IL-2 and/or crude P. falciparum antigens for 10 days. Furthermore, these cells were associated with plasma interleukin 10 (IL-10), which was elevated in UMPs. This is the first report demonstrating that, in UMPs living in a malaria-endemic area, a γδ T cell subset, the non-Vγ9 γδT cells, expands and produces IL-10. These results contribute to understanding of the mechanisms of naturally acquired immunity against P. falciparum.
Collapse
Affiliation(s)
- Tomoyo Taniguchi
- Department of Parasitology, Graduate School of Medicine, Gunma UniversityMaebashi, Japan
- Center for Medical Education, Graduate School of Medicine, Gunma UniversityMaebashi, Japan
- Immunobiology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the RyukyusNishihara, Japan
| | - Kaiissar Md Mannoor
- Department of Pathology, University of Maryland School of Medicine, BaltimoreMD, United States
| | - Daisuke Nonaka
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the RyukyusNishihara, Japan
| | - Hiromu Toma
- Department of Parasitology and Immunopathoetiology, Graduate School of Medicine, University of the RyukyusNishihara, Japan
| | - Changchun Li
- Department of Health Sciences, Trans-disciplinary Research Organization for Subtropics and Island Studies, University of the RyukyusNishihara, Japan
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata UniversityNiigata, Japan
| | | | - Shigeyuki Kano
- Research Institute, National Center for Global Health and MedicineTokyo, Japan
| | - Masuhiro Takahashi
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata UniversityNiigata, Japan
| | - Hisami Watanabe
- Immunobiology Group, Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the RyukyusNishihara, Japan
- Infectious Diseases Research Center of Niigata University in Myanmar, Institute of Medicine and Dentistry, Niigata UniversityNiigata, Japan
| |
Collapse
|
20
|
Cimini E, Viola D, Cabeza-Cabrerizo M, Romanelli A, Tumino N, Sacchi A, Bordoni V, Casetti R, Turchi F, Martini F, Bore JA, Koundouno FR, Duraffour S, Michel J, Holm T, Zekeng EG, Cowley L, Garcia Dorival I, Doerrbecker J, Hetzelt N, Baum JHJ, Portmann J, Wölfel R, Gabriel M, Miranda O, Díaz G, Díaz JE, Fleites YA, Piñeiro CA, Castro CM, Koivogui L, Magassouba N, Diallo B, Ruibal P, Oestereich L, Wozniak DM, Lüdtke A, Becker-Ziaja B, Capobianchi MR, Ippolito G, Carroll MW, Günther S, Di Caro A, Muñoz-Fontela C, Agrati C. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Negl Trop Dis 2017; 11:e0005645. [PMID: 28558022 PMCID: PMC5472323 DOI: 10.1371/journal.pntd.0005645] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Conclusions/Significances Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells. Human Ebola infection presents a high lethality rate and is characterized by a paralysis of the immune response. The definition of the protective immune profile during Ebola infection represents a main challenge useful in vaccine and therapy design. In particular, the protective/pathogenetic involvement of innate immune cells during Ebola infection in humans remains to be clarified. Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Center in Guinea, and the profiling of innate immunity was correlated with the clinical outcome. Our results show that both effector Vδ2 T-cells and NK cells were associated with survival, suggesting their involvement in the complex network of protective response to EBOV infection.
Collapse
Affiliation(s)
- Eleonora Cimini
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Domenico Viola
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Mar Cabeza-Cabrerizo
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Antonella Romanelli
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Nicola Tumino
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Alessandra Sacchi
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Veronica Bordoni
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Rita Casetti
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Federica Turchi
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Federico Martini
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Joseph A Bore
- European Mobile Laboratory Consortium, Hamburg, Germany
| | | | - Sophie Duraffour
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Janine Michel
- European Mobile Laboratory Consortium, Hamburg, Germany.,Robert Koch Institute, Berlin, Germany
| | - Tobias Holm
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Elsa Gayle Zekeng
- European Mobile Laboratory Consortium, Hamburg, Germany.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Lauren Cowley
- European Mobile Laboratory Consortium, Hamburg, Germany.,National Infection Service, Public Health England, Porton Down and Colindale, United Kingdom
| | - Isabel Garcia Dorival
- European Mobile Laboratory Consortium, Hamburg, Germany.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Juliane Doerrbecker
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,Centre for Experimental and Clinical Infection Research (TWINCORE), Institute for Experimental Virology, Hannover, Germany
| | - Nicole Hetzelt
- European Mobile Laboratory Consortium, Hamburg, Germany.,Robert Koch Institute, Berlin, Germany
| | - Jonathan H J Baum
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jasmine Portmann
- European Mobile Laboratory Consortium, Hamburg, Germany.,Federal Office for Civil Protection, Spiez Laboratory, Switzerland
| | - Roman Wölfel
- European Mobile Laboratory Consortium, Hamburg, Germany.,Bundeswehr Institute of Microbiology, Munich, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | - Martin Gabriel
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | | | | | - José E Díaz
- Hospital Militar Central Dr. Carlos J. Finlay, Havana, Cuba
| | - Yoel A Fleites
- Hospital Militar Central Dr. Carlos J. Finlay, Havana, Cuba
| | | | | | | | - N'Faly Magassouba
- Laboratoire des Fièvres Hémorragiques en Guinée, Université Gamal Abdel Nasser de Conakry, Conakry, Guinea
| | - Boubacar Diallo
- World Health Organization, Geneva, Switzerland. (Boubacar is separate: World Health Organization, Conakry, Guinea)
| | - Paula Ruibal
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lisa Oestereich
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | - David M Wozniak
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | - Anja Lüdtke
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Beate Becker-Ziaja
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | - Maria R Capobianchi
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Miles W Carroll
- European Mobile Laboratory Consortium, Hamburg, Germany.,National Infection Service, Public Health England, Porton Down and Colindale, United Kingdom.,University of Southampton, South General Hospital, Southampton, United Kingdom
| | - Stephan Günther
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany
| | - Antonino Di Caro
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy.,European Mobile Laboratory Consortium, Hamburg, Germany
| | - César Muñoz-Fontela
- European Mobile Laboratory Consortium, Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Sites Hamburg, Munich, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Chiara Agrati
- Department of Epidemiology and Pre-clinical research, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| |
Collapse
|
21
|
Abstract
γδ T cells constitute the third arm of a tripartite adaptive immune system in jawed vertebrates, besides αβ T cells and B cells. Like the other two lymphocyte-types, they express diverse antigen receptors, capable of specific ligand recognition. Functionally, γδ T cells represent a system of differentiated subsets, sometimes engaged in cross-regulation, which ultimately determines their effect on other components of the immune system, including B cells and antibodies. γδ T cells are capable of providing help to B cells in antibody production. More recently it became clear that γδ T cells influence B cell differentiation during the peripheral stages of B cell development, control levels of circulating immunoglobulin (all subclasses), and affect production of autoantibodies. Because of this relationship between γδ T cells and B cells, the extensive variation of γδ T cells among human individuals might be expected to modulate their humoral responsiveness.
Collapse
Affiliation(s)
- Willi K Born
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States.
| | - Yafei Huang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - R Lee Reinhardt
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Hua Huang
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| | - Deming Sun
- Doheny Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebecca L O'Brien
- National Jewish Health, Denver, CO, United States; University of Colorado Health Sciences Center, Aurora, CO, United States
| |
Collapse
|
22
|
Huang Y, Getahun A, Heiser RA, Detanico TO, Aviszus K, Kirchenbaum GA, Casper TL, Huang C, Aydintug MK, Carding SR, Ikuta K, Huang H, Wysocki LJ, Cambier JC, O'Brien RL, Born WK. γδ T Cells Shape Preimmune Peripheral B Cell Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:217-31. [PMID: 26582947 PMCID: PMC4684964 DOI: 10.4049/jimmunol.1501064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022]
Abstract
We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations.
Collapse
Affiliation(s)
- Yafei Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Ryan A Heiser
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Thiago O Detanico
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Katja Aviszus
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Greg A Kirchenbaum
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Tamara L Casper
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Chunjian Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - M Kemal Aydintug
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Simon R Carding
- Institute of Food Research and Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7UG, United Kingdom; and
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hua Huang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Lawrence J Wysocki
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - John C Cambier
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045
| | - Willi K Born
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206; Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045;
| |
Collapse
|
23
|
Stervbo U, Bozzetti C, Baron U, Jürchott K, Meier S, Mälzer JN, Nienen M, Olek S, Rachwalik D, Schulz AR, Neumann A, Babel N, Grützkau A, Thiel A. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets. AGE (DORDRECHT, NETHERLANDS) 2015; 37:93. [PMID: 26324156 PMCID: PMC5005833 DOI: 10.1007/s11357-015-9829-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
Immunosenescence results from a continuous deterioration of immune responses resulting in a decreased response to vaccines. A well-described age-related alteration of the immune system is the decrease of de novo generation of T and B cells. In addition, the accumulation of memory cells and loss of diversity in antigen specificities resulting from a lifetime of exposure to pathogens has also been described. However, the effect of aging on subsets of γδTCR(+) T cells and Tregs has been poorly described, and the efficacy of the recall response to common persistent infections in the elderly remains obscure. Here, we investigated alterations in the subpopulations of the B and T cells among 24 healthy young (aged 19-30) and 26 healthy elderly (aged 53-67) individuals. The analysis was performed by flow cytometry using freshly collected peripheral blood. γδTCR(+) T cells were overall decreased, while CD4(+)CD8(-) cells among γδTCR(+) T cells were increased in the elderly. Helios(+)Foxp3(+) and Helios(-)Foxp3(+) Treg cells were unaffected with age. Recent thymic emigrants, based on CD31 expression, were decreased among the Helios(+)Foxp3(+), but not the Helios(-)Foxp3(+) cell populations. We observed a decrease in Adenovirus-specific CD4(+) and CD8(+) T cells and an increase in CMV-specific CD4(+) T cells in the elderly. Similarly, INFγ(+)TNFα(+) double-positive cells were decreased among activated T cells after Adenovirus stimulation but increased after CMV stimulation. The data presented here indicate that γδTCR(+) T cells might stabilize B cells, and functional senescence might dominate at higher ages than those studied here.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Cecilia Bozzetti
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Udo Baron
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sarah Meier
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Nora Mälzer
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mikalai Nienen
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Sven Olek
- Epiontis GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | - Dominika Rachwalik
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Axel Ronald Schulz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Avidan Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
- Marienhospital Herne, University Hospital of the Ruhr-University Bochum, Hölkeskampring 40, 44625 Herne, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum – a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité – University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
24
|
Tyler CJ, Doherty DG, Moser B, Eberl M. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cell Immunol 2015; 296:10-21. [PMID: 25659480 DOI: 10.1016/j.cellimm.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Unconventional T cells are gaining center stage as important effector and regulatory cells that orchestrate innate and adaptive immune responses. Human Vγ9/Vδ2 T cells are amongst the best understood unconventional T cells, as they are easily accessible in peripheral blood, can readily be expanded and manipulated in vitro, respond to microbial infections in vivo and can be exploited for novel tumor immunotherapies. We here review findings that suggest that Vγ9/Vδ2 T cells, and possibly other unconventional human T cells, play an important role in bridging innate and adaptive immunity by promoting the activation and differentiation of various types of antigen-presenting cells (APCs) and even turning into APCs themselves, and thereby pave the way for antigen-specific effector responses and long-term immunological memory. Although the direct physiological relevance for most of these mechanisms still needs to be demonstrated in vivo, these findings may have implications for novel therapies, diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Christopher J Tyler
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bernhard Moser
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
25
|
Umiker BR, McDonald G, Larbi A, Medina CO, Hobeika E, Reth M, Imanishi-Kari T. Production of IgG autoantibody requires expression of activation-induced deaminase in early-developing B cells in a mouse model of SLE. Eur J Immunol 2014; 44:3093-108. [PMID: 25044405 DOI: 10.1002/eji.201344282] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 06/13/2014] [Accepted: 07/09/2014] [Indexed: 11/06/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of pathogenic IgG antinuclear antibodies. Pathogenic IgG autoantibody production requires B-cell activation, leading to the production of activation-induced deaminase (AID) and class switching of IgM genes to IgG. To understand how and when B cells are activated to produce these IgG autoantibodies, we studied cells from 564Igi, a mouse model of SLE. 564Igi mice develop a disease profile closely resembling that found in human SLE patients, including the presence of IgG antinucleic acid Abs. We have generated 564Igi mice that conditionally express an activation-induced cytidine deaminase transgene (Aicda(tg) ), either in all B cells or only in mature B cells. Here, we show that class-switched pathogenic IgG autoantibodies were produced only in 564Igi mice in which AID was functional in early-developing B cells, resulting in loss of tolerance. Furthermore, we show that the absence of AID in early-developing B cells also results in increased production of self-reactive IgM, indicating that AID, through somatic hypermutation, contributes to tolerance. Our results suggest that the pathophysiology of clinical SLE might also be dependent on AID expression in early-developing B cells.
Collapse
Affiliation(s)
- Benjamin R Umiker
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Integrative Physiology and Pathobiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Aydintug MK, Zhang L, Wang C, Liang D, Wands JM, Michels AW, Hirsch B, Day BJ, Zhang G, Sun D, Eisenbarth GS, O'Brien RL, Born WK. γδ T cells recognize the insulin B:9-23 peptide antigen when it is dimerized through thiol oxidation. Mol Immunol 2014; 60:116-28. [PMID: 24853397 PMCID: PMC4091716 DOI: 10.1016/j.molimm.2014.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 01/08/2023]
Abstract
The insulin peptide B:9-23 is a natural antigen in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). In addition to αβ T cells and B cells, γδ T cells recognize the peptide and infiltrate the pancreatic islets where the peptide is produced within β cells. The peptide contains a cysteine in position 19 (Cys19), which is required for the γδ but not the αβ T cell response, and a tyrosine in position 16 (Tyr16), which is required for both. A peptide-specific mAb, tested along with the T cells, required neither of the two amino acids to bind the B:9-23 peptide. We found that γδ T cells require Cys19 because they recognize the peptide antigen in an oxidized state, in which the Cys19 thiols of two peptide molecules form a disulfide bond, creating a soluble homo-dimer. In contrast, αβ T cells recognize the peptide antigen as a reduced monomer, in complex with the MHCII molecule I-A(g7). Unlike the unstructured monomeric B:9-23 peptide, the γδ-stimulatory homo-dimer adopts a distinct secondary structure in solution, which differs from the secondary structure of the corresponding portion of the native insulin molecule. Tyr16 is required for this adopted structure of the dimerized insulin peptide as well as for the γδ response to it. This observation is consistent with the notion that γδ T cell recognition depends on the secondary structure of the dimerized insulin B:9-23 antigen.
Collapse
Affiliation(s)
- M Kemal Aydintug
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA
| | - Chao Wang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA
| | - Dongchun Liang
- Department of Ophthalmology, Doheny Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - J M Wands
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA
| | - Brooke Hirsch
- Department of Biomolecular Structure, University of Colorado Denver, Anschutz Medical Campus, Aurora CO 80045, USA
| | - Brian J Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, CO 80206, USA
| | - Gongyi Zhang
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA
| | - Deming Sun
- Department of Ophthalmology, Doheny Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - George S Eisenbarth
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rebecca L O'Brien
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA
| | - Willi K Born
- Integrated Department of Immunology, National Jewish Health and University of Colorado Denver, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
27
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
28
|
He Y, Wu K, Hu Y, Sheng L, Tie R, Wang B, Huang H. γδ T cell and other immune cells crosstalk in cellular immunity. J Immunol Res 2014; 2014:960252. [PMID: 24741636 PMCID: PMC3987930 DOI: 10.1155/2014/960252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022] Open
Abstract
γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.
Collapse
Affiliation(s)
- Ying He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Kangni Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Lixia Sheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
29
|
Tonti E, Jiménez de Oya N, Galliverti G, Moseman EA, Di Lucia P, Amabile A, Sammicheli S, De Giovanni M, Sironi L, Chevrier N, Sitia G, Gennari L, Guidotti LG, von Andrian UH, Iannacone M. Bisphosphonates target B cells to enhance humoral immune responses. Cell Rep 2013; 5:323-30. [PMID: 24120862 PMCID: PMC3838640 DOI: 10.1016/j.celrep.2013.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 01/12/2023] Open
Abstract
Bisphosphonates are a class of drugs that are widely used to inhibit loss of bone mass in patients. We show here that the administration of clinically relevant doses of bisphosphonates in mice increases antibody responses to live and inactive viruses, proteins, haptens, and existing commercial vaccine formulations. Bisphosphonates exert this adjuvant-like activity in the absence of CD4(+) and γδ T cells, neutrophils, or dendritic cells, and their effect does not rely on local macrophage depletion, Toll-like receptor signaling, or the inflammasome. Rather, bisphosphonates target directly B cells and enhance B cell expansion and antibody production upon antigen encounter. These data establish bisphosphonates as an additional class of adjuvants that boost humoral immune responses.
Collapse
Affiliation(s)
- Elena Tonti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nereida Jiménez de Oya
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Galliverti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - E. Ashley Moseman
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Amabile
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Sammicheli
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco De Giovanni
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Sironi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Physics, University of Milano Bicocca, 20126 Milan, Italy
| | - Nicolas Chevrier
- Harvard University, FAS Center for Systems Biology, Cambridge, MA 02138, USA
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Luca G. Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Immunology & Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ulrich H. von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
30
|
Marigliano B, Soriano A, Margiotta D, Vadacca M, Afeltra A. Lung involvement in connective tissue diseases: a comprehensive review and a focus on rheumatoid arthritis. Autoimmun Rev 2013; 12:1076-84. [PMID: 23684699 DOI: 10.1016/j.autrev.2013.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/20/2022]
Abstract
The lungs are frequently involved in Connective Tissue Diseases (CTDs). Interstitial lung disease (ILD) is one of the most common pleuropulmonary manifestations that affects prognosis significantly. In practice, rheumatologists and other physicians tend to underestimate the impact of CTD-ILDs and diagnose respiratory impairment when it has reached an irreversible fibrotic stage. Early investigation, through clinical evidence, imaging and - in certain cases - lung biopsy, is therefore warranted in order to detect a possible ILD at a reversible initial inflammatory stage. In this review, we focus on lung injury during CTDs, with particular attention to ILDs, and examine their prevalence, clinical manifestations and histological patterns, as well as therapeutic approaches and known complications till date. Although several therapeutic agents have been approved, the best treatment is still not certain and additional trials are required, which demand more knowledge of pulmonary involvement in CTDs. Our central aim is therefore to document the impact that lung damage has on CTDs. We will mainly focus on Rheumatoid Arthritis (RA), which - unlike other rheumatic disorders - resembles Idiopathic Pulmonary Fibrosis (IPF) in numerous aspects.
Collapse
Affiliation(s)
- Benedetta Marigliano
- Department of Clinical Medicine and Rheumatology, University Campus Bio-Medico of Rome, Italy
| | | | | | | | | |
Collapse
|
31
|
Abstract
γδ T cells are a unique and conserved population of lymphocytes that have been the subject of a recent explosion of interest owing to their essential contributions to many types of immune response and immunopathology. But what does the integration of recent and long-established studies really tell us about these cells and their place in immunology? The time is ripe to consider the evidence for their unique and crucial functions. We conclude that whereas B cells and αβ T cells are commonly thought to contribute primarily to the antigen-specific effector and memory phases of immunity, γδ T cells are distinct in that they combine conventional adaptive features (inherent in their T cell receptors and pleiotropic effector functions) with rapid, innate-like responses that can place them in the initiation phase of immune reactions. This underpins a revised perspective on lymphocyte biology and the regulation of immunogenicity.
Collapse
|
32
|
Caccamo N, Todaro M, La Manna MP, Sireci G, Stassi G, Dieli F. IL-21 regulates the differentiation of a human γδ T cell subset equipped with B cell helper activity. PLoS One 2012; 7:e41940. [PMID: 22848667 PMCID: PMC3405033 DOI: 10.1371/journal.pone.0041940] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/27/2012] [Indexed: 11/21/2022] Open
Abstract
Vγ9Vδ2 T lymphocytes recognize nonpeptidic antigens without presentation by MHC molecules and display pleiotropic features. Here we report that coculture of Vγ9Vδ2 cells with phosphoantigen and IL-21 leads to selective expression of the transcription repressor Bcl-6 and polarization toward a lymphocyte subset displaying features of follicular B-helper T (TFH) cells. TFH-like Vγ9Vδ2 cells have a predominant central memory (CD27+CD45RA−) phenotype and express ICOS, CD40L and CXCR5. Upon antigen activation, they secrete IL-4, IL-10 and CXCL13, and provide B-cell help for antibody production in vitro. Our findings delineate a subset of human Vγ9Vδ2 lymphocytes, which, upon interaction with IL-21-producing CD4 TFH cells and B cells in secondary lymphoid organs, is implicated in the production of high affinity antibodies against microbial pathogens.
Collapse
Affiliation(s)
- Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Matilde Todaro
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Marco P. La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Guido Sireci
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
| | - Giorgio Stassi
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli Studi di Palermo, Palermo, Italy
- * E-mail:
| |
Collapse
|
33
|
Euler Z, Schuitemaker H. Cross-reactive broadly neutralizing antibodies: timing is everything. Front Immunol 2012; 3:215. [PMID: 22833745 PMCID: PMC3400945 DOI: 10.3389/fimmu.2012.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
The recent surge of research into new broadly neutralizing antibodies in HIV-1 infection has recharged the field of HIV-1 vaccinology. In this review we discuss the currently known broadly neutralizing antibodies and focus on factors that may shape these antibodies in natural infection. We further discuss the role of these antibodies in the clinical course of the infection and consider immunological obstacles in inducing broadly neutralizing antibodies with a vaccine.
Collapse
Affiliation(s)
- Zelda Euler
- Landsteiner Laboratory, Sanquin Research, Amsterdam, Netherlands
| | | |
Collapse
|
34
|
Bansal RR, Mackay CR, Moser B, Eberl M. IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur J Immunol 2011; 42:110-9. [PMID: 22009762 DOI: 10.1002/eji.201142017] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/14/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022]
Abstract
Vγ9/Vδ2 T cells are a minor subset of T cells in human blood and differ from all other lymphocytes by their specific responsiveness to (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), a metabolite produced by a large range of microbial pathogens. Vγ9/Vδ2 T cells can be skewed towards distinct effector functions, in analogy to, and beyond, the emerging plasticity of CD4(+) T cells. As such, depending on the microenvironment, Vγ9/Vδ2 T cells can assume features reminiscent of Th1, Th2, Th17 and Treg cells as well as professional APCs. We here demonstrate that Vγ9/Vδ2 T cells express markers associated with follicular B helper T (T(FH) ) cells when stimulated with HMB-PP in the presence of IL-21. HMB-PP induces upregulation of IL-21R on Vγ9/Vδ2 T cells. In return, IL-21 plays a co-stimulatory role in the expression of the B-cell-attracting chemokine CXCL13, the CXCL13 receptor CXCR5 and the inducible co-stimulator by activated Vγ9/Vδ2 T cells, and enhances their potential to support antibody production by B cells. The interaction between HMB-PP-responsive Vγ9/Vδ2 T cells, IL-21-producing T(FH) cells and B cells in secondary lymphoid tissues is likely to impact on the generation of high affinity, class-switched antibodies in microbial infections.
Collapse
Affiliation(s)
- Raj R Bansal
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
35
|
Qi Q, Kannan AK, August A. Tec family kinases: Itk signaling and the development of NKT αβ and γδ T cells. FEBS J 2011; 278:1970-9. [PMID: 21362141 DOI: 10.1111/j.1742-4658.2011.08074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Tec family tyrosine kinase interleukin-2 inducible T-cell kinase (Itk) is predominantly expressed in T cells and has been shown to be critical for the development, function and differentiation of conventional αβ T cells. However, less is known about its role in nonconventional T cells such as NKT and γδ T cells. In this minireview, we discuss evidence for a role for Itk in the development of invariant NKT αβ cells, as well as a smaller population NKT-like γδ T cells. We discuss how these cells take what could be the same signaling pathway regulated by Itk, and interpret it to give different outcomes with regards to development and function.
Collapse
Affiliation(s)
- Qian Qi
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
36
|
Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, Barge D, Ciupek A, Straatman-Iwanowska A, Pasha S, Guckian M, Anderson G, Huissoon A, Cant A, Tate WP, Hambleton S, Maher ER. Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells. J Clin Invest 2011; 121:695-702. [PMID: 21206088 PMCID: PMC3026716 DOI: 10.1172/jci41931] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 11/03/2010] [Indexed: 11/17/2022] Open
Abstract
Inherited immunodeficiency disorders can be caused by mutations in any one of a large number of genes involved in the function of immune cells. Here, we describe two families with an autosomal recessive inherited immunodeficiency disorder characterized by increased susceptibility to infection and autoimmunity. Genetic linkage studies mapped the disorder to chromosomal region 14q11.2, and a homozygous guanine-to-adenine substitution was identified at the last base of exon 3 immediately following the translational termination codon in the TCRα subunit constant gene (TRAC). RT-PCR analysis in the two affected individuals revealed impaired splicing of the mRNA, as exon 3 was lost from the TRAC transcript. The mutant TCRα chain protein was predicted to lack part of the connecting peptide domain and all of the transmembrane and cytoplasmic domains, which have a critical role in the regulation of the assembly and/or intracellular transport of TCR complexes. We found that T cells from affected individuals were profoundly impaired for surface expression of the TCRαβ complex. We believe this to be the first report of a disease-causing human TRAC mutation. Although the absence of TCRαβ+ T cells in the affected individuals was associated with immune dysregulation and autoimmunity, they had a surprising level of protection against infection.
Collapse
Affiliation(s)
- Neil V. Morgan
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Sarah Goddard
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Tony S. Cardno
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - David McDonald
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Fatimah Rahman
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Dawn Barge
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Andrew Ciupek
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Anna Straatman-Iwanowska
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Shanaz Pasha
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Mary Guckian
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Graham Anderson
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Aarnoud Huissoon
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Andrew Cant
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Warren P. Tate
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Sophie Hambleton
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Eamonn R. Maher
- Wellchild Paediatric Research Centre, Department of Medical and Molecular Genetics and Centre for Rare Diseases and Personalised Medicine, University of Birmingham School of Medicine, Birmingham, United Kingdom.
Regional Department of Immunology, Heartlands Hospital, Birmingham, United Kingdom.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
Regional Immunology Laboratory, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
MRC Centre for Immune Regulation, The Medical School, University of Birmingham, Birmingham, United Kingdom.
Paediatric Immunology and Infectious Diseases Service, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom.
West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, United Kingdom
| |
Collapse
|
37
|
Petermann F, Rothhammer V, Claussen MC, Haas JD, Riol Blanco L, Heink S, Prinz I, Hemmer B, Kuchroo VK, Oukka M, Korn T. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010; 33:351-63. [PMID: 20832339 PMCID: PMC3008772 DOI: 10.1016/j.immuni.2010.08.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 07/14/2010] [Accepted: 07/27/2010] [Indexed: 02/08/2023]
Abstract
Mice that lack interleukin-23 (IL-23) are resistant to T cell-mediated autoimmunity. Although IL-23 is a maturation factor for T helper 17 (Th17) cells, a subset of γδ T cells expresses the IL-23 receptor (IL-23R) constitutively. Using IL-23R reporter mice, we showed that γδ T cells were the first cells to respond to IL-23 during experimental autoimmune encephalomyelitis (EAE). Although γδ T cells produced Th17 cell-associated cytokines in response to IL-23, their major function was to prevent the development of regulatory T (Treg) cell responses. IL-23-activated γδ T cells rendered αβ effector T cells refractory to the suppressive activity of Treg cells and also prevented the conversion of conventional T cells into Foxp3(+) Treg cells in vivo. Thus, IL-23, which by itself has no direct effect on Treg cells, is able to disarm Treg cell responses and promote antigen-specific effector T cell responses via activating γδ T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoimmunity
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Interleukin-17/biosynthesis
- Interleukin-23/physiology
- Interleukins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Interleukin/physiology
- T-Lymphocytes, Regulatory/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Franziska Petermann
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Veit Rothhammer
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Malte C. Claussen
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jan D. Haas
- Hannover Medical School, Institute for Immunology, 30625 Hannover, Germany
| | | | - Sylvia Heink
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Immo Prinz
- Hannover Medical School, Institute for Immunology, 30625 Hannover, Germany
| | - Bernhard Hemmer
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Vijay K. Kuchroo
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mohamed Oukka
- Seattle Children's Hospital, Center for Immunity and Immunotherapies, University of Washington School of Medicine, 1900 Ninth Avenue, M/S C9S-7, Seattle, WA 98101, USA
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
38
|
Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467-78. [PMID: 20539306 DOI: 10.1038/nri2781] [Citation(s) in RCA: 733] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gammadelta T cells have several innate cell-like features that allow their early activation following recognition of conserved stress-induced ligands. Here we review recent observations revealing the ability of gammadelta T cells to rapidly produce cytokines that regulate pathogen clearance, inflammation and tissue homeostasis in response to tissue stress. These studies provide insights into how they acquire these properties, through both developmental programming in the thymus and functional polarization in the periphery. Innate features of gammadelta T cells underlie their non-redundant role in several physiopathological contexts and are therefore being exploited in the design of new immunotherapeutic approaches.
Collapse
|
39
|
Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 2010; 28:243-73. [PMID: 20192805 DOI: 10.1146/annurev-immunol-030409-101314] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammals, the gastrointestinal tract harbors an extraordinarily dense and complex community of microorganisms. The gut microbiota provide strong selective pressure to the host to evolve adaptive immune responses required for the maintenance of local and systemic homeostasis. The continuous antigenic presence in the gut imposes a dynamic remodeling of gut-associated lymphoid tissues (GALT) and the selection of multiple layered strategies for immunoglobulin (Ig) A production. The composite and dynamic gut environment also necessitates heterogeneous, versatile, and convertible T cells, capable of inhibiting (Foxp3(+) T cells) or helping (T(FH) cells) local immune responses. In this review, we describe recent advances in our understanding of dynamic pathways that lead to IgA synthesis, in gut follicular structures and in extrafollicular sites, by T cell-dependent and T cell-independent mechanisms. We discuss the finely tuned regulatory mechanisms for IgA production and emphasize the role of mucosal IgA in the selection and maintenance of the appropriate microbial composition that is necessary for immune homeostasis.
Collapse
|
40
|
Born WK, Yin Z, Hahn YS, Sun D, O'Brien RL. Analysis of gamma delta T cell functions in the mouse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4055-61. [PMID: 20368285 PMCID: PMC4476288 DOI: 10.4049/jimmunol.0903679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models of disease and injury have been invaluable in investigations of the functional role of gammadelta T cells. They show that gammadelta T cells engage in immune responses both early and late, that they can function both polyclonally and as peripherally selected clones, and that they can be effector cells and immune regulators. They also suggest that functional development of gammadelta T cells occurs stepwise in thymus and periphery, and that it is governed by gammadelta TCR-signaling and other signals. Finally, they indicate that gammadelta T cell functions often segregate with TCR-defined subsets, in contrast to conventional T cells. From the functional studies in mice and other animal models, gammadelta T cells emerge as a distinct lymphocyte population with a unique and broad functional repertoire, and with important roles in Ab responses, inflammation and tissue repair. They also are revealed as a potentially useful target for immune intervention.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Disease Models, Animal
- Humans
- Inflammation Mediators/physiology
- Mice
- Models, Animal
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
41
|
Shimura E, Hozumi N, Kanagawa O, Metzger D, Chambon P, Radtke F, Hirose S, Nakano N. Epidermal gammadelta T cells sense precancerous cellular dysregulation and initiate immune responses. Int Immunol 2010; 22:329-40. [PMID: 20185432 DOI: 10.1093/intimm/dxq014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hyperplasia associated with a loss of tissue homeostasis can induce DNA replication stress, leading to precancerous dysregulation. Epidermal gammadelta T cells reside in the primary barrier that protects against diverse environmental insults; however, the functions of these T cells in tissue surveillance are not completely understood. In mice with inducible Notch1 inactivation in keratinocytes that causes epidermal hyperplasia, epidermal gammadelta T cells sensed stressed keratinocytes and migrated into the cutaneous draining lymph nodes. Simultaneous induction of beta-galactosidase (beta-Gal) as a putative antigen expressed in the process of precancerous dysregulation and Notch1 ablation in the epidermis resulted in elevated beta-Gal-specific IgG2a production. Epidermal gammadelta T cells were found to have the capacity to express chemokine (C-C motif) receptor 7 and migrate into the lymph nodes. Cutaneous draining lymph node cells in Notch1-inactivated mice expressed high levels of IFN-gamma upon anti-CD3 plus anti-CD28 stimulation. Furthermore, induced expression of beta-Gal in mice that lacked epidermal gammadelta T cells failed to induce anti-beta-Gal IgG. These results suggest that epidermal gammadelta T cells play an essential role in the initiation process of epidermal antigen-specific humoral immune responses and demonstrate the importance of epidermal gammadelta T cells in sensing precancerous dysregulation and activating adaptive immunity.
Collapse
Affiliation(s)
- Eri Shimura
- Research Institute for Biological Sciences, Tokyo University of Science, 2669, Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Song JW, Do KH, Kim MY, Jang SJ, Colby TV, Kim DS. Pathologic and Radiologic Differences Between Idiopathic and Collagen Vascular Disease-Related Usual Interstitial Pneumonia. Chest 2009; 136:23-30. [DOI: 10.1378/chest.08-2572] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
44
|
Enhanced development of CD4+ gammadelta T cells in the absence of Itk results in elevated IgE production. Blood 2009; 114:564-71. [PMID: 19443662 DOI: 10.1182/blood-2008-12-196345] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tec kinase Itk is critical for the development of alphabeta T cells as well as differentiation of CD4(+) T cells into Th2 cells. Itk null mice have defects in the production of Th2 cytokines; however, they paradoxically have significant elevations in serum IgE. Here we show that Itk null mice have increased numbers of gammadelta T cells in the thymus and spleen. This includes elevated numbers of CD4(+) gammadelta T cell, the majority of which carry the Vgamma1.1 and Vdelta6.2/3 gammadelta T-cell receptor with a distinct phenotype. The development of these CD4(+) gammadelta T cells is T cell intrinsic, independent of either major histocompatibility complex class I or class II, and is favored during development in the absence of Itk. Itk null CD4(+) gammadelta T cells secrete significant amounts of Th2 cytokines and can induce the secretion of IgE by wild-type B cells. Our data indicate that Itk plays important role in regulating gammadelta T-cell development and function. In addition, our data indicate that the elevated IgE observed in Itk-deficient mice is due in part to the enhanced development of CD4(+) gammadelta T cells in the absence of Itk.
Collapse
|
45
|
Laird RM, Hayes SM. Profiling of the early transcriptional response of murine gammadelta T cells following TCR stimulation. Mol Immunol 2009; 46:2429-38. [PMID: 19439358 DOI: 10.1016/j.molimm.2009.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
Abstract
Gammadelta T cells represent one of the three lineages of lymphocytes, along with alphabeta T cells and B cells, which express antigen receptors. Since their discovery over two decades ago, considerable effort has been made to understand their antigen specificity and their contribution to the immune response. From these studies, we have learned that gammadelta T cells recognize a different set of antigens than alphabeta T cells, acquire effector functions faster than alphabeta T cells, regulate the response of other immune cells during infection, and play distinct roles in immunity. The molecular basis for how gammadelta T cells manifest their unique functions, however, remains unknown. To address this, we profiled the genes upregulated soon after TCR stimulation in order to identify which gene networks associated with T cell effector function are induced in gammadelta T cells. Interestingly, most of the genes in this transcriptional profile were not unique to activated gammadelta T cells, as they were also expressed in activated alphabeta T cells. However, many of the genes within this profile were upregulated with faster kinetics and/or greater magnitude in activated gammadelta T cells than in activated alphabeta T cells. In addition, we found that the genes in the transcriptional profile of activated wild-type gammadelta T cells can be used as a standard to screen activated gammadelta T cells from mice with potential signaling defects for alterations in gammadelta TCR signal transduction. Thus, by defining the early transcriptional response of activated wild-type gammadelta T cells and by comparing their transcriptional profile to that of activated wild-type alphabeta T cells as well as to that of activated gammadelta T cells from signaling defective mice, we are able to gain important insights into the molecular basis for gammadelta T cell function.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 750 E Adams Street, 2220 Weiskotten Hall, Syracuse, NY 13210, USA
| | | |
Collapse
|
46
|
Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 2009; 323:1488-92. [PMID: 19286559 DOI: 10.1126/science.1169152] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Most of the immunoglobulin A (IgA) in the gut is generated by B cells in the germinal centers of Peyer's patches through a process that requires the presence of CD4+ follicular B helper T(TFH) cells. The nature of these T(FH) cells in Peyer's patches has been elusive. Here, we demonstrate that suppressive Foxp3+CD4+ T cells can differentiate into TFH cells in mouse Peyer's patches. The conversion of Foxp3+ T cells into TFH cells requires the loss of Foxp3 expression and subsequent interaction with B cells. Thus, environmental cues present in gut Peyer's patches promote the selective differentiation of distinct helper T cell subsets, such as TFH cells.
Collapse
Affiliation(s)
- Masayuki Tsuji
- Laboratory for Mucosal Immunity, RIKEN, Yokohama 1-7-22, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tsao PY, Jiao J, Ji MQ, Cohen PL, Eisenberg RA. T cell-independent spontaneous loss of tolerance by anti-double-stranded DNA B cells in C57BL/6 mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:7770-7. [PMID: 19017966 DOI: 10.4049/jimmunol.181.11.7770] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic lupus erythematosus is characterized by loss of tolerance to DNA and other nuclear Ags. To understand the role of T cells in the breaking of tolerance, an anti-DNA site-specific transgenic model of spontaneous lupus, B6x56R, was studied. T cells were eliminated by crossing B6x56R with CD4(-/)(-) or TCRbeta(-/-)delta(-/-) mice, and the effects on anti-dsDNA serum levels, numbers of anti-dsDNA Ab-secreting cells, and isotypes of anti-dsDNA were analyzed. In addition, the development and activation of B cells in these mice were examined. Surprisingly, the presence of T cells made little difference in the development and character of the serum anti-dsDNA Ab in B6x56R mice. At 1 mo of age, anti-dsDNA Abs were somewhat lower in mice deficient in alphabeta and gammadelta T cells. Levels of Abs later were not affected by T cells, nor was autoantibody class switching. B cell activation was somewhat diminished in T cell-deficient mice. Thus, in the B6 background, the presence of an anti-dsDNA transgene led the production of autoantibodies with a specificity and isotype characteristic of murine systemic lupus erythematosus with little influence from T cells. TLR9 also did not appear to play a role. Although we do not yet understand the mechanism of this failure of immunoregulation, these results suggest that similar processes may influence autoimmunity associated with clinical disease.
Collapse
Affiliation(s)
- Patricia Y Tsao
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | | | | | | | | |
Collapse
|
48
|
Achtman AH, Höpken UE, Bernert C, Lipp M. CCR7-deficient mice develop atypically persistent germinal centers in response to thymus-independent type 2 antigens. J Leukoc Biol 2008; 85:409-17. [PMID: 19074554 DOI: 10.1189/jlb.0308162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thymus-independent type 2 (TI-2) antigens are repetitive antigens capable of eliciting antibody responses without T cell help. They are important in the immune response against encapsulated bacteria and as a rapid first line of defense against pathogens. TI-2 antigens induce strong proliferation in extrafollicular foci. However, any germinal centers forming in response to TI-2 antigens involute synchronously 5 days after immunization. This is thought to be caused by the lack of T cell help. Surprisingly, immunization of mice deficient for the homeostatic chemokine receptor CCR7 with TI-2 antigens resulted not only in the expected, vigorous extrafollicular plasma cell response but also in persisting splenic germinal centers. This was observed for two different TI-2 antigens, heat-killed Streptococcus pneumoniae and (4-hydroxy-3-nitrophenyl)acetyl-Ficoll (NP-Ficoll). Germinal centers induced by TI-2 and thymus-dependent (TD) antigens were located in the periarteriolar area of the white pulp in CCR7 knockout mice, corresponding to the T zone of wild-type (WT) mice. The TI-2-induced germinal centers contained peripheral rings of follicular dendritic cells and unusually for TI-2-induced germinal centers, T cells. The licensing responsible for their atypical persistence did not endow TI-2-induced germinal centers with the full range of characteristics of classic germinal centers induced by TD antigens. Thus, class-switching, affinity maturation, and memory B cell generation were not increased in CCR7-deficient mice. It seems unlikely that a defect in regulatory T cell (Treg) location was responsible for the atypical persistence of TI-2-induced germinal centers, as Tregs were comparably distributed in germinal centers of CCR7-deficient and WT mice.
Collapse
Affiliation(s)
- Ariel H Achtman
- Molecular Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin, Germany
| | | | | | | |
Collapse
|
49
|
King C, Tangye SG, Mackay CR. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 2008; 26:741-66. [PMID: 18173374 DOI: 10.1146/annurev.immunol.26.021607.090344] [Citation(s) in RCA: 495] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T cell help for antibody production is a fundamental aspect of immune responses. Only recently has a better understanding of the cellular and molecular mechanisms for T cell help emerged. A subset of T cells, termed T follicular helper cells (T(FH) cells), provides a helper function to B cells and represents one of the most numerous and important subsets of effector T cells in lymphoid tissues. T(FH) cells are distinguishable from Th1 and Th2 cells by several criteria, including chemokine receptor expression (CXCR5), location/migration (B cell follicles), and function (B cell help). Central to the function of CD4(+) T cells is IL-21, a "helper" cytokine produced by T(FH) cells that potently stimulates the differentiation of B cells into Ab-forming cells through IL-21R. Consequently, dysregulation of T(FH) cell function, and over- or under-expression of T(FH) cell-associated molecules such as ICOS or IL-21, most likely contributes to the pathogenesis of certain autoimmune diseases or immunodeficiencies.
Collapse
Affiliation(s)
- Cecile King
- Immunology and Inflammation Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | | | | |
Collapse
|
50
|
Vermijlen D, Ellis P, Langford C, Klein A, Engel R, Willimann K, Jomaa H, Hayday AC, Eberl M. Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4304-14. [PMID: 17371987 PMCID: PMC3915340 DOI: 10.4049/jimmunol.178.7.4304] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human Vgamma9/Vdelta2 T cells comprise a small population of peripheral blood T cells that in many infectious diseases respond to the microbial metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), expanding to up to 50% of CD3(+) cells. This "transitional response," occurring temporally between the rapid innate and slower adaptive response, is widely viewed as proinflammatory and/or cytolytic. However, increasing evidence that different cytokines drive widely different effector functions in alphabeta T cells provoked us to apply cDNA microarrays to explore the potential pleiotropy of HMB-PP-activated Vgamma9/Vdelta2 T cells. The data and accompanying validations show that the related cytokines, IL-2, IL-4, or IL-21, each drive proliferation and comparable CD69 up-regulation but induce distinct effector responses that differ from prototypic alphabeta T cell responses. For example, the Th1-like response to IL-2 also includes expression of IL-5 and IL-13 that conversely are not induced by IL-4. The data identify specific molecules that may mediate gammadelta T cell effects. Thus, IL-21 induces a lymphoid-homing phenotype and high, unexpected expression of the follicular B cell-attracting chemokine CXCL13/BCA-1, suggesting a novel follicular B-helper-like T cell that may play a hitherto underappreciated role in humoral immunity early in infection. Such broad plasticity emphasizes the capacity of gammadelta T cells to influence the nature of the immune response to different challenges and has implications for the ongoing clinical application of cytokines together with Vgamma9/Vdelta2 TCR agonists.
Collapse
Affiliation(s)
- David Vermijlen
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Institute for Medical Immunology, Université Libre de Bruxelles Gosselies, Belgium
| | - Peter Ellis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Cordelia Langford
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Anne Klein
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Rosel Engel
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Giessen und Marburg, Giessen, Germany
| | | | - Hassan Jomaa
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Giessen und Marburg, Giessen, Germany
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
| | - Matthias Eberl
- Biochemisches Institut, Infektiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|