1
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
2
|
Obeng B, Bennett LJ, West BE, Wagner DJ, Fleming PJ, Tasker MN, Lorenger MK, Smith DR, Systuk T, Plummer SM, Eom J, Paine MD, Frangos CT, Wilczek MP, Shim JK, Maginnis MS, Gosse JA. Antimicrobial cetylpyridinium chloride suppresses mast cell function by targeting tyrosine phosphorylation of Syk kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602096. [PMID: 39026716 PMCID: PMC11257455 DOI: 10.1101/2024.07.04.602096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, we showed that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca 2+ mobilization, microtubule polymerization, and degranulation. In this study, we extend the findings to human mast cells (LAD2) and present data indicating that CPC's mechanism of action centers on its positively-charged quaternary nitrogen in its pyridinium headgroup. CPC's inhibitory effect is independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca 2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC does not affect Lyn kinase phosphorylation. Thus, CPC's root mechanism is electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work outlines the biochemical mechanisms underlying the effects of CPC on immune signaling and allows the prediction of CPC effects on cell types, like T cells, that share similar signaling elements.
Collapse
|
3
|
Liu K, Katayama T, Sato H, Hamaoka-Tamura Y, Saito M, Furuta K, Tanaka S. Staphylococcus aureus δ-Toxin Induces Ca 2+ Influx-Independent Degranulation of Murine Cultured Mast Cells. Biol Pharm Bull 2024; 47:2058-2064. [PMID: 39675960 DOI: 10.1248/bpb.b24-00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cutaneous colonization with Staphylococcus aureus (SA) is frequently observed in patients with atopic dermatitis. SA produces a wide variety of bacterial toxins, among which δ-toxin was found to induce degranulation of mast cells. Degranulation of mast cells could enhance bacterial clearance and protection from future SA infection but lead to exacerbation of atopic dermatitis. Because it remains to be determined how δ-toxin triggers degranulation, we investigated δ-toxin-induced changes in murine bone marrow-derived cultured mast cells in this study. We found that δ-toxin-induced degranulation could be classified into two phases, an early Ca2+-independent and a late Ca2+-dependent phase. Recent studies suggest that NOD-like receptor family, pyrin domain containing 3 is involved in the degranulation of mast cells, raising a possibility that leakage of K+ induced by δ-toxin is involved in the Ca2+-independent phase. However, Ca2+-independent degranulation remains unchanged although Ca2+-influx and degranulation induced by δ-toxin were significantly suppressed in the presence of high concentrations of K+. Because actin depolymerization was reported to induce degranulation in the absence of Ca2+ in the permeabilized rat peritoneal mast cells, a slow but steady decrease in the amount of filamentous actin observed here may be involved in Ca2+-independent degranulation induced by δ-toxin. Although Mas-related G protein-coupled receptor (MRGPR) X2 in humans and Mrgprb2 in mice are regarded as the receptors responsible for immunoglobulin E-independent degranulation, δ-toxin-induced degranulation remained unchanged in Mrgprb2-/- mast cells. Our findings pave the way for identification of the target receptors of δ-toxin.
Collapse
Affiliation(s)
- Kang Liu
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Tomoaki Katayama
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hitomi Sato
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Yuho Hamaoka-Tamura
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| | - Michiko Saito
- Bioscience Research Center, Kyoto Pharmaceutical University
| | - Kazuyuki Furuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Satoshi Tanaka
- Laboratory of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
4
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
5
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
6
|
Asai H, Kato K, Suzuki M, Takahashi M, Miyata E, Aoi M, Kumazawa R, Nagashima F, Kurosaki H, Aoyagi Y, Fukuishi N. Potential Anti-allergic Effects of Bibenzyl Derivatives from Liverworts, Radula perrottetii. PLANTA MEDICA 2022; 88:1069-1077. [PMID: 35081628 DOI: 10.1055/a-1750-3765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The liverwort Radula perrottetii contains various bibenzyl derivatives which are known to possess various biological activities, such as anti-inflammatory effects. Mast cells (MC) play crucial roles in allergic and inflammatory diseases; thus, inhibition of MC activation is pivotal for the treatment of allergic and inflammatory disorders. We investigated the effects of perrottetin D (perD), isolated from Radula perrottetii, and perD diacetate (Ac-perD) on antigen-induced activation of MCs. Bone marrow-derived MCs (BMMCs) were generated from C57BL/6 mice. The degranulation ratio, histamine release, and the interleukin (IL)-4 and leukotriene B4 productions on antigen-triggered BMMC were investigated. Additionally, the effects of the bibenzyls on binding of IgE to FcεRI were observed by flow cytometry, and signal transduction proteins was examined by Western blot. Furthermore, binding of the bibenzyls to the Fyn kinase domain was calculated. At 10 µM, perD decreased the degranulation ratio (p < 0.01), whereas 10 µM Ac-perD down-regulated IL-4 production (p < 0.05) in addition to decreasing the degranulation ratio (p < 0.01). Both compounds tended to decrease histamine release at a concentration of 10 µM. Although 10 µM perD reduced only Syk phosphorylation, 10 µM Ac-perD diminished phosphorylation of Syk, Gab2, PLC-γ, and p38. PerD appeared to selectively bind Fyn, whereas Ac-perD appeared to act as a weak but broad-spectrum inhibitor of kinases, including Fyn. In conclusion, perD and Ac-perD suppressed the phosphorylation of signal transduction molecules downstream of the FcεRI and consequently inhibited degranulation, and/or IL-4 production. These may be beneficial potential lead compounds for the development of novel anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Koichi Kato
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moe Suzuki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Misato Takahashi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Erika Miyata
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Moeka Aoi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Reika Kumazawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | | | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Aichi, Japan
| |
Collapse
|
7
|
Shaik GM, Draberova L, Cernohouzova S, Tumova M, Bugajev V, Draber P. Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions. J Biol Chem 2022; 298:102497. [PMID: 36115460 PMCID: PMC9587013 DOI: 10.1016/j.jbc.2022.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pentacyclic triterpenoids, including ursolic acid (UA), are bioactive compounds with multiple biological activities involving anti-inflammatory effects. However, the mode of their action on mast cells, key players in the early stages of allergic inflammation, and underlying molecular mechanisms remain enigmatic. To better understand the effect of UA on mast cell signaling, here we examined the consequences of short-term treatment of mouse bone marrow-derived mast cells with UA. Using IgE-sensitized and antigen- or thapsigargin-activated cells, we found that 15 min exposure to UA inhibited high affinity IgE receptor (FcεRI)–mediated degranulation, calcium response, and extracellular calcium uptake. We also found that UA inhibited migration of mouse bone marrow-derived mast cells toward antigen but not toward prostaglandin E2 and stem cell factor. Compared to control antigen-activated cells, UA enhanced the production of tumor necrosis factor-α at the mRNA and protein levels. However, secretion of this cytokine was inhibited. Further analysis showed that UA enhanced tyrosine phosphorylation of the SYK kinase and several other proteins involved in the early stages of FcεRI signaling, even in the absence of antigen activation, but inhibited or reduced their further phosphorylation at later stages. In addition, we show that UA induced changes in the properties of detergent-resistant plasma membrane microdomains and reduced antibody-mediated clustering of the FcεRI and glycosylphosphatidylinositol-anchored protein Thy-1. Finally, UA inhibited mobility of the FcεRI and cholesterol. These combined data suggest that UA exerts its effects, at least in part, via lipid-centric plasma membrane perturbations, hence affecting the functions of the FcεRI signalosome.
Collapse
Affiliation(s)
- Gouse M Shaik
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sara Cernohouzova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Magda Tumova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Viktor Bugajev
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
9
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
10
|
Park SJ, Sim KH, Shrestha P, Yang JH, Lee YJ. Perfluorooctane sulfonate and bisphenol A induce a similar level of mast cell activation via a common signaling pathway, Fyn-Lyn-Syk activation. Food Chem Toxicol 2021; 156:112478. [PMID: 34363875 DOI: 10.1016/j.fct.2021.112478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023]
Abstract
Perfluoroalkyl compounds (PFCs) as food contaminants are widely distributed persistent organic pollutants (POPs) and have been suggested to induce immune dysfunction. However, their effects on immune function are not conclusive. Mast cells play a central role in allergic and non-allergic inflammatory responses. Therefore, we have examined the effects of PFCs (PFHxS, PFOA, PFOS) on mast cell-mediated inflammatory responses using in vitro mouse bone marrow-derived mast cells (BMMCs) and human mast cells (HMC-1) and in vivo mice model. The effects of PFCs were compared with those of bisphenol A (BPA), a well-studied environmental pollutant. Among PFCs tested, PFOS had the highest effects. Both PFOS and BPA increased degranulation and production of inflammatory eicosanoids in mast cells at a similar level, which subsequently led to increased skin edema and serum LTC4 and PGD2 in mice. Both PFOS and BPA increased not only downstream signaling (PLCγ1, AKT, ERK), but also upstream signaling (Fyn, Lyn, Syk/LAT) in mast cells. Taken together, PFOS and BPA induce mast cell-mediated inflammatory responses via a common signaling pathways. Our results may help establish the scientific basis for understanding the etiology of mast cell-mediated inflammatory responses and improve the immune dysfunction risk assessment for emerging POPs such as PFCs.
Collapse
Affiliation(s)
- Sung-Joon Park
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Kyeong Hwa Sim
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Prafulla Shrestha
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jae-Ho Yang
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Youn Ju Lee
- Department of Pharmacology/Toxicology, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol 2021; 72:51-58. [PMID: 33838574 DOI: 10.1016/j.coi.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Here we update receptor proximal and distant signaling events of the mast cell high affinity IgE receptor (FcεRI) launching immediate type I hypersensitivity and an inflammatory cytokine-chemokine cascade. Different physiologic antigen concentrations, their affinity, and valency for the IgE ligand produce distinct intracellular signaling events with different outcomes. Investigating mast cell degranulation has revealed a complex molecular machinery that relays proximal signaling to cytoskeletal reorganization, granule transport and membrane fusion. Several new phosphorylation- and calcium-responsive effectors have been described. FcεRI signaling also promotes de novo gene transcription. Recent progress has identified enhancers at genes that are upregulated in mast cells after stimulation through FcεRI using next generation sequencing methods. Enhancers at genes that respond to antigenic stimulation in human mast cells revealed Ca2+-dependency. Stimulation-responsive super enhancers in mouse mast cells have also been identified. Mast cell lineage-determining transcription factor GATA2 primes these enhancers to respond to antigenic stimulation.
Collapse
Affiliation(s)
- Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, Paris, France.
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Trigonelline: An alkaloid with anti-degranulation properties. Mol Immunol 2020; 118:201-209. [DOI: 10.1016/j.molimm.2019.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/23/2023]
|
13
|
Draberova L, Draberova H, Potuckova L, Halova I, Bambouskova M, Mohandas N, Draber P. Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells. Front Immunol 2020; 10:3068. [PMID: 31993060 PMCID: PMC6970983 DOI: 10.3389/fimmu.2019.03068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
Collapse
Affiliation(s)
- Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lucie Potuckova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Monika Bambouskova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, United States
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
14
|
Vo TS, Le TT, Kim SY, Ngo DH. The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk fruits on downregulation of FcɛRI-mediated mast cell activation. J Food Biochem 2020; 44:e13143. [PMID: 31910490 DOI: 10.1111/jfbc.13143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Rhodomyrtus tomentosa was reported to contain various bioactive metabolites, especially phenolic compounds. In the present study, the suppressive activity of phenolic compound from R. tomentosa fruits on mast cell activation was investigated in vitro. The result showed that myricetin was isolated from R. tomentosa fruits and its characterization was identified by nuclear magnetic resonance spectroscopy. Notably, myricetin was found to be effective in inhibition of mast cell degranulation by attenuating the release of β-hexosaminidase and the elevation of intracellular calcium. Moreover, myricetin exhibited inhibitory effect on the production of IL-4 and Tumor necrosis factor alpha (TNF-α) in a concentration-dependent manner. Furthermore, high antioxidant activity of myricetin due to scavenging 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ABTS+ radicals was also evidenced. Notably, the activation of FcɛRI-mediated signaling molecules including Syk, PLCγ, and NF-κB was also suppressed by myricetin treatment. Accordingly, myricetin from R. tomentosa fruits could be suggested as a functional food for the amelioration of allergic diseases. PRACTICAL APPLICATIONS: Polyphenol have been shown to exert various biological activities and health beneficial effects. Results from the present study revealed that myricetin from R. tomentosa fruits possesses the inhibitory effect on allergic response in mast cells. Therefore, myricetin from R. tomentosa fruits could be developed as a functional ingredient for the amelioration of allergic diseases.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tin Thanh Le
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - So-Yeon Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Dai-Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
15
|
Nam ST, Kim HW, Kim HS, Park YH, Lee D, Lee MB, Min KY, Kim YM, Choi WS. Furaltadone suppresses IgE-mediated allergic response through the inhibition of Lyn/Syk pathway in mast cells. Eur J Pharmacol 2018; 828:119-125. [PMID: 29588153 DOI: 10.1016/j.ejphar.2018.03.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
Mast cells are critical cells that prompt various allergic response-inducing factors, contributing to allergic diseases. While used as an antibiotic for livestock, there is no study on the effect of furaltadone on allergic response. This study investigated the effect of furaltadone on mast cells and passive cutaneous anaphylaxis (PCA). Furaltadone inhibited the degranulation of mast cells stimulated by antigen (IC50, ~ 3.9 μM), and also suppressed the production of tumor necrosis factor (TNF)-α and interleukin (IL)-4 in a concentration dependent manner. In addition, furaltadone inhibited allergic responses in an acute allergy animal model, PCA. Further investigation on the mechanism for these inhibitory effects of furaltadone found that the activities of Lyn/Syk and Syk-dependent downstream proteins such as mitogen-activated protein (MAP) kinases were inhibited by furaltadone in mast cells. Taken together, this study demonstrates that furaltadone inhibits the activation of mast cells by antigen via the suppression of the Lyn/Syk pathway and ameliorates allergic responses in vivo.
Collapse
Affiliation(s)
- Seung Taek Nam
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyun Woo Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea.
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
16
|
Cazzola M, Calzetta L, Matera MG, Hanania NA, Rogliani P. How does race/ethnicity influence pharmacological response to asthma therapies? Expert Opin Drug Metab Toxicol 2018. [DOI: 10.1080/17425255.2018.1449833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
17
|
Hosoi T, Ino S, Ohnishi F, Todoroki K, Yoshii M, Kakimoto M, Müller CE, Ozawa K. Mechanisms of the action of adenine on anti-allergic effects in mast cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:97-105. [PMID: 29094492 PMCID: PMC5818451 DOI: 10.1002/iid3.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/19/2022]
Abstract
Introduction Mast cells play an important role in allergic responses. Methods We herein demonstrated the mechanisms of inhibitory effect of adenine on IgE/antigen‐induced degranulation and TNF‐α release in mast cells. Results We found that these effects were dependent on the amino group of adenine because purine only weakly inhibited degranulation. Adenine also inhibited Ca2+ ionophore‐ and thapsigargin‐induced degranulation, however, this inhibitory effect was weaker than that of the antigen. Therefore, the inhibitory effects of adenine on degranulation may be mediated before as well as after the Ca2+ raise under the antigen stimulus. Adenine inhibited antigen‐induced Syk and the subsequent induction of AKT and ERK activation under FcϵRI‐mediated signal. Adenine also attenuated antigen‐induced increase in Ca2+. Furthermore, adenine inhibited IgE/antigen‐induced IKKα/β activation, which is involved in degranulation. Finally, adenine protected mice against anaphylactic allergic responses in vivo. Conclusions The present study revealed a key role of adenine in the attenuation of allergic responses through the inhibition of Syk‐mediated signal transduction and IKK‐mediated degranulation.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shinsuke Ino
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Fumie Ohnishi
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kenichi Todoroki
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Michiko Yoshii
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mai Kakimoto
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Koichiro Ozawa
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
18
|
Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS. Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 2017; 28:3397-3414. [PMID: 28855374 PMCID: PMC5687039 DOI: 10.1091/mbc.e17-06-0350] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 11/11/2022] Open
Abstract
Cross-linking of immunoglobulin E-bound FcεRI triggers multiple cellular responses, including degranulation and cytokine production. Signaling is dependent on recruitment of Syk via docking of its dual SH2 domains to phosphorylated tyrosines within the FcεRI immunoreceptor tyrosine-based activation motifs. Using single-molecule imaging in live cells, we directly visualized and quantified the binding of individual mNeonGreen-tagged Syk molecules as they associated with the plasma membrane after FcεRI activation. We found that Syk colocalizes transiently to FcεRI and that Syk-FcεRI binding dynamics are independent of receptor aggregate size. Substitution of glutamic acid for tyrosine between the Syk SH2 domains (Syk-Y130E) led to an increased Syk-FcεRI off-rate, loss of site-specific Syk autophosphorylation, and impaired downstream signaling. Genome edited cells expressing only Syk-Y130E were deficient in antigen-stimulated calcium release, degranulation, and production of some cytokines (TNF-a, IL-3) but not others (MCP-1, IL-4). We propose that kinetic discrimination along the FcεRI signaling pathway occurs at the level of Syk-FcεRI interactions, with key outcomes dependent upon sufficiently long-lived Syk binding events.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark J Olah
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Peter K Relich
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Genevieve K Phillips
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131 .,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
19
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
20
|
Shelby SA, Veatch SL, Holowka DA, Baird BA. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol Biol Cell 2016; 27:3645-3658. [PMID: 27682583 PMCID: PMC5221596 DOI: 10.1091/mbc.e16-06-0425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Spatial targeting of signaling components to activated receptors on the plasma membrane is key for initiating signal transduction. The actin cytoskeleton restricts antigen-stimulated colocalization of IgE-FcεRI with membrane-anchored signaling partner Lyn kinase, and this regulation is mediated by organization of plasma membrane lipids. The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids.
Collapse
Affiliation(s)
- Sarah A Shelby
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - David A Holowka
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
21
|
Blank U, Charles N, Benhamou M. The high-affinity immunoglobulin E receptor as pharmacological target. Eur J Pharmacol 2016; 778:24-32. [DOI: 10.1016/j.ejphar.2015.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023]
|
22
|
Shim J, Kennedy RH, Weatherly LM, Hutchinson LM, Pelletier JH, Hashmi HN, Blais K, Velez A, Gosse JA. Arsenic inhibits mast cell degranulation via suppression of early tyrosine phosphorylation events. J Appl Toxicol 2016; 36:1446-59. [PMID: 27018130 DOI: 10.1002/jat.3300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/18/2015] [Accepted: 01/05/2016] [Indexed: 12/22/2022]
Abstract
Exposure to arsenic is a global health concern. We previously documented an inhibitory effect of inorganic Arsenite on IgE-mediated degranulation of RBL-2H3 mast cells (Hutchinson et al., 2011; J. Appl. Toxicol. 31: 231-241). Mast cells are tissue-resident cells that are positioned at the host-environment interface, thereby serving vital roles in many physiological processes and disease states, in addition to their well-known roles in allergy and asthma. Upon activation, mast cells secrete several mediators from cytoplasmic granules, in degranulation. The present study is an investigation of Arsenite's molecular target(s) in the degranulation pathway. Here, we report that arsenic does not affect degranulation stimulated by either the Ca(2) (+) ionophore A23187 or thapsigargin, which both bypass early signaling events. Arsenic also does not alter degranulation initiated by another non-IgE-mediated mast cell stimulant, the G-protein activator compound 48/80. However, arsenic inhibits Ca(2) (+) influx into antigen-activated mast cells. These results indicate that the target of arsenic in the degranulation pathway is upstream of the Ca(2) (+) influx. Phospho-Syk and phospho-p85 phosphoinositide 3-kinase enzyme-linked immunosorbent assays data show that arsenic inhibits early phosphorylation events. Taken together, this evidence indicates that the mechanism underlying arsenic inhibition of mast cell degranulation occurs at the early tyrosine phosphorylation steps in the degranulation pathway. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Rachel H Kennedy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA
| | - Lisa M Weatherly
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA
| | - Lee M Hutchinson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Jonathan H Pelletier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Hina N Hashmi
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Kayla Blais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Alejandro Velez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, 04469, USA. .,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine, 04469, USA.
| |
Collapse
|
23
|
Hasan M, Gruber E, Cameron J, Leifer CA. TLR9 stability and signaling are regulated by phosphorylation and cell stress. J Leukoc Biol 2016; 100:525-33. [PMID: 26957214 DOI: 10.1189/jlb.2a0815-337r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/02/2016] [Indexed: 12/27/2022] Open
Abstract
Innate sensing of pathogens elicits protective immune responses through pattern recognition receptors, including Toll-like receptors. Although signaling by Toll-like receptors is regulated at multiple steps, including localization, trafficking, proteolytic cleavage, and phosphorylation, the significance of post-translational modifications and cellular stress response on Toll-like receptor stability and signaling is still largely unknown. In the present study, we investigated the role of cytoplasmic tyrosine motifs in Toll-like receptor-9 stability, proteolytic cleavage, and signaling. We demonstrated that tyrosine phosphorylation is essential for mouse Toll-like receptor-9 protein stability and signaling. Upon inhibition of tyrosine kinases with piceatannol, Toll-like receptor-9 tyrosine phosphorylation induced by CpG deoxyribonucleic acid was inhibited, which correlated with decreased signaling. Furthermore, inhibition of Src kinases with 1-tert-Butyl-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine also inhibited response to CpG deoxyribonucleic acid. Toll-like receptor-9 protein stability was also sensitive to autophagy, the cellular stress response pathway, and infection by a deoxyribonucleic acid virus. Whereas autophagy induced by rapamycin or low serum levels caused a preferential loss of the mature p80 proteolytic cleavage product, infection with herpes simplex virus-1 and induction of cell stress with tunicamycin caused preferential loss of full-length Toll-like receptor-9, which is localized to the endoplasmic reticulum. Our data reveal new information about the stability and signaling of Toll-like receptor-9 and suggest that immune evasion mechanisms may involve targeted loss of innate sensing receptors.
Collapse
Affiliation(s)
- Maroof Hasan
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Erika Gruber
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Jody Cameron
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Rai S, Bhatnagar S. Hyperlipidemia, Disease Associations, and Top 10 Potential Drug Targets: A Network View. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:152-68. [DOI: 10.1089/omi.2015.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India
| |
Collapse
|
25
|
Li X, Kwon O, Kim DY, Taketomi Y, Murakami M, Chang HW. NecroX-5 suppresses IgE/Ag-stimulated anaphylaxis and mast cell activation by regulating the SHP-1-Syk signaling module. Allergy 2016; 71:198-209. [PMID: 26456627 DOI: 10.1111/all.12786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND IgE/Ag-stimulated mast cells release various pro-allergic inflammatory mediators, including histamine, eicosanoids, and pro-inflammatory cytokines. NecroX-5, a cell permeable necrosis inhibitor, showed cytoprotective effects in both in vitro and in vivo models. However, the anti-allergic effect of NecroX-5 has not yet been investigated. The aims of this study were to evaluate the anti-allergic activity of NecroX-5 in vivo and to investigate the underlying mechanism in vitro. METHODS The anti-allergic activity of NecroX-5 was evaluated in vitro using bone marrow-derived mast cells (BMMCs) and IgE receptor-bearing RBL-2H3 or KU812 cells and in vivo using a mouse model of passive anaphylaxis. The levels of histamine, eicosanoids (PGD2 and LTC4 ), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured using enzyme immunoassay kits. The mechanism underlying the action of NecroX-5 was investigated using immunoblotting, immunoprecipitation, and gene knockdown techniques. RESULTS NecroX-5 markedly inhibited mast cell degranulation and the synthesis of eicosanoids, TNF-α, and IL-6 by suppressing the activation of Syk, LAT, phospholipase Cγ1, MAP kinases, the Akt/NF-κB pathway, and intracellular Ca(2+) mobilization via the activation of phosphatase SHP-1. Oral administration of NecroX-5 effectively suppressed mast cell-dependent passive cutaneous and systemic anaphylactic reactions in a dose-dependent manner. CONCLUSIONS NecroX-5 might be a potential candidate for the development of a novel anti-allergic agent that suppresses IgE-dependent mast cells signaling.
Collapse
Affiliation(s)
- X. Li
- College of Pharmacy; Yeungnam University; Gyeongsan Gyeongbuk Korea
| | - O. Kwon
- College of Pharmacy; Yeungnam University; Gyeongsan Gyeongbuk Korea
| | - D. Y. Kim
- College of Pharmacy; Yeungnam University; Gyeongsan Gyeongbuk Korea
| | - Y. Taketomi
- Lipid Metabolism Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - M. Murakami
- Lipid Metabolism Project; Tokyo Metropolitan Institute of Medical Science; Tokyo Japan
| | - H. W. Chang
- College of Pharmacy; Yeungnam University; Gyeongsan Gyeongbuk Korea
| |
Collapse
|
26
|
Shirley D, McHale C, Gomez G. Resveratrol preferentially inhibits IgE-dependent PGD2 biosynthesis but enhances TNF production from human skin mast cells. Biochim Biophys Acta Gen Subj 2016; 1860:678-85. [PMID: 26777630 DOI: 10.1016/j.bbagen.2016.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Resveratrol, a natural polyphenol found in the skin of red grapes, is reported to have anti-inflammatory properties including protective effects against aging. Consequently, Resveratrol is a common nutritional supplement and additive in non-prescription lotions and creams marketed as anti-aging products. Studies in mice and with mouse bone marrow-derived mast cells (BMMCs) have indicated anti-allergic effects of Resveratrol. However, the effects of Resveratrol on human primary mast cells have not been reported. METHODS Human mast cells were isolated and purified from normal skin tissue of different donors. The effect of Resveratrol on IgE-dependent release of allergic inflammatory mediators was determined using various immunoassays, Western blotting, and quantitative real-time PCR. RESULTS Resveratrol at low concentrations (≤10 μM) inhibited PGD2 biosynthesis but not degranulation. Accordingly, COX-2 expression was inhibited but phosphorylation of Syk, Akt, p38, and p42/44 (ERKs) remained intact. Surprisingly, TNF production was significantly enhanced with Resveratrol. At a high concentration (100 μM), Resveratrol significantly inhibited all parameters analyzed except Syk phosphorylation. CONCLUSIONS Here, we show that Resveratrol at low concentrations exerts its anti-inflammatory properties by preferentially targeting the arachidonic acid pathway. We also demonstrate a previously unrecognized pro-inflammatory effect of Resveratrol--the enhancement of TNF production from human mature mast cells following IgE-dependent activation. GENERAL SIGNIFICANCE These findings suggest that Resveratrol as a therapeutic agent could inhibit PGD2-mediated inflammation but would be ineffective against histamine-mediated allergic reactions. However, Resveratrol could potentially exacerbate or promote allergic inflammation by enhancing IgE-dependent TNF production from mast cells in human skin.
Collapse
Affiliation(s)
- Devon Shirley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
27
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
28
|
Kassas A, Moura IC, Yamashita Y, Scheffel J, Guérin-Marchand C, Blank U, Sims PJ, Wiedmer T, Monteiro RC, Rivera J, Charles N, Benhamou M. Regulation of the tyrosine phosphorylation of Phospholipid Scramblase 1 in mast cells that are stimulated through the high-affinity IgE receptor. PLoS One 2014; 9:e109800. [PMID: 25289695 PMCID: PMC4188579 DOI: 10.1371/journal.pone.0109800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 09/14/2014] [Indexed: 01/05/2023] Open
Abstract
Engagement of high-affinity immunoglobulin E receptors (FcεRI) activates two signaling pathways in mast cells. The Lyn pathway leads to recruitment of Syk and to calcium mobilization whereas the Fyn pathway leads to phosphatidylinositol 3-kinase recruitment. Mapping the connections between both pathways remains an important task to be completed. We previously reported that Phospholipid Scramblase 1 (PLSCR1) is phosphorylated on tyrosine after cross-linking FcεRI on RBL-2H3 rat mast cells, amplifies mast cell degranulation, and is associated with both Lyn and Syk tyrosine kinases. Here, analysis of the pathway leading to PLSCR1 tyrosine phosphorylation reveals that it depends on the FcRγ chain. FcεRI aggregation in Fyn-deficient mouse bone marrow-derived mast cells (BMMC) induced a more robust increase in FcεRI-dependent tyrosine phosphorylation of PLSCR1 compared to wild-type cells, whereas PLSCR1 phosphorylation was abolished in Lyn-deficient BMMC. Lyn association with PLSCR1 was not altered in Fyn-deficient BMMC. PLSCR1 phosphorylation was also dependent on the kinase Syk and significantly, but partially, dependent on detectable calcium mobilization. Thus, the Lyn/Syk/calcium axis promotes PLSCR1 phosphorylation in multiple ways. Conversely, the Fyn-dependent pathway negatively regulates it. This study reveals a complex regulation for PLSCR1 tyrosine phosphorylation in FcεRI-activated mast cells and that PLSCR1 sits at a crossroads between Lyn and Fyn pathways.
Collapse
Affiliation(s)
- Asma Kassas
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Ivan C. Moura
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Yumi Yamashita
- Laboratory of Molecular Immunogenetics, Molecular Immunology and Inflammation Branch, NIAMSD, NIH, Bethesda, Maryland, United States of America
| | - Jorg Scheffel
- Laboratory of Molecular Immunogenetics, Molecular Immunology and Inflammation Branch, NIAMSD, NIH, Bethesda, Maryland, United States of America
| | - Claudine Guérin-Marchand
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Ulrich Blank
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Peter J. Sims
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Therese Wiedmer
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Renato C. Monteiro
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
| | - Juan Rivera
- Laboratory of Molecular Immunogenetics, Molecular Immunology and Inflammation Branch, NIAMSD, NIH, Bethesda, Maryland, United States of America
| | - Nicolas Charles
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
- * E-mail: (NC); (MB)
| | - Marc Benhamou
- INSERM U1149, Faculté de Médecine Xavier Bichat, Paris, France
- University Paris-Diderot, Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX, DHU FIRE, Paris, France
- * E-mail: (NC); (MB)
| |
Collapse
|
29
|
Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:270302. [PMID: 25045209 PMCID: PMC4090447 DOI: 10.1155/2014/270302] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/27/2014] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.
Collapse
|
30
|
Hwang SL, Lu Y, Li X, Kim YD, Cho YS, Jahng Y, Son JK, Lee YJ, Kang W, Taketomi Y, Murakami M, Moon TC, Chang HW. ERK1/2 antagonize AMPK-dependent regulation of FcεRI-mediated mast cell activation and anaphylaxis. J Allergy Clin Immunol 2014; 134:714-721.e7. [PMID: 24948367 DOI: 10.1016/j.jaci.2014.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extracellular signal-regulated kinases 1/2 (ERK1/2) make important contributions to allergic responses via their regulation of degranulation, eicosanoid production, and cytokine expression by mast cells, yet the mechanisms underlying their positive effects on FcεRI-dependent signaling are not fully understood. Recently, we reported that mast cell activation and anaphylaxis are negatively regulated by AMP-activated protein kinase (AMPK). However, little is known about the relationship between ERK1/2-mediated positive and the AMPK-mediated negative regulation of FcεRI signaling in mast cells. OBJECTIVE We investigated possible interactions between ERK1/2 and AMPK in the modulation of mast cell signaling and anaphylaxis. METHODS Wild-type or AMPKα2(-/-) mice, or bone marrow-derived mast cells obtained from these mice, were treated with either chemical agents or small interfering RNAs that modulated the activity or expression of ERK1/2 or AMPK to evaluate the functional interplay between ERK1/2 and AMPK in FcεRI-dependent signaling. RESULTS The ERK1/2 pathway inhibitor U0126 and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside similarly inhibited FcεRI-mediated mast cell signals in vitro and anaphylaxis in vivo. ERK1/2-specific small interfering RNA also mimicked this effect on FcεRI signals. Moreover, AMPKα2 knockdown or deficiency led to increased FcεRI-mediated mast cell activation and anaphylaxis that were insensitive to U0126 or activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, suggesting that the suppression of FcεRI signals by the inhibition of the ERK1/2 pathway relies largely on AMPK activation. ERK1/2 controlled AMPK activity by regulating its subcellular translocation. CONCLUSIONS ERK1/2 ablated the AMPK-dependent negative regulatory axis, thereby activating FcεRI signals in mast cells.
Collapse
Affiliation(s)
| | - Yue Lu
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xian Li
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Yong Deuk Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Yurndong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jong-Keun Son
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
31
|
Gomez G, Nardone V, Lotfi-Emran S, Zhao W, Schwartz LB. Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells. J Clin Immunol 2014; 33:1349-59. [PMID: 24122028 DOI: 10.1007/s10875-013-9950-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/03/2013] [Indexed: 01/05/2023]
Abstract
PURPOSE Adenosine (ADO) can enhance and inhibit mast cell degranulation. Potentiation of degranulation occurs at relatively low concentrations of ADO (10−6–10−5 M) through triggering of A3AR, whereas, inhibition occurs at higher concentrations of ADO reportedly through triggering of A2aAR. However, the discrepancy in the concentration of ADO that inhibits degranulation and that required to trigger ADORs suggests a different mechanism. The purpose of this study is to determine the mechanism by which ADO inhibits human mast cell degranulation. METHODS We compare the effectiveness of A2aAR specific antagonist ZM241385 and equilibrative nucleoside transporter inhibitors Dipyridamole and NBMPR in preventing ADO-mediated inhibition of FcεRI-induced degranulation of human skin mast cells (hSMCs). Western blotting is done to analyze the effect of ADO on FcεRI-induced Syk phosphorylation. RESULTS Dipyridamole and NBMPR completely and dose-dependently prevented ADO from inhibiting FcεRI-induced degranulation in all hSMC preparations. In contrast, ZM241385 at 10−5 M was effective in only 3 of 10 hSMC preparations. Moreover, NBMPR was effective even in those hSMC preparations not responsive to ZM241385. ADO inhibited degranulation induced by FcεRI crosslinking, but not that induced by complement component 5a (C5a), Substance P or calcium ionophore. Accordingly, ADO significantly attenuated FcεRI-induced phosphorylation of Syk at the critical activating tyrosine (Y525). CONCLUSION Blocking the influx of ADO, but not A2aAR signals, is necessary and sufficient to prevent ADO from inhibiting FcεRI-induced mast cell degranulation. Thus, ADO specifically inhibits FcεRI-induced degranulation of hSMCs primarily by an intracellular mechanism that requires its influx via equilibrative nucleoside transporter 1 (ENT1).
Collapse
|
32
|
Holowka D, Korzeniowski MK, Bryant KL, Baird B. Polyunsaturated fatty acids inhibit stimulated coupling between the ER Ca(2+) sensor STIM1 and the Ca(2+) channel protein Orai1 in a process that correlates with inhibition of stimulated STIM1 oligomerization. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1210-6. [PMID: 24769339 DOI: 10.1016/j.bbalip.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been found to be effective inhibitors of cell signaling in numerous contexts, and we find that acute addition of micromolar PUFAs such as linoleic acid effectively inhibit of Ca(2+) responses in mast cells stimulated by antigen-mediated crosslinking of FcεRI or by the SERCA pump inhibitor, thapsigargin. In contrast, the saturated fatty acid, stearic acid, with the same carbon chain length as linoleic acid does not inhibit these responses. Consistent with this inhibition of store-operated Ca(2+) entry (SOCE), linoleic acid inhibits antigen-stimulated granule exocytosis to a similar extent. Using the fluorescently labeled plasma membrane Ca(2+) channel protein, AcGFP-Orai1, together with the labeled ER Ca(2+) sensor protein, STIM1-mRFP, we monitor stimulated coupling of these proteins that is essential for SOCE with a novel spectrofluorimetric resonance energy transfer method. We find effective inhibition of this stimulated coupling by linoleic acid that accounts for the inhibition of SOCE. Moreover, we find that linoleic acid induces some STIM1-STIM1 association, while inhibiting stimulated STIM1 oligomerization that precedes STIM1-Orai1 coupling. We hypothesize that linoleic acid and related PUFAs inhibit STIM1-Orai1 coupling by a mechanism that involves perturbation of ER membrane structure, possibly by disrupting electrostatic interactions important in STIM1 oligomerization. Thisarticle is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.
| | - Marek K Korzeniowski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Abstract
Salmonella bacteria often cause food-borne diseases. In this issue of Immunity, Choi et al. (2013) demonstrate that the Salmonella Typhimurium-secreted protein tyrosine phosphatase, SptP, suppresses mast cell degranulation, which enables bacterial dissemination.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan.
| | - Tomoaki Ando
- Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
34
|
Type II phosphatidylinositol 4-kinases interact with FcεRIγ subunit in RBL-2H3 cells. Mol Cell Biochem 2014; 390:197-203. [PMID: 24481753 DOI: 10.1007/s11010-014-1970-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Ligation of high-affinity IgE receptor I (FcεRI) on RBL-2H3 cells leads to recruitment of FcεRI and type II phosphatidylinositol 4-kinases (PtdIns 4-kinases) into lipid rafts. Lipid raft integrity is required for the activation of type II PtdIns 4-kinases and signal transduction through FcεRIγ during RBL-2H3 cell activation. However, the molecular mechanism by which PtdIns 4-kinases are coupled to FcεRI signaling is elusive. Here, we report association of type II PtdIns 4-kinase activity with FcεRIγ subunit in anti-FcεRIγ immunoprecipitates. FcεRIγ-associated PtdIns 4-kinase activity increases threefold upon FcεRI ligation in anti-FcεRIγ immunoprecipitates. Biochemical characterization of PtdIns 4-kinase activity associated with FcεRIγ reveals that it is a type II PtdIns 4-kinases. Canonical tyrosine residues mutation in FcεRIγ ITAM (Y65 and Y76) reveals that these two tyrosine residues in γ subunit are required for its interaction with type II PtdIns 4-kinases.
Collapse
|
35
|
Okayama Y, Matsuda A, Kashiwakura JI, Sasaki-Sakamoto T, Nunomura S, Shimokawa T, Yamaguchi K, Takahashi S, Ra C. Highly expressed cytoplasmic FcεRIβ in human mast cells functions as a negative regulator of the FcRγ-mediated cell activation signal. Clin Exp Allergy 2014; 44:238-49. [DOI: 10.1111/cea.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Okayama
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - A. Matsuda
- Department of Ophthalmology; Juntendo University School of Medicine; Tokyo Japan
| | - J.-I. Kashiwakura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Sasaki-Sakamoto
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - S. Nunomura
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - T. Shimokawa
- Allergy and Immunology Group; Research Institute of Medical Science; Nihon University School of Medicine; Tokyo Japan
| | - K. Yamaguchi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - S. Takahashi
- Department of Urology; Nihon University School of Medicine; Tokyo Japan
| | - C. Ra
- Department of Microbiology; Nihon University School of Medicine; Tokyo Japan
| |
Collapse
|
36
|
Abstract
Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.
Collapse
Affiliation(s)
- Lena Kühling
- Emmy Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, Westphalian Wilhelms University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany
| | | |
Collapse
|
37
|
Hwang SL, Li X, Lu Y, Jin Y, Jeong YT, Kim YD, Lee IK, Taketomi Y, Sato H, Cho YS, Murakami M, Chang HW. AMP-activated protein kinase negatively regulates FcεRI-mediated mast cell signaling and anaphylaxis in mice. J Allergy Clin Immunol 2013; 132:729-736.e12. [DOI: 10.1016/j.jaci.2013.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/27/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
38
|
Zhang NN, Park DK, Park HJ. The inhibitory activity of atractylenolide Ш, a sesquiterpenoid, on IgE-mediated mast cell activation and passive cutaneous anaphylaxis (PCA). JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:278-285. [PMID: 23149288 DOI: 10.1016/j.jep.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/17/2012] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE AT Ш, a sesquiterpenoid, is the major component of Atractylodes japonica Koidz that has been used as a traditional oriental medicine. AIM OF THE STUDY We investigated the anti-allergic activity of AT Ш and its mechanism of action. MATERIALS AND METHODS The released amount of β-hexosaminidase in mast cells, a key parameter of degranulation, was measured. Anti-allergic potential of AT Ш was evaluated using passive cutaneous anaphylaxis in vivo. The anti-allergic mechanism of AT Ш was investigated by immunoblotting analysis, RT-PCR and measurement of [Ca(2+)]i in mast cells. RESULTS AT Ш significantly inhibited IgE/Ag-mediated degranulation with an IC(50) value (36 ± 4 μM) in RBL-2H3 cells without affecting cell viability. It also suppressed IgE/Ag-mediated passive cutaneous anaphylaxis (PCA) response with an ED(50) value (65 ± 41 mg/kg) in vivo. AT Ш suppressed the production of interleukin (IL-4) and tumor necrosis factor (TNF)-alpha mRNAs more potent than the Src-family kinase inhibitor PP2 in RBL-2H3 cells at all concentrations. In order to elucidate the anti-allergic mechanisms of AT Ш in mast cells, we examined the activated levels of signaling molecules. AT Ш inhibited the phosphorylation of Lyn, Fyn, Syk, LAT, PLCγ, Gab2, Akt, p38, and JNK kinases expression. IgE/Ag-mediated [Ca(2+)]i elevation was significantly inhibited by AT Ш. CONCLUSIONS Our study suggests that AT Ш might be used as a therapeutic agent for allergic diseases.
Collapse
Affiliation(s)
- Nan-nan Zhang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | |
Collapse
|
39
|
Lee J, Veatch SL, Baird B, Holowka D. Molecular mechanisms of spontaneous and directed mast cell motility. J Leukoc Biol 2012; 92:1029-41. [PMID: 22859829 PMCID: PMC3476239 DOI: 10.1189/jlb.0212091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 07/02/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023] Open
Abstract
Migration is a fundamental function of immune cells, and a role for Ca(2+) in immune cell migration has been an interest of scientific investigations for many decades. Mast cells are the major effector cells in IgE-mediated immune responses, and cross-linking of IgE-FcεRI complexes at the mast cell surface by antigen activates a signaling cascade that causes mast cell activation, resulting in Ca(2+) mobilization and granule exocytosis. These cells are known to accumulate at sites of inflammation in response to parasite and bacterial infections. Using real-time imaging, we monitored chemotactic migration of RBL and rat BMMCs in response to a gradient of soluble multivalent antigen. Here, we show that Ca(2+) influx via Orai1 plays an important role in regulating spontaneous motility and directional migration of mast cells toward antigen via IgER complexes. Inhibition of Ca(2+) influx or knockdown of the Ca(2+) entry channel protein Orai1 by shRNA causes inhibition of both of these processes. In addition, a mutant Syk- shows impaired spontaneous motility and chemotaxis toward antigen that is rescued by expression of Syk. Our findings identify a novel Ca(2+) influx-mediated, Orai1-dependent mechanism for mast cell migration.
Collapse
Affiliation(s)
- Jinmin Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
40
|
Gasparrini F, Molfetta R, Quatrini L, Frati L, Santoni A, Paolini R. Syk-dependent regulation of Hrs phosphorylation and ubiquitination upon FcεRI engagement: Impact on Hrs membrane/cytosol localization. Eur J Immunol 2012; 42:2744-53. [DOI: 10.1002/eji.201142278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/09/2012] [Accepted: 06/06/2012] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Linda Quatrini
- Department of Molecular Medicine; “Sapienza” University of Rome; Rome; Italy
| | | | | | | |
Collapse
|
41
|
Barbu EA, Zhang J, Berenstein EH, Groves JR, Parks LM, Siraganian RP. The transcription factor Zeb2 regulates signaling in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:6278-86. [PMID: 22561153 PMCID: PMC3370126 DOI: 10.4049/jimmunol.1102660] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.
Collapse
Affiliation(s)
- Emilia Alina Barbu
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
42
|
Redhu NS, Gounni AS. The high affinity IgE receptor (FcεRI) expression and function in airway smooth muscle. Pulm Pharmacol Ther 2012; 26:86-94. [PMID: 22580035 DOI: 10.1016/j.pupt.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 12/27/2022]
Abstract
The airway smooth muscle (ASM) is no longer considered as merely a contractile apparatus and passive recipient of growth factors, neurotransmitters and inflammatory mediators signal but a critical player in the perpetuation and modulation of airway inflammation and remodeling. In recent years, a molecular link between ASM and IgE has been established through Fc epsilon receptors (FcεRs) in modulating the phenotype and function of these cells. Particularly, the expression of high affinity IgE receptor (FcεRI) has been noted in primary human ASM cells in vitro and in vivo within bronchial biopsies of allergic asthmatic subjects. The activation of FcεRI on ASM cells suggests a critical yet almost completely ignored network which may modulate ASM cell function in allergic asthma. This review is intended to provide a historical perspective of IgE effects on ASM and highlights the recent updates in the expression and function of FcεRI, and to present future perspectives of activation of this pathway in ASM cells.
Collapse
Affiliation(s)
- Naresh Singh Redhu
- Department of Immunology, Faculty of Medicine, University of Manitoba, 419 Apotex Centre, 750 McDermot Ave, Winnipeg, Manitoba, Canada R3E 0T5
| | | |
Collapse
|
43
|
Álvarez-Errico D, Oliver-Vila I, Aínsua-Enrich E, Gilfillan AM, Picado C, Sayós J, Martín M. CD84 negatively regulates IgE high-affinity receptor signaling in human mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5577-86. [PMID: 22068234 PMCID: PMC3233232 DOI: 10.4049/jimmunol.1101626] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD84 is a self-binding receptor from the CD150 (or signaling lymphocyte activation molecule [SLAM]) family that is broadly expressed in hematopoietic cells. It has been described that the adaptors SLAM-associated protein (SAP) and EWS-FLI1-activated transcript 2 (EAT-2) are critical for CD150 family members' signaling and function. We observed that human mast cells express CD84 but lack SAP or EAT-2, that CD84 is tyrosine phosphorylated upon FcεRI engagement, and that the release of granule contents is reduced when FcεRI is coengaged with CD84 in LAD2 and human CD34(+)-derived mast cells. In addition, we observed that the release of IL-8 and GM-CSF was also reduced in FcεRI/CD84-costimulated cells as compared with FcεRI/Ig control. To understand how CD84 downregulates FcεRI-mediated function, we analyzed signaling pathways affected by CD84 in human mast cells. Our results showed that CD84 dampens FcεRI-mediated calcium mobilization after its co-cross-linking with the receptor. Furthermore, FcεRI-mediated Syk-linker for activation of T cells-phospholipase C-γ1 axis activity is downregulated after CD84 stimulation, compared with FcεRI/Ig control. The inhibitory kinase Fes phosphorylates mainly the inhibitory motif for CD84. Moreover, Fes, which has been described to become phosphorylated after substrate binding, also gets phosphorylated when coexpressed with CD84. Consistently, Fes was observed to be more phosphorylated after CD84 and FcεRI co-cross-linking. The phosphorylation of the protein phosphatase Src homology region 2 domain-containing phosphatase-1 also increases after CD84 and FcεRI coengagement. Taken together, our results show that CD84 is highly expressed in mast cells and that it contributes to the regulation of FcεRI signaling in SAP- and EAT-2-independent and Fes- and Src homology region 2 domain-containing phosphatase-1-dependent mechanisms.
Collapse
Affiliation(s)
- Damiana Álvarez-Errico
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Irene Oliver-Vila
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Networking Research Center on Respiratory Diseases (CIBERES)
| | - Erola Aínsua-Enrich
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - César Picado
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
- Networking Research Center on Respiratory Diseases (CIBERES)
| | - Joan Sayós
- Immunobiology Group, CIBBIM-Nanomedicine Program, Hospital Universitari Vall d’Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Margarita Martín
- Biochemistry Unit, Faculty of Medicine. University of Barcelona, Casanova 143 Barcelona, 08036, Spain
- Laboratory of Clinic and Experimental Immunoallergy, IDIBAPS, Barcelona, Spain
| |
Collapse
|
44
|
Chihara K, Nakashima K, Takeuchi K, Sada K. Association of 3BP2 with SHP-1 regulates SHP-1-mediated production of TNF-α in RBL-2H3 cells. Genes Cells 2011; 16:1133-45. [DOI: 10.1111/j.1365-2443.2011.01557.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Gorjestani S, Yu M, Tang B, Zhang D, Wang D, Lin X. Phospholipase Cγ2 (PLCγ2) is key component in Dectin-2 signaling pathway, mediating anti-fungal innate immune responses. J Biol Chem 2011; 286:43651-43659. [PMID: 22041900 DOI: 10.1074/jbc.m111.307389] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C-type lectin receptors (CLRs) such as Dectin-2 function as pattern recognition receptors to sense fungal infection. However, the signaling pathways induced by these receptors remain largely unknown. Previous studies suggest that the CLR-induced signaling pathway may utilize similar signaling components as the B cell receptor-induced signaling pathway. Phospholipase Cγ2 (PLCγ2) is a key component in B cell receptor signaling, but its role in other signaling pathways has not been fully characterized. Here, we show that PLCγ2 functions downstream of Dectin-2 in response to the stimulation by the hyphal form of Candida albicans, an opportunistic pathogenic fungus. Using PLCγ2- and PLCγ1-deficient macrophages, we found that the lack of PLCγ2, but not PLCγ1, impairs cytokine production in response to infection with C. albicans. PLCγ2 deficiency results in the defective activation of NF-κB and MAPK and a significantly reduced production of reactive oxygen species following fungal challenge. In addition, PLCγ2-deficient mice are defective in clearing C. albicans infection in vivo. Together, these findings demonstrate that PLCγ2 plays a critical role in CLR-induced signaling pathways, governing antifungal innate immune responses.
Collapse
Affiliation(s)
- Sara Gorjestani
- Departments of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030; Cancer Biology Program, The University of Texas, Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Mei Yu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
| | - Bing Tang
- Departments of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Dekai Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, Texas 77030
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin 53226
| | - Xin Lin
- Departments of Molecular and Cellular Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030; Cancer Biology Program, The University of Texas, Graduate School of Biomedical Sciences, Houston, Texas 77030.
| |
Collapse
|
46
|
Zhong XP, Shin J, Gorentla BK, O'Brien T, Srivatsan S, Xu L, Chen Y, Xie D, Pan H. Receptor signaling in immune cell development and function. Immunol Res 2011; 49:109-23. [PMID: 21128010 DOI: 10.1007/s12026-010-8175-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immune cell development and function must be tightly regulated through cell surface receptors to ensure proper responses to pathogen and tolerance to self. In T cells, the signal from the T-cell receptor is essential for T-cell maturation, homeostasis, and activation. In mast cells, the high-affinity receptor for IgE transduces signal that promotes mast cell survival and induces mast cell activation. In dendritic cells and macrophages, the toll-like receptors recognize microbial pathogens and play critical roles for both innate and adaptive immunity against pathogens. Our research explores how signaling from these receptors is transduced and regulated to better understand these immune cells. Our recent studies have revealed diacylglycerol kinases and TSC1/2-mTOR as critical signaling molecules/regulators in T cells, mast cells, dendritic cells, and macrophages.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Papazoglou E, Huang ZY, Sunkari C, Uitto J. The role of Syk kinase in ultraviolet-mediated skin damage. Br J Dermatol 2011; 165:69-77. [PMID: 21410673 DOI: 10.1111/j.1365-2133.2011.10309.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation is the main cause of skin photodamage; the resulting modulation of matrix metalloproteinases (MMPs) leads to collagen degradation. There is no easily accessible molecular indicator of early skin UV damage. OBJECTIVES In this study, we investigated the effects of Syk kinase on MMP expression and evaluated the sensitivity and usefulness of Syk as an early indicator of skin UV damage. METHODS Human dermal fibroblasts (HDFs) were transfected with Syk cDNA to overexpress Syk. MMP-1 expression and Syk activity were determined by Western blot after UV exposure. The effect of Syk on MMP-1 expression in HDFs was further explored by either Syk siRNA or a selective Syk inhibitor. Possible downstream molecules of Syk were also evaluated in HDFs upon UV exposure. The relationship between Syk and collagenase was further explored in vivo (MMP-13, hairless mice). RESULTS Our studies in HDFs demonstrated that both a Syk inhibitor and Syk siRNA were able to inhibit MMP-1 expression in HDFs exposed to UV and that overexpression of Syk increased MMP-1 expression and the activity of JNK kinase, but not p38 or Erk1/2 MAP kinase. UV exposure enhanced both expression and activity of Syk in HDFs. Experiments with hairless mice suggested that Syk expression is an earlier indicator of UV exposure than MMP-13 expression. CONCLUSIONS Our results demonstrate that Syk expression correlates well with increase of MMPs (MMP-1 in humans and MMP-13 in mice) in response to UV exposure. The findings suggest that Syk may be a novel target for the prevention and treatment of skin photodamage by modulating MMPs.
Collapse
Affiliation(s)
- E Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
48
|
Horiguchi T, Ishiguro N, Chihara K, Ogi K, Nakashima K, Sada K, Hori-Tamura N. Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5595-5601. [PMID: 21486000 DOI: 10.1021/jf2005707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The palm fruit açaí is known to have potential health benefits due to its antioxidant scavenging capacities. Pretreatment of IgE-sensitized mouse primary cultured mast cells with açaí pulp resulted in the dramatic suppression of antigen-induced degranulation in a dose-dependent manner. Similarly, açaí suppressed IgE-mediated degranulation and transcription of the cytokine genes from a cultured mast cell line of rat basophilic leukemia (RBL)-2H3 cells. Açaí could selectively inhibit FcεRI signaling pathways. Furthermore, the FcεRI-mediated complementary signaling pathway was also suppressed by açaí. These results demonstrate that açaí is a potent inhibitor of IgE-mediated mast cell activation.
Collapse
Affiliation(s)
- Tomoko Horiguchi
- Laboratory of Biochemistry, Graduate School of Life Science, Kobe Women's University, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Regulation and function of syk tyrosine kinase in mast cell signaling and beyond. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:507291. [PMID: 21776385 PMCID: PMC3135164 DOI: 10.1155/2011/507291] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/23/2011] [Indexed: 01/16/2023]
Abstract
The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk−/− cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.
Collapse
|
50
|
Gasparrini F, Molfetta R, Santoni A, Paolini R. Cbl Family Proteins: Balancing FcεRI-Mediated Mast Cell and Basophil Activation. Int Arch Allergy Immunol 2011; 156:16-26. [DOI: 10.1159/000322236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|