1
|
Lo WL, Huseby ES. The partitioning of TCR repertoires by thymic selection. J Exp Med 2024; 221:e20230897. [PMID: 39167074 PMCID: PMC11338286 DOI: 10.1084/jem.20230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
αβ T cells are critical components of the adaptive immune system; they maintain tissue and immune homeostasis during health, provide sterilizing immunity after pathogen infection, and are capable of eliminating transformed tumor cells. Fundamental to these distinct functions is the ligand specificity of the unique antigen receptor expressed on each mature T cell (TCR), which endows lymphocytes with the ability to behave in a cell-autonomous, disease context-specific manner. Clone-specific behavioral properties are initially established during T cell development when thymocytes use TCR recognition of major histocompatibility complex (MHC) and MHC-like ligands to instruct survival versus death and to differentiate into a plethora of inflammatory and regulatory T cell lineages. Here, we review the ligand specificity of the preselection thymocyte repertoire and argue that developmental stage-specific alterations in TCR signaling control cross-reactivity and foreign versus self-specificity of T cell sublineages.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Hiwa R, Nielsen HV, Mueller JL, Mandla R, Zikherman J. NR4A family members regulate T cell tolerance to preserve immune homeostasis and suppress autoimmunity. JCI Insight 2021; 6:e151005. [PMID: 34343134 PMCID: PMC8492309 DOI: 10.1172/jci.insight.151005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
The NR4A family of orphan nuclear receptors (Nr4a1–3) plays redundant roles to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to unmask redundant functions of the NR4A family in other immune cells. Here we use a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1–/– Nr4a3–/– (double-knockout, DKO) bone marrow developed autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely WT origin. This disease differs qualitatively from that seen with Treg deficiency and is B cell extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional, phenotypic, and transcriptional features of anergy accumulated in chimeric mice. Nevertheless, we observed upregulation of genes encoding inflammatory mediators in anergic DKO T cells, and DKO T cells exhibited enhanced capacity for IL-2 production. These studies reveal cell-intrinsic roles for the NR4A family in both central and peripheral T cell tolerance and demonstrate that each is essential to preserve immune homeostasis.
Collapse
Affiliation(s)
- Ryosuke Hiwa
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Hailyn V Nielsen
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - James L Mueller
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Ravi Mandla
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| | - Julie Zikherman
- Department of Medicine, UCSF Medical Center, San Francisco, United States of America
| |
Collapse
|
3
|
Hu QN, Baldwin TA. Differential roles for Bim and Nur77 in thymocyte clonal deletion induced by ubiquitous self-antigen. THE JOURNAL OF IMMUNOLOGY 2015; 194:2643-53. [PMID: 25687757 DOI: 10.4049/jimmunol.1400030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Negative selection, primarily mediated through clonal deletion of self-reactive thymocytes, is critical for establishing self-tolerance and preventing autoimmunity. Recent studies suggest that the molecular mechanisms of negative selection differ depending on the thymic compartment and developmental stage at which thymocytes are deleted. Using the physiological HY(cd4) TCR transgenic model of negative selection against ubiquitous self-antigen, we previously found that one of the principal mediators implicated in clonal deletion, Bim, is required for caspase-3 activation but is ultimately dispensable for negative selection. On the basis of these data, we hypothesized that Nur77, another molecule thought to be a key mediator of clonal deletion, could be responsible for Bim-independent deletion. Despite comparable Nur77 induction in thymocytes during negative selection, Bim deficiency resulted in an accumulation of high-affinity-signaled thymocytes as well as impairment in caspase-mediated and caspase-independent cell death. Although these data suggested that Bim may be required for Nur77-mediated cell death, we found that transgenic Nur77 expression was sufficient to induce apoptosis independently of Bim. However, transgenic Nur77-induced apoptosis was significantly inhibited in the context of TCR signaling, suggesting that endogenous Nur77 could be similarly regulated during negative selection. Although Nur77 deficiency alone did not alter positive or negative selection, combined deficiency in Bim and Nur77 impaired clonal deletion efficiency and significantly increased positive selection efficiency. Collectively, these data shed light on the different roles for Bim and Nur77 during ubiquitous Ag-mediated clonal deletion and highlight potential differences from their reported roles in tissue-restricted Ag-mediated clonal deletion.
Collapse
Affiliation(s)
- Qian Nancy Hu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
4
|
Rybakin V, Gascoigne NRJ. Negative selection assay based on stimulation of T cell receptor transgenic thymocytes with peptide-MHC tetramers. PLoS One 2012; 7:e43191. [PMID: 22900100 PMCID: PMC3416795 DOI: 10.1371/journal.pone.0043191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/20/2012] [Indexed: 02/04/2023] Open
Abstract
Thymocyte negative selection is a requirement for the development of self tolerance. Although it is possible to assay the induction of cell death in thymocytes in vitro using antibody cross-linking, this stimulus is much stronger than the normal range of T cell receptor ligands that could be encountered during normal development. Signaling in thymocytes is finely balanced between positive and negative selection stimuli, where a negative selecting ligand can be only marginally higher affinity than a positive selecting ligand. We have therefore developed an assay for the induction of negative selection that can distinguish such cases, and that is amenable to high-throughput analysis. The assay is based on the induction of activated caspase 3 in thymocytes expressing a defined T cell receptor, after stimulation with MHC-peptide tetramers in vitro for 24 hours or less.
Collapse
Affiliation(s)
- Vasily Rybakin
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (VR); (NRJG)
| |
Collapse
|
5
|
Rodriguez AR, Yu JJ, Murthy AK, Guentzel MN, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell/IL-4 control of Francisella tularensis replication and host cell death is associated with increased ATP production and phagosomal acidification. Mucosal Immunol 2011; 4:217-26. [PMID: 20861832 PMCID: PMC3040285 DOI: 10.1038/mi.2010.59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mast cells are now recognized as effective modulators of innate immunity. We recently reported that mast cells and secreted interleukin-4 (IL-4) effectively control intramacrophage replication of Francisella tularensis Live Vaccine Strain (LVS), and that mice deficient in mast cells or IL-4 receptor (IL-4R(-/-)) exhibit greater susceptibility to pulmonary challenge. In this study, we further evaluated the mechanism(s) by which mast cells/IL-4 control intramacrophage bacterial replication and host cell death, and found that IL-4R(-/-) mice exhibited significantly greater induction of active caspase-3 within lung macrophages than wild-type animals following intranasal challenge with either LVS or the human virulent type A strain SCHU S4. Treatment of LVS-infected bone-marrow-derived macrophages with a pancaspase inhibitor (zVAD) did not alter bacterial replication, but minimized active caspase-3 and other markers (Annexin V and propidium iodide) of cell death, whereas treatment with both rIL-4 and zVAD resulted in concomitant reduction of both parameters, suggesting that inhibition of bacterial replication by IL-4 was independent of caspase activation. Interestingly, IL-4-treated infected macrophages exhibited significantly increased ATP production and phagolysosomal acidification, as well as enhanced mannose receptor upregulation and increased internalization with acidification, which correlated with observations in mast cell-macrophage co-cultures, with resultant decreases in F. tularensis replication.
Collapse
MESH Headings
- Adenosine Triphosphate/biosynthesis
- Animals
- Caspase 3/metabolism
- Cell Death/immunology
- Cells, Cultured
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Francisella tularensis/growth & development
- Francisella tularensis/immunology
- Gene Expression Regulation
- Host-Pathogen Interactions
- Interleukin-4/immunology
- Lectins, C-Type/metabolism
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/pathology
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Oligopeptides/pharmacology
- Organelles/chemistry
- Organelles/microbiology
- Phagosomes/chemistry
- Phagosomes/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/immunology
- Signal Transduction/immunology
- Tularemia/immunology
Collapse
Affiliation(s)
- Annette R. Rodriguez
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Ashlesh K. Murthy
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Thomas G. Forsthuber
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
| | - Michael T. Berton
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX 78229; USA
| | - Bernard. P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249; USA
- Corresponding author: Bernard Arulanandam, Ph.D., South Texas Center for Emerging Infectious Diseases, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249. Phone: (210) 458-5492; Fax: (210) 458-5523;
| |
Collapse
|
6
|
Murakami K, Liadis N, Sarmiento J, Elford AR, Woo M, Nguyen LT, Mak TW, Ohashi PS. Caspase 3 is not essential for the induction of anergy or multiple pathways of CD8+ T-cell death. Eur J Immunol 2010; 40:3372-7. [DOI: 10.1002/eji.201040475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Huo J, Xu S, Lam KP. Fas apoptosis inhibitory molecule regulates T cell receptor-mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem 2010; 285:11827-35. [PMID: 20178987 DOI: 10.1074/jbc.m109.072744] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fas apoptosis inhibitory molecule (FAIM) has been demonstrated to confer resistance to Fas-induced apoptosis of lymphocytes and hepatocytes in vitro and in vivo. Here, we show that FAIM is up-regulated in thymocytes upon T cell receptor (TCR) engagement and that faim(-/-) thymocytes are highly susceptible to TCR-mediated apoptosis with increased activation of caspase-8 and -9. Furthermore, injection of anti-CD3 antibodies leads to augmented depletion of CD4(+)CD8(+) T cells in the thymus of faim(-/-) mice compared with wild-type control, suggesting that FAIM plays a role in thymocyte apoptosis. Cross-linking of the TCR on faim(-/-) thymocytes leads to an elevated protein level of the orphan nuclear receptor Nur77, which plays a role in thymocyte apoptosis. Interestingly, in the absence of FAIM, there are reduced ubiquitination and degradation of the Nur77 protein. Faim(-/-) thymocytes also exhibit a defective TCR-induced activation of Akt whose activity we now show is required for Nur77 ubiquitination. Further analyses utilizing FAIM-deficient primary thymocytes and FAIM-overexpressing DO-11.10 T cells indicate that FAIM acts upstream of Akt during TCR signaling and influences the localization of Akt to lipid rafts, hence affecting its activation. Taken together, our study defined a TCR-induced FAIM/Akt/Nur77 signaling axis that is critical for modulating the apoptosis of developing thymocytes.
Collapse
Affiliation(s)
- Jianxin Huo
- Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore
| | | | | |
Collapse
|
8
|
Schmitz I, Meyer C, Schulze-Osthoff K. CD95 ligand mediates T-cell receptor-induced apoptosis of a CD4+ CD8+ double positive thymic lymphoma. Oncogene 2006; 25:7587-96. [PMID: 16767155 DOI: 10.1038/sj.onc.1209741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumors in the thymus can be of different cellular origin. Among the most common tumors are thymoma and lymphoma, which are derived from transformed thymic epithelial cells and transformed lymphocytes, respectively. Thymic lymphoma and their response to apoptotic stimuli are poorly characterized. Here, we analyse apoptosis events in the thymic lymphoma cell line Thy278, which expresses cell surface antigens characteristic of immature double positive thymocytes. Upon T-cell receptor (TCR)/CD3 stimulation, Thy278 cells die by apoptosis, similar as primary thymocytes during negative selection. Caspases are crucial for deletion of both Thy278 cells and normal thymocytes. Moreover, we show that deletion of primary thymocytes and Thy278 cells upon CD3 stimulation is considerably impaired by neutralizing CD95L antibody. Thus, our results not only demonstrate that TCR-induced apoptosis is still functional in transformed thymocytes, but also suggest that Thy278 cells are a helpful model for the molecular analysis of negative selection.
Collapse
Affiliation(s)
- I Schmitz
- Institute of Molecular Medicine, University of Düsseldorf, Düsseldorf, Germany.
| | | | | |
Collapse
|
9
|
Bruscoli S, Di Virgilio R, Donato V, Velardi E, Baldoni M, Marchetti C, Migliorati G, Riccardi C. Genomic and non-genomic effects of different glucocorticoids on mouse thymocyte apoptosis. Eur J Pharmacol 2006; 529:63-70. [PMID: 16325174 DOI: 10.1016/j.ejphar.2005.10.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/24/2022]
Abstract
Glucocorticoids, widely used therapeutic agents for several pathologies, act upon diverse cells and tissues, including the lympho-haemopoietic system. Glucocorticoid-mediated apoptosis has been described as one of the mechanisms underlying their pharmacological and physiological effects. Glucocorticoids induce apoptosis in thymocytes through genomic and non-genomic signals. We tested thymocyte apoptosis rates as induced by a panel of glucocorticoids. Using four glucocorticoids that are widely adopted in clinical practice we compared their induction of thymocyte apoptosis and activation of non-genomic and genomic signals, including phosphatidylinositol-specific phospholipase C (PI-PLC), caspase-8, -9 and -3, and Glucocorticoid-Induced Leucine Zipper (GILZ). GILZ is a protein that is rapidly induced by glucocorticoids treatment and involved in apoptosis modulation. Results indicate different glucocorticoids have different apoptotic activity which is related to their ability to induce both genomic, evaluated as caspases activation and GILZ expression, and non-genomic effects, evaluated as PI-PLC phosphorylation.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Perugia University Medical School, Via del Giochetto, 06122 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Batista J, Martins A, Moro L, Vasconcelos A. Expressão gênica de caspases 3 e 8 em timo e baço de ratas recém-desmamadas e imunossuprimidas por glicocorticóide. ARQ BRAS MED VET ZOO 2005. [DOI: 10.1590/s0102-09352005000400006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Determinou-se a expressão gênica das caspases 3 e 8 mediante transcrição reversa de mRNA total e reação em cadeia da polimerase (RT-PCR) para avaliar a apoptose em timo e baço de ratas imunossuprimidas por glicocorticóides. Utilizou-se dexametasona para indução da apoptose e atrofia linfóide. Quarenta e cinco fêmeas Wistar recém-desmamadas foram separadas em três grupos: as ratas de A (n=18) e B (n=18) foram tratadas com 250 e 500mg de glicocorticóide, via intramuscular, respectivamente, e as do C (n=9) não foram tratadas. Após 24, 48 e 72 horas, seis animais de cada grupo tratado e três do controle foram anestesiados, pesados e sacrificados. O baço e o timo foram coletados e pesados. Fragmentos dos órgãos foram fixados em formol tamponado a 10% e processados segundo técnica para inclusão em parafina. Os blocos foram seccionados em 5µm, e os cortes corados em hematoxilina e eosina. A análise histopatológica aliada ao peso dos órgãos nas diferentes doses e tempos demonstrou que a dexametasona induziu hipotrofia linfóide, que ocorreu com maior intensidade no tempo de 72 horas em animais do grupo B. Fragmentos de timo e de baço foram imediatamente congelados em nitrogênio líquido para extração de mRNA e DNA. Para a padronização da técnica de RT-PCR, utilizaram-se pool de amostras de mRNA dos animais-controle e pool de mRNA de animais tratados em cada tempo de experimento. A técnica de RT-PCR foi sensível o suficiente para a detecção dos mRNAs que codificam as caspases 3 e 8, e ambas participaram do processo de apoptose induzido por dexametasona.
Collapse
|
11
|
Sabbagh L, Kaech SM, Bourbonnière M, Woo M, Cohen LY, Haddad EK, Labrecque N, Ahmed R, Sékaly RP. The Selective Increase in Caspase-3 Expression in Effector but Not Memory T Cells Allows Susceptibility to Apoptosis. THE JOURNAL OF IMMUNOLOGY 2004; 173:5425-33. [PMID: 15494489 DOI: 10.4049/jimmunol.173.9.5425] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Caspases play a central role in T lymphocyte activation and death. We have demonstrated previously that caspase-3, an effector molecule for activation-induced cell death (AICD), is processed following T cell activation in the absence of apoptosis. We report in this study that caspase-3 mRNA levels were selectively increased in peripheral T cells, following Ag receptor-mediated activation. The up-regulation of caspase-3 mRNA was confined to cells in the early phases of the cell cycle (G0/G1) and was independent of IL-2 signaling. This increase led to the renewal of procaspase-3 as evidenced by a 6-fold up-regulation of the zymogen in nonapoptotic stimulated T cells. The increase of mRNA levels and of both the zymogen and the cleaved forms of caspase-3 was observed in in vivo stimulated Ag-specific effector, but not memory T cells, correlating with the enhanced susceptibility of effector T cells to AICD. Furthermore, we confirm that caspase-3 levels directly influence the sensitivity of activated T cells to apoptosis, as shown using T lymphocytes isolated from caspase-3 heterozygous and knockout mice. These findings indicate that the selective up-regulation of caspase-3 transcription is required to maintain the cytoplasmic levels of this protease, which control AICD and T cell homeostasis.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Caspase 3
- Caspases/biosynthesis
- Caspases/deficiency
- Caspases/genetics
- Caspases/metabolism
- Enzyme Activation/immunology
- Epitopes, T-Lymphocyte/immunology
- G1 Phase/immunology
- Immunity, Innate/genetics
- Immunologic Memory/genetics
- Interleukin-2/physiology
- Lymphocyte Activation/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Resting Phase, Cell Cycle/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/enzymology
- T-Lymphocytes, Regulatory/immunology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Laurent Sabbagh
- Laboratory of Immunology, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aouad SM, Cohen LY, Sharif-Askari E, Haddad EK, Alam A, Sekaly RP. Caspase-3 is a component of Fas death-inducing signaling complex in lipid rafts and its activity is required for complete caspase-8 activation during Fas-mediated cell death. THE JOURNAL OF IMMUNOLOGY 2004; 172:2316-23. [PMID: 14764700 DOI: 10.4049/jimmunol.172.4.2316] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since its discovery, caspase-8 has been placed at the apex of the proteolytic cascade triggered by death receptor (DR) cross-linking. Because of its capacity to interact with the cytoplasmic portion of DR, it has been suggested that caspase-8 acts independently of other caspases in the initiation of Fas and other DR signaling. In this study, we demonstrate that in Jurkat cells, caspase-3 cleavage is an early step during Fas-induced apoptosis. We show that caspase-3 processing into its p20 occurs rapidly after Fas cross-linking, in the absence of mitochondrial depolarization and caspase-9 activation. Moreover, caspase-3 is present in lipid rafts of untreated Jurkat cells and peripheral T lymphocytes. Caspase-3, caspase-8, and Fas-associated death domain are further recruited to lipid rafts of Jurkat cells following anti-Fas treatment. Fas immunoprecipitation reveals that caspase-3 is a component of the death-inducing signaling complex, suggesting that this cysteine protease is in close proximity to caspase-8. Furthermore, transduction of Jurkat cells with a caspase-3 dominant-negative form inhibits caspase-8 processing and results in inhibition of apoptosis, suggesting that caspase-3 activity is required for caspase-8 activation. Overall, these findings support a model whereby caspase-3 is a component of the death-inducing signaling complex located in lipid rafts, and as such, is involved in the amplification of caspase-8 activity by the mitochondrion.
Collapse
Affiliation(s)
- Salah M Aouad
- Département de Microbiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Suzuki H, Wu J, Hossain K, Ohhata T, Du J, Akhand AA, Hayakawa A, Kimura H, Hagiwara M, Nakashima I. Involvement of MKK6 in TCRalphabeta(int)CD69lo: a target population for apoptotic cell death in thymocytes. FASEB J 2003; 17:1538-40. [PMID: 12824301 DOI: 10.1096/fj.02-0869fje] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By analyzing real-time caspase activity and DNA fragmentation in live thymocytes, we found that apoptosis occurs predominantly in a TCRalphabeta(int)/hiCD69lo population. The number of caspase-active cells and DNA-fragmented cells in MKK6-deficient mice, which were originally generated in our laboratory by gene targeting, was decreased in the TCRalphabeta(int)CD69lo population but not in the TCRalphabetahiCD69lo population. The percentage of caspase-active cells in the H-Y-specific TCRint population was more clearly decreased in male MKK6-deficient H-Y TCR-transgenic mice. Furthermore, the absolute number of TCRhiCD4loCD8lo cells, which are developmentally next to TCRintCD4hiCD8hi cells, was increased in MKK6-deficient H-Y TCR-transgenic mice. Deletion of TCRalphabeta(int)CD4hiCD8hi cells by injecting antigenic lymphocytic chorio-meningitis virus (LCMV) peptide into LCMV-specific TCR-transgenic mice was incomplete in MKK6-deficient mice. Cellular death of TCRalphabeta(int) fetal thymocytes induced by adding an antigenic peptide into an in vitro fetal thymic organ culture system was also diminished in MKK6-deficient TCR-transgenic thymi. These results indicate that MKK6 plays a role in the developing thymocytes, especially in the population of TCRalphabeta(int)CD69lo cells, which possibly undergo negative selection.
Collapse
Affiliation(s)
- Haruhiko Suzuki
- Department of Immunology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Graczyk PP. Caspase inhibitors as anti-inflammatory and antiapoptotic agents. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:1-72. [PMID: 12536670 DOI: 10.1016/s0079-6468(08)70068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striking efficacy of Z-VAD-fmk in the various animal models presented above may reflect its ability to inhibit multiple enzymes including caspases. In accord with this, more selective, reversible inhibitors usually show low efficacy in multifactorial models such as ischaemia, but may offer some protection against NMDA-induced excitotoxicity and hepatitis. Importantly, caspase inhibitors may exhibit significant activity in vivo even when they are applied post insult. As far as the CNS is concerned, the first systemically active inhibitors have emerged. Functional recovery could be achieved in some ischaemia models, but long-term protection by caspase inhibitors is still being questioned. Recent developments in drug design enabled the first caspase inhibitors to enter the clinic. Although initially directed towards peripheral indications such as rheumatoid arthritis, caspase inhibitors will no doubt eventually be used to target CNS disorders. For this purpose the peptidic character of current inhibitors will have to be further reduced. Small molecule, nonpeptidic caspase inhibitors, which have appeared recently, indicate that this goal can be accomplished. Unfortunately, many fundamental questions still remain to be addressed. In particular, the necessary spectrum of inhibitory activity required to achieve the desired effect needs to be determined. There is also a safety aspect associated with prolonged administration. Therefore, the next therapeutic areas for broader-range caspase inhibitors are likely to involve acute treatment. Recent results with synergistic effects between MK-801 and caspase inhibitors in ischaemia suggest that caspase inhibitors may need to be used in conjunction with other drugs. It can be expected that, in the near future, research on caspases and their inhibitors will remain a rapidly developing area of biology and medicinal chemistry. More time, however, may be needed for the first caspase inhibitors to appear on the market.
Collapse
Affiliation(s)
- Piotr P Graczyk
- Department of Medicinal Chemistry, EISAI London Research Laboratories, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
15
|
Li M, Min JM, Cui JR, Zhang LH, Wang K, Valette A, Davrinche C, Wright M, Leung-Tack J. Z-ajoene induces apoptosis of HL-60 cells: involvement of Bcl-2 cleavage. Nutr Cancer 2003; 42:241-7. [PMID: 12416266 DOI: 10.1207/s15327914nc422_14] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Garlic organosulfur components exhibit antitumor activity, but the molecular mechanisms underlying these effects have not been well characterized. We showed that Z-ajoene, a sulfur-rich compound purified from garlic, induced time- and dose-dependent apoptosis in HL-60 cells. This process implied the activation of caspase-3 and the cleavage of the antiapoptotic protein Bcl-2. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-[OMe]-fluoromethylketone inhibited Bcl-2 cleavage and apoptosis induced by Z-ajoene. This effect was partially prevented by treatment of HL-60 cells with the antioxidant N-acetylcysteine. Hence, the transmission of apoptotic signal induced by Z-ajoene involved a reactive oxygen species-dependent pathway leading to caspase-dependent Bcl-2 cleavage.
Collapse
Affiliation(s)
- Min Li
- National Research Laboratories of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marchetti MC, Di Marco B, Cifone G, Migliorati G, Riccardi C. Dexamethasone-induced apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood 2003; 101:585-93. [PMID: 12393559 DOI: 10.1182/blood-2002-06-1779] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoid hormones (GCHs) regulate normal and neoplastic lymphocyte development by exerting antiproliferative and/or apoptotic effects. We have previously shown that dexamethasone (DEX)-activated thymocyte apoptosis requires a sequence of events including interaction with the glucocorticoid receptor (GR), phosphatidylinositol-specific phospholipase C (PI-PLC), and acidic sphingomyelinase (aSMase) activation. We analyzed the mechanisms of GCH-activated apoptosis by focusing on GR-associated Src kinase, cytochrome c release, and caspase-8, -9, and -3 activation. We show here that PI-PLC binds to GR-associated Src kinase, as indicated by coimmunoprecipitation experiments. Moreover, DEX treatment induces PI-PLC phosphorylation and activation. DEX-induced PI-PLC phosphorylation, activation, and apoptosis are inhibited by PP1, a Src kinase inhibitor, thus suggesting that Src-mediated PI-PLC activation is involved in DEX-induced apoptosis. Caspase-9, -8, and -3 activation and cytochrome c release can be detected 1 to 2 hours after DEX treatment. Caspase-9 inhibition does not counter cytochrome c release, caspase-8 and caspase-3 activation, and apoptosis. Caspase-8 inhibition counters cytochrome c release, caspase-9 and caspase-3 activation, and apoptosis, thus suggesting that caspase-8 inhibitor can directly inhibit caspase-9 and/or that DEX-induced caspase-8 activation is upstream to mitochondria and can regulate caspase-3 directly or through cytochrome c release and the consequent caspase-9/caspase-3 activation. DEX-induced caspase-8 activation, like ceramide-induced caspase-8 activation, correlates with the formation of Fas-associated death domain protein (FADD)/caspase-8 complex. Caspase-8 activation is countered by the inhibition of macromolecular synthesis and of Src kinase, PI-PLC, and aSMase activation, suggesting it is downstream in the DEX-activated apoptotic pathway of thymocytes.
Collapse
Affiliation(s)
- Maria Cristina Marchetti
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Perugia, University of L'Aquila, Italy
| | | | | | | | | |
Collapse
|
17
|
Nie Z, Phenix BN, Lum JJ, Alam A, Lynch DH, Beckett B, Krammer PH, Sekaly RP, Badley AD. HIV-1 protease processes procaspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. Cell Death Differ 2002; 9:1172-84. [PMID: 12404116 DOI: 10.1038/sj.cdd.4401094] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Revised: 06/17/2002] [Accepted: 06/17/2002] [Indexed: 11/09/2022] Open
Abstract
Infection of T cells with HIV-1 induces apoptosis and modulates apoptosis regulatory molecules. Similar effects occur following treatment of cells with individual HIV-1 encoded proteins. While HIV-1 protease is known to be cytotoxic, little is known of its effect on apoptosis and apoptosis regulatory molecules. The ability of HIV-1 protease to kill cells, coupled with the degenerate substrate specificity of HIV-1 protease, suggests that HIV-1 protease may activate cellular factor(s) which, in turn, induce apoptosis. We demonstrate that HIV-1 protease directly cleaves and activates procaspase 8 in T cells which is associated with cleavage of BID, mitochondrial release of cytochrome c, activation of the downstream caspases 9 and 3, cleavage of DFF and PARP and, eventually, to nuclear condensation and DNA fragmentation that are characteristic of apoptosis. The effect of HIV-1 protease is not seen in T cell extracts which have undetectable levels of procaspase 8, indicating a specificity and requirement for procaspase 8.
Collapse
Affiliation(s)
- Z Nie
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 2002. [PMID: 11892990 DOI: 10.1379/1466-1268(2002)007<0073:teohot>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressful stimuli can elicit 2 distinct reactive cellular responses, the heat shock (stress) response and the activation of cell death pathways. Most studies on the effects of hyperthermia on the mammalian nervous system have focused on the heat shock response, characterized by the transient induction of Hsps, which play roles in repair and protective mechanisms. This study examines the effect of hyperthermia on the induction of cell death via apoptosis, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and active caspase 3 cytochemistry, in the adult rat brain, testis, and thymus. Results show that a fever-like increase in temperature triggered apoptosis in dividing cell populations of testis and thymus, but not in mature, postmitotic cells of the adult cerebellum. These differential apoptotic responses did not correlate with whole-tissue levels of Hsp70 induction. We further investigated whether dividing neural cells were more sensitive to heat-induced apoptosis by examining the external granule cell layer of the cerebellum at postnatal day 7 and the neuroepithelial layers of the neocortex and tectum at embryonic day 17. These proliferative neural regions were highly susceptible to hyperthermia-induced apoptosis, suggesting that actively dividing cell populations are more prone to cell death induced by hyperthermia than fully differentiated postmitotic neural cells.
Collapse
Affiliation(s)
- Vania R Khan
- Centre for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | |
Collapse
|
19
|
Trubiani O, Guarnieri S, Paganelli R, Di Primio R. Involvement of caspace-3 in the cleavage of terminal transferase. Int J Immunopathol Pharmacol 2002; 15:201-208. [PMID: 12575920 DOI: 10.1177/039463200201500306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the in vivo role of caspase-3 in Terminal Transferase metabolism DMSO-treated RPMI-8402, a human pre-T cell line was used. In DMSO treated samples (3)H-dGTP incorporation and TdT phosphorylation occurs after 4 hours of treatment. After 8 hours cells undergo TdT proteolysis in addition to its inactivation. The cleavage of TdT into 32- and 58-KDa proteolytic fragments occurred simultaneously with the activation of Caspase-3, but preceded changes associated with the apoptotic process described after 48 hours of treatment. The Caspase-3 peptide inhibitor V, used as a specific inhibitor, prevented TdT proteolysis prolonging its activity and rescued cells from apoptosis. Our experiments suggest that TdT is a nuclear substrate for Caspase-3, the main apoptotic effector protease in many cell types, and that the cleavage of TdT represents a primary step in a signal cascade leading to pre-T cell apoptosis.
Collapse
Affiliation(s)
- O. Trubiani
- Dip. Scienze Odontostomatologiche, Università "G. D'Annunzio", Chieti, Italy
| | | | | | | |
Collapse
|
20
|
Matsuki Y, Zhang HG, Hsu HC, Yang PA, Zhou T, Dodd CH, Cecconi F, Gruss P, Tadakuma T, Mountz JD. Different role of Apaf-1 in positive selection, negative selection and death by neglect in foetal thymic organ culture. Scand J Immunol 2002; 56:174-84. [PMID: 12121437 DOI: 10.1046/j.1365-3083.2002.01120.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptotic protease-activating factor 1 (Apaf-1) is a component of the apoptosome which is required for the activation of procaspase-9. As Apaf-1 knockout (KO) (Apaf-1-/-) mice die before birth, the role of Apaf-1 during thymic selection was investigated using 5 day foetal thymic organ culture (FTOC) of thymi obtained at gestational day 15. There was a lower ratio of CD4 single-positive (SP) to CD8 SP cells and decreased apoptosis of CD4+CD8+ (DP) thymocytes from Apaf-1-/- mice compared with wild-type. To determine if these defects resulted in increased production of neglected thymocytes, the Apaf-1-/- mice were crossed with the T-cell receptor (TCR)-alpha-chain KO mice. There was no difference in thymocyte development in the thymi of TCR-alpha-/-Apaf-1-/- and TCR-alpha-/-Apaf-1+/+ mice 5 days after FTOC. To determine if Apaf-1 is involved in apoptosis during death by negative or positive selection, FTOC of the thymus of Apaf-1-/- Db/HY TCR-alphabeta transgenic (Tg) mice was carried out. There was decreased apoptosis of the HY clonal-specific M33+ thymocytes and an increased percentage of the autoreactive CD8+M33+ thymocytes in male, but not female Apaf-1-/- Db/HY TCR Tg mice. Our data suggest that Apaf-1 is not involved in positive selection or death by neglect, but may have a partial role in negative selection during early thymic T-cell development.
Collapse
Affiliation(s)
- Y Matsuki
- Department of Immulogy and Parasitology, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ganguly T, Khar A. Induction of apoptosis in a human erythroleukemic cell line K562 by tylophora alkaloids involves release of cytochrome c and activation of caspase 3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2002; 9:288-295. [PMID: 12120809 DOI: 10.1078/0944-7113-00146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tylophora alkaloids are plant products known for their antiasthamatic and antiproliferative activities. The underlying cellular changes resulting from inhibition of proliferation were investigated. Tylophora alkaloids induced apoptosis in K562 cells with characteristic apoptotic features like nuclear condensation, apoptotic body formation, flipping of membrane phosphatidylserine, activation of caspase 3 and release of mitochondrial cytochrome c. These studies suggest that the Tylophora alkaloids, in addition to their antiproliferative effects also induce apoptosis in erythroleukemic cells. These observations imply that Tylophora alkaloids could be useful molecules for their antiproliferative activity and for induction of apoptosis in tumor cells.
Collapse
Affiliation(s)
- T Ganguly
- Jonaki, BRIT, CCMB, Hyderabad, India
| | | |
Collapse
|
22
|
Létuvé S, Druilhe A, Grandsaigne M, Aubier M, Pretolani M. Critical role of mitochondria, but not caspases, during glucocorticosteroid-induced human eosinophil apoptosis. Am J Respir Cell Mol Biol 2002; 26:565-71. [PMID: 11970908 DOI: 10.1165/ajrcmb.26.5.4671] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glucocorticosteroids are potent anti-inflammatory drugs used in the treatment of eosinophilic disorders. These molecules directly promote eosinophil apoptosis, yet the molecular mechanisms regulating this process remain ill-defined. We show here that stimulation of human peripheral blood eosinophils with dexamethasone induced DNA fragmentation, chromatin and cytoplasm condensation, and caspase-3 activation, as assessed by the proteolysis of its zymogen form and by the increase of caspase-3-like activity in eosinophil lysates. These phenomena were accompanied by a reduced uptake of the mitochondrial potential-sensitive marker DiOC(6)(3), suggestive of mitochondrial membrane permeabilization. Eosinophil incubation with the caspase-3 inhibitor, Z-Asp-Glu-Val-Asp-fluromethylketone, or with the broad spectrum caspase inhibitor, Z-Val-Ala-Asp-fluromethylketone, inhibited caspase-3-like activity generation but failed to modify dexamethasone-mediated loss in mitochondrial transmembrane potential and eosinophil apoptosis. In contrast, bongkrekic acid, a ligand of the mitochondrial permeability transition pore component, adenine nucleotide translocator, prevented both dexamethasone-induced mitochondrial disruption and apoptosis. We conclude that the mitochondrial permeability transition pore, rather than the caspase cascade, plays a critical role in the propagation of glucocorticosteroid-mediated apoptotic signals in human eosinophils.
Collapse
Affiliation(s)
- Séverine Létuvé
- Institut National de la Santé et de la Recherche Médicale U408, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Diep QN, El Mabrouk M, Yue P, Schiffrin EL. Effect of AT(1) receptor blockade on cardiac apoptosis in angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol 2002; 282:H1635-41. [PMID: 11959625 DOI: 10.1152/ajpheart.00984.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) via AT(1) receptors induces apoptosis in cardiomyocytes in vitro. We tested the hypothesis that in vivo AT(1) receptor stimulation is accompanied by cardiac apoptosis and attempted to elucidate the molecular mechanisms involved in the death signaling pathway. Male Sprague-Dawley rats received ANG II (120 ng x kg(-1) x min(-1) sc) for 7 days with or without the AT(1) receptor antagonist losartan (10 mg x kg(-1) x day(-1) orally). Cardiac function was assessed by echocardiography. Apoptosis in the heart was detected and quantified by in situ TdT-mediated dUTP nick-end labeling (TUNEL) and radiolabeled DNA laddering. Expression of bax, bcl-2, caspase 3, and AT(1) and AT(2) receptors was examined by Western blot analysis. Activity of caspase 3 was also measured by a fluorometric immunosorbent enzyme assay. Tail cuff systolic blood pressure was elevated (P < 0.01, n = 6) in ANG II-infused rats (173 +/- 3 mmHg) versus controls (111 +/- 2 mmHg) and reduced by losartan (134 +/- 4 mmHg). Cardiac function was essentially unchanged in ANG II-infused rats. Increased internucleosomal DNA cleavage by TUNEL assay and radiolabeled DNA laddering showed results compatible with enhanced cardiomyocyte apoptosis in the hearts of ANG-II infused rats. The bax-to-bcl-2 ratio, expression of the active form of caspase 3 (17 kDa), and activity of caspase 3 in the hearts of the ANG II group increased more than twofold above controls. Protein expression of AT(1) and AT(2) receptors was significantly increased in ANG II-infused rats compared with control rats. Losartan-treated ANG II-infused rats exhibited normalized apoptosis, bax, caspase 3 activity, and AT(1) receptors. ANG II stimulation of AT(1) receptors in the heart in vivo is associated with an increased rate of apoptosis without major hemodynamic consequences. Bax and caspase 3 are involved in the apoptotic signaling pathway in this experimental paradigm.
Collapse
Affiliation(s)
- Quy N Diep
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada H2W 1R7
| | | | | | | |
Collapse
|
24
|
Nagata T, Kishi H, Liu QL, Matsuda T, Imanaka T, Tsukada K, Kang D, Muraguchi A. The regulation of DNAse activities in subcellular compartments of activated thymocytes. Immunology 2002; 105:399-406. [PMID: 11985660 PMCID: PMC1782686 DOI: 10.1046/j.1365-2567.2002.01347.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymocytes expressing self-reactive T-cell receptors (TCR) are eliminated in the thymus through a TCR-mediated signal. This cell death signal (negative selection) generates nuclear morphological change and DNA fragmentation in thymocytes. However, the pathway leading to DNA fragmentation of thymocytes following TCR engagement remains obscure. In this study, we investigated the localization and function of caspase-activated DNAse (CAD) and its inhibitor (ICAD) in thymocytes prior to or after in vivo TCR stimulation. We showed that CAD and ICAD are co-localized in microsome, nuclei and cytosol in unstimulated thymocytes. Following in vivo TCR engagement, ICAD located in cytosol and microsome was degraded and the resulting activated CAD induced chromosomal DNA fragmentation. CAD present in cytosol and microsome of unstimulated thymocytes was activated by recombinant caspase-3, and microsomal CAD was released to the cytosol. These results demonstrate that TCR engagement of thymocytes induces caspase-3-dependent activation of CAD localized in both cytosol and microsome, leading to DNA fragmentation in harmony.
Collapse
Affiliation(s)
- Takuya Nagata
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Qin Li Liu
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Tadashi Matsuda
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Tsuneo Imanaka
- Second Department of Surgery, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Kazuhiro Tsukada
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical UniversityToyama, Japan
| |
Collapse
|
25
|
Hara H, Takeda A, Takeuchi M, Wakeham AC, Itié A, Sasaki M, Mak TW, Yoshimura A, Nomoto K, Yoshida H. The apoptotic protease-activating factor 1-mediated pathway of apoptosis is dispensable for negative selection of thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2288-95. [PMID: 11859117 DOI: 10.4049/jimmunol.168.5.2288] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Negative selection is a process to delete potentially autoreactive clones in developing thymocytes. Programmed cell death or apoptosis is thought to play an important role in this selection process. In this study, we investigated the role of apoptotic protease-activating factor 1 (Apaf1), a mammalian homologue of CED-4, in programmed cell death during the negative selection in thymus. There was no developmental abnormality in thymocytes from newborn Apaf1(-/-) mice in terms of CD4 and CD8 expression pattern and thymocyte number. Clonal deletion by endogenous male H-Y Ag of Apaf1-deficient thymocytes with transgenic expression of H-Y Ag-specific TCRs (H-Y Tg/Apaf1(-/-) thymocytes) was normally observed in lethally irradiated wild-type mice reconstituted with fetal liver-derived hemopoietic stem cells. Clonal deletion induced in vitro by a bacterial superantigen was also normal in fetal thymic organ culture. Thus, Apaf1-mediated pathway of apoptosis is dispensable for the negative selection of thymocytes. However, H-Y Tg/Apaf1(-/-) thymocytes showed partial resistance to H-Y peptide-induced deletion in vitro as compared with H-Y Tg/Apaf1(+/-) thymocytes, implicating the Apaf1-mediated apoptotic pathway in the negative selection in a certain situation. In addition, the peptide-induced deletion was still observed in H-Y Tg/Apaf1(-/-) thymocytes in the presence of a broad spectrum caspase inhibitor, z-VAD-fmk, suggesting the presence of caspase-independent cell death pathway playing roles during the negative selection. We assume that mechanisms for the negative selection are composed of several cell death pathways to avoid failure of elimination of autoreactive clones.
Collapse
Affiliation(s)
- Hiromitsu Hara
- Department of Immunology and Technical Support Laboratory, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Robles MS, Leonardo E, Criado LM, Izquierdo M, Martínez-A C. Inhibitor of apoptosis protein from Orgyia pseudotsugata nuclear polyhedrosis virus provides a costimulatory signal required for optimal proliferation of developing thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1770-9. [PMID: 11823509 DOI: 10.4049/jimmunol.168.4.1770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The inhibitors of apoptosis proteins (IAPs) constitute a family of endogenous inhibitors that control apoptosis in the cell by inhibiting caspase processing and activity. IAPs are also implicated in cell division, cell cycle regulation, and cancer. To address the role of IAPs in thymus development and homeostasis, we generated transgenic mice expressing IAP generated from the baculovirus Orgyia pseudotsugata nuclear polyhedrosis virus (OpIAP). Developing thymocytes expressing OpIAP show increased nuclear levels of NF-kappaB and reduced cytoplasmic levels of its inhibitor, IkappaBalpha. In mature thymocytes, OpIAP induces optimal activation and proliferation after TCR triggering in the absence of a costimulatory signal. OpIAP expression in immature thymocytes blocks TCR-induced apoptosis. Taken together, our data illustrate the pleiotropism of OpIAP in vivo.
Collapse
Affiliation(s)
- María S Robles
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Madrid Campus de Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
27
|
Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones 2002; 7:73-90. [PMID: 11892990 PMCID: PMC514805 DOI: 10.1379/1466-1268(2002)007<0073:teohot>2.0.co;2] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressful stimuli can elicit 2 distinct reactive cellular responses, the heat shock (stress) response and the activation of cell death pathways. Most studies on the effects of hyperthermia on the mammalian nervous system have focused on the heat shock response, characterized by the transient induction of Hsps, which play roles in repair and protective mechanisms. This study examines the effect of hyperthermia on the induction of cell death via apoptosis, assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and active caspase 3 cytochemistry, in the adult rat brain, testis, and thymus. Results show that a fever-like increase in temperature triggered apoptosis in dividing cell populations of testis and thymus, but not in mature, postmitotic cells of the adult cerebellum. These differential apoptotic responses did not correlate with whole-tissue levels of Hsp70 induction. We further investigated whether dividing neural cells were more sensitive to heat-induced apoptosis by examining the external granule cell layer of the cerebellum at postnatal day 7 and the neuroepithelial layers of the neocortex and tectum at embryonic day 17. These proliferative neural regions were highly susceptible to hyperthermia-induced apoptosis, suggesting that actively dividing cell populations are more prone to cell death induced by hyperthermia than fully differentiated postmitotic neural cells.
Collapse
Affiliation(s)
- Vania R Khan
- Centre for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Ontario, Canada
| | | |
Collapse
|
28
|
Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9:6-19. [PMID: 11803370 DOI: 10.1038/sj.cdd.4400969] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Revised: 09/07/2001] [Accepted: 10/03/2001] [Indexed: 01/08/2023] Open
Abstract
Glucocorticosteroid hormones induce apoptosis in lymphocytes. Therefore, glucocorticoids are commonly used as immunosuppressive and chemotherapeutic agents. This review examines many facets of the process by which glucocorticoids induce apoptosis. This process is divided into three stages, an initiation stage that involves glucocorticoid receptor-mediated gene regulation, a decision stage that involves the counterbalancing influence of prosurvival and proapoptotic factors, and the execution stage which involves caspase and endonuclease activation. Many aspects of glucocorticoid-induced apoptosis, such as mitochondrial dysfunction and caspase activation, are important steps in virtually all forms of apoptosis. But the process glucocorticoid-induced apoptosis differs from other forms of apoptosis in terms of initiation at the transcriptional level and involvement of the multicatalytic proteasome and calcium. Moreover, the abundant opportunity for crosstalk between the glucocorticoid receptor and other signaling pathways increases the complexity of glucocorticoid-induced apoptosis and its regulation.
Collapse
Affiliation(s)
- C W Distelhorst
- Division of Hematology/Oncology and Comprehensive Cancer Center, Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106-4937, USA.
| |
Collapse
|
29
|
Philippoussis F, Przybytkowski E, Fortin M, Arguin C, Pande SV, Steff AM, Hugo P. Derivatives of monoglycerides as apoptotic agents in T-cells. Cell Death Differ 2001; 8:1103-12. [PMID: 11687888 DOI: 10.1038/sj.cdd.4400917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Revised: 06/01/2001] [Accepted: 06/12/2001] [Indexed: 11/08/2022] Open
Abstract
Recently, lipids have received considerable attention for their potential to induce apoptosis when added exogenously to cells. In this study, we directly demonstrate that murine T-cells undergo rapid apoptosis following treatment with various forms of monoglycerides, which are a family of naturally occurring lipids consisting of a single fatty acid moiety attached to a glycerol backbone. The potency of these lipids varied depending on their chemical structure, whereas glycerol backbone or corresponding fatty acids alone were ineffective. Moreover, monoglyceride-mediated apoptosis was suppressed either by Bcl-2 overexpression, treatment with a broad inhibitor of caspases, or RNA and protein synthesis inhibitors. In addition, treatment of cells with derivatives of monoglycerides induced a calcium flux, which could be inhibited by both extracellular (EGTA) or intracellular (EGTA-AM) calcium chelators. To our knowledge, this is the first report demonstrating a role for derivatives of monoglycerides as inducers of apoptosis in mammalian cells.
Collapse
Affiliation(s)
- F Philippoussis
- PROCREA BioSciences Inc., Division of Research & Development, 6100 Royalmount, Montréal, Québec, Canada, H4P 2R2
| | | | | | | | | | | | | |
Collapse
|
30
|
Yoshino T, Kishi H, Nagata T, Tsukada K, Saito S, Muraguchi A. Differential involvement of p38 MAP kinase pathway and Bax translocation in the mitochondria-mediated cell death in TCR- and dexamethasone-stimulated thymocytes. Eur J Immunol 2001; 31:2702-8. [PMID: 11536168 DOI: 10.1002/1521-4141(200109)31:9<2702::aid-immu2702>3.0.co;2-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mitochondria play a central role in many apoptotic reactions. Although mitochondrial apoptotic changes and caspase activation have been demonstrated in the apoptotic thymocytes, cell death signal through mitochondria in TCR-stimulated thymocytes has not been fully understood. In this study, we show that TCR stimulation induced disruption of mitochondrial transmembrane potential (Delta Psi(m)), the cytochrome c release from mitochondira, capase-3 activation, and the cell death of thymocytes. Bongkrekic acid, an inhibitor of Delta Psi(m) disruption, blocked the cytochrome c release from mitochondria and the following caspase-3-mediated cell death. Furthermore, a pro-apoptotic Bcl-2 family protein, Bax, but not Bad or Bid, was translocated from cytosol to mitochondria in TCR-stimulated thymocytes. This translocation and the following apoptotic changes were inhibited by SB203580, a p38 kinase inhibitor, in a specific manner. These results suggest that activated p38 kinase pathway by TCR stimulation induces translocation of Bax to mitochondria, causing Delta Psi(m) disruption, and the release of cytochrome c, which finally induces caspase-3-mediated apoptosis in thymocytes.
Collapse
Affiliation(s)
- T Yoshino
- Department of Immunology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sharif-Askari E, Alam A, Rhéaume E, Beresford PJ, Scotto C, Sharma K, Lee D, DeWolf WE, Nuttall ME, Lieberman J, Sékaly RP. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J 2001; 20:3101-13. [PMID: 11406587 PMCID: PMC150191 DOI: 10.1093/emboj/20.12.3101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protease granzyme B (GrB) plays a key role in the cytocidal activity during cytotoxic T lymphocyte (CTL)-mediated programmed cell death. Multiple caspases have been identified as direct substrates for GrB, suggesting that the activation of caspases constitutes an important event during CTL-induced cell death. However, recent studies have provided evidence for caspase-independent pathway(s) during CTL-mediated apoptosis. In this study, we demonstrate caspase-independent and direct cleavage of the 45 kDa unit of DNA fragmentation factor (DFF45) by GrB both in vitro and in vivo. Using a novel and selective caspase-3 inhibitor, we show the ability of GrB to process DFF45 directly and mediate DNA fragmentation in the absence of caspase-3 activity. Furthermore, studies with DFF45 mutants reveal that both caspase-3 and GrB share a common cleavage site, which is necessary and sufficient to induce DNA fragmentation in target cells during apoptosis. Together, our data suggest that CTLs possess alternative mechanism(s) for inducing DNA fragmentation without the requirement for caspases.
Collapse
Affiliation(s)
- Ehsan Sharif-Askari
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Antoine Alam
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Eric Rhéaume
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Paul J. Beresford
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Christian Scotto
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Kamal Sharma
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Dennis Lee
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Walter E. DeWolf
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Mark E. Nuttall
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Judy Lieberman
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| | - Rafick-Pierre Sékaly
- Laboratoire d’Immunologie, Département de Microbiologie et d’Immunologie, Université de Montréal, Montréal, H3C 3J7, Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montréal, H3A 2B4, Canada, Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, Department of Medicinal Chemistry, Department of Mechanistic Enzymology and Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA Present address: Sanofi-Synthelabo, Département Cardiovasculaire, Toulouse Cedex, F-31036, France Present address: Procrea Biosciences Inc., Genomic Program, Montreal, Quebec, H4P 2R2, Canada Present address: Sunesis Pharmaceuticals Inc., Department of Chemistry, Redwood City, CA 94063, USA Corresponding author e-mail:
| |
Collapse
|
32
|
Zhang J, Bárdos T, Mikecz K, Finnegan A, Glant TT. Impaired Fas signaling pathway is involved in defective T cell apoptosis in autoimmune murine arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4981-6. [PMID: 11290777 DOI: 10.4049/jimmunol.166.8.4981] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteoglycan (PG)-induced arthritis (PGIA) is a novel autoimmune murine model for rheumatoid arthritis induced by immunization with cartilage PG in susceptible BALB/c mice. In this model, hyperproliferation of peripheral CD4(+) T cells has been observed in vitro with Ag stimulation, suggesting the breakdown of peripheral tolerance. Activation-induced cell death (AICD) is a major mechanism for peripheral T cell tolerance. A defect in AICD may result in autoimmunity. We report in this study that although CD4(+) T cells from both BALB/c and B6 mice, identically immunized with human cartilage PG or OVA, express equally high levels of Fas at the cell surface, CD4(+) T cells from human cartilage PG-immunized BALB/c mice, which develop arthritis, fail to undergo AICD. This defect in AICD in PGIA may lead to the accumulation of autoreactive Th1 cells in the periphery. The impaired AICD in PGIA might be ascribed to an aberrant expression of Fas-like IL-1beta-converting enzyme-inhibitory protein, which precludes caspase-8 activation at the death-inducing signaling complex, and subsequently suppresses the caspase cascade initiated by Fas-Fas ligand interaction. Moreover, this aberrant expression of Fas-like IL-1beta-converting enzyme-inhibitory protein may also mediate TCR-induced hyperproliferation of CD4(+) T cells from arthritic BALB/c mice. Our data provide the first insight into the molecular mechanism(s) of defective AICD in autoimmune arthritis.
Collapse
Affiliation(s)
- J Zhang
- Section of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
33
|
Zhang M, Chong SY, Raveche ES. The role of B-cell-specific activator protein in the response of malignant B-1 cells to LPS. Exp Cell Res 2001; 264:233-43. [PMID: 11262180 DOI: 10.1006/excr.2000.5122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL) results from the uncontrolled proliferation and accumulation of B-1 cells, many of which demonstrate self-reactivity. The response of B-1 cells to mitogen after undergoing malignant transformation is still unclear. Using our established malignant B-1 cell lines derived from the NZB murine model of human CLL, we investigated the response of malignant B-1 cells to the mitogen LPS. Interestingly, these malignant B-1 cells proliferated initially, but the proliferation rate decreased after a 48-h transition. Prolonged LPS treatment induced apoptosis and pathological differentiation. We studied possible underlying molecular mechanisms and found that the level of the DNA binding protein BSAP (B-cell-specific activator protein) was upregulated by LPS at the initial activation stage, followed by an increase in the apoptotic factor caspase-3 (CPP32) at 48 h and a subsequent decrease of BSAP at 72 h. The pathological differentiation induced by LPS was partially prevented by treatment with antisense BSAP. This study indicates that malignant B-1 cells could be driven to apoptosis and pathological differentiation when activated by the mitogen LPS, and BSAP may be an important factor in regulating these responses.
Collapse
Affiliation(s)
- M Zhang
- Department of Pathology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
34
|
Ruiz P, Coleman L, Wang F, Enten J. Differential kinetics of intracellular caspase-1-like and caspase-3-like enzyme activity in human alloreactive CD4(+) and CD8(+) T cells undergoing apoptosis. Clin Immunol 2001; 98:308-12. [PMID: 11237553 DOI: 10.1006/clim.2001.4981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ICE-like families of serine proteases (caspases) have integral roles in apoptosis. These studies were performed to further understand the role of two critical caspases in relation to apoptotic regulation of the alloimmune response. A novel three-color cytofluorographic technique was utilized for measuring intracellular (in situ) caspase-1-like and caspase-3-like enzyme activity in responding CD4(+) and CD8(+) T cells over several time points of human mixed lymphocyte reactions (MLR). We found that activity levels of caspase 3 in both CD4(+) and CD8(+) responder cells began rising at day 10 of the MLR and peaked at day 14. By comparison, caspase 1 demonstrated the highest activity at day 7 in both cell subpopulations. These results coincided with the appearance of apoptotic cells among the alloreactive cells in the MLR. These findings demonstrate that intracellular caspase-1- and -3-like enzyme activity increases in both CD4(+) and CD8(+) alloreactive T cells as the primary response to allostimulatory cells progresses. While the kinetic profiles for these enzymes differed, both had a temporal association with the appearance of apoptosis in the MLR-generated cells. In all cases, the highest enzyme activity and presence of apoptosis was seen subsequent to the peak proliferative period. These results support the concept that changes in the rate and amount of apoptosis in alloreactive T cells is one mechanism by which the response to alloantigens is attenuated (i.e., tolerance) or sustained.
Collapse
Affiliation(s)
- P Ruiz
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
35
|
Heinly CS, Sempowski GD, Lee DM, Patel DD, McDermott PM, Scearce RM, Thompson CB, Haynes BF. Comparison of thymocyte development and cytokine production in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient mice. Int Immunol 2001; 13:157-66. [PMID: 11157849 DOI: 10.1093/intimm/13.2.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
CD7 and CD28 are Ig superfamily molecules expressed on thymocytes and mature T cells that share common signaling 0mechanisms and are co-mitogens for T cell activation. CD7-deficient mice are resistant to lipopolysaccharide (LPS)-induced shock syndrome, and have diminished in vivo LPS-triggered IFN-gamma and tumor necrosis factor (TNF)-alpha production. CD28-deficient mice have decreased serum Ig levels, defective IgG isotype switching, decreased T cell IL-2 production and are resistant to Staphylococcus aureus enterotoxin-induced shock. To determine synergistic roles CD7 and CD28 might play in thymocyte development and function, we have generated and characterized CD7/CD28 double-deficient mice. CD7/CD28-deficient mice were healthy, reproduced normally, had normal numbers of thymocyte subsets and had normal thymus histology. Anti-CD3 mAb induced similar levels of apoptosis in CD7-deficient, CD28-deficient and CD7/CD28 double-deficient thymocytes as in control C57BL/6 mice (P = NS). Similarly, thymocyte viability, apoptosis and necrosis following ionomycin or dexamethasone treatment were the same in control, CD7-deficient, CD28-deficient and CD7/CD28-deficient mice. CD28-deficient and CD7/CD28-deficient thymocytes had decreased [3H]thymidine incorporation responses to concanavalin A (Con A) stimulation compared to control mice (P < or = 0.01 and P < or = 0.05 respectively). CD7/CD28 double-deficient mice had significantly reduced numbers of B7-1/B7-2 double-positive cells compared to freshly isolated wild-type, CD7-deficient and CD28-deficient thymocytes. Con A-stimulated CD4/CD8 double-negative (DN) thymocytes from CD7/CD28 double-deficient mice expressed significantly lower levels of CD25 when compared to CD4/CD8 DN thymocytes from wild-type, CD7-deficient and CD28-deficient mice (P < 0.05). Anti-CD3-triggered CD7/CD28-deficient thymocytes also had decreased IFN-gamma and TNF-alpha production compared to C57BL/6 control, CD7-deficient and CD28-deficient mice (P < or = 0.05). Thus, CD7 and CD28 deficiencies combined to produce abnormalities in the absolute number of B7-1/B7-2-expressing cells in the thymus, thymocyte IL-2 receptor expression and CD3-triggered cytokine production.
Collapse
Affiliation(s)
- C S Heinly
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ravassa S, Fortuño MA, González A, López B, Zalba G, Fortuño A, Díez J. Mechanisms of increased susceptibility to angiotensin II-induced apoptosis in ventricular cardiomyocytes of spontaneously hypertensive rats. Hypertension 2000; 36:1065-71. [PMID: 11116126 DOI: 10.1161/01.hyp.36.6.1065] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous findings have shown that hypotensive doses of losartan prevent the excess of apoptosis present in the hypertrophied left ventricle of adult spontaneously hypertensive rats (SHR). This study was designed to determine whether angiotensin II facilitates apoptosis in cardiomyocytes of adult SHR. Primary cultures of ventricular cardiomyocytes from 30-week-old normotensive Wistar-Kyoto rats (WKY) and SHR with left ventricular hypertrophy were exposed to 10(-)(9) mol/L angiotensin II for 24 hours. Apoptotic cells were assessed by terminal deoxynucleotidyl transferase assay and confirmed by Annexin V detection. The expression of Bax-alpha, Bcl-2, p53, and caspase-3 proteins was assessed by Western blot assays. The expression of BAX gene was assessed by Northern blot. Angiotensin II increased (P<0.01) cardiomyocyte apoptosis, and this effect was higher (P<0.001) in SHR cells than in WKY cells. Whereas losartan (10(-7) mol/L) blocked the apoptotic effect of the octapeptide in cells from the two strains of rats, PD123319 (10(-7) mol/L) inhibited angiotensin II-mediated apoptosis only in SHR cells. Angiotensin II stimulated (P<0.01) Bax-alpha protein, and this effect was higher (P<0.01) in SHR cells than in WKY cells. Angiotensin II did not modify Bcl-2, p53, and BAX mRNA in cells from the two strains of rats. Angiotensin II induced a similar increase (P<0.05) in the ratio caspase-3/procaspase-3 (an index of caspase-3 activation) in cardiomyocytes from the two strains of rats. The present in vitro results indicate that SHR cardiomyocytes exhibit enhanced susceptibility to angiotensin II-induced apoptosis. Ligand binding to angiotensin II type 1 and type 2 receptors leading to changes in posttranscriptional processing of Bax-alpha and accumulation of this proapoptotic protein may be involved in the abnormal response of SHR cardiomyocytes. These data support a role for angiotensin II in apoptosis observed in the left ventricle of these rats.
Collapse
Affiliation(s)
- S Ravassa
- Vascular Pathophysiology Unit, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Torres-Roca JF, Tung JW, Greenwald DR, Brown JM, Herzenberg LA, Herzenberg LA, Katsikis PD. An early oxygen-dependent step is required for dexamethasone-induced apoptosis of immature mouse thymocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4822-30. [PMID: 11046005 DOI: 10.4049/jimmunol.165.9.4822] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The roles of oxygen and reactive oxygen intermediates in apoptosis are unclear at present. Although oxygen and reactive oxygen intermediates are not required for the execution of apoptosis, oxygen may be involved in at least some forms of apoptosis. In this study we show that dexamethasone (Dex)-induced apoptosis of immature mouse thymocytes is completely inhibited by hypoxic culture. In contrast, anti-CD95 thymocyte apoptosis is unaffected by hypoxia, indicating the existence of two forms of thymocyte apoptosis: an oxygen-dependent pathway (Dex induced) and an oxygen-independent pathway (anti-CD95 induced). Furthermore, hypoxia inhibited mitochondrial permeability transition (PT) in Dex-treated, but not in anti-CD95-treated, thymocytes, suggesting that the oxygen-sensitive step is upstream of mitochondria. Both Dex- and anti-CD95-induced PT and apoptosis were dependent on activation of IL-converting enzyme-like protease, as PT and apoptosis were inhibited by preincubation with Cbz-Val-Ala-Asp-fluoromethyl ketone, an irreversible inhibitor of IL-converting enzyme-like proteases. In addition, hypoxia inhibited the activation by Dex of caspase-3 (CPP32)-like proteases. Our data show that the private signaling pathways of Dex (oxygen dependent) and anti-CD95 (oxygen independent) both converge upstream of mitochondrial changes. The oxygen-dependent step in Dex-induced apoptosis lies upstream of caspase-3-like protease activation. Our observations support a model of apoptosis signaling in which independent pathways (oxygen dependent and oxygen independent) particular to each stimuli converge at a central point in the apoptotic cascade.
Collapse
Affiliation(s)
- J F Torres-Roca
- Departments of Genetics and Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang JP, Wong CK, Lam CW. Role of caspases in dexamethasone-induced apoptosis and activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 2000; 122:20-7. [PMID: 11012613 PMCID: PMC1905760 DOI: 10.1046/j.1365-2249.2000.01344.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Eosinophils are the principal effector cells for the pathogenesis of allergic inflammation. Glucocorticoids such as dexamethasone have long been used therapeutically for eosinophilia in allergic inflammation by inducing eosinophil apoptosis, but little is known about the intracellular mechanisms mediating dexamethasone-induced apoptosis. In the present study, we investigated the effect of dexamethasone on three mitogen-activated protein kinases (MAPK) involved in the intracellular signalling pathway: c-Jun NH2-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK). We found that dexamethasone could activate JNK and p38 MAPK in a time-dependent manner but not ERK. Further, SB 203580, a specific p38 MAPK inhibitor, was additive with dexamethasone in inducing eosinophil apoptosis, while JNK1/2 antisense phosphorothioate oligodeoxynucleotides did not show any significant effect. These suggest that dexamethasone-induced JNK1/2 and p38 MAPK activation are not crucial to the induction of apoptosis. Pretreatment of eosinophils with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.FMK), a broad-spectrum caspase inhibitor, could inhibit dexamethasone-induced apoptosis in eosinophils dose-dependently. Moreover, Z-VAD.FMK partially inhibited dexamethasone-activated JNK and p38 MAPK activities. However, dexamethasone treatment did not activate specific caspase-3, -8 activity in eosinophils compared with spontaneous apoptosis. We therefore conclude that dexamethasone-induced apoptosis and activation of JNK and p38 MAPK activity in eosinophils are regulated by caspases but not through the common apoptosis-related caspase-3, -8 as in other cell types. Elucidation of the important role of caspases in eosinophil apoptosis may facilitate the development of more specific and effective treatment for allergic inflammation.
Collapse
Affiliation(s)
- J P Zhang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
39
|
Zhang J, Mikecz K, Finnegan A, Glant TT. Spontaneous thymocyte apoptosis is regulated by a mitochondrion-mediated signaling pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2970-4. [PMID: 10975804 DOI: 10.4049/jimmunol.165.6.2970] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most thymocytes that have not successfully rearranged their TCR genes or that express a receptor with subthreshold avidity for self-Ag/MHC enter a default apoptosis pathway, death by neglect. Spontaneous thymocyte apoptosis (STA), at least in part, may mimic this process in vitro. However, the molecular mechanism(s) by which thymocytes undergo this spontaneous apoptosis remains unknown. Here, we report that caspsase-1 and caspase-3 are activated during STA, but these caspases are dispensable for this apoptotic process. The inhibition of STA by a pan-caspase inhibitor, zVAD, suggests that multiple caspase pathways exist. Importantly, the early release of cytochrome c from mitochondria closely correlates with the degradation of Bcl-2 and Bcl-xL and a decrease in the ratios of Bcl-2 and Bcl-xL to Bax during STA. These findings suggest that the degradation of Bcl-2 and Bcl-xL may favor Bax to induce cytochrome c release from mitochondria, which subsequently activates downstream caspases in STA. Our data provide the first biochemical insight into the molecular mechanism of STA.
Collapse
Affiliation(s)
- J Zhang
- Departments of Orthopedic Surgery, Biochemistry, Medicine, and Immunology/Microbiology, Rush University at Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
40
|
Odaka C, Mizuochi T. Angiotensin-converting enzyme inhibitor captopril prevents activation-induced apoptosis by interfering with T cell activation signals. Clin Exp Immunol 2000; 121:515-22. [PMID: 10971519 PMCID: PMC1905724 DOI: 10.1046/j.1365-2249.2000.01323.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Captopril is an orally active inhibitor of angiotensin-converting enzyme (ACE) which is widely used as an anti-hypertensive agent. In addition to its ability to reduce blood pressure, captopril has a number of other biological activities. Recently the drug was shown to inhibit Fas-induced apoptosis in human activated peripheral T cells and human lung epithelial cells. In this study, we investigated whether captopril blocks activation-induced apoptosis in murine T cell hybridomas, and found that captopril inhibited IL-2 synthesis and apoptotic cell death upon activation with anti-CD3 antibody. In addition, captopril inhibited an inducible caspase-3-like activity during activation-induced apoptosis. On the other hand, captopril did not interfere with Fas signalling, since anti-Fas antibody-induced apoptosis in Fas+ Jurkat cells was unaffected by the drug. Furthermore, we examined whether captopril blocks activation-induced apoptosis by interfering with expression of Fas, Fas ligand (FasL), or both on T cell hybridomas. FasL expression on activated T cells was significantly inhibited by captopril, whereas up-expression of Fas was partially inhibited, as assessed by cell surface staining. Taking all data together, we conclude that captopril prevents activation-induced apoptosis in T cell hybridomas by interfering with T cell activation signals. Captopril has been reported to induce systemic lupus erythematosus syndrome, and our findings may be useful for elucidating the mechanism of captopril-induced autoimmunity.
Collapse
Affiliation(s)
- C Odaka
- Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo, Japan.
| | | |
Collapse
|
41
|
Affiliation(s)
- P E Love
- Laboratory of Mammalian Genes & Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
42
|
Doerfler P, Forbush KA, Perlmutter RM. Caspase enzyme activity is not essential for apoptosis during thymocyte development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4071-9. [PMID: 10754300 DOI: 10.4049/jimmunol.164.8.4071] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Caspases, a family of cysteine proteases, are critical mediators of apoptosis. To address the importance of caspases in thymocyte development, we have generated transgenic mice that express the baculovirus protein p35, a viral caspase inhibitor, specifically in the thymus. p35 expression inhibited Fas (CD95)-, CD3-, or peptide-induced caspase activity in vitro and conferred resistance to Fas-induced apoptosis. However, p35 did not block specific peptide-induced negative selection in OT1 and HY TCR transgenic mouse models. Even the potent pharmacological caspase inhibitor zVAD-FMK (benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl-ketone) could not prevent peptide-induced deletion of OT1 thymocytes, although it improved basal thymocyte survival in vitro. Moreover, the developmental block observed in rag1-/- thymocytes, which lack pre-TCR signaling, was also not rescued by p35 expression. These results indicate that caspase-independent signal transduction pathways can mediate thymocyte death during normal T cell development.
Collapse
Affiliation(s)
- P Doerfler
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | |
Collapse
|
43
|
Fukuzuka K, Edwards CK, Clare-Salzler M, Copeland EM, Moldawer LL, Mozingo DW. Glucocorticoid-induced, caspase-dependent organ apoptosis early after burn injury. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1005-18. [PMID: 10749790 DOI: 10.1152/ajpregu.2000.278.4.r1005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune suppression and increased apoptotic loss of circulating lymphocytes have been reported after burn injury. However, little is known about the underlying mechanisms responsible for the increased apoptosis of lymphoid and parenchymal cells in solid organs and the role played by inflammatory mediators, such as tumor necrosis factor-alpha (TNF-alpha) and Fas ligand (FasL), as well as by glucocorticoids. To evaluate the role of endogenously produced glucocorticoids and FasL, mice subjected to a 20% steam burn were pretreated with a glucocorticoid receptor antagonist (mifepristone) or a neutralizing murine Fas fusion protein. Three and twenty-four hours after burn injury, histological analysis, caspase-3 activity, and in situ terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and phenotyping of lymphocyte populations for apoptosis were evaluated. Burn injury increased the number of apoptotic cells and caspase-3 activity in thymus and spleen, but not in other solid organs. Increased apoptosis was seen in several T and B cell populations from both thymus and spleen. Mifepristone pretreatment significantly reduced the apoptosis and caspase-3 activity after burn injury, whereas blocking FasL activity had only minimal effects. We conclude that corticosteroids, and not FasL, are primarily responsible for the increased caspase-3 activity and apoptosis in thymus and spleen cell populations early after burn injury.
Collapse
Affiliation(s)
- K Fukuzuka
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
44
|
Diep QN, Intengan HD, Schiffrin EL. Endothelin-1 attenuates omega3 fatty acid-induced apoptosis by inhibition of caspase 3. Hypertension 2000; 35:287-91. [PMID: 10642312 DOI: 10.1161/01.hyp.35.1.287] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin-1 (ET-1) may be involved in the induction of vascular hypertrophy in hypertension. ET-1 may also modulate vascular growth through the exertion of antiapoptotic effects. The omega3 fatty acids (omega3 FAs), which have antiproliferative effects in various cell types, may have a beneficial role in hypertension. We tested the hypothesis that ET-1 could act as a survival factor against omega3 FA-induced apoptosis and attempted to elucidate possible molecular mechanisms underlying the protective action of ET-1 on docosahexaenoic acid (DHA)-induced apoptosis. Mesenteric vascular smooth muscle cells were stimulated with DHA, a representative omega3 FA. Dose-response curves of DHA at different apoptotic stages were assessed with the use of flow cytometry: (1) very early: plasma membrane phosphatidylserine (PS) translocation; (2) early: change in mitochondrial transmembrane potential (DeltaPsim); and (3) late: cell cycle analysis. Expression of the proapoptotic protein bax and the antiapoptotic protein bcl-2 was determined with Western blot assay. The activity and the expression of caspase 3, which is a critical proteolytic enzyme involved in the death-signaling pathway, were evaluated with a fluorometric immunosorbent enzyme assay and Western blot analysis, respectively. Apoptosis, which was detected with PS translocation, DeltaPsim disruption, and cell cycle analysis, was increased dose dependently by DHA. DHA-induced apoptosis was attenuated through exposure to ET-1 for 1 hour before DHA in cell cycle analysis. The interference of ET-1 with DHA-induced apoptosis, as detected with cell cycle analysis, was not apparent at the membrane (PS translocation) or the mitochondrial (DeltaPsim) level. The increase in bax/bcl-2 ratio in DHA-stimulated cells was not affected by ET-1. However, DHA increased both caspase 3 activity and the active forms of caspase 3 (20 and 17 kDa), resulting in enhanced DNA fragmentation as shown through Hoechst staining and fluorescence microscopy, which were attenuated by ET-1 pretreatment. In conclusion, DHA, an omega3 FA, induced apoptosis in vascular smooth muscle cells in a dose-dependent manner. ET-1 exerted important protective effects through the attenuation of DHA-induced caspase 3 activation and subsequent DNA fragmentation in the late stages of apoptosis.
Collapse
Affiliation(s)
- Q N Diep
- MRC Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
45
|
Na S, Li B, Grewal IS, Enslen H, Davis RJ, Hanke JH, Flavell RA. Expression of activated CDC42 induces T cell apoptosis in thymus and peripheral lymph organs via different pathways. Oncogene 1999; 18:7966-74. [PMID: 10637507 DOI: 10.1038/sj.onc.1203122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CDC42, a Ras-related small GTP binding protein, is involved in diverse cellular functions in lymphocytes. We generated transgenic mice expressing constitutively active murine CDC42 (Q61L) under the control of the human CD2 promoter. Transgenic mice showed smaller thymi with a dramatic reduction of CD4+CD8+, CD4+ and CD8+ thymocytes and with increase of CD4-CD8- thymocytes at CD25-CD44+ and CD25+ stage. A high percentage of the transgenic thymocytes were apoptotic, explaining the reduction of cellularity and size of the thymus. Mature T cells (TCR alphabeta+) in peripheral lymph organs, spleen and lymph node, were also dramatically reduced, and exhibited massive apoptosis. Expression of Fas and Fas ligand on both thymocytes and peripheral T cells was upregulated in transgenic mice, but the increased apoptosis in the thymus was independent of Fas (CD95), whereas peripheral spleen and lymph node T cell apoptosis was Fas dependent. Thus, activated CDC42 triggers distinct apoptotic pathways in thymocytes and peripheral T cells.
Collapse
Affiliation(s)
- S Na
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, CT 06520-8011, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Alam A, Cohen LY, Aouad S, Sékaly RP. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J Exp Med 1999; 190:1879-90. [PMID: 10601362 PMCID: PMC2195712 DOI: 10.1084/jem.190.12.1879] [Citation(s) in RCA: 336] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Apoptosis induced by T cell receptor (TCR) triggering in T lymphocytes involves activation of cysteine proteases of the caspase family through their proteolytic processing. Caspase-3 cleavage was also reported during T cell stimulation in the absence of apoptosis, although the physiological relevance of this response remains unclear. We show here that the caspase inhibitor benzyloxycarbonyl (Cbz)-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD) blocks proliferation, major histocompatibility complex class II expression, and blastic transformation during stimulation of peripheral blood lymphocytes. Moreover, T cell activation triggers the selective processing and activation of downstream caspases (caspase-3, -6, and -7), but not caspase-1, -2, or -4, as demonstrated even in intact cells using a cell-permeable fluorescent substrate. Caspase-3 processing occurs in different T cell subsets (CD4(+), CD8(+), CD45RA(+), and CD45RO(+)), and in activated B lymphocytes. The pathway leading to caspase activation involves death receptors and caspase-8, which is also processed after TCR triggering, but not caspase-9, which remains as a proenzyme. Most importantly, caspase activity results in a selective substrate specificity, since poly(ADP-ribose) polymerase (PARP), lamin B, and Wee1 kinase, but not DNA fragmentation factor (DFF45) or replication factor C (RFC140), are processed. Caspase and substrate processing occur in nonapoptotic lymphocytes. Thus, caspase activation is an early and physiological response in viable, stimulated lymphocytes, and appears to be involved in early steps of lymphocyte activation.
Collapse
Affiliation(s)
- Antoine Alam
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Luchino Y. Cohen
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Salah Aouad
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Rafick-Pierre Sékaly
- Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Département de Microbiologie et d'Immunologie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec H3A 2B4, Canada
- Department of Experimental Medicine, McGill University, Montréal, Québec H3A 2B4, Canada
| |
Collapse
|
47
|
Abstract
Apoptosis is the fate of most thymocytes. Many molecules participate in the decision of whether a thymocyte is to live or to die, including cell surface receptors, such as the T cell receptor for antigen, Notch-1, and costimulatory receptors, ligand-regulated nuclear transcription factors such as the glucocorticoid receptor, signaling, and effector proteases, and direct regulators of the apoptotic machinery such IAPs. In this review we discuss recent data concerning these molecules and pathways and their implication for understanding the mechanisms underlying thymocyte death, survival, and the generation of inmmunocompetent T cells.
Collapse
Affiliation(s)
- Y Yang
- Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
48
|
Diep QN, Li JS, Schiffrin EL. In vivo study of AT(1) and AT(2) angiotensin receptors in apoptosis in rat blood vessels. Hypertension 1999; 34:617-24. [PMID: 10523336 DOI: 10.1161/01.hyp.34.4.617] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro experiments suggest that angiotensin II (Ang II) may cause growth via angiotensin type 1 (AT(1)) receptors and apoptosis via angiotensin type 2 (AT(2)) receptors. To answer the question of whether AT(1) or AT(2) receptor activation could induce apoptosis in the vasculature in vivo, Wistar rats were infused for 7 days with Ang II (120 ng. kg(-1). min(-1) subcutaneously) and treated with the AT(2) receptor antagonist PD 123319 (30 mg. kg(-1). d(-1) subcutaneously) or the AT(1) receptor antagonist losartan (10 mg. kg(-1). d(-1) orally). Apoptosis in thoracic aorta was quantified by radiolabeled DNA laddering and by terminal deoxynucleotide transferase-mediated dUTP nick end-labeling. The expression of p53, bax, bcl-2, and caspase-3, which play critical roles in apoptotic signaling, was examined by Western blot analysis. The mRNA expression of AT(1) and AT(2) receptors was determined by reverse transcription-polymerase chain reaction. The increase in systolic blood pressure and aortic growth induced by Ang II infusion was completely prevented by losartan alone or losartan given with PD 123319, whereas PD 123319 resulted in a greater increase in systolic blood pressure and aortic growth than Ang II alone. Radiolabeled DNA laddering showed that Ang II infusion+/-losartan or PD 123319 significantly increased apoptosis (147+/-8%, 178+/-20%, and 238+/-41%, respectively, P<0.05 compared with control). Expression of bax and active forms of caspase-3 was increased in the Ang II+PD 123319 group, whereas the expression of p53 and bcl-2 was not significantly different in all groups. The expression of AT(1) and AT(2) receptor mRNA was downregulated by losartan and PD 123319, respectively. Thus, when AT(1) or AT(2) receptors are stimulated in vivo, apoptosis is enhanced in the media of blood vessels. In the case of AT(1) receptor stimulation, this may occur secondary to vascular growth and modulate the latter. Both bax and caspase-3 participate in the pathways of apoptosis triggered by in vivo AT(1) receptor stimulation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Aorta/anatomy & histology
- Apoptosis/drug effects
- Blood Pressure/drug effects
- Body Weight/drug effects
- Drug Interactions
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Muscle Development
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/metabolism
- Pyridines/pharmacology
- RNA, Messenger/drug effects
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Q N Diep
- Medical Research Council of Canada Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Mihalik R, Bauer P, Peták I, Krajcsi P, Marton A, Kun E, Kopper L. Interaction of cytocidal drugs and the inhibition of caspase-3 by 3-nitrosobenzamide. Int J Cancer 1999; 82:875-9. [PMID: 10446456 DOI: 10.1002/(sici)1097-0215(19990909)82:6<875::aid-ijc17>3.0.co;2-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of 3-nitrosobenzamide (NOBA) on the etoposide, staurosporine and dexamethason induced rapid (4-6 hr), caspase-dependent apoptosis was investigated in thymocytes and lymphoma cells by flow cytometric assay of DNA fragmentation. When NOBA (ED(50) = 4 microM) was added to these cell systems, the rapid onset of apoptosis was prevented. Such apparent protection by NOBA was related to the inactivation of caspase-3, by s-nitrosylation of 1.3 mol -SH per enzyme molecule out of 7 -SH groups. Since NOBA by itself induces DNA fragmentation within 18 hr in lymphoma cells, our results indicate that at least two active cell death pathways exist with apparent dissimilar kinetics and molecular mechanisms.
Collapse
Affiliation(s)
- R Mihalik
- I. Institute of Pathology and Experimental Cancer Research, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
50
|
Edelstein CL, Shi Y, Schrier RW. Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules. J Am Soc Nephrol 1999; 10:1940-9. [PMID: 10477146 DOI: 10.1681/asn.v1091940] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The role of the caspases, a newly discovered group of cysteine proteases, was investigated in a model of hypoxia-induced necrotic injury of rat renal proximal tubules. An assay for caspases in freshly isolated rat proximal tubules was developed. There was a 40% increase in tubular caspase activity after 15 min of hypoxia in association with increased cell membrane damage as indicated by a threefold increase in lactate dehydrogenase release. The specific caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-D-DCB) attenuated the increase in caspase activity during 15 min of hypoxia and markedly decreased lactate dehydrogenase release in a dose-dependent manner. In the proximal tubules, Z-D-DCB also inhibited the hypoxia-induced increase in calpain activity, another cysteine protease. In contrast, when Z-D-DCB was added to purified calpain in vitro, there was no inhibition of calpain activity. The calpain inhibitor (2)-3-(4-iodophenyl)-2-mercapto-2-propenoic acid (PD150606) also inhibited the hypoxia-induced increase in caspase activity in proximal tubules, but did not inhibit the activity of purified caspase 1 in vitro. In these experiments, caspase activity was detected with the fluorescence substrate Ac-Tyr-Val-Ala-Asp-7-amido-4-methyl coumarin (Ac-YVAD-AMC), which is preferentially cleaved by caspase 1. However, minimal caspase activity was detected with the fluorescence substrate Ac-Asp-Glu-Val-Asp-7-amido-4-methyl coumarin (Ac-DEVD-AMC), which is cleaved by caspases 2, 3, and 7. The present study in proximal tubules demonstrates that (1) caspase inhibition protects against necrotic injury by inhibition of hypoxia-induced caspase activity; and (2) caspase 1 may be the caspase involved. Thus, although the role of caspases in apoptotic cell death is well established, this study provides new evidence that caspases contribute to necrotic cell death as well.
Collapse
Affiliation(s)
- C L Edelstein
- Department of Medicine, University of Colorado School of Medicine, Denver 80262, USA.
| | | | | |
Collapse
|