1
|
Wang H, Li T, Jiang Y, Chen S, Zou S, Bonewald LF, Duan P. Force-Loaded Cementocytes Regulate Osteoclastogenesis via S1P/S1PR1/Rac1 Axis. J Dent Res 2023; 102:1376-1386. [PMID: 37735908 DOI: 10.1177/00220345231195765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is the major iatrogenic complication of orthodontic treatment, seriously endangering tooth longevity and impairing masticatory function. Osteoclasts are thought to be the primary effector cells that initiate the pathological process of OIIRR; however, the cellular and molecular mechanisms responsible for OIIRR remain unclear. Our previous studies revealed that cementocytes, the major mechanically responsive cells in cementum, respond to compressive stress to activate and influence osteoclasts locally. For this study, we hypothesized that the sphingosine-1-phosphate (S1P) signaling pathway, a key mechanotransduction pathway in cementocytes, may regulate osteoclasts under the different magnitudes of either physiologic compressive stress that causes tooth movement or pathologic stress that causes OIIRR. Here, we show a biphasic effect of higher compression force stimulating the synthesis and secretion of S1P, whereas lower compression force reduced signaling in IDG-CM6 cementocytes. Using conditioned media from force-loaded cementocytes, we verified the cell-to-cell communication between cementocytes and osteoclasts and show that selective knockdown of S1PR1 and Rac1 plays a role in cementocyte-driven osteoclastogenesis via the S1P/S1PR1/Rac1 axis. Most importantly, the use of inhibitors of this axis reduced or prevented the pathological process of OIIRR. The intercellular communication mechanisms between cementocytes and osteoclasts may serve as a promising therapeutic target for OIIRR.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - T Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology
| | - Y Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Zou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L F Bonewald
- Departments of Anatomy, Cell Biology & Physiology and Orthopaedic Surgery, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - P Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases;Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
N-cadherin in osteolineage cells modulates stromal support of tumor growth. J Bone Oncol 2021; 28:100356. [PMID: 33912383 PMCID: PMC8065282 DOI: 10.1016/j.jbo.2021.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
N-cadherin in osteolineage, Osterix+ cells restrains extraskeletal tumor growth. Osterix+ cells are present in the stromal microenvironment of extraskeletal tumors. Osterix+ cells are present in normal tissues frequent sites of metastasis. N-cadherin modulates pro-tumorigenic signaling in tumor associated Osterix+ cells.
Tumor growth and metastases are dependent on interactions between cancer cells and the local environment. Expression of the cell–cell adhesion molecule N-cadherin (Ncad) is associated with highly aggressive cancers, and its expression by osteogenic cells has been proposed to provide a molecular “dock” for disseminated tumor cells to establish in pre-metastatic niches within the bone. To test this biologic model, we conditionally deleted the Ncad gene (Cdh2) in osteolineage cells using Osx-cre (cKO). Contrary to expectations, the metastatic breast cancer cell line PyMT-BO1 was able to form tumors in bone and to induce osteolysis in cKO as well as in control mice. Despite absence of Ncad, bone marrow stromal cells isolated from cKO mice were able to engage in direct cell–cell interactions with tumor cells expressing either N- or E-cadherin. However, subcutaneous PyMT-BO1 and B16F10 tumors grew larger in cKO relative to control littermates. Cell tracking experiments using the Ai9 reporter revealed the presence of Osx+ and Ncad+ cells in the stroma of extra-skeletal tumors and in a small population of lung cells. Gene expression analysis by RNAseq of Osx+ cells isolated from extra-skeletal tumors revealed alterations of pro-tumorigenic signaling pathways in cKO cells relative to control Osx+ cells. Thus, Ncad in Osx+ cells is not necessary for the establishment of bone metastases, but in extra-skeletal tumors it regulates pro-tumorigenic support by the microenvironment.
Collapse
|
3
|
Batley KC, Sandoval-Castillo J, Kemper CM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Whole genomes reveal multiple candidate genes and pathways involved in the immune response of dolphins to a highly infectious virus. Mol Ecol 2021; 30:6434-6448. [PMID: 33675577 DOI: 10.1111/mec.15873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 01/02/2023]
Abstract
Wildlife species are challenged by various infectious diseases that act as important demographic drivers of populations and have become a great conservation concern particularly under growing environmental changes. The new era of whole genome sequencing provides new opportunities and avenues to explore the role of genetic variants in the plasticity of immune responses, particularly in non-model systems. Cetacean morbillivirus (CeMV) has emerged as a major viral threat to cetacean populations worldwide, contributing to the death of thousands of individuals of multiple dolphin and whale species. To understand the genomic basis of immune responses to CeMV, we generated and analysed whole genomes of 53 Indo-Pacific bottlenose dolphins (Tursiops aduncus) exposed to Australia's largest known CeMV-related mortality event that killed at least 50 dolphins from three different species. The genomic data set consisted of 10,168,981 SNPs anchored onto 23 chromosome-length scaffolds and 77 short scaffolds. Whole genome analysis indicated that levels of inbreeding in the dolphin population did not influence the outcome of an individual. Allele frequency estimates between survivors and nonsurvivors of the outbreak revealed 15,769 candidate SNPs, of which 689 were annotated to 295 protein coding genes. These included 50 genes with functions related to innate and adaptive immune responses, and cytokine signalling pathways and genes thought to be involved in immune responses to other morbilliviruses. Our study characterised genomic regions and pathways that may contribute to CeMV immune responses in dolphins. This represents a stride towards clarifying the complex interactions of the cetacean immune system and emphasises the value of whole genome data sets in understanding genetic elements that are essential for species conservation, including disease susceptibility and adaptation.
Collapse
Affiliation(s)
- Kimberley C Batley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Ikuko Tomo
- South Australian Museum, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.,Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, Barski A. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217:jem.20182009. [PMID: 31653690 PMCID: PMC7037242 DOI: 10.1084/jem.20182009] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.
Collapse
Affiliation(s)
- Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sushmitha Vallabh
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrey V Kartashov
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
5
|
Troupin A, Shirley D, Londono-Renteria B, Watson AM, McHale C, Hall A, Hartstone-Rose A, Klimstra WB, Gomez G, Colpitts TM. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread. THE JOURNAL OF IMMUNOLOGY 2016; 197:4382-4391. [PMID: 27799312 DOI: 10.4049/jimmunol.1600846] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site.
Collapse
Affiliation(s)
- Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Devon Shirley
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Alan M Watson
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Cody McHale
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Adam Hartstone-Rose
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - William B Klimstra
- Department of Microbiology and Molecular Genetics, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260; and
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209;
| |
Collapse
|
6
|
Brennan P, Shore AM, Clement M, Hewamana S, Jones CM, Giles P, Fegan C, Pepper C, Brewis IA. Quantitative nuclear proteomics reveals new phenotypes altered in lymphoblastoid cells. Proteomics Clin Appl 2015; 3:359-69. [PMID: 26238753 DOI: 10.1002/prca.200800137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Indexed: 12/23/2022]
Abstract
B-lymphocytes are essential for the production of antibodies to fight pathogens and are the cells of origin in 95% of human lymphomas. During their activation, and immortalisation by Epstein-Barr virus (EBV) which contributes to human cancers, B-lymphocytes undergo dramatic changes in cell size and protein content. This study was initiated to compare the proteome of two B-cell lines, from the same individual, that reflect different patterns of activation, one is EBV negative and the other is EBV positive. Using isobaric tags, LC-MALDI TOF-TOF and subcellular fractionation, we quantified 499 proteins from B-cells. From a detergent lysed protein extract, we identified 34 proteins that were differentially expressed in EBV-immortalised B-cells. By analysing a nuclear extract, we identified a further 29 differentially expressed proteins with only four proteins shared between the two extracts, illustrating the benefit of subcellular fractionation. This analysis has identified proteins involved in the cytoskeletal phenotype of activated B-cells and the increased antigen recognition in EBV-immortalised cells. Importantly, we have also identified new regulators of transcription and changes in ribonuclear proteins that may contribute to the increased cell size and immortalisation of lymphoblastoid cells.
Collapse
Affiliation(s)
- Paul Brennan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | - Angharad M Shore
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Mathew Clement
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Saman Hewamana
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Catrin M Jones
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Peter Giles
- Department of Pathology, Cardiff University, Heath Park, Cardiff, UK
| | - Christopher Fegan
- Department of Haematology, Cardiff University, Heath Park, Cardiff, UK
| | | | - Ian A Brewis
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|
7
|
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 2014; 9:e102977. [PMID: 25057852 PMCID: PMC4109958 DOI: 10.1371/journal.pone.0102977] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six i(7)(q10)-positive HSTL cases, including HSTL-derived cell line (DERL-2), and three cases with ring 7 [r(7)], the recently identified rare variant aberration. Using high resolution array CGH, we profiled all cases and mapped the common deleted region (CDR) at 7p22.1p14.1 (34.88 Mb; 3506316-38406226 bp) and the common gained region (CGR) at 7q22.11q31.1 (38.77 Mb; 86259620–124892276 bp). Interestingly, CDR spans a smaller region of 13 Mb (86259620–99271246 bp) constantly amplified in cases with r(7). In addition, we found that TCRG (7p14.1) and TCRB (7q32) are involved in formation of r(7), which seems to be a byproduct of illegitimate somatic rearrangement of both loci. Further transcriptomic analysis has not identified any CDR-related candidate tumor suppressor gene. Instead, loss of 7p22.1p14.1 correlated with an enhanced expression of CHN2 (7p14.1) and the encoded β2-chimerin. Gain and amplification of 7q22.11q31.1 are associated with an increased expression of several genes postulated to be implicated in cancer, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any disease-defining mutation or gene fusion. Thus, chromosome 7 imbalances remain the only driver events detected in this tumor. We hypothesize that the Δ7p22.1p14.1-associated enhanced expression of CHN2/β2-chimerin leads to downmodulation of the NFAT pathway and a proliferative response, while upregulation of the CGR-related genes provides growth advantage for neoplastic δγT-cells and underlies their intrinsic chemoresistance. Finally, our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies.
Collapse
|
8
|
Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, Cavener DR. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. J Biol Chem 2013; 288:33824-33836. [PMID: 24114838 DOI: 10.1074/jbc.m113.503664] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca(2+) signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca(2+) entry and sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca(2+) signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Barbara C McGrath
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Richard F Kopp
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Michael W Roe
- Department of Medicine, Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Xin Tang
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Gong Chen
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802
| | - Douglas R Cavener
- Department of Biology, Center of Cellular Dynamics, Pennsylvania State University, Pennsylvania 16802.
| |
Collapse
|
9
|
Hampton PJ, Jans R, Flockhart RJ, Parker G, Reynolds NJ. Lithium regulates keratinocyte proliferation via glycogen synthase kinase 3 and NFAT2 (nuclear factor of activated T cells 2). J Cell Physiol 2012; 227:1529-37. [PMID: 21678407 PMCID: PMC4150531 DOI: 10.1002/jcp.22872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Certain environmental factors including drugs exacerbate or precipitate psoriasis. Lithium is the commonest cause of drug-induced psoriasis but underlying mechanisms are currently unknown. Lithium inhibits glycogen synthase kinase 3 (GSK-3). As lithium does not exacerbate other T-cell-mediated chronic inflammatory diseases, we investigated whether lithium may be acting directly on epidermal keratinocytes by inhibiting GSK-3. We report that lithium-induced keratinocyte proliferation at therapeutically relevant doses (1-2 mM) and increased the proportion of cells in S phase of the cell cycle. Inhibition of GSK-3 in keratinocytes by retroviral transduction of GSK-binding protein (an endogenous inhibitory protein) or through a highly selective pharmacological inhibitor also resulted in increased keratinocyte proliferation. Nuclear factor of activated T cells (NFAT) is an important substrate for GSK-3 and for cyclosporin, an effective treatment for psoriasis that inhibits NFAT activation in keratinocytes as well as in lymphocytes. Both lithium and genetic/pharmacological inhibition of GSK-3 resulted in increased nuclear localization of NFAT2 (NFATc1) and increased NFAT transcriptional activation. Finally, retroviral transduction of NFAT2 increased keratinocyte proliferation whereas siRNA-mediated knockdown of NFAT2 reduced keratinocyte proliferation and decreased epidermal thickness in an organotypic skin equivalent model. Taken together, these data identify GSK-3 and NFAT2 as key regulators of keratinocyte proliferation and as potential molecular targets relevant to lithium-provoked psoriasis.
Collapse
Affiliation(s)
- Philip J Hampton
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
10
|
Osei-Sarfo K, de Castro IP, Pellicer A. p15(INK4b) plays a crucial role in murine lymphoid development and tumorigenesis. Carcinogenesis 2012; 33:708-13. [PMID: 22227036 DOI: 10.1093/carcin/bgs003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate if the cooperation between the Rgr oncogene and the inactivation of INK4b (a CDK inhibitor), as described previously in a sarcoma model, would be operational in a lymphoid system in vivo, we generated a transgenic/knockout murine model. Transgenic mice expressing the Rgr oncogene under a CD4 promoter were crossed into a p15(INK4b)-deficient background. Unexpectedly, mice with a complete ablation of both p15(INK4b) alleles had a lower tumor incidence and higher survival rate when compared with CD4-Rgr progeny with homozygous or heterozygous expression of p15(INK4b). Also, a similar survival pattern was observed in a parallel model in which transgenic mice expressing a constitutively activated N-Ras mutant were crossed into a p15(INK4b)-deficient background. To analyze this paradoxical event, we investigated the hypothesis that the absence of both p15(INK4b) alleles in the presence of the Rgr oncogene could be deleterious for proper thymocyte development. When analyzed, thymocyte development was blocked at the double negative (DN) 3 and DN4 stages in mice missing one or both alleles of p15(INK4b), respectively. We found reduction in overall apoptotic levels in the thymocytes of mice expressing Rgr, compared with their wild-type mice, supporting thymocyte escape from programmed cell death and subsequently facilitating the onset of thymic lymphomas but less for those missing both p15 alleles. These findings provide evidence of the complex interplay between oncogenes and tumor suppressor genes in tumor development and indicate that in the lymphoid tissue the inactivation of both p15 alleles is unlikely to be the first event in tumor development.
Collapse
Affiliation(s)
- Kwame Osei-Sarfo
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | | | | |
Collapse
|
11
|
Bécart S, Altman A. SWAP-70-like adapter of T cells: a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+ signaling in T cells. Immunol Rev 2009; 232:319-33. [PMID: 19909373 PMCID: PMC2801603 DOI: 10.1111/j.1600-065x.2009.00839.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SWAP-70-like adapter of T cells (SLAT) is a recently identified guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1, which is highly expressed in both thymocytes and peripheral T cells. Here, we present and discuss findings resulting from biochemical and genetic analyses aimed at unveiling the role of SLAT in CD4+ T-cell development, activation, and T-helper (Th) cell differentiation. Slat(-/-) mice display a developmental defect at one of the earliest stages of thymocyte differentiation, the double negative 1 (DN1) stage, leading to decreased peripheral T-cell numbers. Slat(-/-) peripheral CD4+ T cells demonstrate impaired T-cell receptor/CD28-induced proliferation and IL-2 production. Moreover, SLAT positively regulates the development of Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling. SLAT is also a positive regulator of the recently emerging Th subset, i.e., Th17 cells, as evidenced by its critical role in Th17 cell-mediated central nervous system inflammation. Furthermore, TCR engagement induces SLAT translocation to the immunological synapse, a process mediated by its Lck-dependent phosphorylation, which thereafter facilitates the triggering of SLAT GEF activity towards Cdc42 and Rac1, leading to NFAT activation and Th1/Th2 differentiation. Future work will aim to dissect the interacting partners of SLAT and may thus shed light on the poorly understood events that coordinate and link actin cytoskeleton reorganization to Ca2+ signaling and gene transcription in T cells.
Collapse
Affiliation(s)
- Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
12
|
Abstract
Rac1, a member of the Rho family of GTPases, is an intracellular transducer known to regulate multiple signaling pathways that control cytoskeleton organization, transcription, and cell proliferation. Deregulated expression or activation patterns of Rac1 can result in aberrant cell signaling and numerous pathological conditions. Here, we highlight the physiological functions and signaling mechanisms of Rac1 and their relevance to disease.
Collapse
Affiliation(s)
- E. E. Bosco
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - J. C. Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| | - Y. Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 USA
| |
Collapse
|
13
|
Bécart S, Balancio AJC, Charvet C, Feau S, Sedwick CE, Altman A. Tyrosine-phosphorylation-dependent translocation of the SLAT protein to the immunological synapse is required for NFAT transcription factor activation. Immunity 2008; 29:704-19. [PMID: 18976935 DOI: 10.1016/j.immuni.2008.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/08/2008] [Accepted: 08/19/2008] [Indexed: 01/07/2023]
Abstract
SWAP-70-like adaptor of T cells (SLAT) is a guanine nucleotide exchange factor for Rho GTPases that regulates the development of T helper 1 (Th1) and Th2 cell inflammatory responses by controlling the Ca(2+)-NFAT signaling pathway. However, the mechanism used by SLAT to regulate these events is unknown. Here, we report that the T cell receptor (TCR)-induced translocation of SLAT to the immunological synapse required Lck-mediated phosphorylation of two tyrosine residues located in an immunoreceptor tyrosine-based activation motif-like sequence but was independent of the SLAT PH domain. This subcellular relocalization was coupled to, and necessary for, activation of the NFAT pathway. Furthermore, membrane targeting of the SLAT Dbl-homology (catalytic) domain was sufficient to trigger TCR-mediated NFAT activation and Th1 and Th2 differentiation in a Cdc42-dependent manner. Therefore, tyrosine-phosphorylation-mediated relocalization of SLAT to the site of antigen recognition is required for SLAT to exert its pivotal role in NFAT-dependent CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Flockhart RJ, Diffey BL, Farr PM, Lloyd J, Reynolds NJ. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure. FASEB J 2008; 22:4218-27. [PMID: 18708588 PMCID: PMC2671982 DOI: 10.1096/fj.08-113076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nuclear factor of activated T cells (NFAT) transcription factors are regulated by calcium/calcineurin signals and play important roles in T cells, muscle, bone, and neural tissue. NFAT is expressed in the epidermis, and although recent data suggest that NFAT is involved in the skin’s responses to ultraviolet radiation (UVR), the wavelengths of radiation that activate NFAT and the biological function of UV-activated NFAT remain undefined. We demonstrate that NFAT transcriptional activity is preferentially induced by UVB wavelengths in keratinocytes. The derived action spectrum for NFAT activation indicates that NFAT transcriptional activity is inversely associated with wavelength. UVR also evoked NFAT2 nuclear translocation in a parallel wavelength-dependent fashion and both transcriptional activation and nuclear translocation were inhibited by the calcineurin inhibitor cyclosporin A. UVR also evoked NFAT2 nuclear translocation in three-dimensional skin equivalents. Evidence suggests that COX-2 contributes to UV-induced carcinogenesis. Inhibiting UV-induced NFAT activation in keratinocytes, reduced COX-2 protein induction, and increased UV-induced apoptosis. COX-2 luciferase reporters lacking functional NFAT binding sites were less responsive to UVR, highlighting that NFAT is required for UV-induced COX-2 induction. Taken together, these data suggest that the proinflammatory, antiapoptotic, and procarcinogenic functions of UV-activated COX-2 may be mediated, in part, by upstream NFAT signaling. Flockhart, R. J., Diffey, B. L., Farr, P. M., Lloyd, J., Reynolds, N. J. NFAT regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet radiation exposure.
Collapse
Affiliation(s)
- R J Flockhart
- Institute of Cellular Medicine, Newcastle University, Framlington Pl., Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
15
|
Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Tertilt C, Bopp T, Heib V, Becker M, Taube C, Schild H, Schmitt E, Stassen M. Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. THE JOURNAL OF IMMUNOLOGY 2007; 177:6667-74. [PMID: 17082579 DOI: 10.4049/jimmunol.177.10.6667] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By virtue of their ability to express a plethora of biologically highly active mediators, mast cells (MC) are involved in both adaptive and innate immune responses. MC-derived Th2-type cytokines are thought to act as local amplifiers of Th2 reactions, including chronic inflammatory disorders such as allergic asthma, whereas MC-derived TNF-alpha is a critical initiator of antimicrobial defense. In this study, we demonstrate that the transcription factors NFATc1 and NFATc2 are part of a MC-specific signaling network that regulates the expression of TNF-alpha and IL-13, whereas NFATc3 is dispensable. Primary murine bone marrow-derived MC from NFATc2(-/-) mice, activated by either ionomycin or IgE/Ag cross-link, display a strong reduction in the production of these cytokines, compared with bone marrow-derived MC from wild-type mice. Detailed analyses of TNF-alpha and IL-13 expression using small interfering RNA-mediated knockdown reveals that both NFATc2 and NFATc1 are able to drive the expression of these cytokines, whereas neither degranulation nor the expression of IL-6 depends on NFAT activity. These results support the view that high NFAT activity is necessary for TNF-alpha and IL-13 promoter induction in MC, irrespective of whether NFATc2 or NFATc1 or a combination of both is present.
Collapse
|
16
|
Oda H, Suzuki H, Sakai K, Kitahara S, Patrick MS, Azuma Y, Sugi K, Kitamura T, Kaye J, Shirai M. Rac1-mediated Bcl-2 induction is critical in antigen-induced CD4 single-positive differentiation of a CD4+CD8+ immature thymocyte line. J Leukoc Biol 2006; 81:500-8. [PMID: 17090688 DOI: 10.1189/jlb.1005585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rac1, one of the Rho family small guanosine triphosphatases, has been shown to work as a "molecular switch" in various signal transduction pathways. To assess the function of Rac1 in the differentiation process of CD4 single-positive (CD4-SP) T cells from CD4CD8 double-positive (DP) cells, we used a DP cell line DPK, which can differentiate into CD4-SP cells upon TCR stimulation in vitro. DPK expressing dominant-negative (dn)Rac1 underwent massive apoptosis upon TCR stimulation and resulted in defective differentiation of CD4-SP cells. Conversely, overexpression of dnRac2 did not affect differentiation. TCR-dependent actin polymerization was inhibited, whereas early ERK activation was unaltered in dnRac1-expressing DPK. We found that TCR-dependent induction of Bcl-2 was suppressed greatly in dnRac1-expressing DPK, and this suppression was independent of actin rearrangement. Furthermore, introduction of exogenous Bcl-2 inhibited TCR-dependent induction of apoptosis and restored CD4-SP generation in dnRac1-expressing DPK without restoring TCR-induced actin polymerization. Collectively, these data indicate that Rac1 is critical in differentiation of CD4-SP from the DP cell line by preventing TCR-induced apoptosis via Bcl-2 up-regulation.
Collapse
Affiliation(s)
- Hiroyo Oda
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompré AM, Vandecasteele G, Lezoualc'h F. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 2005; 97:1296-304. [PMID: 16269655 DOI: 10.1161/01.res.0000194325.31359.86] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
cAMP is one of the most important second messenger in the heart. The discovery of Epac as a guanine exchange factor (GEF), which is directly activated by cAMP, raises the question of the role of this protein in cardiac cells. Here we show that Epac activation leads to morphological changes and induces expression of cardiac hypertrophic markers. This process is associated with a Ca2+-dependent activation of the small GTPase, Rac. In addition, we found that Epac activates a prohypertrophic signaling pathway, which involves the Ca2+ sensitive phosphatase, calcineurin, and its primary downstream effector, NFAT. Rac is involved in Epac-induced NFAT dependent cardiomyocyte hypertrophy. Blockade of either calcineurin or Rac activity blunts the hypertrophic response elicited by Epac indicating these signaling molecules coordinately regulate cardiac gene expression and cellular growth. Our results thus open new insights into the signaling pathways by which cAMP may mediate its biological effects and identify Epac as a new positive regulator of cardiac growth.
Collapse
Affiliation(s)
- Eric Morel
- Cardiologie Cellulaire et Moléculaire, Inserm U-446, IFR-75, Faculté de Pharmacie, Université Paris XI, 5 Rue JB Clément, 92296 Chātenay Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Furuno T, Nakanishi M. Live Cell Imaging to Study Signaling Molecules in Allergic Reactions. Biol Pharm Bull 2005; 28:1551-9. [PMID: 16141514 DOI: 10.1248/bpb.28.1551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mast cells are widely distributed throughout the body, predominantly near blood vessels and nerves, and express effector functions in allergic reactions, inflammatory diseases, and host defense. The activation of mast cells results in secretion of the preformed chemical mediators in their granules by a regulated process of exocytosis and leads to synthesis and secretion of lipid mediators and cytokines. Their soluble factors contribute to allergic inflammation. Mast cells are associated with hypersensitivity reactions, not only in the classical immunoglobulin E (IgE)-dependent mechanism but also in an IgE-independent manner. In particular, investigations of potential anatomical and functional interactions between mast cells and the nervous system have recently attracted great interest. To understand these molecular mechanisms in mast cell activation, the ability to visualize, track, and quantify molecules and events in living mast cells is an essential and powerful tool. Recent dramatic advances in imaging technology and labeling techniques have enabled us to carry out these tasks with high spatiotemporal resolution using confocal laser scanning microscopes, green fluorescent protein and its derivatives, and image analysis systems. Here we review our investigations of the dynamic processes of intracellular signaling molecules, cellular structure, and interactions with neurons in mast cells to provide basic and valuable information for allergy and clinical immunology using these new imaging methods.
Collapse
Affiliation(s)
- Tadahide Furuno
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | | |
Collapse
|
19
|
Ahamed J, Venkatesha RT, Thangam EB, Ali H. C3a enhances nerve growth factor-induced NFAT activation and chemokine production in a human mast cell line, HMC-1. THE JOURNAL OF IMMUNOLOGY 2004; 172:6961-8. [PMID: 15153516 DOI: 10.4049/jimmunol.172.11.6961] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of cell surface G protein-coupled receptors leads to transphosphorylation and activation of a number of receptor tyrosine kinases. Human mast cells express G protein-coupled receptors for the complement component C3a (C3aR) and high affinity nerve growth factor (NGF) receptor tyrosine kinase, TrkA. To determine whether C3a cross-regulates TrkA signaling and biological responses, we used a human mast cell-line, HMC-1, that natively expresses both receptors. We found that NGF caused tyrosine phosphorylation of TrkA, resulting in a sustained Ca(2+) mobilization, NFAT activation, extracellular-signal regulated kinase (ERK) phosphorylation, and chemokine, macrophage inflammatory protein-1beta (MIP-1beta) production. In contrast, C3a induced a transient Ca(2+) mobilization and ERK phosphorylation but failed to stimulate TrkA phosphorylation, NFAT activation, or MIP-1beta production. Surprisingly, C3a significantly enhanced NGF-induced NFAT activation, ERK phosphorylation, and MIP-1beta production. Pertussis toxin, a G(i/o) inhibitor, selectively blocked priming by C3a but had no effect on NGF-induced responses. Mitogen-activated protein/ERK kinase inhibitor U0126 caused approximately 30% inhibition of NGF-induced MIP-1beta production but had no effect on priming by C3a. However, cyclosporin A, an inhibitor of calcineurin-mediated NFAT activation, caused substantial inhibition of NGF-induced MIP-1beta production both in the absence and presence of C3a. These data demonstrate that NGF caused tyrosine phosphorylation of TrkA to induce chemokine production in HMC-1 cells via a pathway that mainly depends on sustained Ca(2+) mobilization and NFAT activation. Furthermore, C3a enhances NGF-induced transcription factor activation and chemokine production via a G protein-mediated pathway that does not involve TrkA phosphorylation.
Collapse
Affiliation(s)
- Jasimuddin Ahamed
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
20
|
Pandey V, Mihara S, Fensome-Green A, Bolsover S, Cockcroft S. Monomeric IgE stimulates NFAT translocation into the nucleus, a rise in cytosol Ca2+, degranulation, and membrane ruffling in the cultured rat basophilic leukemia-2H3 mast cell line. THE JOURNAL OF IMMUNOLOGY 2004; 172:4048-58. [PMID: 15034016 DOI: 10.4049/jimmunol.172.7.4048] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are key regulators in allergy and inflammation, and release histamine, cytokines, and other proinflammatory mediators. In the classical view, IgE acts merely to prime mast cells, attaching to FcepsilonRs but not evoking any cell signaling response until cross-linked by the presence of a multivalent allergen. However, several recent studies have reported that IgE alone can promote cell survival and cytokine production in the absence of cross-linking by allergen. In this study we demonstrate that acute addition of monomeric IgE elicits a wide spectrum of responses in the rat basophilic leukemia-2H3 mast cell line, including activation of phospholipases Cgamma and D, a rise in cytosol Ca(2+), NFAT translocation, degranulation, and membrane ruffling within minutes. Calcium transients persist for hours as long as IgE is present resulting in the maintained translocation of the transcription factor NFAT to the nucleus. Removal of IgE reverses the signaling processes. Our results indicate that, far from simply preparing the cells for a response to allergen, monomeric IgE can stimulate signaling pathways that lead to degranulation, membrane ruffling, and NFAT translocation. The mechanism of activation is likely to be via aggregation of the FcepsilonR1 because activation by IgE can be inhibited with monovalent hapten.
Collapse
Affiliation(s)
- Vinita Pandey
- Department of Physiology, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Abstract
Guanine nucleotide binding proteins rapidly cycle between a guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound state, and they operate as binary switches that control cell activation in response to environmental cues. GTPases adopt different conformations when binding GTP vs. GDP. The GTP-bound state is generally considered to be the active conformation that allows GTPases to interact with downstream effectors and thereby initiate downstream signaling pathways, which regulate many important biological processes. Many members of the Ras family of GTPases, notably Ras and Rap1A, and the Rho family GTPases, Cdc42Hs, Rac1, Rac2 and RhoA, are important components of signal transduction pathways used by antigen receptors, costimulatory, cytokine and chemokine receptors to regulate the immune response. This review discusses current knowledge and ideas about the regulation and function of these GTPases in lymphocytes.
Collapse
Affiliation(s)
- Doreen Ann Cantrell
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK.
| |
Collapse
|
22
|
Yang Y, Li L, Wong GW, Krilis SA, Madhusudhan MS, Sali A, Stevens RL. RasGRP4, a new mast cell-restricted Ras guanine nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Identification of defective variants of this signaling protein in asthma, mastocytosis, and mast cell leukemia patients and demonstration of the importance of RasGRP4 in mast cell development and function. J Biol Chem 2002; 277:25756-74. [PMID: 11956218 DOI: 10.1074/jbc.m202575200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA was isolated from interleukin 3-developed, mouse bone marrow-derived mast cells (MCs) that contained an insert (designated mRasGRP4) that had not been identified in any species at the gene, mRNA, or protein level. By using a homology-based cloning approach, the approximately 2.6-kb hRasGRP4 transcript was also isolated from the mononuclear progenitors residing in the peripheral blood of normal individuals. This transcript information was then used to locate the RasGRP4 gene in the mouse and human genomes, to deduce its exon/intron organization, and then to identify 10 single nucleotide polymorphisms in the human gene that result in 5 amino acid differences. The >15-kb hRasGRP4 gene consists of 18 exons and resides on a region of chromosome 19q13.1 that had not been sequenced by the Human Genome Project. Human and mouse MCs and their progenitors selectively express RasGRP4, and this new intracellular protein contains all of the domains present in the RasGRP family of guanine nucleotide exchange factors even though it is <50% identical to its closest homolog. Recombinant RasGRP4 can activate H-Ras in a cation-dependent manner. Transfection experiments also suggest that RasGRP4 is a diacylglycerol/phorbol ester receptor. Transcript analysis of an asthma patient, a mastocytosis patient, and the HMC-1 cell line derived from a MC leukemia patient revealed the presence of substantial amounts of non-functional forms of hRasGRP4 due to an inability to remove intron 5 in the precursor transcript. Because only abnormal forms of hRasGRP4 were identified in the HMC-1 cell line, this immature MC progenitor was used to address the function of RasGRP4 in MCs. HMC-1 leukemia cells differentiated and underwent granule maturation when induced to express a normal form of RasGRP4. Thus, RasGRP4 plays an important role in the final stages of MC development.
Collapse
Affiliation(s)
- Yi Yang
- Department of Medicine, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Yablonski D, Weiss A. Mechanisms of signaling by the hematopoietic-specific adaptor proteins, SLP-76 and LAT and their B cell counterpart, BLNK/SLP-65. Adv Immunol 2002; 79:93-128. [PMID: 11680012 DOI: 10.1016/s0065-2776(01)79003-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adaptor proteins lack catalytic activity and contain only protein-protein interaction domains. They have been shown to interact with an ever-growing number of signaling proteins and to play essential roles in many signaling pathways. SLP-76 and LAT are cell-type-specific adaptor proteins expressed in T cells, NK cells, platelets, and mast cells. In these cell types, SLP-76 and LAT are required for signaling by immunoreceptor tyrosine-based activation motif(ITAM)-containing receptors, including the T cell receptor (TCR), the pre-TCR, the high-affinity Fc epsilon receptor, and the platelet GPVI collagen receptor. In B cells, an analogous adaptor, BLNK/SLP-65, is required for signaling by the ITAM-containing B cell receptor. This review summarizes recent research on SLP-76, LAT, and BLNK. A major challenge in understanding adaptor protein function has been to sort out the many interactions mediated by adaptor proteins and to define the mechanisms by which adaptors mediate critical signaling events. In the case of LAT, SLP-76, and BLNK, the availability of tractable genetic systems, deficient in expression of each of these adaptor proteins, has facilitated in-depth investigation of their signaling functions and mechanisms of action. The picture that has emerged is one in which multiple adaptor proteins cooperate to bring about the formation of a large signaling complex, localized to specialized lipid microdomains within the cell membrane and known as GEMs. Adaptors not only recruit signaling proteins, but also play an active role in regulating the conformation and activation of many of the proteins recruited to the complex. In particular, recent research has shed light on the mechanisms by which multiple adaptor proteins cooperate to bring about the recruitment and activation of phospholipase C gamma in response to the activation of ITAM-containing receptors.
Collapse
Affiliation(s)
- D Yablonski
- Department of Pharmacology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | | |
Collapse
|
24
|
Brenner BC, Kadel S, Grigorovich S, Linderkamp O. Mechanisms of L-selectin-induced activation of the nuclear factor of activated T lymphocytes (NFAT). Biochem Biophys Res Commun 2002; 291:237-44. [PMID: 11846396 DOI: 10.1006/bbrc.2002.6451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selectins are mediating transient contacts of leukocytes with endothelium during inflammatory processes and in the development of the immune system. L-selectin expressed on almost all leukocytes also functions as a signaling receptor. Recently, we have identified different signaling pathways in T lymphocytes by L-selectin. One signaling cascade leads via the tyrosine kinase p56lck to the small G-proteins Ras and Rac and to MAP-kinases. A second independent pathway results in ceramide release. In this study, an L-selectin-induced translocation of the transcription factor NFAT to the nucleus was identified. Using genetically modified JCaM1.6 cells, pharmacological inhibitors, and antisense molecules, it was shown that L-selectin-induced NFAT activation depends on src-tyrosine kinases, calcineurin and small G-proteins. MAP-kinases and actin filaments were identified as Ras effectors involved in NFAT translocation. We conclude that L-selectin cross-linking results in activation of NFAT by different signaling pathways. The activation of NFAT might modulate the immune response of leukocytes interacting with endothelial cells.
Collapse
Affiliation(s)
- Birgit C Brenner
- Department of Cardiology, Children's Hospital, Moorenstrasse 5, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
25
|
Abstract
Protein kinase B (PKB) [1-5] is a serine/threonine kinase that is activated by cytokines, antigen receptors, the costimulator CD28 and chemokines in lymphocytes. [6-11] PKB is thus poised to contribute to a variety of immune activation responses. A number of functions have been ascribed to PKB in different cell lineages including the regulation of cell survival, cytokine gene induction and cell cycle progression. In the present article the mechanisms that control PKB activity in T lymphocytes will be reviewed and the function of this kinase in the immune system will be discussed.
Collapse
Affiliation(s)
- Doreen Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
26
|
Abstract
This review examines the value of transgenic studies in mice for the genetic dissection of signal-transduction pathways relevant to thymus development. T-cell development in the thymus is controlled by an ordered sequence of differentiation and proliferation checkpoints that culminate in the production of correctly selected, non-autoreactive, peripheral T lymphocytes. Work in transgenic mice has been fundamental for the preparation of genetic maps of signal-transduction pathways that control T-cell development. This review discusses how tyrosine kinases, guanine-nucleotide-binding proteins and transcription factors converge to control T-cell differentiation and proliferation in the immune system.
Collapse
Affiliation(s)
- Doreen A Cantrell
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK.
| |
Collapse
|
27
|
Gomez M, Kioussis D, Cantrell DA. The GTPase Rac-1 controls cell fate in the thymus by diverting thymocytes from positive to negative selection. Immunity 2001; 15:703-13. [PMID: 11728333 DOI: 10.1016/s1074-7613(01)00235-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The positive selection of CD4 or CD8 single-positive mature peripheral T lymphocytes and the deletion of self-reactive cells are crucial for central tolerance in the peripheral immune system. Previously, the guanine nucleotide binding protein Rac-1 has been shown to control pre-T cell development. The present report now describes the actions of Rac-1 in thymocyte selection. The study reveals that this molecule has the striking and unique ability to efficiently divert cells from positive selection into a pathway of negative selection and deletion. The ability of Rac-1 to switch thymocytes from a destiny of positive to negative selection identifies this molecule as a critical regulator of the developmental processes in T cells that are essential for immune homeostasis.
Collapse
Affiliation(s)
- M Gomez
- Imperial Cancer Research Fund, Lymphocyte Activation Laboratory, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
28
|
Kraft S, Bieber T. Fc epsilon ri-mediated activation of transcription factors in antigen-presenting cells. Int Arch Allergy Immunol 2001; 125:9-15. [PMID: 11385283 DOI: 10.1159/000053791] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Professional antigen-presenting cells (APC) such as monocytes and dendritic cells (DC) bearing high-affinity IgE receptors (Fc epsilon RI) efficiently present IgE-bound antigens to T cells. Fc epsilon RI expression is upregulated on APC from atopic donors, especially in inflamed tissues. These data suggest a pathophysiological concept of an IgE-mediated delayed-type hypersensitivity reaction in atopic diseases. However, Fc epsilon RI ligation also leads to the synthesis of proinflammatory cytokines and other molecules involved in inflammatory reactions. The investigation of transcription factors mediating these effects has only recently commenced. In general, members of the NF-kappa B family are known to regulate APC function and differentiation, with the RelB subunit being especially important in DC generation. In addition, Ikaros and PU.1 have also been shown to be essential factors for DC differentiation, whereas Oct-2 is upregulated by differentiation towards macrophages. Recently, Fc epsilon RI has been demonstrated to induce NF-kappa B activation via I kappa B-alpha serine phosphorylation and degradation in monocytes and DC. Inhibitors of NF-kappa B activation such as N-acetylcysteine or N-tosyl-L-phenylalanine chloromethyl ketone can suppress Fc epsilon RI-induced TNF-alpha and MCP-1 release. Interestingly, in human epidermal Langerhans' cells (LC), NF-kappa B activation can only be observed when large amounts of Fc epsilon RI are present. In addition, the composition of NF-kappa B complexes differs between monocytes, monocyte-derived DC and LC, suggesting a cell type-specific regulation. Moreover, the transcription factor NFAT is induced upon Fc epsilon RI ligation in human APC. The elucidation of further transcription factors involved in Fc epsilon RI signaling in APC should contribute to the employment of new inhibition strategies for the treatment of atopic and other inflammatory diseases.
Collapse
Affiliation(s)
- S Kraft
- Department of Dermatology, Friedrich Wilhelms University, Bonn, Germany.
| | | |
Collapse
|
29
|
Kim LJ, Seto AG, Nguyen TN, Goodrich JA. Human Taf(II)130 is a coactivator for NFATp. Mol Cell Biol 2001; 21:3503-13. [PMID: 11313476 PMCID: PMC100272 DOI: 10.1128/mcb.21.10.3503-3513.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
NFATp is one member of a family of transcriptional activators that regulate the expression of cytokine genes. To study mechanisms of NFATp transcriptional activation, we established a reconstituted transcription system consisting of human components that is responsive to activation by full-length NFATp. The TATA-associated factor (TAF(II)) subunits of the TFIID complex were required for NFATp-mediated activation in this transcription system, since TATA-binding protein (TBP) alone was insufficient in supporting activated transcription. In vitro interaction assays revealed that human TAF(II)130 (hTAF(II)130) and its Drosophila melanogaster homolog dTAF(II)110 bound specifically and reproducibly to immobilized NFATp. Sequences contained in the C-terminal domain of NFATp (amino acids 688 to 921) were necessary and sufficient for hTAF(II)130 binding. A partial TFIID complex assembled from recombinant hTBP, hTAF(II)250, and hTAF(II)130 supported NFATp-activated transcription, demonstrating the ability of hTAF(II)130 to serve as a coactivator for NFATp in vitro. Overexpression of hTAF(II)130 in Cos-1 cells inhibited NFATp activation of a luciferase reporter. These studies demonstrate that hTAF(II)130 is a coactivator for NFATp and represent the first biochemical characterization of the mechanism of transcriptional activation by the NFAT family of activators.
Collapse
Affiliation(s)
- L J Kim
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
30
|
Nadler MJ, Matthews SA, Turner H, Kinet JP. Signal transduction by the high-affinity immunoglobulin E receptor Fc epsilon RI: coupling form to function. Adv Immunol 2001; 76:325-55. [PMID: 11079101 DOI: 10.1016/s0065-2776(01)76022-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M J Nadler
- Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Multiple distinct signal transduction pathways have been implicated in the development of cardiac myocyte hypertrophy. These hypertrophic pathways include those regulated by the Ras superfamily of small GTPases and a separate calcineurin-regulated pathway that culminates in the activation of the transcription factor NFAT3. In this report, we demonstrate a functional interaction between Ras-regulated and calcineurin-regulated pathways. In particular, expression in neonatal myocytes of a constitutively active form of Ras (V12ras), but not activating mutants of Rac1, RhoA, or Cdc42, results in an increase in NFAT activity. Similarly, expression of an activated Ras, but not other small GTPases, results in the nuclear translocation of an NFAT3 fusion protein. Expression of a dominant negative ras gene product blocks phenylephrine-stimulated NFAT transcriptional activity and the ligand-stimulated NFAT3 nuclear localization. Ras proteins appear to function upstream of calcineurin, because cyclosporin A blocks the ability of V12ras to stimulate NFAT-dependent transcription and nuclear localization. Similarly, expression of a dominant negative ras gene inhibits phenylephrine-stimulated calcineurin activity. Pharmacological inhibition of MEK1 or expression of a dominant negative form of c-Raf or ERK2 inhibits phenylephrine-stimulated NFAT3 activation. Conversely, NFAT activity was stimulated by expression of constitutively active forms of c-Raf or MEK1. Taken together, these results imply that, in cardiac myocytes, a Ras-regulated pathway involving stimulation of mitogen-activated protein kinase regulates NFAT3 activity.
Collapse
Affiliation(s)
- M Ichida
- Laboratory of Molecular Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
32
|
Kim LJ, Ferguson HA, Seto AG, Goodrich JA. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp. BMC Immunol 2000; 1:1. [PMID: 11231878 PMCID: PMC31347 DOI: 10.1186/1471-2172-1-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2000] [Accepted: 11/06/2000] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. RESULTS We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. CONCLUSIONS We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.
Collapse
Affiliation(s)
- Loree J Kim
- Department of Chemistry and Biochemistry University of Colorado at Boulder, USA
| | - Heather A Ferguson
- Department of Chemistry and Biochemistry University of Colorado at Boulder, USA
| | - Anita G Seto
- Department of Chemistry and Biochemistry University of Colorado at Boulder, USA
| | - James A Goodrich
- Department of Chemistry and Biochemistry University of Colorado at Boulder, USA
| |
Collapse
|
33
|
Yang WC, Ghiotto M, Castellano R, Collette Y, Auphan N, Nunès JA, Olive D. Role of Tec kinase in nuclear factor of activated T cells signaling. Int Immunol 2000; 12:1547-52. [PMID: 11058574 DOI: 10.1093/intimm/12.11.1547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tec protein kinase family includes Btk, Itk, Tec, Rlk and Bmx, which are critically involved in signals mediated by various cytokines and antigen receptors. Btk mutations cause severe immunodeficiencies, with defective B cell function. In T cells, Tec regulates cytokine production. However, the downstream targets of these Tec kinases are poorly defined. Here we report that overexpression of Tec in T cells can regulate gene transcription through the nuclear factor of activated T cells (NF-AT). Using different reporter gene constructs, we establish that Tec in transfected T cells dramatically induced NF-AT-dependent gene transcription, which was prevented by a dominant-negative mutant of NF-AT or by the immunosuppressive drug cyclosporin A. Tec appears to regulate NF-AT nuclear import. In addition, Tec influences cytoplasmic free calcium increase. Taken together, our results identify NF-AT as a major downstream target of Tec kinases that is critically involved in transcriptional gene regulation. These observations highlight signaling pathways regulated by Tec kinases and provide new pharmacological targets to regulate immune functions.
Collapse
Affiliation(s)
- W C Yang
- INSERM U119, Institut d'Immunologie et de Cancérologie de Marseille, Université de la Méditerranée, 27 Bd Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- D Bar-Sagi
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, 11794, USA.
| | | |
Collapse
|
35
|
Arrieumerlou C, Randriamampita C, Bismuth G, Trautmann A. Rac is involved in early TCR signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3182-9. [PMID: 10975833 DOI: 10.4049/jimmunol.165.6.3182] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GTPase Rac controls signaling pathways often related to actin polymerization in various cell types. In T lymphocytes, Rac is activated by Vav, a major component of the multiprotein transduction complex associated to the TCR. Although profound signaling defects have been observed in Vav-deficient mice, a role of Rac in the corresponding early TCR signaling has not been tested directly. This question was investigated in Jurkat T cells transfected with either a dominant-negative (RacN17) or a constitutively active (RacV12) form of Rac. In T cells expressing either RacN17 or RacV12, the anti-CD3-induced Ca2+ response and production of inositol-1,4,5-trisphosphate were inhibited. The basal level of phosphatidylinositol-4,5-bisphosphate was not significantly diminished by Rac mutants. The major inhibitory effect of Rac mutants on Ca2+ signaling is exerted on the activity of phospholipase C-gamma and, before that, on the phosphorylation of ZAP-70 and of the linker molecule for activation of T cells, LAT. An anti-CD3-induced increase in actin polymerization was observed in control cells but not in cells transfected with a Rac mutant. In addition, latrunculin, which binds to monomeric actin, simultaneously inhibited basal and CD3-induced actin polymerization and Ca2+ signaling. These findings suggest a link between the effects exerted by Rac mutants on cortical actin polymerization and on TCR signaling. Rac cycling between its GTP- and GDP-bound states is necessary for this signaling. Alterations observed in early TCR-dependent signals suggest that Rac contributes to the assembly of the TCR-associated multiprotein transduction complex.
Collapse
Affiliation(s)
- C Arrieumerlou
- Laboratoire d'Immunologie Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7627, Centre Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | |
Collapse
|
36
|
Abstract
The GTPase, Ras, is rapidly activated in antigen receptor stimulated T. cells, B cells and mast cells. Ras can bind to diverse effector molecules when activated and thereby switch on multiple downstream effector pathways. In lymphocytes Ras plays an important role in the signalling pathways that activate transcription factors involved in cytokine gene induction. Ras is also a key component of the complex regulatory networks that control T and B cell development.
Collapse
Affiliation(s)
- E Genot
- Growth Factors and Differentiation Laboratory, Bordeaux I University, Batiment de Biologie Animale, Talence Cedex, 33 405, France
| | | |
Collapse
|
37
|
Billadeau DD, Mackie SM, Schoon RA, Leibson PJ. Specific subdomains of Vav differentially affect T cell and NK cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3971-81. [PMID: 10754287 DOI: 10.4049/jimmunol.164.8.3971] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Vav protooncogene is a multidomain protein involved in the regulation of IL-2 gene transcription in T cells and the development of cell-mediated killing by cytotoxic lymphocytes. We have investigated the differential roles that specific protein subdomains within the Vav protooncogene have in the development of these two distinct cellular processes. Interestingly, a calponin homology (CH) domain mutant of Vav (CH-) fails to enhance NF-AT/AP-1-mediated gene transcription but is still able to regulate the development of cell-mediated killing. The inability of the CH- mutant to enhance NF-AT/AP-1-mediated transcription appears to be secondary to defective intracellular calcium, because 1) the CH- mutant has significantly reduced TCR-initiated calcium signaling, and 2) treatment with the calcium ionophore ionomycin or cotransfection with activated calcineurin restores NF-AT/AP-1-mediated gene transcription. The pleckstrin homology (PH) domain of Vav has also been implicated in regulating Vav activation. We found that deletion of the PH domain of Vav yields a protein that can neither enhance gene transcription from the NF-AT/AP-1 reporter nor enhance TCR- or FcR-mediated killing. In contrast, the PH deletion mutant of Vav is able to regulate the development of natural cytotoxicity, indicating a functional dichotomy for the PH domain in the regulation of these two distinct forms of killing. Lastly, mutation of three tyrosines (Y142, Y160, and Y174) within the acidic domain of Vav has revealed a potential negative regulatory site. Replacement of all three tyrosines with phenylalanine results in a hyperactive protein that increases NF-AT/AP-1-mediated gene transcription and enhances cell-mediated cytotoxicity. Taken together, these data highlight the differential roles that specific subdomains of Vav have in controlling distinct cellular functions. More broadly, the data suggest that separate lymphocyte functions can potentially be modulated by domain-specific targeting of Vav and other critical intracellular signaling molecules.
Collapse
Affiliation(s)
- D D Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
38
|
Kuhne MR, Ku G, Weiss A. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J Biol Chem 2000; 275:2185-90. [PMID: 10636924 DOI: 10.1074/jbc.275.3.2185] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell antigen receptor (TCR) stimulation induces the tyrosine phosphorylation of several intracellular proteins including the protooncogene Vav1. Vav1 expression is necessary for normal T cell development and activation. We previously showed that overexpression of Vav1 in Jurkat T cells potentiates the activity of the transcription factor nuclear factor of activated T cells (NF-AT). The mechanism by which Vav1 participates in TCR signaling events is not clear. Vav1 contains a guanine nucleotide exchange factor (GEF) domain that has specificity for Rac and other Rho GTPases that have been recently implicated in T cell activation events. Significantly, in vitro tyrosine phosphoryation of Vav1 by Lck activates its exchange activity. This Lck-mediated phosphorylation of Vav1 has been reported to depend upon Tyr-174 in Vav1, a site implicated in Vav1 function by other studies as well. In this report, we demonstrated that Tyr-174 is not required for the TCR-induced phosphorylation of Vav1 in vivo. Moreover, mutation of Tyr-174 augmented the ability of Vav1 to up-regulate NF-AT activation as well as the Vav1 GEF function leading to Rac activation. However, we also showed that the GEF activity of Vav1 was neither sufficient nor necessary for potentiation of NF-AT, and thereby we identify a GEF-independent role of Vav1 in potentiating NF-AT-driven transcription. Oncogenic Vav1 in which the amino-terminal 67 amino acids were deleted had elevated GEF activity but did not potentiate NF-AT when overexpressed in Jurkat cells. We also showed that a GEF mutant form of Vav1 that had impaired GEF function could still potentiate NF-AT. These studies reveal a previously unrecognized negative regulatory function of Tyr-174 in Vav1 and suggest that domains other than the Vav1 GEF domain contribute to TCR signals leading to NF-AT activation.
Collapse
Affiliation(s)
- M R Kuhne
- Departments of Medicine and of Microbiology and Immunology, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
39
|
Reischl IG, Coward WR, Church MK. Molecular consequences of human mast cell activation following immunoglobulin E-high-affinity immunoglobulin E receptor (IgE-FcepsilonRI) interaction. Biochem Pharmacol 1999; 58:1841-50. [PMID: 10591138 DOI: 10.1016/s0006-2952(99)00226-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cross-linking by immunoglobulin E of its high-affinity receptor, FcepsilonRI, on mast cells initiates a complex series of biochemical events leading to degranulation and the synthesis and secretion of eicosanoids and cytokines through the action of transcription factors, such as nuclear factor-kappaB. The initial activation involves the phosphorylation of FcepsilonRI beta- and gamma-subunits through the actions of the tyrosine kinases lyn and syk. For the purposes of description, the subsequent events may be grouped in three cascades characterized by the key proteins involved. First, the phospholipase C-inositol phosphate cascade activates protein kinase C and is largely responsible for calcium mobilization and influx. Second, activation of Ras and Raf via mitogen-activated protein kinase causes the production of arachidonic acid metabolites. Third, the generation of sphingosine and sphingosine-1-phosphate occurs through activation of sphingomyelinase. While the early signaling events tend to be specific for the cited cascades, there is an increasing overlap of activated proteins with the downstream propagation of the signal. It is the balanced interaction between these proteins that culminates in degranulation, synthesis, and release of eicosanoids and cytokines.
Collapse
|
40
|
Abstract
The Fc epsilonRI complex forms a high-affinity cell-surface receptor for the Fc region of antigen-specific immunoglobulin E (IgE) molecules. Fc epsilonRI is multimeric and is a member of a family of related antigen/Fc receptors which have conserved structural features and similar roles in initiating intracellular signalling cascades. In humans, Fc epsilonRI controls the activation of mast cells and basophils, and participates in IgE-mediated antigen presentation. Multivalent antigens bind and crosslink IgE molecules held at the cell surface by Fc epsilonRI. Receptor aggregation induces multiple signalling pathways that control diverse effector responses. These include the secretion of allergic mediators and induction of cytokine gene transcription, resulting in secretion of molecules such as interleukin-4, interleukin-6, tumour-necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor. Fc epsilonRI is therefore central to the induction and maintenance of an allergic response and may confer physiological protection in parasitic infections.
Collapse
Affiliation(s)
- H Turner
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
41
|
Costello PS, Walters AE, Mee PJ, Turner M, Reynolds LF, Prisco A, Sarner N, Zamoyska R, Tybulewicz VL. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc Natl Acad Sci U S A 1999; 96:3035-40. [PMID: 10077632 PMCID: PMC15890 DOI: 10.1073/pnas.96.6.3035] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vav is a GTP/GDP exchange factor (GEF) for members of the Rho-family of GTPases that is rapidly tyrosine-phosphorylated after engagement of the T cell receptor (TCR), suggesting that it may transduce signals from the receptor. T cells from mice made Vav-deficient by gene targeting (Vav-/-) fail to proliferate in response to TCR stimulation because they fail to secrete IL-2. We now show that this is due at least in part to the failure to initiate IL-2 gene transcription. Furthermore, we analyze TCR-proximal signaling pathways in Vav-/- T cells and show that despite normal activation of the Lck and ZAP-70 tyrosine kinases, the mutant cells have specific defects in TCR-induced intracellular calcium fluxes, in the activation of extracellular signal-regulated mitogen-activated protein kinases and in the activation of the NF-kappaB transcription factor. Finally, we show that the greatly reduced TCR-induced calcium flux of Vav-deficient T cells is an important cause of their proliferative defect, because restoration of the calcium flux with a calcium ionophore reverses the phenotype.
Collapse
Affiliation(s)
- P S Costello
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Henning S, Cleverley S. Small GTPases in lymphocyte biology: Rho proteins take center stage. Immunol Res 1999; 20:29-42. [PMID: 10467981 DOI: 10.1007/bf02786505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Almost a decade ago, the small GTPase Ras was shown to be activated in response to antigen receptor triggering in T cells. Since then, Ras has been further characterized as a central molecule for the regulation of signal transduction pathways in lymphocytes. However, over the last couple of years, its exclusive role in lymphocyte biology has been challenged by the emergence of its relatives of the Rho family. Today it is well established that Rho GTPases act as unique molecular switches at several critical checkpoints in lymphocyte development and function. Additionally, a new and critical concept in GTPase signaling has taken shape over the last couple of years in that small GTPases are able to regulate quite diverse cellular processes in the immune response by linking to multiple biochemical effector pathways.
Collapse
Affiliation(s)
- S Henning
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of California at Berkeley, 94720-3200, USA.
| | | |
Collapse
|