1
|
Papareddy P, Herwald H. From immune activation to disease progression: Unraveling the complex role of Serum Amyloid A proteins. Cytokine Growth Factor Rev 2025; 83:77-84. [PMID: 40240198 DOI: 10.1016/j.cytogfr.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Serum Amyloid A (SAA) proteins are critical mediators of immune activation and metabolic regulation, bridging the acute-phase response with long-term disease dynamics. Once considered mere biomarkers of inflammation, emerging research has revealed their central role in orchestrating immune responses, lipid metabolism, and tissue remodeling. SAA proteins display context-dependent functions: they promote immune defense and tissue regeneration in some conditions, while exacerbating chronic inflammation and disease progression in others. Recent studies highlight the intricate interplay between SAA isoforms, pattern recognition receptors, and metabolic pathways, with implications for autoimmune diseases, metabolic disorders, and inflammatory pathologies. Despite their well-documented role in acute inflammation, the therapeutic potential of SAA proteins remains underexplored. Ongoing research aims to dissect their multifaceted functions and isoform-specific effects, paving the way for novel diagnostic and therapeutic strategies in immune-mediated diseases.
Collapse
Affiliation(s)
- Praveen Papareddy
- Department of Laboratory Medicine Biomedical Center (BMC) Lund University, BMC, Floor C14, Lund 22184, Sweden.
| | - Heiko Herwald
- Department of Laboratory Medicine Biomedical Center (BMC) Lund University, BMC, Floor C14, Lund 22184, Sweden.
| |
Collapse
|
2
|
Ji A, Meredith LW, Shridas P. Serum Amyloid A: A Double-Edged Sword in Health and Disease. Int J Mol Sci 2025; 26:4528. [PMID: 40429677 PMCID: PMC12110822 DOI: 10.3390/ijms26104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Despite more than fifty years since its discovery in the 1970s, Serum Amyloid A (SAA)'s true biological functions remain enigmatic. The research so far has primarily associated SAA with chronic inflammatory conditions such as cardiovascular disease, obesity, and type 2 diabetes; its role in acute inflammation is less understood. Unlike the modest elevations observed in chronic conditions, SAA levels surge dramatically during acute inflammatory responses. Notably, approximately 2.5% of hepatic protein synthesis is devoted to SAA production during acute inflammation-despite the high energy demands required for synthesizing pro-inflammatory cytokines and immune cell activation-leaving its precise necessity unclear. Elucidating SAA's physiological role in acute inflammation is crucial to determine the therapeutic potential of SAA inhibition for chronic inflammatory diseases, such as atherosclerosis and abdominal aortic aneurysms. The evidence suggests that SAA may play a protective role in acute inflammation, positioning it as a "double-edged sword": detrimental in chronic inflammation, yet potentially beneficial in acute settings. This review explores the divergent roles of SAA in chronic versus acute inflammation, proposing that while SAA inhibition could offer therapeutic benefits for chronic conditions, it might pose risks during acute inflammation. As the primary transporter of SAA in circulation, high-density lipoprotein (HDL) has been shown to become dysfunctional in chronic inflammation, at least partly due to SAA's effects. However, we propose that SAA may confer functional properties to HDL during acute inflammatory states, such as sepsis, thereby highlighting the context-dependent nature of its impact.
Collapse
Affiliation(s)
- Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
| | - Luke W. Meredith
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
| | - Preetha Shridas
- Saha Cardiovascular Research Center, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA; (A.J.); (L.W.M.)
- Department of Internal Medicine, University of Kentucky, 567 Charles T Wethington Building, 900 S. Limestone Street, Lexington, KY 40536-0200, USA
| |
Collapse
|
3
|
Yuan M, Huang P, Liu Y, Shen L, Nan C, Song Y, Xiao Y, Zhang Y, Zhou Y, Xin Y, Liu Y, Li H, Luo Y, Zhang Q, Wang X, Wang D, Zhang J, Zhang L, Zhao M, Yu K, Wang C. SAA1 as a Potential Early Diagnostic Biomarker for Sepsis Through Integrated Proteomics and Metabolomics. Immunology 2025. [PMID: 40210454 DOI: 10.1111/imm.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
Sepsis is characterised by fatal organ dysfunction resulting from a dysfunctional host response to infection, imposing a substantial economic burden on families and society. Therefore, identifying biomarkers for early sepsis diagnosis and improving patient prognosis are critical. This study recruited 59 sepsis patients and 35 healthy volunteers from the Department of Critical Care Medicine at Harbin Medical University Affiliated First Hospital between March and December 2021. Through a combination of non-targeted and targeted proteomics and metabolomics sequencing, along with various analytical methods, we initially identified and validated serum amyloid A1 (SAA1) as a diagnostic biomarker for sepsis. Our study found that SAA1 was significantly elevated in the sepsis group, demonstrating its diagnostic value for sepsis (AUC: 0.95, 95% CI: 0.88-1). Additionally, a positive correlation was observed between SAA1 and disease severity, as indicated by the Sequential Organ Failure Assessment (SOFA) score (R = 0.51, p = 0.004) and Acute Physiology and Chronic Health Evaluation II (APACHE II) score (R = 0.52, p = 0.003). This study suggests that SAA1 is a potentially effective and reliable marker for diagnosing sepsis and predicting its severity.
Collapse
Affiliation(s)
- Mengyao Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Pengfei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yuhan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Lifeng Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Chuanchuan Nan
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yu Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yuxin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yu Xin
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yanqi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Hongxu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Qianqian Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Xinran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Dawei Wang
- Department of Critical Care Medicine, The Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiannan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Likun Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, Heilongjiang Province, China
- Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Van Damme J, Struyf S, Proost P, Opdenakker G, Gouwy M. Functional Interactions Between Recombinant Serum Amyloid A1 (SAA1) and Chemokines in Leukocyte Recruitment. Int J Mol Sci 2025; 26:2258. [PMID: 40076881 PMCID: PMC11900440 DOI: 10.3390/ijms26052258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The acute phase response is a hallmark of all inflammatory reactions and acute phase reactants, such as C-reactive protein (CRP) and serum amyloid A (SAA) proteins, are among the most useful plasma and serum markers of inflammation in clinical medicine. Although it is well established that inflammatory cytokines, mainly interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) induce SAA in the liver, the biological functions of elicited SAA remain an enigma. By the classical multi-step protein purification studies of chemotactic factors present in plasma or serum, we discovered novel chemokines and SAA1 fragments, which are induced during inflammatory reactions. In contrast to earlier literature, pure SAA1 fails to induce chemokines, an ascribed function that most probably originates from contaminating lipopolysaccharide (LPS). However, intact SAA1 and fragments thereof synergize with CXC and CC chemokines to enhance chemotaxis. Natural SAA1 fragments are generated by inflammatory proteinases such as matrix metalloproteinase-9 (MMP-9). They mediate synergy with chemokines by the interaction with cognate G protein-coupled receptors (GPCRs), formyl peptide receptor 2 (FPR2) and (CC and CXC) chemokine receptors. In conclusion, SAA1 enforces the action of many chemokines and assists in local leukocyte recruitment, in particular, when the concentrations of specifically-induced chemokines are still low.
Collapse
Affiliation(s)
| | | | | | | | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium; (J.V.D.); (S.S.); (P.P.); (G.O.)
| |
Collapse
|
5
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
6
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Li M, Kim YM, Koh JH, Park J, Kwon HM, Park JH, Jin J, Park Y, Kim D, Kim WU. Serum amyloid A expression in liver promotes synovial macrophage activation and chronic arthritis via NFAT5. J Clin Invest 2024; 134:e167835. [PMID: 38426494 PMCID: PMC10904059 DOI: 10.1172/jci167835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern-triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6- and chemokine ligand 2-dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.
Collapse
Affiliation(s)
- Meiling Li
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu-Mi Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Uijeoungbu St.Mary’s hospital, the Catholic University of Korea, Uijeoungbu, Republic of Korea
| | - Jihyun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - H. Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jong-Hwan Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jingchun Jin
- Department of Immunology of Yanbian University Hospital, Yanji, Jilin Province, China
- Key Laboratory of Science and Technology Department (Jilin Province), Cancer Research Center, Yanji, Jilin Province, China
| | - Youngjae Park
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics
- Department of Biomedicine and Health Sciences, and
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
9
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
10
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
11
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
12
|
Wang H, Chen H, Fu Y, Liu M, Zhang J, Han S, Tian Y, Hou H, Hu Q. Effects of Smoking on Inflammatory-Related Cytokine Levels in Human Serum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123715. [PMID: 35744838 PMCID: PMC9227219 DOI: 10.3390/molecules27123715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular and respiratory diseases, and several cancers resulting from tobacco smoking, are initially characterized by chronic systemic inflammation. Cytokine imbalances can result in inflammation, making it important to understand the pathological mechanisms behind cytokine production. In this study, we collected blood samples from 78 healthy male volunteers, including non-smokers (n = 30), current smokers (n = 30), and ex-smokers (n = 18), and utilized the liquid suspension chip technique to investigate and compare the expression levels of 17 cytokines and chemokines in the human serum of these volunteers. The results demonstrated that the expression levels of CXCL9/MIG and sIL-6R significantly increased after smoking, and continued to increase after quitting smoking. The expression levels of TARC, ITAC, and sVEGFR-3 increased after smoking but decreased after quitting smoking; the expression level of SAA significantly decreased after smoking and showed an upward trend after quitting smoking. Seven cytokines (IL-1β, BCA-1, TNF-α, CRP, ENA-78, MDC, and TNFRII) did not vary between the three groups, while four cytokines (IL-1α, IL-6, IL-8, and SCF) were not detected in any serum sample. In conclusion, this study assessed the physiological production of cytokines and chemokines, highlighting the differences in each due to smoking status. Our results could help evaluate the early development of smoking-related chronic diseases and cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongwei Hou
- Correspondence: (H.H.); (Q.H.); Tel.: +86-135-9809-8330 (H.H.); +86-139-0384-3190 (Q.H.); Fax: +86-0371-67672625 (H.H. & Q.H.)
| | - Qingyuan Hu
- Correspondence: (H.H.); (Q.H.); Tel.: +86-135-9809-8330 (H.H.); +86-139-0384-3190 (Q.H.); Fax: +86-0371-67672625 (H.H. & Q.H.)
| |
Collapse
|
13
|
He G, Dong T, Yang Z, Branstad A, Huang L, Jiang Z. Point-of-care COPD diagnostics: biomarkers, sampling, paper-based analytical devices, and perspectives. Analyst 2022; 147:1273-1293. [PMID: 35113085 DOI: 10.1039/d1an01702k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) has become the third leading cause of global death. Insufficiency in early diagnosis and treatment of COPD, especially COPD exacerbations, leads to a tremendous economic burden and medical costs. A cost-effective and timely prevention requires decentralized point-of-care diagnostics at patients' residences at affordable prices. Advances in point-of-care (POC) diagnostics may offer new solutions to reduce medical expenditures by measuring salivary and blood biomarkers. Among them, paper-based analytical devices have been the most promising candidates due to their advantages of being affordable, biocompatible, disposable, scalable, and easy to modify. In this review, we present salivary and blood biomarkers related to COPD endotypes and exacerbations, summarize current technologies to collect human whole saliva and whole blood samples, evaluate state-of-the-art paper-based analytical devices that detect COPD biomarkers in saliva and blood, and discuss existing challenges with outlooks on future paper-based POC systems for COPD diagnosis and management.
Collapse
Affiliation(s)
- Guozhen He
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China.,Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Tao Dong
- Department of Microsystems (IMS), Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Postboks 235, 3603 Kongsberg, Norway.
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Are Branstad
- University of Southeast Norway (USN), School of Business, Box 235, 3603 Kongsberg, Norway
| | - Lan Huang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Academician and Expert Workstation, Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
| |
Collapse
|
14
|
Jiang B, Wang D, Hu Y, Li W, Liu F, Zhu X, Li X, Zhang H, Bai H, Yang Q, Yang X, Ben J, Chen Q. Serum Amyloid A1 Exacerbates Hepatic Steatosis via TLR4 Mediated NF-κB Signaling Pathway. Mol Metab 2022; 59:101462. [PMID: 35247611 PMCID: PMC8938331 DOI: 10.1016/j.molmet.2022.101462] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Chronic inflammatory response plays a prominent role in obesity-related nonalcoholic fatty liver disease (NAFLD). However, the intrahepatic triggering mechanism of inflammation remains obscure. This study aimed to elucidate the role of serum amyloid A1 (SAA1), an acute-phase response protein, in the obesity-induced hepatic inflammation and NAFLD. Methods Male mice were fed a high fat diet (HFD) for 16 weeks, and insulin resistance, hepatic steatosis, and inflammation in mice were monitored. Murine SAA1/2 was genetically manipulated to investigate the role of SAA1 in NAFLD. Results We found that SAA1 was increased in the NAFLD liver in both humans and mice. Knockout of SAA1/2 or knockdown of hepatic SAA1/2 promoted energy expenditure and alleviated HFD-induced metabolic disorder, hepatic steatosis, and inflammation. Endogenous overexpression of SAA1 in hepatocytes by adeno-associated virus 8 (AAV8) transfection aggravated overnutrition-associated gain of body weight, insulin resistance, hepatic lipid accumulation, and liver injury, which were markedly alleviated by knockout of murine toll-like receptor 4 (TLR4). Mechanistically, SAA1 directly bound with TLR4/myeloid differentiation 2 (MD2) to induce TLR4 internalization, leading to the activation of nuclear factor (NF)-κB signaling and production of both SAA1 and other inflammatory cytokines, including interleukin (IL)-6 and C–C chemokine ligand (CCL2) in hepatocytes. Administration of HFD mice with an AAV8-shRNA-SAA1/2 showed a therapeutic effect on hepatic inflammation and NAFLD progression. Conclusions These results demonstrate that SAA1 triggers hepatic steatosis and intrahepatic inflammatory response by forming a SAA1/TLR4/NF-κB/SAA1 feedforward regulatory circuit, which, in turn, leads to NAFLD progression. SAA1 may act as a potential target for the disease intervention. SAA1/2 deficiency alleviates HFD-induced hepatic steatosis and inflammation in mice. SAA1 aggravating overnutrition-associated hepatic steatosis and inflammation is dependent on TLR4. SAA1 directly binds to TLR4/MD2 to induce TLR4 internalization, leading to the activation of NF-κB signaling . SAA1/TLR4/NF-κB/SAA1 positive feedback in hepatocytes may be a potential target for obesity associated NAFLD.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yunfu Hu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wenxuan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiuna Yang
- Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Tavares LP, Melo EM, Sousa LP, Teixeira MM. Pro-resolving therapies as potential adjunct treatment for infectious diseases: Evidence from studies with annexin A1 and angiotensin-(1-7). Semin Immunol 2022; 59:101601. [PMID: 35219595 DOI: 10.1016/j.smim.2022.101601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023]
Abstract
Infectious diseases, once believed to be an eradicable public health threat, still represent a leading cause of death worldwide. Environmental and social changes continuously favor the emergence of new pathogens and rapid dissemination around the world. The limited availability of anti-viral therapies and increased antibiotic resistance has made the therapeutic management of infectious disease a major challenge. Inflammation is a primordial defense to protect the host against invading microorganisms. However, dysfunctional inflammatory responses contribute to disease severity and mortality during infections. In recent years, a few studies have examined the relevance of resolution of inflammation in the context of infections. Inflammation resolution is an active integrated process transduced by several pro-resolving mediators, including Annexin A1 and Angiotensin-(1-7). Here, we examine some of the cellular and molecular circuits triggered by pro-resolving molecules and that may be beneficial in the context of infectious diseases.
Collapse
Affiliation(s)
- Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eliza Mathias Melo
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lirlândia Pires Sousa
- Signaling in Inflammation Laboratory, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Shridas P, Patrick AC, Tannock LR. Role of Serum Amyloid A in Abdominal Aortic Aneurysm and Related Cardiovascular Diseases. Biomolecules 2021; 11:biom11121883. [PMID: 34944527 PMCID: PMC8699432 DOI: 10.3390/biom11121883] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Epidemiological data positively correlate plasma serum amyloid A (SAA) levels with cardiovascular disease severity and mortality. Studies by several investigators have indicated a causal role for SAA in the development of atherosclerosis in animal models. Suppression of SAA attenuates the development of angiotensin II (AngII)-induced abdominal aortic aneurysm (AAA) formation in mice. Thus, SAA is not just a marker for cardiovascular disease (CVD) development, but it is a key player. However, to consider SAA as a therapeutic target for these diseases, the pathway leading to its involvement needs to be understood. This review provides a brief description of the pathobiological significance of this enigmatic molecule. The purpose of this review is to summarize the data relevant to its role in the development of CVD, the pitfalls in SAA research, and unanswered questions in the field.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
| | - Avery C Patrick
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Lisa R Tannock
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40536, USA
- Veterans Affairs Lexington, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
17
|
N-Succinyl-S-Farnesyl-L-Cysteine (SFC): A Novel Isoprenylcysteine Analog with In Vitro Anti-Inflammatory Activity and Clinical Skin Protecting Properties. COSMETICS 2021. [DOI: 10.3390/cosmetics8040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past 15 years, small molecule isoprenylcysteine (IPC) analogs have been identified as a potential new class of topical anti-inflammatories. Clinical studies have demonstrated that IPCs are both safe and effective in promoting healthy skin when applied topically. This work aims to demonstrate N-Succinyl-S-farnesyl-L-cysteine (SFC) as a novel IPC molecule that provides a broad spectrum of benefits for skin. Human promyelocytic cell line HL-60, human dermal microvascular endothelial cells (HDMECs), human dermal fibroblasts (HDFs), and normal human epidermal keratinocytes (NHEKs) were exposed in culture to various inducers to trigger reactive oxygen species, cytokines, or collagenase production. A 49-subject randomized double-blind, vehicle-controlled, split face trial was performed with 1% SFC gel, or 5% niacinamide and vehicle applied for 12 weeks to evaluate anti-wrinkle and anti-aging endpoints. We demonstrated that SFC inhibited GPCR and TLR-induced pro-inflammatory cytokine release in NHEKs and HDMECs from several inflammatory inducers such as UVB, chemicals, cathelicidin, and bacteria. SFC successfully reduced GPCR-induced oxidation in differentiated neutrophils. Moreover, photoaging studies showed that SFC reduced UVA-induced collagenase (pro-MMP-1) production in HDFs. Clinical assessment of 1% SFC gel demonstrated improvement above the vehicle for wrinkle reduction, hydration, texture, and overall appearance of skin. N-Succinyl-S-farnesyl-L-cysteine (SFC) is a novel anti-inflammatory small molecule and is the first farnesyl-cysteine IPC shown to clinically improve appearance and signs of aging, while also having the potential to ameliorate inflammatory skin disorders.
Collapse
|
18
|
Zhu J, Li L, Ding J, Huang J, Shao A, Tang B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front Cell Neurosci 2021; 15:753832. [PMID: 34650406 PMCID: PMC8510628 DOI: 10.3389/fncel.2021.753832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Formyl peptide receptors (FPRs) are a group of G protein-coupled cell surface receptors that play important roles in host defense and inflammation. Owing to the ubiquitous expression of FPRs throughout different cell types and since they interact with structurally diverse chemotactic agonists, they have a dual function in inflammatory processes, depending on binding with different ligands so that accelerate or inhibit key intracellular kinase-based regulatory pathways. Neuroinflammation is closely associated with the pathogenesis of neurodegenerative diseases, neurogenic tumors and cerebrovascular diseases. From recent studies, it is clear that FPRs are important biomarkers for neurological diseases as they regulate inflammatory responses by monitoring glial activation, accelerating neural differentiation, regulating angiogenesis, and controlling blood brain barrier (BBB) permeability, thereby affecting neurological disease progression. Given the complex mechanisms of neurological diseases and the difficulty of healing, we are eager to find new and effective therapeutic targets. Here, we review recent research about various mechanisms of the effects generated after FPR binding to different ligands, role of FPRs in neuroinflammation as well as the development and prognosis of neurological diseases. We summarize that the FPR family has dual inflammatory functional properties in central nervous system. Emphasizing that FPR2 acts as a key molecule that mediates the active resolution of inflammation, which binds with corresponding receptors to reduce the expression and activation of pro-inflammatory composition, govern the transport of immune cells to inflammatory tissues, and restore the integrity of the BBB. Concurrently, FPR1 is essentially related to angiogenesis, cell proliferation and neurogenesis. Thus, treatment with FPRs-modulation may be effective for neurological diseases.
Collapse
Affiliation(s)
- Jiahui Zhu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Ding
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Katayama H. Rheumatoid arthritis: Development after the emergence of a chemokine for neutrophils in the synovium. Bioessays 2021; 43:e2100119. [PMID: 34432907 DOI: 10.1002/bies.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) may not be a multifactorial disease; it can be hypothesized that RA is developed through a series of events following a triggering event, which is the emergence of a chemokine for neutrophils in the synovium. IL-17A, secreted by infiltrated neutrophils, stimulates synoviocytes to produce CCL20, which attracts various CCR6-expressing cells, including Th17 cells. Monocytes (macrophages) appear after neutrophil infiltration according to the natural course of inflammation and secrete IL-1β and TNFα. Then, IL-17A, IL-1β, and TNFα stimulate synoviocytes to produce CCL20, amplifying the inflammation. Varieties of chemokines secreted by infiltrating cells accumulate in the synovium and induce synoviocyte proliferation by binding to the corresponding G protein-coupled receptors, thus expanding the synovial tissue. CCL20 in this tissue attracts circulating monocytes that express both CCR6 and receptor activator of NF-κB (RANK), which differentiate into osteoclasts in the presence of RANKL. In this way, pannus is formed, and bone destruction begins.
Collapse
|
20
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. The turning away of serum amyloid A biological activities and receptor usage. Immunology 2021; 163:115-127. [PMID: 33315264 PMCID: PMC8114209 DOI: 10.1111/imm.13295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Wickstead ES, Irving MA, Getting SJ, McArthur S. Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS J 2021; 289:1801-1822. [PMID: 33811735 DOI: 10.1111/febs.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Murray A Irving
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| | - Stephen J Getting
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| |
Collapse
|
22
|
Liu R, Xu B, Zhang J, Sun H, Liu C, Lu F, Pan Q, Zhang X. Mycoplasma synoviae induces serum amyloid A upregulation and promotes chicken synovial fibroblast cell proliferation. Microb Pathog 2021; 154:104829. [PMID: 33727170 DOI: 10.1016/j.micpath.2021.104829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Mycoplasma synoviae (MS) infection causes infectious synovitis and arthritis with hyperplasia of synovial cells in the chicken joint. However, its mechanism is unknown. We used primary chicken synovial fibroblast (CSF) as the research object to study the role of MS in the proliferation of MS-infected CSF and determine the mechanisms involved. Using integrated transcriptomic and proteomic analyses of the interaction between CSF and MS, we screened a proliferation-regulated factor, serum amyloid A (SAA), that may regulate proliferation of MS-infected CSF. SAA appears to be associated with MS-induced CSF proliferation. To study the role of SAA in MS-induced CSF proliferation, a eukaryotic expression vector overexpressing SAA and a small interfering RNA (siRNA) targeting Saa were constructed to manipulate the expression of SAA. Cell proliferation and apoptosis were detected via cell counting kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine (EdU), or terminal deoxyribonucleotidyl transferase-mediated dUTP nick-dnd labeling (TUNEL) assays, respectively. Western blot analysis was used to examine the protein expression level of SAA, cyclin E1, and cyclin-dependent kinase 2 (CDK2). In vitro, MS significantly promoted the proliferation of CSF and increased the production of SAA. Overexpression of SAA accelerated the proliferative ability of CSF, whereas knockdown of SAA depressed the proliferative ability of CSF. A TUNEL assay indicated that MS did not induce apoptosis. Silencing of SAA suppressed the expression of cyclin E1 and CDK2. These results suggest that MS may upregulate the expression of SAA, accelerate the cell cycle, and promote proliferation of CSF.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China; College of Veterinary Medicine, Qingdao Agriculture University, Qingdao, China
| | - Bin Xu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingfeng Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huawei Sun
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuanmin Liu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengying Lu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qunxing Pan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaofei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China; National Center for Engineering Research of Veterinary Bio-products, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
23
|
Kriegshäuser G, Hayrapetyan H, Atoyan S, Oberkanins C, Sarkisian T. Serum amyloid A1 genotype associates with adult-onset familial Mediterranean fever in patients homozygous for mutation M694V. Rheumatology (Oxford) 2021; 60:441-444. [PMID: 32889548 DOI: 10.1093/rheumatology/keaa452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES FMF shows considerable variability in severity and type of clinical manifestations by geographic region, which are attributed to Mediterranean fever (MEFV) gene allelic heterogeneity, additional genetic modifiers and environmental factors. Considering the severe impact of MEFV mutation M694V on the FMF phenotype, this work aimed at investigating a possible disease modifying role of the serum amyloid A1 (SAA1) genotype in a cohort of 386 Armenian FMF patients homozygous for MEFV mutation M694V. METHODS A cohort of 386 Armenian patients diagnosed with FMF based on the Tel-Hashomer criteria and carrying two MEFV M694V mutant alleles were included in this study. Fifty-two (13.40%) of these patients experienced their first attack at the age of ≥20 years (i.e. adult-onset FMF). MEFV and SAA1 analyses were performed by a commercial reverse-hybridization assay, and resulting genotypes were matched against the patients' clinicodemographic profiles. RESULTS Genotypic distribution of SAA1 alleles was significantly different between patients with an age of onset <20 and ≥20 years. SAA1 genotypes α/α, α/β and β/β could be identified in 8 (15.38%), 12 (23.08%) and 32 (61.54%) adult-onset patients while this was the case for 47 (14.07%), 172 (51.50%) and 115 (34.43%) patients with a disease onset <20 years, respectively (P < 0.001). Furthermore, adult-onset disease was associated with a less severe FMF phenotype (P < 0.001). CONCLUSION We have identified a significant relationship between the SAA1β/β genotype and the age of disease onset in M694V homozygous FMF patients.
Collapse
Affiliation(s)
- Gernot Kriegshäuser
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Steyr, Steyr.,Clinical Institute of Medical and Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Hasmik Hayrapetyan
- Center of Medical Genetics and Primary Health Care, Yerevan.,Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | - Stepan Atoyan
- Center of Medical Genetics and Primary Health Care, Yerevan.,Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| | | | - Tamara Sarkisian
- Center of Medical Genetics and Primary Health Care, Yerevan.,Department of Medical Genetics, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
24
|
Guimarães RC, Gonçalves TT, Leiria LO. Exploiting oxidized lipids and the lipid-binding GPCRs against cardiometabolic diseases. Br J Pharmacol 2020; 178:531-549. [PMID: 33169375 DOI: 10.1111/bph.15321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids govern vital cellular processes and drive physiological changes in response to different pathological or environmental cues. Lipid species can be roughly divided into structural and signalling lipids. The former is essential for membrane composition, while the latter are usually oxidized lipids. These mediators provide beneficial effects against cardiometabolic diseases (CMDs), including fatty-liver diseases, atherosclerosis, thrombosis, obesity, and Type 2 diabetes. For instance, several oxylipins were recently found to improve glucose homeostasis, increase insulin secretion, and inhibit platelet aggregation, while specialized pro-resolving mediators (SPMs) are able to ameliorate CMD by shaping the immune system. These lipids act mainly by stimulating GPCRs. In this review, we provide an updated and comprehensive overview of the current state of the literature on signalling lipids in the context of CMD. We also highlight the network encompassing the lipid-modifying enzymes and the lipid-binding GPCRs, as well as their interactions in health and disease.
Collapse
Affiliation(s)
| | - Tiago T Gonçalves
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Luiz O Leiria
- Obesity and Comorbidities Research Center, Campinas, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Mishra S, Shah MI, Udhaya Kumar S, Thirumal Kumar D, Gopalakrishnan C, Al-Subaie AM, Magesh R, George Priya Doss C, Kamaraj B. Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:241-273. [PMID: 33485486 DOI: 10.1016/bs.apcsb.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare yet crucial persistent lung disorder that actuates scarring of lung tissues, which makes breathing difficult. Smoking, environmental pollution, and certain viral infections could initiate lung scarring. However, the molecular mechanism involved in IPF remains elusive. To develop an efficient therapeutic arsenal against IPF, it is vital to understand the pathology and deviations in biochemical pathways that lead to disorder. In this study, we availed network analysis and other computational pipelines to delineate the prominent membrane proteins as diagnostic biomarkers and therapeutic targets for IPF. This study yielded a significant role of glycosaminoglycan binding, endothelin, and GABA-B receptor signaling pathway in IPF pathogenesis. Furthermore, ADCY8, CRH, FGB, GPR17, MCHR1, NMUR1, and SAA1 genes were found to be immensely involved with IPF, and the enrichment pathway analysis suggests that most of the pathways were corresponding to membrane transport and signal transduction functionalities. This analysis could help in better understanding the molecular mechanism behind IPF to develop an efficient therapeutic target or biomarkers for IPF.
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - Mohammad Imran Shah
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - R Magesh
- Faculty of Biomedical Sciences, Technology & Research, Department of Biotechnology, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| |
Collapse
|
26
|
Ge YJ, Liao QW, Xu YC, Zhao Q, Wu BL, Ye RD. Anti-inflammatory signaling through G protein-coupled receptors. Acta Pharmacol Sin 2020; 41:1531-1538. [PMID: 33060777 PMCID: PMC7921558 DOI: 10.1038/s41401-020-00523-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) play important roles in human physiology. GPCRs are involved in immunoregulation including regulation of the inflammatory response. Chemotaxis of phagocytes and lymphocytes is mediated to a great extent by the GPCRs for chemoattractants including myriads of chemokines. Accumulation and activation of phagocytes at the site of inflammation contribute to local inflammatory response. A handful of GPCRs have been found to transduce anti-inflammatory signals that promote resolution of inflammation. These GPCRs interact with selected metabolites of arachdonic acid, such as lipoxins, and of omega-3 essential fatty acids, such as resolvins and protectins. Despite mounting evidence for the in vivo functions of these anti-inflammatory and pro-resolving ligands paired with their respective GPCRs, the underlying signaling mechanisms have not been fully delineated. The present review summarizes what we have learned about these GPCRs, their structures and signaling pathways and the prospect of targeting these receptors for novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Yun-Jun Ge
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qi-Wen Liao
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Ye-Chun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bei-Li Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
27
|
Khasabova IA, Golovko MY, Golovko SA, Simone DA, Khasabov SG. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat 2020; 151:106479. [PMID: 32745525 PMCID: PMC7669692 DOI: 10.1016/j.prostaglandins.2020.106479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
30
|
Abouelasrar Salama S, De Bondt M, De Buck M, Berghmans N, Proost P, Oliveira VLS, Amaral FA, Gouwy M, Van Damme J, Struyf S. Serum Amyloid A1 (SAA1) Revisited: Restricted Leukocyte-Activating Properties of Homogeneous SAA1. Front Immunol 2020; 11:843. [PMID: 32477346 PMCID: PMC7240019 DOI: 10.3389/fimmu.2020.00843] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Infection, sterile injury, and chronic inflammation trigger the acute phase response in order to re-establish homeostasis. This response includes production of positive acute phase proteins in the liver, such as members of the serum amyloid A (SAA) family. In humans the major acute phase SAAs comprise a group of closely related variants of SAA1 and SAA2. SAA1 was proven to be chemotactic for several leukocyte subtypes through activation of the G protein-coupled receptor FPRL1/FPR2. Several other biological activities of SAA1, such as cytokine induction, reported to be mediated via TLRs, have been debated recently. Especially commercial SAA1, recombinantly produced in Escherichia coli, was found to be contaminated with bacterial products confounding biological assays performed with this rSAA1. We purified rSAA1 by RP-HPLC to homogeneity, removing contaminants such as lipopolysaccharides, lipoproteins and formylated peptides, and re-assessed several biological activities attributed to SAA1 (chemotaxis, cytokine induction, MMP-9 release, ROS generation, and macrophage differentiation). The homogeneous rSAA1 (hrSAA1) lacked most cell-activating properties, but its leukocyte-recruiting capacity in vivo and it’s in vitro synergy with other leukocyte attractants remained preserved. Furthermore, hrSAA1 maintained the ability to promote monocyte survival. This indicates that pure hrSAA1 retains its potential to activate FPR2, whereas TLR-mediated effects seem to be related to traces of bacterial TLR ligands in the E. coli-produced human rSAA1.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Louise Soares Oliveira
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavio A Amaral
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Ge Y, Zhang S, Wang J, Xia F, Wan JB, Lu J, Ye RD. Dual modulation of formyl peptide receptor 2 by aspirin-triggered lipoxin contributes to its anti-inflammatory activity. FASEB J 2020; 34:6920-6933. [PMID: 32239559 DOI: 10.1096/fj.201903206r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2024]
Abstract
The eicosanoid lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 (ATL) are potent anti-inflammatory agents. How their anti-inflammatory effects are mediated by receptors such as the formyl peptide receptor 2 (FPR2/ALX) remains incompletely understood. In the present study, fluorescent biosensors of FPR2/ALX were prepared and ATL-induced conformational changes were recorded. A biphasic dose curve consisting of a descending phase and an ascending phase was observed, with the descending phase corresponding to diminished FPR2 response such as Ca2+ mobilization induced by the potent synthetic agonist WKYMVm. Preincubation of FPR2-expressing cells with 100 pM of ATL also lowered the threshold for WKYMVm to induce β-arrestin-2 membrane translocation, and inhibited WKYMVm-induced interleukin 8 secretion, suggesting signaling bias favoring anti-inflammatory activities. At 100 pM and above, ATL-induced receptor conformational changes resembling that of the WKYMVm along with a weak but measurable inhibition of forskolin-induced cAMP accumulation. However, no Ca2+ mobilization was induced by ATL until its concentration reached 1 µM. Taken together, these results suggest a dual regulatory mechanism by which ATL exerts anti-inflammatory effects through FPR2/ALX.
Collapse
Affiliation(s)
- Yunjun Ge
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Shuo Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Junlin Wang
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Fangbo Xia
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Jian-Bo Wan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Jinjian Lu
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Richard D Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
32
|
Park J, Langmead CJ, Riddy DM. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol Transl Sci 2020; 3:88-106. [PMID: 32259091 DOI: 10.1021/acsptsci.9b00075] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of polymorphonuclear leukocytes (mainly neutrophils) and macrophages. SPMs bind and activate multiple receptors (ligand poly-pharmacology), while most receptors are activated by multiple ligands (receptor pleiotropy). In addition, allosteric binding sites have been identified signifying the capacity of more than one ligand to bind simultaneously. These fundamental characteristics of SPM receptors enable alternative targeting strategies to be considered, including biased signaling and allosteric modulation. This review describes those ligands and receptors involved in the resolution of inflammation, and highlights the most recent clinical trial results. Furthermore, we describe alternative mechanisms by which these SPM receptors could be targeted, paving the way for the identification of new therapeutics, perhaps with greater efficacy and fidelity.
Collapse
Affiliation(s)
- Julia Park
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Mihaylova M, Serbezov D, Balabanski L, Karachanak-Yankova S, Nikolova D, Damyanova V, Hadzhidekova S, Toncheva D. Genes predisposing to obesity emphasize G-protein coupled receptor associated pathways in healthy Bulgarian individuals. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1797533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Marta Mihaylova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dimitar Serbezov
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Lubomir Balabanski
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
- Genome laboratory, SBALGAR Clinic Malinov, Sofia, Bulgaria
| | - Sena Karachanak-Yankova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Dragomira Nikolova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Vera Damyanova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Savina Hadzhidekova
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
34
|
Antifungal Activity of Mammalian Serum Amyloid A1 against Candida albicans. Antimicrob Agents Chemother 2019; 64:AAC.01975-19. [PMID: 31685470 DOI: 10.1128/aac.01975-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mammalian serum amyloid A (SAA) is a major acute phase protein that shows a massive increase in plasma concentration during inflammation. In the present study, we demonstrate that the expression of mouse SAA1 in serum was increased when infected with Candida albicans, a major human fungal pathogen, in a systemic infection model. We then set out to investigate the antifungal activity of SAA proteins against C. albicans Recombinant human and mouse SAA1 (rhSAA1 and rmSAA1) were expressed and purified in Escherichia coli Both rhSAA1 and rmSAA1 exhibited a potent antifungal activity against C. albicans We further demonstrate that rhSAA1 binds to the cell surface of C. albicans, disrupts cell membrane integrity, and induces rapid fungal cell death in C. albicans Our finding expands the known functions of SAA1 and provides new insight into host-Candida interactions during fungal infection.
Collapse
|
35
|
Fan Y, Zhang G, Vong CT, Ye RD. Serum amyloid A3 confers protection against acute lung injury in Pseudomonas aeruginosa-infected mice. Am J Physiol Lung Cell Mol Physiol 2019; 318:L314-L322. [PMID: 31851532 DOI: 10.1152/ajplung.00309.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium associated with serious illnesses, including ventilator-associated pneumonia and various sepsis syndromes in humans. Understanding the host immune mechanisms against P. aeruginosa is, therefore, of clinical importance. The present study identified serum amyloid A3 (SAA3) as being highly inducible in mouse bronchial epithelium following P. aeruginosa infection. Genetic deletion of Saa3 rendered mice more susceptible to P. aeruginosa infection with decreased neutrophil superoxide anion production, and ex vivo treatment of mouse neutrophils with recombinant SAA3 restored the ability of neutrophils to produce superoxide anions. The SAA3-deficient mice showed exacerbated inflammatory responses, which was characterized by pronounced neutrophil infiltration, elevated expression of TNF-α, KC/CXCL1, and MIP-2/CXCL2 in bronchoalveolar lavage fluid (BALF), and increased lung microvascular permeability compared with their wild-type littermates. BALF neutrophils from Saa3 knockout mice exhibited reduced superoxide anion production compared with neutrophils from wild-type mice. Adoptive transfer of SAA3-treated neutrophils to Saa3 knockout mice ameliorated P. aeruginosa-induced acute lung injury. These findings demonstrate that SAA3 not only serves as a biomarker for infection and inflammation, but also plays a protective role against P. aeruginosa infection-induced lung injury in part through augmentation of neutrophil bactericidal functions.
Collapse
Affiliation(s)
- Yu Fan
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Gufang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chi Teng Vong
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| | - Richard D Ye
- State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
36
|
DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 2019; 20:95-112. [PMID: 31558839 DOI: 10.1038/s41577-019-0215-7] [Citation(s) in RCA: 1077] [Impact Index Per Article: 179.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
The innate immune system has the capacity to detect 'non-self' molecules derived from pathogens, known as pathogen-associated molecular patterns, via pattern recognition receptors. In addition, an increasing number of endogenous host-derived molecules, termed damage-associated molecular patterns (DAMPs), have been found to be sensed by various innate immune receptors. The recognition of DAMPs, which are produced or released by damaged and dying cells, promotes sterile inflammation, which is important for tissue repair and regeneration, but can also lead to the development of numerous inflammatory diseases, such as metabolic disorders, neurodegenerative diseases, autoimmune diseases and cancer. Here we examine recent discoveries concerning the roles of DAMP-sensing receptors in sterile inflammation and in diseases resulting from dysregulated sterile inflammation, and then discuss insights into the cross-regulation of these receptors and their ligands.
Collapse
|
37
|
Choi M, Kim MO, Lee J, Jeong J, Sung Y, Park S, Kwon W, Jang S, Park SJ, Kim HS, Jang WY, Kim SH, Lee S, Choi SK, Ryoo ZY. Hepatic serum amyloid A1 upregulates interleukin-17 (IL-17) in γδ T cells through Toll-like receptor 2 and is associated with psoriatic symptoms in transgenic mice. Scand J Immunol 2019; 89:e12764. [PMID: 30892738 DOI: 10.1111/sji.12764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
Serum amyloid A (SAA) is an acute phase protein with pro-inflammatory cytokine-like properties. Recent studies have revealed that SAA promoted interleukin-17 (IL-17) production by various cells, including γδ T cells. γδ T cells are innate immune cells and express Toll-like receptor 2 (TLR2) on their surface, which is one of the SAA receptors. In this study, we investigated the relationship between γδ T cells and SAA1 through TLR2, by using hepatic SAA1-overexpressing transgenic (TG) mice. By injecting CU-CPT22, which is a TLR2 inhibitor, into the mice, we confirmed that SAA1 induced IL-17 in γδ T cells through TLR2. In vitro studies have confirmed that SAA1 increased IL-17 secretion in γδ T cells in combination with IL-23. We also observed a thickened epidermis layer and granulocyte penetration into the skin similar to the pathology of psoriasis in TG mice. In addition, strongly expressed SAA1 and penetration of γδ T cells in the skin of TG mice were detected. The exacerbation of psoriasis is associated with an increase in IL-17 levels. Therefore, these symptoms were induced by IL-17-producing γδ T cells increased by SAA1. Our study confirmed that SAA1 was a prominent protein that increased IL-17 levels through TLR2 in γδ T cells, confirming the possibility that SAA1 may exacerbate inflammatory diseases through γδ T cells.
Collapse
Affiliation(s)
- Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea.,Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Myoung Ok Kim
- School of Animal Science Biotechnology, Kyungpook National University, Daegu, Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | - Jain Jeong
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yonghun Sung
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | - Hyeng-Soo Kim
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | - Woo Young Jang
- Laboratory Animal Resource Bank, Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Daegu, Korea
| | - Sung Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Sanggyu Lee
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| | | | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
38
|
Schuchardt M, Prüfer N, Tu Y, Herrmann J, Hu XP, Chebli S, Dahlke K, Zidek W, van der Giet M, Tölle M. Dysfunctional high-density lipoprotein activates toll-like receptors via serum amyloid A in vascular smooth muscle cells. Sci Rep 2019; 9:3421. [PMID: 30833653 PMCID: PMC6399289 DOI: 10.1038/s41598-019-39846-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 02/01/2019] [Indexed: 01/12/2023] Open
Abstract
Serum amyloid A (SAA) is an uremic toxin and acute phase protein. It accumulates under inflammatory conditions associated with high cardiovascular morbidity and mortality in patients with sepsis or end-stage renal disease (ESRD). SAA is an apolipoprotein of the high-density lipoprotein (HDL). SAA accumulation turns HDL from an anti-inflammatory to a pro-inflammatory particle. SAA activates monocyte chemoattractant protein-1 (MCP-1) in vascular smooth muscle cells. However, the SAA receptor-mediated signaling pathway in vascular cells is poorly understood. Therefore, the SAA-mediated signaling pathway for MCP-1 production was investigated in this study. The SAA-induced MCP-1 production is dependent on the activation of TLR2 and TLR4 as determined by studies with specific receptor antagonists and agonists or siRNA approach. Experiments were confirmed in tissues from TLR2 knockout, TLR4 deficient and TLR2 knock-out/TLR4 deficient mice. The intracellular signaling pathway is IκBα and subsequently NFκB dependent. The MCP-1 production induced by SAA-enriched HDL and HDL isolated from septic patients with high SAA content is also TLR2 and TLR4 dependent. Taken together, the TLR2 and TLR4 receptors are functional SAA receptors mediating MCP-1 release. Furthermore, the TLR2 and TLR4 are receptors for dysfunctional HDL. These results give a further inside in SAA as uremic toxin involved in uremia-related pro-inflammatory response in the vascular wall.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Nicole Prüfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Yuexing Tu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany.,Zhejiang Provincial People´s Hospital, Intensive Care Unit, Hangzhou, China
| | - Jaqueline Herrmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Xiu-Ping Hu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sarah Chebli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Katja Dahlke
- Deutsches Institut für Ernaehrungsforschung, Department of Gastrointestinal Microbiology, Arthur-Scheunert-Allee 114-116, 14558, Nuthethal, Germany
| | - Walter Zidek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Markus van der Giet
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Markus Tölle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
39
|
Involvement of serum amyloid A1 in the rupture of fetal membranes through induction of collagen I degradation. Clin Sci (Lond) 2019; 133:515-530. [PMID: 30683734 DOI: 10.1042/cs20180950] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/25/2019] [Indexed: 12/22/2022]
Abstract
The de novo synthesis of serum amyloid A1 (SAA1) is augmented in human fetal membranes at parturition. However, its role in parturition remains largely unknown. Here, we investigated whether SAA1 was involved in the rupture of fetal membranes, a crucial event in parturition accompanied with extensive degradation of collagens. Results showed that SAA1 decreased both intracellular and extracellular COL1A1 and COL1A2 abundance, the two subunits of collagen I, without affecting their mRNA levels in human amnion fibroblasts. These reductions were completely blocked only with inhibition of both matrix metalloproteases (MMPs) and autophagy. Consistently, SAA1 increased MMP-2/9 abundance and the markers for autophagic activation including autophagy related (ATG) 7 (ATG7) and the microtubule-associated protein light chain 3 β (LC3B) II/I ratio with the formation of LC3 punctas and autophagic vacuoles in the fibroblasts. Moreover, the autophagic degradation of COL1A1/COL1A2 and activation of MMP-2/9 by SAA1 were blocked by inhibitors for the toll-like receptors 2/4 (TLR2/4) or NF-κB. Finally, reciprocal corresponding changes of SAA1 and collagen I were observed in the amnion following spontaneous rupture of membranes (ROM) at parturition. Conclusively, SAA1 may participate in membrane rupture at parturition by degradating collagen I via both autophagic and MMP pathways. These effects of SAA1 appear to be mediated by the TLR2/4 receptors and the NF-κB pathway.
Collapse
|
40
|
Raabe CA, Gröper J, Rescher U. Biased perspectives on formyl peptide receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:305-316. [DOI: 10.1016/j.bbamcr.2018.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
|
41
|
Wang YW, Wang WS, Wang LY, Bao YR, Lu JW, Lu Y, Zhang CY, Li WJ, Sun K, Ying H. Extracellular matrix remodeling effects of serum amyloid A1 in the human amnion: Implications for fetal membrane rupture. Am J Reprod Immunol 2019; 81:e13073. [PMID: 30461130 DOI: 10.1111/aji.13073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
PROBLEM Rupture of fetal membranes is a crucial event at parturition, which is preceded by extensive extracellular matrix (ECM) remodeling. Our recent studies have demonstrated that the human fetal membranes are capable of de novo synthesis of serum amyloid A1 (SAA1), an acute phase protein, and the abundance of SAA1 in the amnion was increased at parturition. However, the exact role of SAA1 in human parturition remains to be established. METHOD OF STUDY The effects of SAA1 on the abundance of collagenases and lysyl oxidase, the enzyme that cross-links collagens, were investigated in culture primary human amnion fibroblasts and tissue explants with an aim to examine the involvement of SAA1 in the ECM remodeling in the amnion. RESULTS Serum amyloid A1 (SAA1) time- and dose-dependently increased the abundance of collagenases MMP-1, MMP-8, and MMP-13, while decreased the abundance of lysyl oxidase-like 1 (LOXL1). These effects of SAA1 were attenuated by siRNA-mediated knockdown of the Toll-like receptor (TLR) 4 and its antagonist CLI-095, but not by siRNA-mediated knockdown of TLR2. Furthermore, the inhibitors for NF-κB (JSH-23) and mitogen-activated protein kinases (MAPKs) p38 (SB203580) and JNK (SP600125) could also attenuate the effects of SAA1, while the inhibitor for MAPK ERK1/2 (PD 98059) could block the effects of SAA1 only on MMP-1, MMP-8, and LOXL1 but not on MMP-13. CONCLUSION These data highlight a possible role for SAA1 in ECM remodeling preceding membrane rupture by regulating the expression of collagenases MMP-1, MMP-8, MMP-13, and LOXL1 through TLR4-mediated activation of the NF-κB and MAPK pathways in amnion fibroblasts.
Collapse
Affiliation(s)
- Ya-Wei Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Lu-Yao Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Rong Bao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Chu-Yue Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jiao Li
- Maternity and Infant Hospital of Changning District, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Wang H, Anthony D, Selemidis S, Vlahos R, Bozinovski S. Resolving Viral-Induced Secondary Bacterial Infection in COPD: A Concise Review. Front Immunol 2018; 9:2345. [PMID: 30459754 PMCID: PMC6232692 DOI: 10.3389/fimmu.2018.02345] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/21/2018] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Desiree Anthony
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
43
|
Abstract
Serum amyloid A (SAA) proteins were isolated and named over 50 years ago. They are small (104 amino acids) and have a striking relationship to the acute phase response with serum levels rising as much as 1000-fold in 24 hours. SAA proteins are encoded in a family of closely-related genes and have been remarkably conserved throughout vertebrate evolution. Amino-terminal fragments of SAA can form highly organized, insoluble fibrils that accumulate in “secondary” amyloid disease. Despite their evolutionary preservation and dynamic synthesis pattern SAA proteins have lacked well-defined physiologic roles. However, considering an array of many, often unrelated, reports now permits a more coordinated perspective. Protein studies have elucidated basic SAA structure and fibril formation. Appreciating SAA’s lipophilicity helps relate it to lipid transport and metabolism as well as atherosclerosis. SAA’s function as a cytokine-like protein has become recognized in cell-cell communication as well as feedback in inflammatory, immunologic, neoplastic and protective pathways. SAA likely has a critical role in control and possibly propagation of the primordial acute phase response. Appreciating the many cellular and molecular interactions for SAA suggests possibilities for improved understanding of pathophysiology as well as treatment and disease prevention.
Collapse
Affiliation(s)
- George H Sack
- Departments of Biological Chemistry and Medicine, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Physiology 615, Baltimore, MD, 21205, USA.
| |
Collapse
|
44
|
Wang H, Blackall M, Sominsky L, Spencer SJ, Vlahos R, Churchill M, Bozinovski S. Increased hypothalamic microglial activation after viral-induced pneumococcal lung infection is associated with excess serum amyloid A production. J Neuroinflammation 2018; 15:200. [PMID: 29980196 PMCID: PMC6035471 DOI: 10.1186/s12974-018-1234-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Background It is well established that lung pathology and inflammation are more severe during respiratory infections complicated by the presence of both bacteria and viruses. Whilst co-infection can result in invasive pneumococcal disease and systemic inflammation, the neuroinflammatory consequences of co-infection are poorly characterised. Methods In this study, we utilised a mouse co-infection model involving Streptococcus pneumoniae (S. pneumoniae) and influenza A virus (IAV) lung infection, and we also isolated microglia for ex vivo stimulation with pneumococcus or serum amyloid A (SAA). Results Co-infection but not S. pneumoniae or IAV alone significantly increased the number of amoeboid-shaped microglia and expression of pro-inflammatory cytokines including tumour necrosis factor α (TNFα), interleukin-1β (IL-1β), interleukin-6 (IL-6), and C-C motif chemokine ligand-2 (CCL-2) in the hypothalamus. Pneumococcus was only detected in the hypothalamus of co-infected mice. In addition, the systemic inflammatory cytokines TNFα, IL-1β and IL-6 were not elevated in co-infected mice relative to IAV-infected mice, whereas SAA levels were markedly increased in co-infected mice (p < 0.05). SAA and its functional receptor termed formyl peptide receptor 2 (Fpr2) transcript expression were also increased in the hypothalamus. In mouse primary microglia, recombinant SAA but not S. pneumoniae stimulated TNFα, IL-1β, IL-6 and CCL-2 expression, and this response was completely blocked by the pro-resolving Fpr2 agonist aspirin-triggered resolvin D1 (AT-RvD1). Conclusions In summary, lung co-infection increased the number of ‘activated’ amoeboid-shaped microglia and inflammatory cytokine expression in the hypothalamus. Whilst persistent pneumococcal brain infection was observed, SAA proved to be a much more potent stimulus of microglia than pneumococci, and this response was potently suppressed by the anti-inflammatory AT-RvD1. Targeting Fpr2 with pro-resolving eicosanoids such as AT-RvD1 may restore microglial homeostasis during severe respiratory infections. Electronic supplementary material The online version of this article (10.1186/s12974-018-1234-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Melissa Blackall
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
45
|
Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur J Pharmacol 2018; 833:339-348. [PMID: 29935171 DOI: 10.1016/j.ejphar.2018.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
The formyl peptide receptors (FPRs) are G protein coupled receptors that recognize a broad range of structurally distinct pathogen and danger-associated molecular patterns and mediate host defense to infection and tissue injury. It became evident that the cellular distribution and biological functions of FPRs extend beyond myeloid cells and governing their activation and trafficking. In recent years, significant progress has been made to position FPRs at check points that control the resolution of inflammation, tissue repair and return to homeostasis. Accumulating data indicate a role for FPRs in an ever-increasing range of human diseases, including atherosclerosis, chronic obstructive pulmonary disease, asthma, autoimmune diseases and cancer, in which dysregulated or defective resolution are increasingly recognized as critical component of the pathogenesis. This review summarizes recent advances on how FPRs recognize distinct ligands and integrate opposing cues to govern various responses and will discuss how this knowledge could be harnessed for developing novel therapeutic strategies to counter inflammation that underlies many human diseases.
Collapse
|
46
|
fMLP-dependent activation of Akt and ERK1/2 through ROS/Rho A pathways is mediated through restricted activation of the FPRL1 (FPR2) receptor. Inflamm Res 2018; 67:711-722. [PMID: 29922854 DOI: 10.1007/s00011-018-1163-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/02/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective of this study is to uncover the signal transduction pathways of N-formyl methionyl-leucyl-phenylalanine (fMLP) in monocyte. MATERIALS OR SUBJECTS Freshly isolated human peripheral blood monocytes (PBMC) were used for in vitro assessment of signal transduction pathways activated by fMLP. TREATMENT Time-course and dose-response experiments were used to evaluate the effect of fMLP along with the specific inhibitors/stimulators on the activation of downstream signaling kinases. METHODS Freshly isolated human PBMC were stimulated with fMLP for the desired time. Western blot and siRNA analysis were used to evaluate the activated intracellular signaling kinases, and flow analysis was performed to assess the levels of CD11b. Furthermore, luminescence spectrometry was performed to measure the levels of released hydrogen peroxide in the media. RESULTS fMLP strongly stimulated the activation of AKT and ERK1/2 through a RhoA-GTPase-dependent manner and also induced H2O2 release by monocytes. Furthermore, fMLP mediated its effects through restricted activation of formylpeptide receptor-like 1 (FPRL1/FPR2), but independently of either EGFR transactivation or intracellular calcium release. In addition, NAC reversed fMLP- and H2O2-induced activation of Akt and RhoA-GTPase. CONCLUSION Collectively, these data suggested that fMLP-activated ERK1/2 and Akt pathways through specific activation of the FPRL1/ROS/RoA-GTPase pathway.
Collapse
|
47
|
Gouwy M, De Buck M, Abouelasrar Salama S, Vandooren J, Knoops S, Pörtner N, Vanbrabant L, Berghmans N, Opdenakker G, Proost P, Van Damme J, Struyf S. Matrix Metalloproteinase-9-Generated COOH-, but Not NH 2-Terminal Fragments of Serum Amyloid A1 Retain Potentiating Activity in Neutrophil Migration to CXCL8, With Loss of Direct Chemotactic and Cytokine-Inducing Capacity. Front Immunol 2018; 9:1081. [PMID: 29915572 PMCID: PMC5994419 DOI: 10.3389/fimmu.2018.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A1 (SAA1) is a prototypic acute phase protein, induced to extremely high levels by physical insults, including inflammation and infection. Human SAA and its NH2-terminal part have been studied extensively in the context of amyloidosis. By contrast, little is known about COOH-terminal fragments of SAA. Intact SAA1 chemoattracts leukocytes via the G protein-coupled receptor formyl peptide receptor like 1/formyl peptide receptor 2 (FPR2). In addition to direct leukocyte activation, SAA1 induces chemokine production by signaling through toll-like receptor 2. We recently discovered that these induced chemokines synergize with intact SAA1 to chemoattract leukocytes in vitro and in vivo. Gelatinase B or matrix metalloproteinase-9 (MMP-9) is also induced by SAA1 during infection and inflammation and processes many substrates in the immune system. We demonstrate here that MMP-9 rapidly cleaves SAA1 at a known consensus sequence that is also present in gelatins. Processing of SAA1 by MMP-9 at an accessible loop between two alpha helices yielded predominantly three COOH-terminal fragments: SAA1(52–104), SAA1(57–104), and SAA1(58–104), with a relative molecular mass of 5,884.4, 5,327.3, and 5,256.3, respectively. To investigate the effect of proteolytic processing on the biological activity of SAA1, we chemically synthesized the COOH-terminal SAA fragments SAA1(52–104) and SAA1(58–104) and the complementary NH2-terminal peptide SAA1(1–51). In contrast to intact SAA1, the synthesized SAA1 peptides did not induce interleukin-8/CXCL8 in monocytes or fibroblasts. Moreover, these fragments possessed no direct chemotactic activity for neutrophils, as observed for intact SAA1. However, comparable to intact SAA1, SAA1(58–104) cooperated with CXCL8 in neutrophil activation and migration, whereas SAA1(1–51) lacked this potentiating activity. This cooperative interaction between the COOH-terminal SAA1 fragment and CXCL8 in neutrophil chemotaxis was mediated by FPR2. Hence, proteolytic cleavage of SAA1 by MMP-9 fine tunes the inflammatory capacity of this acute phase protein in that only the synergistic interactions with chemokines remain to prolong the duration of inflammation.
Collapse
Affiliation(s)
- Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
48
|
The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round. Immunol Lett 2018; 205:1-8. [PMID: 29870759 DOI: 10.1016/j.imlet.2018.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH2- or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response.
Collapse
|
49
|
Ansari J, Kaur G, Gavins FNE. Therapeutic Potential of Annexin A1 in Ischemia Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19041211. [PMID: 29659553 PMCID: PMC5979321 DOI: 10.3390/ijms19041211] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in the world. Increased inflammation and an enhanced thrombotic milieu represent two major complications of CVD, which can culminate into an ischemic event. Treatment for these life-threatening complications remains reperfusion and restoration of blood flow. However, reperfusion strategies may result in ischemia-reperfusion injury (I/RI) secondary to various cardiovascular pathologies, including myocardial infarction and stroke, by furthering the inflammatory and thrombotic responses and delivering inflammatory mediators to the affected tissue. Annexin A1 (AnxA1) and its mimetic peptides are endogenous anti-inflammatory and pro-resolving mediators, known to have significant effects in resolving inflammation in a variety of disease models. Mounting evidence suggests that AnxA1, which interacts with the formyl peptide receptor (FPR) family, may have a significant role in mitigating I/RI associated complications. In this review article, we focus on how AnxA1 plays a protective role in the I/R based vascular pathologies.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gaganpreet Kaur
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
50
|
Serum Amyloid A1 Is an Epithelial Prorestitutive Factor. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:937-949. [PMID: 29366677 DOI: 10.1016/j.ajpath.2017.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/10/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
Several proteins endogenously produced during the process of intestinal wound healing have demonstrated prorestitutive properties. The presence of serum amyloid A1 (SAA1), an acute-phase reactant, within inflamed tissues, where it exerts chemotaxis of phagocytes, is well recognized; however, a putative role in intestinal wound repair has not been described. Herein, we show that SAA1 induces intestinal epithelial cell migration, spreading, and attachment through a formyl peptide receptor 2-dependent mechanism. Induction of the prorestitutive phenotype is concentration and time dependent and is associated with epithelial reactive oxygen species production and alterations in p130 Crk-associated substrate staining. In addition, using a murine model of wound recovery, we provide evidence that SAA1 is dynamically and temporally regulated, and that the elaboration of SAA1 within the wound microenvironment correlates with the influx of SAA1/CD11b coexpressing immune cells and increases in cytokines known to induce SAA expression. Overall, the present work demonstrates an important role for SAA in epithelial wound recovery and provides evidence for a physiological role in the wound environment.
Collapse
|