1
|
Yang R, Cui J. Advances and applications of RNA vaccines in tumor treatment. Mol Cancer 2024; 23:226. [PMID: 39385255 PMCID: PMC11463124 DOI: 10.1186/s12943-024-02141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Compared to other types of tumor vaccines, RNA vaccines have emerged as promising alternatives to conventional vaccine therapy due to their high efficiency, rapid development capability, and potential for low-cost manufacturing and safe drug delivery. RNA vaccines mainly include mRNA, circular RNA (circRNA), and Self-amplifying mRNA(SAM). Different RNA vaccine platforms for different tumors have shown encouraging results in animal and human models. This review comprehensively describes the advances and applications of RNA vaccines in antitumor therapy. Future directions for extending this promising vaccine platform to a wide range of therapeutic uses are also discussed.
Collapse
Affiliation(s)
- Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Meng W, Takeuchi Y, Ward JP, Sultan H, Arthur CD, Mardis ER, Artyomov MN, Lichti CF, Schreiber RD. Improvement of Tumor Neoantigen Detection by High-Field Asymmetric Waveform Ion Mobility Mass Spectrometry. Cancer Immunol Res 2024; 12:988-1006. [PMID: 38768391 PMCID: PMC11456315 DOI: 10.1158/2326-6066.cir-23-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Cancer neoantigens have been shown to elicit cancer-specific T-cell responses and have garnered much attention for their roles in both spontaneous and therapeutically induced antitumor responses. Mass spectrometry (MS) profiling of tumor immunopeptidomes has been used, in part, to identify MHC-bound mutant neoantigen ligands. However, under standard conditions, MS-based detection of such rare but clinically relevant neoantigens is relatively insensitive, requiring 300 million cells or more. Here, to quantitatively define the minimum detectable amounts of therapeutically relevant MHC-I and MHC-II neoantigen peptides, we analyzed different dilutions of immunopeptidomes isolated from the well-characterized T3 mouse methylcholanthrene (MCA)-induced cell line by MS. Using either data-dependent acquisition or parallel reaction monitoring (PRM), we established the minimum amount of material required to detect the major T3 neoantigens in the presence or absence of high field asymmetric waveform ion mobility spectrometry (FAIMS). This analysis yielded a 14-fold enhancement of sensitivity in detecting the major T3 MHC-I neoantigen (mLama4) with FAIMS-PRM compared with PRM without FAIMS, allowing ex vivo detection of this neoantigen from an individual 100 mg T3 tumor. These findings were then extended to two other independent MCA-sarcoma lines (1956 and F244). This study demonstrates that FAIMS substantially increases the sensitivity of MS-based characterization of validated neoantigens from tumors.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Jeffrey P. Ward
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Hussein Sultan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cora D. Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43215, U.S.A
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Cheryl F. Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, U.S.A
| |
Collapse
|
4
|
Yang Q, Xu L, Dong W, Li X, Wang K, Dong S, Zhang X, Yang T, Jiang F, Zhang B, Luo G, Gao X, Wang G. HLAIImaster: a deep learning method with adaptive domain knowledge predicts HLA II neoepitope immunogenic responses. Brief Bioinform 2024; 25:bbae302. [PMID: 38920343 PMCID: PMC11200192 DOI: 10.1093/bib/bbae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
While significant strides have been made in predicting neoepitopes that trigger autologous CD4+ T cell responses, accurately identifying the antigen presentation by human leukocyte antigen (HLA) class II molecules remains a challenge. This identification is critical for developing vaccines and cancer immunotherapies. Current prediction methods are limited, primarily due to a lack of high-quality training epitope datasets and algorithmic constraints. To predict the exogenous HLA class II-restricted peptides across most of the human population, we utilized the mass spectrometry data to profile >223 000 eluted ligands over HLA-DR, -DQ, and -DP alleles. Here, by integrating these data with peptide processing and gene expression, we introduce HLAIImaster, an attention-based deep learning framework with adaptive domain knowledge for predicting neoepitope immunogenicity. Leveraging diverse biological characteristics and our enhanced deep learning framework, HLAIImaster is significantly improved against existing tools in terms of positive predictive value across various neoantigen studies. Robust domain knowledge learning accurately identifies neoepitope immunogenicity, bridging the gap between neoantigen biology and the clinical setting and paving the way for future neoantigen-based therapies to provide greater clinical benefit. In summary, we present a comprehensive exploitation of the immunogenic neoepitope repertoire of cancers, facilitating the effective development of "just-in-time" personalized vaccines.
Collapse
Affiliation(s)
- Qiang Yang
- School of Medicine and Health, Harbin Institute of Technology, Yikuang Street, Harbin 150000, China
| | - Long Xu
- School of Computer Science and Technology, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Weihe Dong
- College of Computer and Control Engineering, Northeast Forestry University, Hexing Road, Harbin 150004, China
| | - Xiaokun Li
- School of Computer Science and Technology, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
- School of Computer Science and Technology, Heilongjiang University, Xuefu Road, Harbin 150080, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Xuefu Road, Harbin 150090, China
- Shandong Hengxun Technology Co., Ltd., Miaoling Road, Qingdao 266100, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, West Dazhi Street, Harbin 150001, China
| | - Suyu Dong
- College of Computer and Control Engineering, Northeast Forestry University, Hexing Road, Harbin 150004, China
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Haping Road, Harbin 150081, China
| | - Tiansong Yang
- Department of Rehabilitation, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Heping Road, Harbin 150040, China
| | - Feng Jiang
- School of Medicine and Health, Harbin Institute of Technology, Yikuang Street, Harbin 150000, China
| | - Bin Zhang
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| | - Gongning Luo
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Hexing Road, Harbin 150004, China
| |
Collapse
|
5
|
Mariuzza RA, Wu D, Pierce BG. Structural basis for T cell recognition of cancer neoantigens and implications for predicting neoepitope immunogenicity. Front Immunol 2023; 14:1303304. [PMID: 38045695 PMCID: PMC10693334 DOI: 10.3389/fimmu.2023.1303304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-specific T cells has been shown to mediate durable cancer regression. Tumor-specific T cells are also the basis of other therapies, notably cancer vaccines. The main target of tumor-specific T cells are neoantigens resulting from mutations in self-antigens over the course of malignant transformation. The detection of neoantigens presents a major challenge to T cells because of their high structural similarity to self-antigens, and the need to avoid autoimmunity. How different a neoantigen must be from its wild-type parent for it to induce a T cell response is poorly understood. Here we review recent structural and biophysical studies of T cell receptor (TCR) recognition of shared cancer neoantigens derived from oncogenes, including p53R175H, KRASG12D, KRASG12V, HHATp8F, and PIK3CAH1047L. These studies have revealed that, in some cases, the oncogenic mutation improves antigen presentation by strengthening peptide-MHC binding. In other cases, the mutation is detected by direct interactions with TCR, or by energetically driven or other indirect strategies not requiring direct TCR contacts with the mutation. We also review antibodies designed to recognize peptide-MHC on cell surfaces (TCR-mimic antibodies) as an alternative to TCRs for targeting cancer neoantigens. Finally, we review recent computational advances in this area, including efforts to predict neoepitope immunogenicity and how these efforts may be advanced by structural information on peptide-MHC binding and peptide-MHC recognition by TCRs.
Collapse
Affiliation(s)
- Roy A. Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Brian G. Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, United States
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
7
|
Mani N, Andrews D, Obeng RC. Modulation of T cell function and survival by the tumor microenvironment. Front Cell Dev Biol 2023; 11:1191774. [PMID: 37274739 PMCID: PMC10232912 DOI: 10.3389/fcell.2023.1191774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Cancer immunotherapy is shifting paradigms in cancer care. T cells are an indispensable component of an effective antitumor immunity and durable clinical responses. However, the complexity of the tumor microenvironment (TME), which consists of a wide range of cells that exert positive and negative effects on T cell function and survival, makes achieving robust and durable T cell responses difficult. Additionally, tumor biology, structural and architectural features, intratumoral nutrients and soluble factors, and metabolism impact the quality of the T cell response. We discuss the factors and interactions that modulate T cell function and survive in the TME that affect the overall quality of the antitumor immune response.
Collapse
Affiliation(s)
- Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dathan Andrews
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Rebecca C. Obeng
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
8
|
Fonderflick L, Baudu T, Adotévi O, Guittaut M, Adami P, Delage-Mourroux R. The ATG8 Family Proteins GABARAP and GABARAPL1 Target Antigen to Dendritic Cells to Prime CD4+ and CD8+ T Cells. Cells 2022; 11:cells11182782. [PMID: 36139357 PMCID: PMC9496894 DOI: 10.3390/cells11182782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccine therapy is a promising method of research to promote T cell immune response and to develop novel antitumor immunotherapy protocols. Accumulating evidence has shown that autophagy is involved in antigen processing and presentation to T cells. In this work, we investigated the potential role of GABARAP and GABARAPL1, two members of the autophagic ATG8 family proteins, as surrogate tumor antigen delivery vectors to prime antitumor T cells. We showed that bone marrow-derived dendritic cells, expressing the antigen OVALBUMIN (OVA) fused with GABARAP or GABARAPL1, were able to prime OVA-specific CD4+ T cells in vitro. Interestingly, the fusion proteins were also degraded by the proteasome pathway and the resulting peptides were presented by the MHC class I system. We then asked if the aforementioned fusion proteins could improve tumor cell immunogenicity and T cell priming. The B16-F10 melanoma was chosen as the tumor cell line to express the fusion proteins. B16-F10 cells that expressed the OVA-ATG8 fused proteins stimulated OVA-specific CD8+ T cells, but demonstrated no CD4+ T cell response. In the future, these constructions may be used in vaccination trials as potential candidates to control tumor growth.
Collapse
Affiliation(s)
- Leïla Fonderflick
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Timothée Baudu
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Olivier Adotévi
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
- Departement of Oncology, Centre Hospitalier de Recherche Universitaire de Besançon, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Michaël Guittaut
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
- DImaCell Platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Pascale Adami
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
- Correspondence: (P.A.); (R.D.-M.)
| | - Régis Delage-Mourroux
- INSERM, EFS BFC, UMR1098, RIGHT Institute, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Group TIM-C, University Bourgogne Franche-Comté, 25000 Besançon, France
- Correspondence: (P.A.); (R.D.-M.)
| |
Collapse
|
9
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
10
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Bollineni RC, Tran TT, Lund-Johansen F, Olweus J. Chasing neoantigens; invite naïve T cells to the party. Curr Opin Immunol 2022; 75:102172. [DOI: 10.1016/j.coi.2022.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
|
12
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|
13
|
Abstract
Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, California 92093, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
| | - Maurizio Zanetti
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Balhorn R, Balhorn MC. Therapeutic applications of the selective high affinity ligand drug SH7139 extend beyond non-Hodgkin's lymphoma to many other types of solid cancers. Oncotarget 2020; 11:3315-3349. [PMID: 32934776 PMCID: PMC7476732 DOI: 10.18632/oncotarget.27709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023] Open
Abstract
SH7139, the first of a series of selective high affinity ligand (SHAL) oncology drug candidates designed to target and bind to the HLA-DR proteins overexpressed by B-cell lymphomas, has demonstrated exceptional efficacy in the treatment of Burkitt lymphoma xenografts in mice and a safety profile that may prove to be unprecedented for an oncology drug. The aim of this study was to determine how frequently the HLA-DRs targeted by SH7139 are expressed by different subtypes of non-Hodgkin’s lymphoma and by other solid cancers that have been reported to express HLA-DR. Binding studies conducted with SH7129, a biotinylated analog of SH7139, reveal that more than half of the biopsy sections obtained from patients with different types of non-Hodgkin’s lymphoma express the HLA-DRs targeted by SH7139. Similar analyses of tumor biopsy tissue obtained from patients diagnosed with eighteen other solid cancers show the majority of these tumors also express the HLA-DRs targeted by SH7139. Cervical, ovarian, colorectal and prostate cancers expressed the most HLA-DR. Only a few esophageal and head and neck tumors bound the diagnostic. Within an individual’s tumor, cell to cell differences in HLA-DR target expression varied by only 2 to 3-fold while the expression levels in tumors obtained from different patients varied as much as 10 to 100-fold. The high frequency with which SH7129 was observed to bind to these cancers suggests that many patients diagnosed with B-cell lymphomas, myelomas, and other non-hematological cancers should be considered potential candidates for new therapies such as SH7139 that target HLA-DR-expressing tumors.
Collapse
Affiliation(s)
- Rod Balhorn
- SHAL Technologies Inc., Livermore, CA 94550, USA
| | | |
Collapse
|
15
|
Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020; 91:e12875. [PMID: 32090366 DOI: 10.1111/sji.12875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
In recent years, relying on the human immune system to kill tumour cells has become an effective means of cancer treatment. The development of peptide vaccines, which not only break the immune tolerance of a tumour but also attack malignant cells via specific antitumour immunity, has received increased attention in tumour immunization therapy due to their safety and easy preparation. The use of large-scale sequencing technology enables the continuous discovery of new tumour antigens. With improved accuracy of epitope prediction by computer simulation and the usage of a tetramer assay, cytotoxic lymphocyte epitopes can be screened and identified more easily. Transmembrane peptide and nanoparticle technologies promote more effective intake and delivery of antigens. Consequently, considerable evolution from universal to personalized peptide vaccines has taken place, and such vaccines induce an efficient and specific immune response targeting tumour neoantigens. Recently, genomic analysis and bioinformatics approaches have greatly facilitated the breakthrough of personalized peptide vaccines targeting neoantigens, resulting in a renewed interest in this field. Further, the combination of tumour peptide vaccines with checkpoint blockades may improve patient outcomes. In this review, we discuss the development of tumour peptide vaccines and the new technological progress, from universalization to personalization, to highlight the substantial promise of tumour peptide vaccines in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Minjun Ma
- Department of Gastrology, The First People's Hospital of Fuyang of Hangzhou, Hangzhou, China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghang Jin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan Wang
- Linhai Center for Disease Control and Prevention, Linhai, China
| |
Collapse
|
16
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
17
|
Lu JH, Peng BY, Chang CC, Dubey NK, Lo WC, Cheng HC, Wang JR, Wei HJ, Deng WP. Tumor-Targeted Immunotherapy by Using Primary Adipose-Derived Stem Cells and an Antigen-Specific Protein Vaccine. Cancers (Basel) 2018; 10:E446. [PMID: 30445793 PMCID: PMC6266266 DOI: 10.3390/cancers10110446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of mortality and a major public health problem worldwide. For biological therapy against cancer, we previously developed a unique immunotherapeutic platform by combining mesenchymal stem cells with an antigen-specific protein vaccine. However, this system possesses a few limitations, such as improperly immortalized mesenchymal stem cells (MSCs) along with transfected oncogenic antigens in them. To overcome the limitations of this platform for future clinical application, we freshly prepared primary adipose-derived stem cells (ADSCs) and modified the E7' antigen (E7') as a non-oncogenic protein. Either subcutaneously co-inoculated with cancer cells or systemically administered after tumor growth, ADSC labeled with enhanced green fluorescent protein (eGFP) and combined with modified E7' (ADSC-E7'-eGFP) cells showed significant antitumor activity when combined with the protein vaccine in both colon and lung cancer in mice. Specifically, this combined therapy inhibited tumor through inducing cell apoptosis. The significantly reduced endothelial cell markers, CD31 and vascular endothelial growth factor (VEGF), indicated strongly inhibited tumor angiogenesis. The activated immune system was demonstrated through the response of CD4+ T and natural killer (NK) cells, and a notable antitumor activity might be contributed by CD8+ T cells. Conclusively, these evidences imply that this promising immunotherapeutic platform might be a potential candidate for the future clinical application against cancer.
Collapse
Affiliation(s)
- Jui-Hua Lu
- Graduate Institute of Biomedical Materials and Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan.
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bou-Yue Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110i, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University School of Medicine, Taipei 110, Taiwan.
| | - Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Wen-Cheng Lo
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Joseph R Wang
- Department of Periodontics, College of Dental Medicine, Columbia University, New York 10032, USA.
| | - Hong-Jian Wei
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, New Taipei City 110, Taiwan.
| |
Collapse
|
18
|
Abstract
This review discusses the rapidly evolving field of immunotherapy research, focusing on the types of cancer antigens that can be recognised by the immune system and potential methods by which neoantigens can be exploited clinically to successfully target and clear tumour cells. Recent studies suggest that the likelihood of successful immunotherapeutic targeting of cancer will be reliant on immune response to neoantigens. This type of cancer-specific antigen arises from somatic variants that result in alteration of the expressed protein sequence. Massively parallel sequencing techniques now allow the rapid identification of these genomic mutations, and algorithms can be used to predict those that will be processed by the proteasome, bind to the transporter complex and encode peptides that bind strongly to individual MHC molecules. The emerging data from assessment of the immunogenicity of neoantigens suggests that only a minority of mutations will form targetable epitopes and therefore the potential for immunotherapeutic targeting will be greater in cancers with a higher frequency of protein-altering somatic variants. It is evident that neoantigens contribute to the success of some immunotherapeutic interventions and that there is significant scope for specific targeting of these antigens to develop new treatment approaches.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Genetics and Immunology Research Group, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
19
|
Hutchison S, Pritchard AL. Identifying neoantigens for use in immunotherapy. Mamm Genome 2018; 29:714-730. [PMID: 30167844 PMCID: PMC6267674 DOI: 10.1007/s00335-018-9771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
This review focuses on the types of cancer antigens that can be recognised by the immune system and form due to alterations in the cancer genome, including cancer testis, overexpressed and neoantigens. Specifically, neoantigens can form when cancer cell-specific mutations occur that result in alterations of the protein from ‘self’. This type of antigen can result in an immune response sufficient to clear tumour cells when activated. Furthermore, studies have reported that the likelihood of successful immunotherapeutic targeting of cancer by many different methods was reliant on immune response to neoantigens. The recent resurgence of interest in the immune response to tumour cells, in conjunction with technological advances, has resulted in a large increase in the predicted, identified and functionally confirmed neoantigens. This growth in identified neoantigen sequences has increased the contents of training sets for algorithms, which in turn improves the prediction of which genetic mutations may form neoantigens. Additionally, algorithms predicting how proteins will be processed into peptide epitopes by the proteasome and which peptides bind to the transporter complex are also improving with this research. Now that large screens of all the tumour-specific protein altering mutations are possible, the emerging data from assessment of the immunogenicity of neoantigens suggest that only a minority of variants will form targetable epitopes. The potential for immunotherapeutic targeting of neoantigens will therefore be greater in cancers with a higher frequency of protein altering somatic variants. There is considerable potential in the use of neoantigens to treat patients, either alone or in combination with other immunotherapies and with continued advancements, these potentials will be realised.
Collapse
Affiliation(s)
- Sharon Hutchison
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK
| | - Antonia L Pritchard
- Genetics and Immunology Research Group, University of the Highlands and Islands, An Lòchran, 10 Inverness Campus, Inverness, IV2 5NA, Scotland, UK.
| |
Collapse
|
20
|
Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Front Immunol 2018; 9:14. [PMID: 29403496 PMCID: PMC5786548 DOI: 10.3389/fimmu.2018.00014] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022] Open
Abstract
Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Aurélie Durgeau
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France.,ElyssaMed, Paris Biotech Santé, Paris, France
| | - Yasemin Virk
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
21
|
Li X, Bu X. Progress in Vaccine Therapies for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:315-330. [DOI: 10.1007/978-981-10-6020-5_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
MHC class II restricted neoantigen: A promising target in tumor immunotherapy. Cancer Lett 2017; 392:17-25. [DOI: 10.1016/j.canlet.2016.12.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/06/2023]
|
23
|
Abstract
Harnessing the immune system to eradicate malignant cells is becoming a most powerful new approach to cancer therapy. FDA approval of the immunotherapy-based drugs, sipuleucel-T (Provenge), ipilimumab (Yervoy, anti-CTLA-4), and more recently, the programmed cell death (PD)-1 antibody (pembrolizumab, Keytruda), for the treatment of multiple types of cancer has greatly advanced research and clinical studies in the field of cancer immunotherapy. Furthermore, recent clinical trials, using NY-ESO-1-specific T cell receptor (TCR) or CD19-chimeric antigen receptor (CAR), have shown promising clinical results for patients with metastatic cancer. Current success of cancer immunotherapy is built upon the work of cancer antigens and co-inhibitory signaling molecules identified 20 years ago. Among the large numbers of target antigens, CD19 is the best target for CAR T cell therapy for blood cancer, but CAR-engineered T cell immunotherapy does not yet work in solid cancer. NY-ESO-1 is one of the best targets for TCR-based immunotherapy in solid cancer. Despite the great success of checkpoint blockade therapy, more than 50% of cancer patients fail to respond to blockade therapy. The advent of new technologies such as next-generation sequencing has enhanced our ability to search for new immune targets in onco-immunology and accelerated the development of immunotherapy with potentially broader coverage of cancer patients. In this review, we will discuss the recent progresses of cancer immunotherapy and novel strategies in the identification of new immune targets and mutation-derived antigens (neoantigens) for cancer immunotherapy and immunoprecision medicine.
Collapse
Affiliation(s)
- Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
- Institute of Biosciences and Technology, College of Medicine, Texas A & M University, Houston, Texas 77030, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
24
|
Abstract
The past several years can be considered a renaissance era in the treatment of metastatic melanoma. Following a 30-year stretch in which oncologists barely put a dent in a very grim overall survival (OS) rate for these patients, things have rapidly changed course with the recent approval of three new melanoma drugs by the FDA. Both oncogene-targeted therapy and immune checkpoint blockade approaches have shown remarkable efficacy in a subset of melanoma patients and have clearly been game-changers in terms of clinical impact. However, most patients still succumb to their disease, and thus, there remains an urgent need to improve upon current therapies. Fortunately, innovations in molecular medicine have led to many silent gains that have greatly increased our understanding of the nature of cancer biology as well as the complex interactions between tumors and the immune system. They have also allowed for the first time a detailed understanding of an individual patient's cancer at the genomic and proteomic level. This information is now starting to be employed at all stages of cancer treatment, including diagnosis, choice of drug therapy, treatment monitoring, and analysis of resistance mechanisms upon recurrence. This new era of personalized medicine will foreseeably lead to paradigm shifts in immunotherapeutic treatment approaches such as individualized cancer vaccines and adoptive transfer of genetically modified T cells. Advances in xenograft technology will also allow for the testing of drug combinations using in vivo models, a truly necessary development as the number of new drugs needing to be tested is predicted to skyrocket in the coming years. This chapter will provide an overview of recent technological developments in cancer research, and how they are expected to impact future diagnosis, monitoring, and development of novel treatments for metastatic melanoma.
Collapse
Affiliation(s)
| | | | | | - Patrick Hwu
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gregory Lizée
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Lu YC, Robbins PF. Cancer immunotherapy targeting neoantigens. Semin Immunol 2015; 28:22-7. [PMID: 26653770 DOI: 10.1016/j.smim.2015.11.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023]
Abstract
Neoantigens are antigens encoded by tumor-specific mutated genes. Studies in the past few years have suggested a key role for neoantigens in cancer immunotherapy. Here we review the discoveries of neoantigens in the past two decades and the current advances in neoantigen identification. We also discuss the potential benefits and obstacles to the development of effective cancer immunotherapies targeting neoantigens.
Collapse
Affiliation(s)
- Yong-Chen Lu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Rm 3W-3864, 10 Center Dr, MSC 1201, Bethesda, MD 20892, United States.
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Rm 3W-3864, 10 Center Dr, MSC 1201, Bethesda, MD 20892, United States.
| |
Collapse
|
26
|
Fonteneau JF, Brilot F, Münz C, Gannagé M. The Tumor Antigen NY-ESO-1 Mediates Direct Recognition of Melanoma Cells by CD4+ T Cells after Intercellular Antigen Transfer. THE JOURNAL OF IMMUNOLOGY 2015; 196:64-71. [PMID: 26608910 DOI: 10.4049/jimmunol.1402664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/13/2015] [Indexed: 01/13/2023]
Abstract
NY-ESO-1-specific CD4(+) T cells are of interest for immune therapy against tumors, because it has been shown that their transfer into a patient with melanoma resulted in tumor regression. Therefore, we investigated how NY-ESO-1 is processed onto MHC class II molecules for direct CD4(+) T cell recognition of melanoma cells. We could rule out proteasome and autophagy-dependent endogenous Ag processing for MHC class II presentation. In contrast, intercellular Ag transfer, followed by classical MHC class II Ag processing via endocytosis, sensitized neighboring melanoma cells for CD4(+) T cell recognition. However, macroautophagy targeting of NY-ESO-1 enhanced MHC class II presentation. Therefore, both elevated NY-ESO-1 release and macroautophagy targeting could improve melanoma cell recognition by CD4(+) T cells and should be explored during immunotherapy of melanoma.
Collapse
Affiliation(s)
| | - Fabienne Brilot
- Neuroimmunology Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, St. Westmead, New South Wales 2145, Australia
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland
| | - Monique Gannagé
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich 8006, Switzerland; Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva 1211, Switzerland; and Division of Rheumatology, Department of Internal Medicine, University Hospital, Geneva 1205, Switzerland
| |
Collapse
|
27
|
Zanetti M. Tapping CD4 T Cells for Cancer Immunotherapy: The Choice of Personalized Genomics. THE JOURNAL OF IMMUNOLOGY 2015; 194:2049-56. [DOI: 10.4049/jimmunol.1402669] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Yang J, Zhang Q, Li K, Yin H, Zheng JN. Composite peptide-based vaccines for cancer immunotherapy (Review). Int J Mol Med 2014; 35:17-23. [PMID: 25395173 DOI: 10.3892/ijmm.2014.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
The use of peptide-based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide-based vaccines are easily synthesized and chemically stable entities, and of note, they are absent of oncogenic potential. However, their application is more complicated as the success of an effective peptide-based vaccine is determined by numerous parameters. The success thus far has been limited by the choice of tumor antigenic peptides, poor immunogenicity and incorporation of strategies to reverse cancer-mediated immune suppression. In the present review, an overview of the mechanisms of peptide-based vaccines is provided and antigenic peptides are categorized with respect to their tissue distribution in order to determine their usefulness as targets. Furthermore, certain approaches are proposed that induce and maintain T cells for immunotherapy. The recent progress indicates that peptide-based vaccines are preferential for targeted therapy in cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Qing Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Ke Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Hong Yin
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
29
|
Protti MP, De Monte L, Monte LD, Di Lullo G, Lullo GD. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. ACTA ACUST UNITED AC 2014; 83:237-46. [PMID: 24641502 DOI: 10.1111/tan.12329] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 12/22/2022]
Abstract
CD4(+) T cells comprise a large fraction of tumor infiltrating lymphocytes and it is now established that they may exert an important role in tumor immune-surveillance. Several CD4(+) T cell subsets [i.e. T helper (Th)1, Th2, T regulatory (Treg), Th17, Th22 and follicular T helper (Tfh)] have been described and differentiation of each subset depends on both the antigen presenting cells responsible for its activation and the cytokine environment present at the site of priming. Tumor antigen-specific CD4(+) T cells with different functional activity have been found in the blood of cancer patients and different CD4(+) T cell subsets have been identified at the tumor site by the expression of specific transcription factors and the profile of secreted cytokines. Importantly, depending on the subset, CD4(+) T cells may exert antitumor versus pro-tumor functions. Here we review the studies that first identified the presence of tumor-specific CD4(+) T cells in cancer patients, the techniques used to identify the tumor antigens recognized, the role of the different CD4(+) T cell subsets in tumor immunity and in cancer prognosis and the development of therapeutic strategies aimed at activating efficient antitumor CD4(+) T cell effectors.
Collapse
Affiliation(s)
- M P Protti
- Tumor Immunology Unit, San Raffaele Scientific Institute, Milan, Italy; Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
30
|
Pilla L, Valenti R, Marrari A, Patuzzo R, Santinami M, Parmiani G, Rivoltini L. Vaccination: role in metastatic melanoma. Expert Rev Anticancer Ther 2014; 6:1305-18. [PMID: 16925496 DOI: 10.1586/14737140.6.8.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Based on the poor impact on overall survival obtained by systemic chemotherapy in metastatic melanoma and the identification of many melanoma antigens recognized by T cells, in the last decade many efforts have been devoted to the development of active specific immunotherapy as a promising systemic treatment for this neoplastic disease. A number of Phase I-II clinical trials have been performed with different vaccination approaches that included whole tumor cells, antigen peptides, antigen-pulsed dendritic cells, recombinant viruses, plasmids or naked DNA, and heat-shock proteins. Despite some promising immunological and clinical results obtained in these studies, melanoma-specific vaccines have altogether failed to prove their efficacy in the few large Phase III randomized clinical trials performed. Nonetheless, the possibility of activating the human immune system to recognize and destroy tumor cells remains a challenging investigative field, considering that the new knowledge of the intricate cellular and molecular mechanisms that regulate the immune function and tumor-host interactions may allow the development of new clinically relevant melanoma vaccination strategies.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Unit of Immunotherapy of Human Tumors, Via Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Tanaka R, Ono T, Sato S, Nakada T, Koizumi F, Hasegawa K, Nakagawa K, Okumura H, Yamashita T, Ohtsuka M, Asagoe K, Yamasaki O, Noguchi Y, Iwatsuki K, Nakayama E. Over-Expression of the Testis-Specific GeneTSGA10in Cancers and Its Immunogenicity. Microbiol Immunol 2013; 48:339-45. [PMID: 15107545 DOI: 10.1111/j.1348-0421.2004.tb03515.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The TSGA10 gene was originally isolated in normal testis by differential mRNA display. TSGA10 is located on chromosome 2q11.2 and consists of 19 exons extending over 3 kb. TSGA10 mRNA expression was investigated in normal and malignant tissues using quantitative real-time RT-PCR. It was predominantly expressed in the testis in adult normal tissues. In malignant tissues, TSGA10 was over-expressed in 4 of 20 hepatocellular carcinomas (HCC), 1 of 20 colon cancers, 7 of 20 ovarian cancers, 3 of 20 prostate cancers, 1 of 21 malignant melanomas, and 8 of 21 bladder cancers. Serological analysis revealed that 3 out of 346 patients with various types of cancer possessed antibody against recombinant TSGA10 protein. They included 2 patients with hepatocellular carcinoma and a patient with malignant melanoma.
Collapse
Affiliation(s)
- Ryo Tanaka
- Departments of Immunology, Okayama University Graduate School of Medicine and Dentistry, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy.
Collapse
Affiliation(s)
- Tatiana Blanchard
- Department of Immunology, and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030-1601, USA
| | | | | |
Collapse
|
33
|
Overwijk WW, Wang E, Marincola FM, Rammensee HG, Restifo NP. Mining the mutanome: developing highly personalized Immunotherapies based on mutational analysis of tumors. J Immunother Cancer 2013; 1:11. [PMID: 24829748 PMCID: PMC4019909 DOI: 10.1186/2051-1426-1-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022] Open
Abstract
T cells can mediate remarkable tumor regressions including complete cure in patients with metastatic cancer. Genetic alterations in an individual's cancer cells (the mutanome) encode unique peptides (m-peptides) that can be targets for T cells. The recent advances in next-generation sequencing and computation prediction allows, for the first time, the rapid and affordable identification of m-peptides in individual patients. Despite excitement about the extended spectrum of potential targets in personalized immunotherapy, there is no experience or consensus on the path to their successful clinical application. Major questions remain, such as whether clinical responses to cytokine therapy, T cell transfer, and checkpoint blockade are primarily mediated by m-peptide-specific reactivity, whether m-peptides can be effectively used as vaccines, and which m-peptides are most potently recognized. These and other technological, immunological and translational questions will be explored during a 1-day Workshop on Personalized Cancer Immunotherapy by the Society for Immunotherapy of Cancer, directly before the Annual Meeting, on November 7, 2013 at the National Harbor, MD near Washington, DC.
Collapse
Affiliation(s)
- Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas M.D, Anderson Cancer Center, Houston, TX, USA
| | - Ena Wang
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA ; Sidra Medical and Research Centre, Doha, Qatar
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA ; NIH Center for Regenerative Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19:747-52. [PMID: 23644516 PMCID: PMC3757932 DOI: 10.1038/nm.3161] [Citation(s) in RCA: 882] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
Substantial regressions of metastatic lesions have been observed in up to 70% of patients with melanoma who received adoptively transferred autologous tumor-infiltrating lymphocytes (TILs) in phase 2 clinical trials. In addition, 40% of patients treated in a recent trial experienced complete regressions of all measurable lesions for at least 5 years following TIL treatment. To evaluate the potential association between the ability of TILs to mediate durable regressions and their ability to recognize potent antigens that presumably include mutated gene products, we developed a new screening approach involving mining whole-exome sequence data to identify mutated proteins expressed in patient tumors. We then synthesized and evaluated candidate mutated T cell epitopes that were identified using a major histocompatibility complex-binding algorithm for recognition by TILs. Using this approach, we identified mutated antigens expressed on autologous tumor cells that were recognized by three bulk TIL lines from three individuals with melanoma that were associated with objective tumor regressions following adoptive transfer. This simplified approach for identifying mutated antigens recognized by T cells avoids the need to generate and laboriously screen cDNA libraries from tumors and may represent a generally applicable method for identifying mutated antigens expressed in a variety of tumor types.
Collapse
Affiliation(s)
- Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Adoptive cell therapy using tumor-infiltrating lymphocytes (TIL) can mediate objective and durable tumor regressions in patients with metastatic melanoma. CD8+ tumor-reactive TIL are well studied in humans and animals, yet the function of tumor-infiltrating CD4+ T lymphocytes in patient treatments remains controversial. We recently demonstrated that CD4+ TILs are not necessary for objective responses in patients. Coinfusion with tumor-specific CD4 TIL may enhance or increase the durability of tumor regressions, but the number of patients with tumor-reactive CD4 TIL is unknown. We screened 44 CD8+-depleted TIL for in vitro reactivity against autologous tumor. Nine (20%) showed specific reactivity by interferon-γ release assay, of which 8 were specifically blocked by an anti-HLA-DR antibody. Flow-cytometric analysis of these reactive TIL confirmed a high CD4+ composition (median 89%). Highlighting the contribution of CD4+ TIL to tumor regression, a patient with widespread metastatic disease was administered TIL containing HLA class II-restricted tumor activity with high-dose interleukin-2 therapy after lymphodepletion that mediated regression of extensive metastatic disease in the liver and spleen. These results demonstrate that at least 20% of metastatic melanomas contain CD4+ lymphocytes with specific tumor recognition and suggest a possible role for CD4+ cells in the effectiveness of adoptive cell therapy.
Collapse
|
36
|
Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3. Proc Natl Acad Sci U S A 2012; 109:14960-5. [PMID: 22930819 DOI: 10.1073/pnas.1207186109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conserved diagonal docking mode observed in structures of T-cell receptors (TCRs) bound to peptide-MHC ligands is believed to reflect coevolution of TCR and MHC genes. This coevolution is supported by the conservation of certain interactions between the germ-line-encoded complementarity-determining region (CDR)1 and CDR2 loops of TCR and MHC. However, the rules governing these interactions are not straightforward, even when the same variable (V) region recognizes the same MHC molecule. Here, we demonstrate that the somatically generated CDR3 loops can markedly alter evolutionarily selected contacts between TCR and MHC ("CDR3 editing"). To understand CDR3 editing at the atomic level, we determined the structure of a human melanoma-specific TCR (G4) bound to the MHC class II molecule HLA-DR1 and an epitope from mutant triose phosphate isomerase (mutTPI). A comparison of the G4-mutTPI-DR1 complex with a complex involving a TCR (E8) that uses the same Vα region to recognize the same mutTPI-DR1 ligand as G4 revealed that CDR1α adopts markedly different conformations in the two TCRs, resulting in an almost entirely different set of contacts with MHC. Based on the structures of unbound G4 and E8, the distinct conformations of CDR1α in these TCRs are not induced by binding to mutTPI-DR1 but result from differences in the length and sequence of CDR3α that are transmitted to CDR1α. The editing of germ-line-encoded TCR-MHC interactions by CDR3 demonstrates that these interactions possess sufficient intrinsic flexibility to accommodate large structural variations in CDR3 and, consequently, in the TCR-binding site.
Collapse
|
37
|
Jarmalavicius S, Welte Y, Walden P. High immunogenicity of the human leukocyte antigen peptidomes of melanoma tumor cells. J Biol Chem 2012; 287:33401-11. [PMID: 22869377 DOI: 10.1074/jbc.m112.358903] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigens (HLA) bind peptides generated by limited proteolysis in cells and present them at the cell surfaces for recognition by T cells. Through this antigen presentation function they control the specificity of T cell responses and thereby adaptive immune responses. Knowledge of HLA-bound peptides is thus key to understanding adaptive immunity and to the development of vaccines and other specific immune intervention strategies. To gain insight into the antigenicity of melanomas, peptides were extracted from HLA isolated from the tumor cells, separated by two-dimensional HPLC, and sequenced by mass spectrometry. The spectra were analyzed by database-dependent MASCOT searches and database-independent de novo sequencing and, where required, confirmed with synthetic peptides, which were also used to determine their immunogenicity. Comparing four different melanoma cell lines, little overlap of the HLA-bound peptides was found, suggesting a high degree of individualization of the HLA peptidomes. This notwithstanding, the peptidomes were highly immunogenic in the patients from whom the tumor cells had been established and in unrelated patients. This broad cross-patient immunogenicity was only exceptionally related to individual peptides. The majority of the identified epitopes were derived from low to medium abundance proteins, mostly involved in sensitive cellular processes such as cell cycle control, DNA replication, control of gene expression, tumor suppressor function, and protein metabolism. The peptidomes thus provide insights into processes potentially related to tumorigenesis. Furthermore, analyses of the peptide sequences yield information on the specificity of peptide selection by HLA applicable to the developing prediction algorithms for T cell epitopes.
Collapse
Affiliation(s)
- Saulius Jarmalavicius
- Department of Dermatology, Venerology, and Allergology, Charité-Universitätsmedizin Berlin, 10098 Berlin, Germany
| | | | | |
Collapse
|
38
|
Wang HY, Wang RF. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 2012; 114:151-76. [PMID: 22449781 DOI: 10.1016/b978-0-12-396548-6.00006-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of T-cell-mediated antitumor immunity has been demonstrated in both animal models and human cancer immunotherapy. In the past 30 years, T-cell-based immunotherapy has been improved with an objective clinical response rate of up to 72%. Identification of MHC class I- and II-restricted tumor antigens recognized by tumor-reactive T cells has generated a resurgence of interest in cancer vaccines. Although clinical trials with cancer peptide/protein vaccines have only met a limited success, several phase II/III clinical trials are either completed or ongoing with encouraging results. Recent advances in immunotherapy have led to the approval of two anticancer drugs (sipuleucel-T vaccine and anti-CTLA-4 antibody) by the US FDA for the treatment of metastatic castration-resistant prostate cancer and melanoma, respectively. Intracellular delivery of antigenic peptides into dendritic cells (DCs) prolongs antigen presentation of antigen-presenting cells to T cells, thus further improving clinical efficacy of peptide/protein cancer vaccines. Because innate immune responses are critically important to provide sensing and initiating of adaptive immunity, combined use of cell-penetrating peptide vaccines with stimulation of innate immune signaling may produce potent antitumor immune responses. We will discuss the recent progress and novel strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Helen Y Wang
- Department of Pathology and Immunology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
39
|
Wei HJ, Wu ATH, Hsu CH, Lin YP, Cheng WF, Su CH, Chiu WT, Whang-Peng J, Douglas FL, Deng WP. The development of a novel cancer immunotherapeutic platform using tumor-targeting mesenchymal stem cells and a protein vaccine. Mol Ther 2011; 19:2249-57. [PMID: 21792181 PMCID: PMC3242654 DOI: 10.1038/mt.2011.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 06/24/2011] [Indexed: 12/30/2022] Open
Abstract
An ideal anticancer strategy should target only the malignant cells but spare the normal ones. In this regard, we established a platform, consisting of an antigen-delivering vehicle and a protein vaccine, for developing an immunotherapeutic approach with the potential for eliminating various cancer types. Mesenchymal stem cells (MSCs) have been demonstrated capable of targeting tumors and integrating into the stroma. Moreover, we have developed a protein vaccine PE(ΔIII)-E7-KDEL3 which specifically recognized E7 antigen and elicited immunity against cervical cancer. Taking advantage of tumor-homing property of MSCs and PE(ΔIII)-E7-KDEL3, we used E6/E7-immortalized human MSCs (KP-hMSCs) as an E7 antigen-delivering vehicle to test if this protein vaccine could effectively eliminate non-E7-expressing tumor cells. Animals which received combined treatment of KP-hMSCs and PE(ΔIII)-E7-KDEL3 demonstrated a significant inhibition of tumor growth and lung-metastasis when compared to PE(ΔIII)-E7-KDEL3 only and KP-hMSCs only groups. The efficiency of tumor suppression correlated positively to the specific immune response induced by PE(ΔIII)-E7-KDEL3. In addition, this combined treatment inhibited tumor growth via inducing apoptosis. Our findings indicated that KP-hMSCs could be used as a tumor-targeting device and mediate antitumor effect of PE(ΔIII)-E7-KDEL3. We believe this strategy could serve as a platform for developing a universal vaccine for different cancer types.
Collapse
Affiliation(s)
- Hon-Jian Wei
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Depontieu FR, Qian J, Zarling AL, McMiller TL, Salay TM, Norris A, English AM, Shabanowitz J, Engelhard VH, Hunt DF, Topalian SL. Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proc Natl Acad Sci U S A 2009; 106:12073-8. [PMID: 19581576 PMCID: PMC2715484 DOI: 10.1073/pnas.0903852106] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Indexed: 01/20/2023] Open
Abstract
The activation and recruitment of CD4(+) T cells are critical for the development of efficient antitumor immunity and may allow for the optimization of current cancer immunotherapy strategies. Searching for more optimal and selective targets for CD4(+) T cells, we have investigated phosphopeptides, a new category of tumor-derived epitopes linked to proteins with vital cellular functions. Although MHC I-restricted phosphopeptides have been identified, it was previously unknown whether human MHC II molecules present phosphopeptides for specific CD4(+) T cell recognition. We first demonstrated the fine specificity of human CD4(+) T cells to discriminate a phosphoresidue by using cells raised against the candidate melanoma antigen mutant B-Raf or its phosphorylated counterpart. Then, we assessed the presence and complexity of human MHC II-associated phosphopeptides by analyzing 2 autologous pairs of melanoma and EBV-transformed B lymphoblastoid lines. By using sequential affinity isolation, biochemical enrichment, mass spectrometric sequencing, and comparative analysis, a total of 175 HLA-DR-associated phosphopeptides were characterized. Many were derived from source proteins that may have roles in cancer development, growth, and metastasis. Most were expressed exclusively by either melanomas or transformed B cells, suggesting the potential to define cell type-specific phosphatome "fingerprints." We then generated HLA-DRbeta1*0101-restricted CD4(+) T cells specific for a phospho-MART-1 peptide identified in both melanoma cell lines. These T cells showed specificity for phosphopeptide-pulsed antigen-presenting cells as well as for intact melanoma cells. This previously undescribed demonstration of MHC II-restricted phosphopeptides recognizable by human CD4(+) T cells provides potential new targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Florence R. Depontieu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| | | | - Angela L. Zarling
- the Beirne B. Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22901
| | - Tracee L. McMiller
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| | - Theresa M. Salay
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| | | | | | | | - Victor H. Engelhard
- the Beirne B. Carter Immunology Center and Department of Microbiology, University of Virginia, Charlottesville, VA 22901
| | | | - Suzanne L. Topalian
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231; and
| |
Collapse
|
41
|
Ostrand-Rosenberg S. CD4+T Lymphocytes: A Critical Component of Antitumor Immunity. Cancer Invest 2009. [DOI: 10.1081/cnv-67428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Wang RF. Molecular cloning and characterization of MHC class I- and II-restricted tumor antigens recognized by T cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 20:20.10.1-20.10.29. [PMID: 19235768 DOI: 10.1002/0471142735.im2010s84] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T cells play a central role in cancer immunosurveillance, autoimmune, and infectious diseases. Identification of MHC class I- and II-restricted T cell peptides is a critical step for the development of effective vaccines against cancer and infectious diseases. This unit describes a cDNA expression system and a genetic targeting expression system for the cloning of genes encoding for MHC class I- and II-restricted antigens recognized by antigen-specific CD8(+) and CD4(+) T cells.
Collapse
Affiliation(s)
- Rong-Fu Wang
- The Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
43
|
Caserta S, Alessi P, Guarnerio J, Basso V, Mondino A. Synthetic CD4+ T cell-targeted antigen-presenting cells elicit protective antitumor responses. Cancer Res 2008; 68:3010-8. [PMID: 18413771 DOI: 10.1158/0008-5472.can-07-5796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD4(+) helper T cells are critical for protective immune responses and yet suboptimally primed in response to tumors. Cell-based vaccination strategies are under evaluation in clinical trials but limited by the need to derive antigen-presenting cells (APC) from patients or compatible healthy donors. To overcome these limitations, we developed CD4(+) T cell-targeted synthetic microbead-based artificial APC (aAPC) and used them to activate CD4(+) T lymphocytes specific for a tumor-associated model antigen (Ag) directly from the naive repertoire. In vitro, aAPC specifically primed Ag-specific CD4(+) T cells that were activated to express high levels of CD44, produced mainly interleukin 2, and could differentiate into Th1-like or Th2-like cells in combination with polarizing cytokines. I.v. administration of aAPC led to Ag-specific CD4(+) T-cell activation and proliferation in secondary lymphoid organs, conferred partial protection against subcutaneous tumors, and prevented the establishment of lung metastasis. Taken together, our data support the use of cell-free, synthetic aAPC as a specific and versatile alternative to expand peptide-specific CD4(+) T cells in adoptive and active immunotherapy.
Collapse
Affiliation(s)
- Stefano Caserta
- Cancer Immunotherapy and Gene Therapy Program, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
44
|
Li L, Chen SH, Yu CH, Li YM, Wang SQ. Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J Proteome Res 2008; 7:611-620. [PMID: 18161940 DOI: 10.1021/pr070525r] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To comprehensively study autoantibodies in patients with hepatocellular carcinoma (HCC), we used an approach-based serology and proteomics technologies. Total proteins extracted from HepG2 cells and HepG2.2.15 cells were separated by two-dimensional gel electrophoresis (2DE) and then transferred onto polyvinylidene difluoride (PVDF) membranes, which were subsequently incubated with sera from HCC patients or from normal controls. As a result, 13 HCC-associated antigens were identified. Antigenicity of eight proteins was further confirmed using recombinant proteins by Western blotting (WB) and protein microarray. The results of antigen microarray analysis showed strong signals of keratin 8 and lamin A/C in chronic hepatitis controls; therefore, the autoantibodies to keratin 8 and lamin A/C may not be HCC-specific. These two antigens were removed from subsequent analyses. The frequencies of positive reactions to DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, eukaryotic translation elongation factor 2 (eEF2), apoptosis-inducing factor (AIF), heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), prostatic binding protein, and triosephosphate isomerase (TIM) were significantly higher in HCC than in chronic hepatitis and normal individuals. Positive reactions to DEAD box polypeptide 3, eEF2, AIF, and prostatic binding protein were significantly more frequent in HCC than in any other cancer. The sensitivity of any individual antigen in HCC at stage I ranged from 50 to 85%. When the combinations of six antigens were analyzed, the sensitivity increased to 90%. We conclude that the detection of autoantibodies against the six antigens may have value on early diagnosis of HCC.
Collapse
Affiliation(s)
- Lan Li
- Beijing Institute of Radiation Medicine, Number 27 Taiping Road, Beijing 100850, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Sensi M, Anichini A. Unique tumor antigens: evidence for immune control of genome integrity and immunogenic targets for T cell-mediated patient-specific immunotherapy. Clin Cancer Res 2007; 12:5023-32. [PMID: 16951217 DOI: 10.1158/1078-0432.ccr-05-2682] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular identification and characterization of antigenic epitopes recognized by T cells on human cancers has rapidly evolved since the cloning in 1991 of MAGEA1, the first gene reported to encode a CTL-defined human tumor antigen. In the expanding field of human tumor immunology, unique tumor antigens constitute a growing class of T cell-defined epitopes that exhibit strong immunogenicity. Some of these antigens, which often derive from mutation of genes that have relevant biological functions, are less susceptible to immunoselection and may be retained even in advanced tumors. Immunogenicity and constitutive expression of the unique tumor antigens provide a strong rationale for the design of novel, patient-tailored therapies that target such determinants. Here we discuss the immunologic relevance of unique tumor antigens in the light of the prospects for exploiting such epitopes as targets for patient-specific immune intervention strategies.
Collapse
Affiliation(s)
- Marialuisa Sensi
- Human Tumor Immunobiology Unit, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | |
Collapse
|
46
|
Calvo-Calle JM, Strug I, Nastke MD, Baker SP, Stern LJ. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog 2007; 3:1511-29. [PMID: 17937498 PMCID: PMC2014795 DOI: 10.1371/journal.ppat.0030144] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 08/17/2007] [Indexed: 12/17/2022] Open
Abstract
Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4+ T cell responses have been poorly characterized, and CD4+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens. Although the routine use of vaccinia virus for vaccination against smallpox was stopped after eradication of this disease, there is a possibility for an accidental or intentional release of this virus. In response to this challenge, vaccination of at least emergency personnel has been suggested. However, adverse reactions induced by the smallpox vaccine have had a negative impact in the success of this program. For these reasons development of new smallpox vaccines is a public health priority. Identification of strong helper T cell epitopes is central to these efforts. However, identification of T cell epitopes in large genomes like vaccinia is difficult using current screening methods. In this work, we develop a new computational approach for prediction of T cell epitopes, validate it using epitopes already identified by classical methods, and apply it to the prediction of vaccinia epitopes. Twenty-five of 36 peptides containing predicted sequences were recognized by T cells from individuals exposed to vaccinia virus. These peptides are highly conserved across the orthopox virus family and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response against vaccinia virus.
Collapse
Affiliation(s)
- J. Mauricio Calvo-Calle
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iwona Strug
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Maria-Dorothea Nastke
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Stephen P Baker
- Department of Information Services, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Deng L, Mariuzza RA. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors. Trends Biochem Sci 2007; 32:500-8. [PMID: 17950605 PMCID: PMC2739108 DOI: 10.1016/j.tibs.2007.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/08/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
T cell receptors (TCR) recognize antigenic peptides displayed by MHC molecules. Whereas T-cell recognition of foreign peptides is essential for immune defense against microbial pathogens, recognition of self-peptides can cause autoimmune disease. Structural studies of anti-foreign TCR showed remarkable similarities in the topology of TCR binding to peptide-MHC, which maximize interactions with the ligand. However, recent structures involving autoimmune and tumor-specific TCR have revealed that they engage self-peptide-MHC with different topologies, which are suboptimal for TCR binding. These differences might reflect the distinct selection pressures exerted on anti-microbial versus autoreactive T cells. The structures also provide new insights into TCR cross-reactivity, which can contribute to autoimmunity by increasing the likelihood of self-peptide-MHC recognition.
Collapse
Affiliation(s)
- Lu Deng
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | | |
Collapse
|
48
|
Sundberg EJ, Deng L, Mariuzza RA. TCR recognition of peptide/MHC class II complexes and superantigens. Semin Immunol 2007; 19:262-71. [PMID: 17560120 PMCID: PMC2949352 DOI: 10.1016/j.smim.2007.04.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules display peptides to the T cell receptor (TCR). The ability of the TCR to discriminate foreign from self-peptides presented by MHC molecules is a requirement of an effective adaptive immune response. Dysregulation of this molecular recognition event often leads to a disease state. Recently, a number of structural studies have provided significant insight into several such dysregulated interactions between peptide/MHC complexes and TCR molecules. These include TCR recognition of self-peptides, which results in autoimmune reactions, and of mutant self-peptides, common in the immunosurveillance of tumors, as well as the engagement of TCRs by superantigens, a family of bacterial toxins responsible for toxic shock syndrome.
Collapse
Affiliation(s)
- Eric J Sundberg
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| | | | | |
Collapse
|
49
|
Philip R, Murthy S, Krakover J, Sinnathamby G, Zerfass J, Keller L, Philip M. Shared immunoproteome for ovarian cancer diagnostics and immunotherapy: potential theranostic approach to cancer. J Proteome Res 2007; 6:2509-17. [PMID: 17547437 PMCID: PMC2533805 DOI: 10.1021/pr0606777] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elimination of cancer through early detection and treatment is the ultimate goal of cancer research and is especially critical for ovarian and other forms of cancer typically diagnosed at very late stages that have very poor response rates. Proteomics has opened new avenues for the discovery of diagnostic and therapeutic targets. Immunoproteomics, which defines the subset of proteins involved in the immune response, holds considerable promise for providing a better understanding of the early-stage immune response to cancer as well as important insights into antigens that may be suitable for immunotherapy. Early administration of immunotherapeutic vaccines can potentially have profound effects on prevention of metastasis and may potentially cure through efficient and complete tumor elimination. We developed a mass-spectrometry-based method to identify novel autoantibody-based serum biomarkers for the early diagnosis of ovarian cancer that uses native tumor-associated proteins immunoprecipitated by autoantibodies from sera obtained from cancer patients and from cancer-free controls to identify autoantibody signatures that occur at high frequency only in cancer patient sera. Interestingly, we identified a subset of more than 50 autoantigens that were also processed and presented by MHC class I molecules on the surfaces of ovarian cancer cells and thus were common to the two immunological processes of humoral and cell-mediated immunity. These shared autoantigens were highly representative of families of proteins with roles in key processes in carcinogenesis and metastasis, such as cell cycle regulation, cell proliferation, apoptosis, tumor suppression, and cell adhesion. Autoantibodies appearing at the early stages of cancer suggest that this detectable immune response to the developing tumor can be exploited as early-stage biomarkers for the development of ovarian cancer diagnostics. Correspondingly, because the T-cell immune response depends on MHC class I processing and presentation of peptides, proteins that go through this pathway are potential candidates for the development of immunotherapeutics designed to activate a T-cell immune response to cancer. To the best of our knowledge, this is the first comprehensive study that identifies and categorizes proteins that are involved in both humoral and cell-mediated immunity against ovarian cancer, and it may have broad implications for the discovery and selection of theranostic molecular targets for cancer therapeutics and diagnostics in general.
Collapse
Affiliation(s)
- Ramila Philip
- Immunotope Inc., The Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Parmiani G, De Filippo A, Novellino L, Castelli C. Unique human tumor antigens: immunobiology and use in clinical trials. THE JOURNAL OF IMMUNOLOGY 2007; 178:1975-9. [PMID: 17277099 DOI: 10.4049/jimmunol.178.4.1975] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The individual, unique tumor Ags, which characterize each single tumor, were described 50 years ago in rodents but their molecular characterization was limited to few of them and obtained during the last 20 years. Here we summarize the evidence for the existence and the biological role of such Ags in human tumors, although such evidence was provided only during the last 10 years and by a limited number of studies, a fact leading to a misrepresentation of unique Ags in human tumor immunology. This was also due to the increasing knowledge on the shared, self-human tumor Ags, which have been extensively used as cancer vaccines. In this review, we highlight the biological and clinical importance of unique Ags and suggest how they could be used in clinical studies aimed at assessing their immunogenic and clinical potential both in active and adoptive immunotherapy of human tumors.
Collapse
Affiliation(s)
- Giorgio Parmiani
- Unit of Immunotherapy of Human Tumors, Istituto Nazionale Tumori Foundation, Milan, Italy.
| | | | | | | |
Collapse
|