1
|
Büttner JK, Becker S, Fink A, Brinkmann MM, Holtappels R, Reddehase MJ, Lemmermann NA. Direct antigen presentation is the canonical pathway of cytomegalovirus CD8 T-cell priming regulated by balanced immune evasion ensuring a strong antiviral response. Front Immunol 2023; 14:1272166. [PMID: 38149242 PMCID: PMC10749961 DOI: 10.3389/fimmu.2023.1272166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
CD8 T cells are important antiviral effectors in the adaptive immune response to cytomegaloviruses (CMV). Naïve CD8 T cells can be primed by professional antigen-presenting cells (pAPCs) alternatively by "direct antigen presentation" or "antigen cross-presentation". In the case of direct antigen presentation, viral proteins are expressed in infected pAPCs and enter the classical MHC class-I (MHC-I) pathway of antigen processing and presentation of antigenic peptides. In the alternative pathway of antigen cross-presentation, viral antigenic material derived from infected cells of principally any cell type is taken up by uninfected pAPCs and eventually also fed into the MHC class-I pathway. A fundamental difference, which can be used to distinguish between these two mechanisms, is the fact that viral immune evasion proteins that interfere with the cell surface trafficking of peptide-loaded MHC-I (pMHC-I) complexes are absent in cross-presenting uninfected pAPCs. Murine cytomegalovirus (mCMV) models designed to disrupt either of the two presentation pathways revealed that both are possible in principle and can substitute each other. Overall, however, the majority of evidence has led to current opinion favoring cross-presentation as the canonical pathway. To study priming in the normal host genetically competent in both antigen presentation pathways, we took the novel approach of enhancing or inhibiting direct antigen presentation by using recombinant viruses lacking or overexpressing a key mCMV immune evasion protein. Against any prediction, the strongest CD8 T-cell response was elicited under the condition of intermediate direct antigen presentation, as it exists for wild-type virus, whereas the extremes of enhanced or inhibited direct antigen presentation resulted in an identical and weaker response. Our findings are explained by direct antigen presentation combined with a negative feedback regulation exerted by the newly primed antiviral effector CD8 T cells. This insight sheds a completely new light on the acquisition of viral immune evasion genes during virus-host co-evolution.
Collapse
Affiliation(s)
- Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sara Becker
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annette Fink
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Hamdan S, Reddehase MJ, Holtappels R. Cytomegalovirus immune evasion sets the functional avidity threshold for protection by CD8 T cells. Med Microbiol Immunol 2023; 212:153-163. [PMID: 35364731 PMCID: PMC10085950 DOI: 10.1007/s00430-022-00733-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in "immune evasion" by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term "immune evasion" is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.
Collapse
Affiliation(s)
- Sara Hamdan
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus Am Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Host-Adapted Gene Families Involved in Murine Cytomegalovirus Immune Evasion. Viruses 2022; 14:v14010128. [PMID: 35062332 PMCID: PMC8781790 DOI: 10.3390/v14010128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Cytomegaloviruses (CMVs) are host species-specific and have adapted to their respective mammalian hosts during co-evolution. Host-adaptation is reflected by “private genes” that have specialized in mediating virus-host interplay and have no sequence homologs in other CMV species, although biological convergence has led to analogous protein functions. They are mostly organized in gene families evolved by gene duplications and subsequent mutations. The host immune response to infection, both the innate and the adaptive immune response, is a driver of viral evolution, resulting in the acquisition of viral immune evasion proteins encoded by private gene families. As the analysis of the medically relevant human cytomegalovirus by clinical investigation in the infected human host cannot make use of designed virus and host mutagenesis, the mouse model based on murine cytomegalovirus (mCMV) has become a versatile animal model to study basic principles of in vivo virus-host interplay. Focusing on the immune evasion of the adaptive immune response by CD8+ T cells, we review here what is known about proteins of two private gene families of mCMV, the m02 and the m145 families, specifically the role of m04, m06, and m152 in viral antigen presentation during acute and latent infection.
Collapse
|
4
|
Smith CJ, Snyder CM. Inhibitory Molecules PD-1, CD73 and CD39 Are Expressed by CD8 + T Cells in a Tissue-Dependent Manner and Can Inhibit T Cell Responses to Stimulation. Front Immunol 2021; 12:704862. [PMID: 34335618 PMCID: PMC8320728 DOI: 10.3389/fimmu.2021.704862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The salivary gland is an important tissue for persistence and transmission of multiple viruses. Previous work showed that salivary gland tissue-resident CD8+ T cells elicited by viruses were poorly functional ex vivo. Using a model of persistent murine cytomegalovirus (MCMV) infection, we now show that CD8+ T cells in the salivary gland and other non-lymphoid tissues of mice express multiple molecules associated with T cell exhaustion including PD-1, CD73 and CD39. Strikingly however, these molecules were expressed independently of virus or antigen. Rather, PD-1-expressing T cells remained PD-1+ after migration into tissues regardless of infection, while CD73 was activated on CD8+ T cells by TGF-β signaling. Blockade of PD-L1, but not CD73, improved cytokine production by salivary gland T cells ex vivo and increased the expression of granzyme B after stimulation within the salivary gland. Nevertheless, salivary-gland localized CD8+ T cells could kill PD-L1-expressing targets in vivo, albeit with modest efficiency, and this was not improved by PD-L1 blockade. Moreover, the impact of PD-L1 blockade on granzyme B expression waned with time. In contrast, the function of kidney-localized T cells was improved by CD73 blockade, but was unaffected by PD-L1 blockade. These data show that tissue localization per se is associated with expression of inhibitory molecules that can impact T cell function, but that the functional impact of this expression is context- and tissue-dependent.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zhang S, Springer LE, Rao HZ, Espinosa Trethewy RG, Bishop LM, Hancock MH, Grey F, Snyder CM. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog 2021; 17:e1009255. [PMID: 33508041 PMCID: PMC7872266 DOI: 10.1371/journal.ppat.1009255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells. Cytomegalovirus (CMV) is a common cause of disease in immune compromised individuals as well as a common cause of congenital infections leading to disease in newborns. The virus is thought to enter primarily via mucosal barrier tissues, such as the oral and nasal mucosa. However, it is not clear how the virus escapes these barrier tissues to reach distant sites. In this study, we used a mouse model of CMV infection. Our data illustrate a complex balance between the immune system and viral infection of “myeloid cells”, which are most commonly thought to carry the virus around the body after infection. In particular, our data suggest that robust immune responses at the site of infection force the virus to rely on myeloid cells to escape the site of infection. Moreover, viral genes designed to evade these immune responses were needed to protect the virus during and after its spread to distant sites. Together, this work sheds light on the mechanisms of immune control and viral survival during CMV infection of mucosal tissues and spread to distant sites of the body.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han-Zhi Rao
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey M. Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (FG); (CMS)
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FG); (CMS)
| |
Collapse
|
6
|
Angulo G, Zeleznjak J, Martínez-Vicente P, Puñet-Ortiz J, Hengel H, Messerle M, Oxenius A, Jonjic S, Krmpotić A, Engel P, Angulo A. Cytomegalovirus restricts ICOSL expression on antigen-presenting cells disabling T cell co-stimulation and contributing to immune evasion. eLife 2021; 10:59350. [PMID: 33459589 PMCID: PMC7840182 DOI: 10.7554/elife.59350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.
Collapse
Affiliation(s)
- Guillem Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Jelena Zeleznjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Martínez-Vicente
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Puñet-Ortiz
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
7
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses 2020; 12:v12121354. [PMID: 33256093 PMCID: PMC7761393 DOI: 10.3390/v12121354] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Alphaherpesviruses cause various diseases and establish life-long latent infections in humans and animals. These viruses encode multiple viral proteins and miRNAs to evade the host immune response, including both innate and adaptive immunity. Alphaherpesviruses evolved highly advanced immune evasion strategies to be able to replicate efficiently in vivo and produce latent infections with recurrent outbreaks. This review describes the immune evasion strategies of alphaherpesviruses, especially against cytotoxic host immune responses. Considering these strategies, it is important to evaluate whether the immune evasion mechanisms in cell cultures are applicable to viral propagation and pathogenicity in vivo. This review focuses on cytotoxic T lymphocytes (CTLs), natural killer cells (NK cells), and natural killer T cells (NKT cells), which are representative immune cells that directly damage virus-infected cells. Since these immune cells recognize the ligands expressed on their target cells via specific activating and/or inhibitory receptors, alphaherpesviruses make several ligands that may be targets for immune evasion. In addition, alphaherpesviruses suppress the infiltration of CTLs by downregulating the expression of chemokines at infection sites in vivo. Elucidation of the alphaherpesvirus immune evasion mechanisms is essential for the development of new antiviral therapies and vaccines.
Collapse
|
9
|
Becker S, Fink A, Podlech J, Giese I, Schmiedeke JK, Bukur T, Reddehase MJ, Lemmermann NA. Positive Role of the MHC Class-I Antigen Presentation Regulator m04/gp34 of Murine Cytomegalovirus in Antiviral Protection by CD8 T Cells. Front Cell Infect Microbiol 2020; 10:454. [PMID: 32984075 PMCID: PMC7479846 DOI: 10.3389/fcimb.2020.00454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022] Open
Abstract
Murine cytomegalovirus (mCMV) codes for MHC class-I trafficking modulators m04/gp34, m06/gp48, and m152/gp40. By interacting with the MHC class-Iα chain, these proteins disconnect peptide-loaded MHC class-I (pMHC-I) complexes from the constitutive vesicular flow to the cell surface. Based on the assumption that all three inhibit antigen presentation, and thus the recognition of infected cells by CD8 T cells, they were referred to as “immunoevasins.” Improved antigen presentation mediated by m04 in the presence of m152 after infection with deletion mutant mCMV-Δm06W, compared to mCMV-Δm04m06 expressing only m152, led us to propose renaming these molecules “viral regulators of antigen presentation” (vRAP) to account for both negative and positive functions. In accordance with a positive function, m04-pMHC-I complexes were found to be displayed on the cell surface, where they are primarily known as ligands for Ly49 family natural killer (NK) cell receptors. Besides the established role of m04 in NK cell silencing or activation, an anti-immunoevasive function by activation of CD8 T cells is conceivable, because the binding site of m04 to MHC class-Iα appears not to mask the peptide binding site for T-cell receptor recognition. However, functional evidence was based on mCMV-Δm06W, a virus of recently doubted authenticity. Here we show that mCMV-Δm06W actually represents a mixture of an authentic m06 deletion mutant and a mutant with an accidental additional deletion of a genome region encompassing also gene m152. Reanalysis of previously published experiments for the authentic mutant in the mixture confirms the previously concluded positive vRAP function of m04.
Collapse
Affiliation(s)
- Sara Becker
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Annette Fink
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Irina Giese
- TRON - Translational Oncology, Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Julia K Schmiedeke
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Thomas Bukur
- TRON - Translational Oncology, Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A Lemmermann
- Institute for Virology, Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
10
|
Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells. Proc Natl Acad Sci U S A 2020; 117:12961-12968. [PMID: 32444487 DOI: 10.1073/pnas.1914667117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.
Collapse
|
11
|
Holtappels R, Schader SI, Oettel O, Podlech J, Seckert CK, Reddehase MJ, Lemmermann NAW. Insufficient Antigen Presentation Due to Viral Immune Evasion Explains Lethal Cytomegalovirus Organ Disease After Allogeneic Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2020; 10:157. [PMID: 32351904 PMCID: PMC7174590 DOI: 10.3389/fcimb.2020.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) poses a clinical problem in transiently immunocompromised recipients of hematopoietic cell (HC) transplantation (HCT) by viral histopathology that results in multiple organ manifestations. Compared to autologous HCT and to syngeneic HCT performed with identical twins as HC donor and recipient, lethal outcome of CMV infection is more frequent in allogeneic HCT with MHC/HLA or minor histocompatibility loci mismatch between donor and recipient. It is an open question if a graft-vs.-host (GvH) reaction exacerbates CMV disease, or if CMV exacerbates GvH disease (GvHD), or if interference is mutual. Here we have used a mouse model of experimental HCT and murine CMV (mCMV) infection with an MHC class-I mismatch by gene deletion, so that either HCT donor or recipient lack a single MHC class-I molecule, specifically H-2 Ld. This particular immunogenetic disparity has the additional advantage that it allows to experimentally separate GvH reaction of donor-derived T cells against recipient's tissues from host-vs.-graft (HvG) reaction of residual recipient-derived T cells against the transplanted HC and their progeny. While in HvG-HCT with Ld-plus donors and Ld-minus recipients almost all infected recipients were found to control the infection and survived, almost all infected recipients died of uncontrolled virus replication and consequent multiple-organ viral histopathology in case of GvH-HCT with Ld-minus donors and Ld-plus recipients. Unexpectedly, although anti-Ld-reactive CD8+ T cells were detected, mortality was not found to be associated with GvHD histopathology. By comparing HvG-HCT and GvH-HCT, investigation into the mechanism revealed an inefficient reconstitution of antiviral high-avidity CD8+ T cells, associated with lack of formation of protective nodular inflammatory foci (NIF) in host tissue, selectively in GvH-HCT. Most notably, mice infected with an immune evasion gene deletion mutant of mCMV survived under otherwise identical GvH-HCT conditions. Survival was associated with enhanced antigen presentation and formation of protective NIF by antiviral CD8+ T cells that control the infection and prevent viral histopathology. This is an impressive example of lethal viral disease in HCT recipients based on a failure of the immune control of CMV infection due to viral immune evasion in concert with an MHC class-I mismatch.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
12
|
Function of the cargo sorting dileucine motif in a cytomegalovirus immune evasion protein. Med Microbiol Immunol 2019; 208:531-542. [PMID: 31004199 DOI: 10.1007/s00430-019-00604-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 01/24/2023]
Abstract
As an immune evasion mechanism, cytomegaloviruses (CMVs) have evolved proteins that interfere with cell surface trafficking of MHC class-I (MHC-I) molecules to tone down recognition by antiviral CD8 T cells. This interference can affect the trafficking of recently peptide-loaded MHC-I from the endoplasmic reticulum to the cell surface, thus modulating the presentation of viral peptides, as well as the recycling of pre-existing cell surface MHC-I, resulting in reduction of the level of overall MHC-I cell surface expression. Murine cytomegalovirus (mCMV) was paradigmatic in that it led to the discovery of this immune evasion strategy of CMVs. Members of its m02-m16 gene family code for type-I transmembrane glycoproteins, proven or predicted, most of which carry cargo sorting motifs in their cytoplasmic, C-terminal tail. For the m06 gene product m06 (gp48), the cargo has been identified as being MHC-I, which is linked by m06 to cellular adapter proteins AP-1A and AP-3A through the dileucine motif EPLARLL. Both APs are involved in trans-Golgi network (TGN) cargo sorting and, based on transfection studies, their engagement by the dileucine motif was proposed to be absolutely required to prevent MHC-I exposure at the cell surface. Here, we have tested this prediction in an infection system with the herein newly described recombinant virus mCMV-m06AA, in which the dileucine motif is destroyed by replacing EPLARLL with EPLARAA. This mutation has a phenotype in that the transition of m06-MHC-I complexes from early endosomes (EE) to late endosomes (LE)/lysosomes for degradation is blocked. Consistent with the binding of the MHC-I α-chain to the luminal domain of m06, the m06-mediated disposal of MHC-I did not require the β2m chain of mature MHC-I. Unexpectedly, however, disconnecting MHC-I cargo from AP-1A/3A by the motif mutation in m06 had no notable rescuing impact on overall cell surface MHC-I, though it resulted in some improvement of the presentation of viral antigenic peptides by recently peptide-loaded MHC-I. Thus, the current view on the mechanism by which m06 mediates immune evasion needs to be revised. While the cargo sorting motif is critically involved in the disposal of m06-bound MHC-I in the endosomal/lysosomal pathway at the stage of EE to LE transition, this motif-mediated disposal is not the critical step by which m06 causes immune evasion. We rather propose that engagement of AP-1A/3A by the cargo sorting motif in m06 routes the m06-MHC-I complexes into the endosomal pathway and thereby detracts them from the constitutive cell surface transport.
Collapse
|
13
|
Coevolution pays off: Herpesviruses have the license to escape the DNA sensing pathway. Med Microbiol Immunol 2019; 208:495-512. [PMID: 30805724 DOI: 10.1007/s00430-019-00582-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 01/20/2023]
Abstract
Early detection of viral invasion by pattern recognition receptors (PRR) is crucial for the induction of a rapid and efficient immune response. Cytosolic DNA sensors are the most recently described class of PRR, and induce transcription of type I interferons (IFN) and proinflammatory cytokines via the key adaptor protein stimulator of interferon genes (STING). Herpesviruses are a family of large DNA viruses widely known for their immense arsenal of proteins dedicated to manipulating and evading host immune responses. Tantamount to the significant role played by DNA sensors and STING in innate immune responses, herpesviruses have in turn evolved a range of mechanisms targeting virtually every step of this key signaling pathway. Strikingly, some herpesviruses also take advantage of this pathway to promote their own replication. In this review, we will summarize the current understanding of DNA sensing and subsequent induction of signaling and transcription, and showcase the close adaptation of herpesviruses to their host reflected by the myriad of viral proteins dedicated to modulating this critical innate immune pathway.
Collapse
|
14
|
Stempel M, Chan B, Juranić Lisnić V, Krmpotić A, Hartung J, Paludan SR, Füllbrunn N, Lemmermann NA, Brinkmann MM. The herpesviral antagonist m152 reveals differential activation of STING-dependent IRF and NF-κB signaling and STING's dual role during MCMV infection. EMBO J 2019; 38:embj.2018100983. [PMID: 30696688 PMCID: PMC6396373 DOI: 10.15252/embj.2018100983] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Cytomegaloviruses (CMVs) are master manipulators of the host immune response. Here, we reveal that the murine CMV (MCMV) protein m152 specifically targets the type I interferon (IFN) response by binding to stimulator of interferon genes (STING), thereby delaying its trafficking to the Golgi compartment from where STING initiates type I IFN signaling. Infection with an MCMV lacking m152 induced elevated type I IFN responses and this leads to reduced viral transcript levels both in vitro and in vivo. This effect is ameliorated in the absence of STING. Interestingly, while m152 inhibits STING‐mediated IRF signaling, it did not affect STING‐mediated NF‐κB signaling. Analysis of how m152 targets STING translocation reveals that STING activates NF‐κB signaling already from the ER prior to its trafficking to the Golgi. Strikingly, this response is important to promote early MCMV replication. Our results show that MCMV has evolved a mechanism to specifically antagonize the STING‐mediated antiviral IFN response, while preserving its pro‐viral NF‐κB response, providing an advantage in the establishment of an infection.
Collapse
Affiliation(s)
- Markus Stempel
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Baca Chan
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Josephine Hartung
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Søren R Paludan
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, University of Aarhus, Aarhus, Denmark
| | - Nadia Füllbrunn
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Niels Aw Lemmermann
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany .,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
15
|
Reddehase MJ, Lemmermann NAW. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time". Viruses 2018; 10:v10120693. [PMID: 30563202 PMCID: PMC6315540 DOI: 10.3390/v10120693] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of "private genes" in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of "biological convergence" in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental "proof of concept." The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from "bedside to bench".
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
16
|
Kavazović I, Lenartić M, Jelenčić V, Jurković S, Lemmermann NAW, Jonjić S, Polić B, Wensveen FM. NKG2D stimulation of CD8 + T cells during priming promotes their capacity to produce cytokines in response to viral infection in mice. Eur J Immunol 2017; 47:1123-1135. [PMID: 28378389 DOI: 10.1002/eji.201646805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 11/05/2022]
Abstract
Natural killer group 2 member D (NKG2D) is an activating receptor that is expressed on most cytotoxic cells of the immune system, including NK cells, γδ, and CD8+ T cells. It is still a matter of debate whether and how NKG2D mediates priming of CD8+ T cells in vivo, due to a lack of studies where NKG2D is eliminated exclusively in these cells. Here, we studied the impact of NKG2D on effector CD8+ T-cell formation. NKG2D deficiency that is restricted to murine CD8+ T cells did not impair antigen-specific T-cell expansion following mouse CMV and lymphocytic choriomeningitis virus infection, but reduced their capacity to produce cytokines. Upon infection, conventional dendritic cells induce NKG2D ligands, which drive cytokine production on CD8+ T cells via the Dap10 signaling pathway. T-cell development, homing, and proliferation were not affected by NKG2D deficiency and cytotoxicity was only impaired when strong T-cell receptor (TCR) stimuli were used. Transfer of antigen-specific CD8+ T cells demonstrated that NKG2D deficiency attenuated their capacity to reduce viral loads. The inability of NKG2D-deficient cells to produce cytokines could be overcome with injection of IL-15 superagonist during priming. In summary, our data show that NKG2D has a nonredundant role in priming of CD8+ T cells to produce antiviral cytokines.
Collapse
Affiliation(s)
- Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Slaven Jurković
- Department of Medical Physics, University Hospital Rijeka, Rijeka, Croatia
| | - Niels A W Lemmermann
- Institute for Virology,, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,Department of Experimental Immunology, Amsterdam Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Rahim MMA, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev 2016; 267:137-47. [PMID: 26284475 DOI: 10.1111/imr.12318] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells express cell surface receptors that recognize class I major histocompatibility complex (MHC-I) molecules to distinguish between healthy and unhealthy cells. The multigenic and polymorphic nature of the MHC-I genes has influenced the convergent evolution of similarly polymorphic and diversified NK cell receptor families: the C-type lectin-like Ly49 receptors in mice, and the killer cell immunoglobulin-like receptors (KIRs) in humans. Although structurally distinct, both receptor families have similar functions in terms of MHC-I recognition and downstream signal transduction, and they regulate multiple aspects of NK cell biology during development and after maturation as fully differentiated and functionally competent cells. The Ly49 gene locus has undergone rapid, lineage-specific expansions and contractions resulting in multiple distinct haplotypes of variable gene number, allelic diversity, and MHC-I ligand specificity. This in turn has influenced the type and degree of Ly49 receptor expression on NK cells, and their contribution to immunity in different mouse strains. In this review, we have attempted to describe the evolutionary processes that have shaped strain-specific Ly49 receptor repertoires, and their impact on NK cell functions during health and disease.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Tu MM, Mahmoud AB, Makrigiannis AP. Licensed and Unlicensed NK Cells: Differential Roles in Cancer and Viral Control. Front Immunol 2016; 7:166. [PMID: 27199990 PMCID: PMC4852173 DOI: 10.3389/fimmu.2016.00166] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells are known for their well characterized ability to control viral infections and eliminate tumor cells. Through their repertoire of activating and inhibitory receptors, NK cells are able to survey different potential target cells for various surface markers, such as MHC-I – which signals to the NK cell that the target is healthy – as well as stress ligands or viral proteins, which alert the NK cell to the aberrant state of the target and initiate a response. According to the “licensing” hypothesis, interactions between self-specific MHC-I receptors – Ly49 in mice and KIR in humans – and self-MHC-I molecules during NK cell development is crucial for NK cell functionality. However, there also exists a large proportion of NK cells in mice and humans, which lack self-specific MHC-I receptors and are consequentially “unlicensed.” While the licensed NK cell subset plays a major role in the control of MHC-I-deficient tumors, this review will go on to highlight the important role of the unlicensed NK cell subset in the control of MHC-I-expressing tumors, as well as in viral control. Unlike the licensed NK cells, unlicensed NK cells seem to benefit from the lack of self-specific inhibitory receptors, which could otherwise be exploited by some aberrant cells for immunoevasion by upregulating the expression of ligands or mimic ligands for these receptors.
Collapse
Affiliation(s)
- Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; College of Applied Medical Sciences, Taibah University, Madinah Munawwarah, Saudi Arabia
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
19
|
Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X, Galla M, Heissmeyer V, Heller K, Boelter J, Wagner K, Bischoff Y, Martens R, Braun A, Werth K, Uvarovskii A, Kempf H, Meyer-Hermann M, Arens R, Kremer M, Sutter G, Messerle M, Förster R. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity. Immunity 2016; 44:233-45. [PMID: 26872694 PMCID: PMC4846978 DOI: 10.1016/j.immuni.2016.01.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/08/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023]
Abstract
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. Two-photon imaging indicates that CTLs kill 2–16 virus-infected cells per day CTLs form kinapses rather than stable synapses when killing virus-infected cells Some CTL contacts trigger long-lasting calcium fluxes in virus-infected cells CTLs can cooperate during killing of virus-infected cells
Collapse
Affiliation(s)
- Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Felix Rolf Stahl
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Busche
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Marquardt
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Xiang Zheng
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Ludwig-Maximilians-Universität München, 80336 München, Germany; Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 München, Germany
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Jasmin Boelter
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Bischoff
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Rieke Martens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Asolina Braun
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Alexey Uvarovskii
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Harald Kempf
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Melanie Kremer
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
20
|
Fink A, Blaum F, Babic Cac M, Ebert S, Lemmermann NAW, Reddehase MJ. An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 'adapter adapter' protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 2015; 204:383-94. [PMID: 25850989 DOI: 10.1007/s00430-015-0414-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 12/29/2022]
Abstract
Viruses have evolved proteins that bind immunologically relevant cargo molecules at the cell surface for their downmodulation by internalization. Via a tyrosine-based sorting motif YXXΦ in their cytoplasmic tails, they link the bound cargo to the cellular adapter protein-2 (AP2), thereby sorting it into clathrin-triskelion-coated pits for accelerated endocytosis. Downmodulation of CD4 molecules by lentiviral protein NEF represents the most prominent example. Based on connecting cargo to cellular adapter molecules, such specialized viral proteins have been referred to as 'connectors' or 'adapter adapters.' Murine cytomegalovirus glycoprotein m04/gp34 binds stably to MHC class-I (MHC-I) molecules and suspiciously carries a canonical YXXΦ endocytosis motif YRRF in its cytoplasmic tail. Disconnection from AP2 by motif mutation ARRF should retain m04-MHC-I complexes at the cell surface and result in an enhanced silencing of natural killer (NK) cells, which recognize them via inhibitory receptors. We have tested this prediction with a recombinant virus in which the AP2 motif is selectively destroyed by point mutation Y248A, and compared this with the deletion of the complete protein in a Δm04 mutant. Phenotypes were antithetical in that loss of AP2-binding enhanced NK cell silencing, whereas absence of m04-MHC-I released them from silencing. We thus conclude that AP2-binding antagonizes NK cell silencing by enhancing endocytosis of the inhibitory ligand m04-MHC-I. Based on a screen for tyrosine-based endocytic motifs in cytoplasmic tail sequences, we propose here the new hypothesis that most proteins of the m02-m16 gene family serve as 'adapter adapters,' each selecting its specific cell surface cargo for clathrin-assisted internalization.
Collapse
Affiliation(s)
- Annette Fink
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany,
| | | | | | | | | | | |
Collapse
|
21
|
Hearn C, Preeyanon L, Hunt HD, York IA. An MHC class I immune evasion gene of Marek׳s disease virus. Virology 2014; 475:88-95. [PMID: 25462349 DOI: 10.1016/j.virol.2014.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022]
Abstract
Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.
Collapse
Affiliation(s)
- Cari Hearn
- Department of Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Likit Preeyanon
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Henry D Hunt
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA; United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, 4279 East Mount Hope Road, East Lansing, MI 48823, USA
| | - Ian A York
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Alexandre YO, Cocita CD, Ghilas S, Dalod M. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 2014; 5:378. [PMID: 25120535 PMCID: PMC4114203 DOI: 10.3389/fmicb.2014.00378] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with murine cytomegalovirus (MCMV) recapitulates many physiopathological characteristics of human CMV infection and enables studying the interactions between a virus and its natural host. Dendritic cells (DC) are mononuclear phagocytes linking innate and adaptive immunity which are both necessary for MCMV control. DC are critical for the induction of cellular immunity because they are uniquely efficient for the activation of naïve T cells during their first encounter with a pathogen. DC are equipped with a variety of innate immune recognition receptors (I2R2) allowing them to detect pathogens or infections and to engulf molecules, microorganisms or cellular debris. The combinatorial engagement of I2R2 during infections controls DC maturation and shapes their response in terms of cytokine production, activation of natural killer (NK) cells and functional polarization of T cells. Several DC subsets exist which express different arrays of I2R2 and are specialized in distinct functions. The study of MCMV infection helped deciphering the physiological roles of DC subsets and their molecular regulation. It allowed the identification and first in vivo studies of mouse plasmacytoid DC which produce high level of interferons-α/β early after infection. Despite its ability to infect DC and dampen their functions, MCMV induces very robust, efficient and long-lasting CD8 T cell responses. Their priming may rely on the unique ability of uninfected XCR1+ DC to cross-present engulfed viral antigens and thus to counter MCMV interference with antigen presentation. A balance appears to have been reached during co-evolution, allowing controlled replication of the virus for horizontal spread without pathological consequences for the immunocompetent host. We will discuss the role of the interplay between the virus and DC in setting this balance, and how advancing this knowledge further could help develop better vaccines against other intracellular infectious agents.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Clément D Cocita
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Sonia Ghilas
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| |
Collapse
|
23
|
Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol 2014; 1119:311-48. [PMID: 24639230 DOI: 10.1007/978-1-62703-788-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of prophylactic and to lesser extent therapeutic vaccines for the prevention of disease associated with human cytomegalovirus (HCMV) infections has received considerable attention from biomedical researchers and pharmaceutical companies over the previous 15 years, even though attempts to produce such vaccines have been described in the literature for over 40 years. Studies of the natural history of congenital HCMV infection and infection in allograft recipients have suggested that prophylaxis of disease associated with HCMV infection could be possible, particularly in hosts at risk for more severe disease secondary to the lack of preexisting immunity. Provided a substantial understanding of immune response to HCMV together with several animal models that faithfully recapitulate aspects of human infection and immunity, investigators seem well positioned to design and test candidate vaccines. Yet more recent studies of the role of a maternal immunity in the natural history of congenital HCMV infection, including the recognition that reinfection of previously immune women by genetically distinct strains of HCMV occur in populations with a high seroprevalence, have raised several questions about the nature of protective immunity in maternal populations. This finding coupled with observations that have documented a significant incidence of damaging congenital infections in offspring of women with immunity to HCMV prior to conception has suggested that vaccine development based on conventional paradigms of adaptive immunity to viral infections may be of limited value in the prevention of damaging congenital HCMV infections. Perhaps a more achievable goal will be prophylactic vaccines to modify HCMV associated disease in allograft transplant recipients. Although recent descriptions of the results from vaccine trials have been heralded as evidence of an emerging success in the quest for a HCMV vaccine, careful analyses of these studies have also revealed that major hurdles remain to be addressed by current strategies.
Collapse
|
24
|
The p36 isoform of murine cytomegalovirus m152 protein suffices for mediating innate and adaptive immune evasion. Viruses 2013; 5:3171-91. [PMID: 24351798 PMCID: PMC3967166 DOI: 10.3390/v5123171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022] Open
Abstract
The MHC-class I (MHC-I)-like viral (MHC-Iv) m152 gene product of murine cytomegalovirus (mCMV) was the first immune evasion molecule described for a member of the β-subfamily of herpesviruses as a paradigm for analogous functions of human cytomegalovirus proteins. Notably, by interacting with classical MHC-I molecules and with MHC-I-like RAE1 family ligands of the activatory natural killer (NK) cell receptor NKG2D, it inhibits presentation of antigenic peptides to CD8 T cells and the NKG2D-dependent activation of NK cells, respectively, thus simultaneously interfering with adaptive and innate immune recognition of infected cells. Although the m152 gene product exists in differentially glycosylated isoforms whose individual contributions to immune evasion are unknown, it has entered the scientific literature as m152/gp40, based on the quantitatively most prominent isoform but with no functional justification. By construction of a recombinant mCMV in which all three N-glycosylation sites are mutated (N61Q, N208Q, and N241Q), we show here that N-linked glycosylation is not essential for functional interaction of the m152 immune evasion protein with either MHC-I or RAE1. These data add an important functional detail to recent structural analysis of the m152/RAE1γ complex that has revealed N-glycosylations at positions Asn61 and Asn208 of m152 distant from the m152/RAE1γ interface.
Collapse
|
25
|
Stahl FR, Heller K, Halle S, Keyser KA, Busche A, Marquardt A, Wagner K, Boelter J, Bischoff Y, Kremmer E, Arens R, Messerle M, Förster R. Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung. PLoS Pathog 2013; 9:e1003828. [PMID: 24348257 PMCID: PMC3861546 DOI: 10.1371/journal.ppat.1003828] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/28/2013] [Indexed: 02/01/2023] Open
Abstract
Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming “nodular inflammatory foci” (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control. Neonates are highly susceptible to a number of infections that usually cause disease only in immunocompromised individuals, most likely because of their incompletely developed immune system. Although this phenomenon has been frequently observed, immune responses of neonates remain largely undefined upon infections with viruses. There is lack of knowledge about the spatio-temporal dynamics of host-virus interaction, especially in comparative infection models of neonates and adults. In this study, with the use of virus reporter mutants, we provide elaborate insight into these aspects in the mouse model of CMV infection. We define hallmarks of virus tropism, early cellular immune responses and general infection dynamics, findings that are fundamental to understand neonatal antiviral immunity. Furthermore, we found that neonatal APCs induce T cell responses in nodular inflammatory foci of the lung, a process which was supposed to be restricted to lymphoid organs. However, the MCMV-specific T cell response was qualitatively different in neonates from that in adults, possibly explaining - in part - the higher susceptibility of newborns. These observations expand our understanding of where adaptive immunity can be initiated, highlights the importance of early local cellular immune responses and sheds more light on neonatal antiviral immunity.
Collapse
Affiliation(s)
- Felix R. Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail: (FRS); (RF)
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Andreas Busche
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anja Marquardt
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jasmin Boelter
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yvonne Bischoff
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institut für Molekulare Immunologie, München, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail: (FRS); (RF)
| |
Collapse
|
26
|
Imai T, Koyanagi N, Ogawa R, Shindo K, Suenaga T, Sato A, Arii J, Kato A, Kiyono H, Arase H, Kawaguchi Y. Us3 kinase encoded by herpes simplex virus 1 mediates downregulation of cell surface major histocompatibility complex class I and evasion of CD8+ T cells. PLoS One 2013; 8:e72050. [PMID: 23951282 PMCID: PMC3741198 DOI: 10.1371/journal.pone.0072050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 11/21/2022] Open
Abstract
Detection and elimination of virus-infected cells by CD8+ cytotoxic T lymphocytes (CTLs) depends on recognition of virus-derived peptides presented by major histocompatibility complex class I (MHC-I) molecules on the surface of infected cells. In the present study, we showed that inactivation of the activity of viral kinase Us3 encoded by herpes simplex virus 1 (HSV-1), the etiologic agent of several human diseases and a member of the alphaherpesvirinae, significantly increased cell surface expression of MHC-I, thereby augmenting CTL recognition of infected cells in vitro. Overexpression of Us3 by itself had no effect on cell surface expression of MHC-I and Us3 was not able to phosphorylate MHC-I in vitro, suggesting that Us3 indirectly downregulated cell surface expression of MHC-I in infected cells. We also showed that inactivation of Us3 kinase activity induced significantly more HSV-1-specific CD8+ T cells in mice. Interestingly, depletion of CD8+ T cells in mice significantly increased replication of a recombinant virus encoding a kinase-dead mutant of Us3, but had no effect on replication of a recombinant virus in which the kinase-dead mutation was repaired. These results indicated that Us3 kinase activity is required for efficient downregulation of cell surface expression of MHC-I and mediates evasion of HSV-1-specific CD8+ T cells. Our results also raised the possibility that evasion of HSV-1-specific CD8+ T cells by HSV-1 Us3-mediated inhibition of MHC-I antigen presentation might in part contribute to viral replication in vivo.
Collapse
Affiliation(s)
- Takahiko Imai
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | - Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Ryo Ogawa
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Keiko Shindo
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ayuko Sato
- Division of Mucosal Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Hisashi Arase
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 2012; 201:497-512. [PMID: 22961127 DOI: 10.1007/s00430-012-0257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022]
Abstract
Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.
Collapse
|
28
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Slavuljica I, Krmpotić A, Jonjić S. Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response. Front Immunol 2011; 2:85. [PMID: 22566874 PMCID: PMC3342069 DOI: 10.3389/fimmu.2011.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/12/2011] [Indexed: 01/20/2023] Open
Abstract
NKG2D is a potent activating receptor expressed on NK cells, NKT cells, γδ T cells, and CD8 T cells. NKG2D recognizes cell surface molecules structurally related to MHC class I proteins induced by infection or other type of cellular stress. The engagement of NKG2D leads to NK cell cytotoxicity and cytokine secretion or to a co-stimulation of CD8 T cells. Both human and mouse cytomegalovirus (CMV) have evolved numerous mechanisms to evade NKG2D-mediated immune response. This review describes the mechanisms used by CMV to inhibit NKG2D ligand expression and the recent advances in exploiting the NKG2D recognition pathway for mounting efficient and long-lasting immune response.
Collapse
Affiliation(s)
- Irena Slavuljica
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka Rijeka, Croatia
| | | | | |
Collapse
|
30
|
The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J Virol 2011; 86:2165-75. [PMID: 22156533 DOI: 10.1128/jvi.06042-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells and CD8(+) T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8(+) T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8(+) T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8(+) T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8(+) T cells has only a minor effect on the early control of wild-type MCMV, CD8(+) T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8(+) T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8(+) T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H-m157 interaction.
Collapse
|
31
|
Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates. J Virol 2011; 85:5115-24. [PMID: 21367905 DOI: 10.1128/jvi.01934-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vertical transmission of viruses in breast milk can expose neonates to infectious pathogens at a time when the capacity of their immune system to control infections is limited. We developed a mouse model to study the outcomes of acquisition of murine cytomegalovirus (MCMV) when neonates are breastfed by mothers with acute or latent infection. Breast milk leukocytes collected from lactating mice were examined for the presence of MCMV IE-1 mRNA by reverse transcription-PCR (RT-PCR) with Southern analysis. As determined by this criterion, breast milk leukocytes from both acute and latent mothers were positive for MCMV. This mimics the outcome seen in humans with latent cytomegalovirus infection, where reactivation of virus occurs specifically in the lactating mammary gland. Interestingly, intraperitoneal injection of breast milk collected from mothers with latent infection was sufficient to transfer MCMV to neonatal mice, demonstrating that breast milk was a source of virus. Furthermore, we found that MCMV was transmitted from infected mothers to breastfed neonates, with MCMV IE-1 mRNA or infectious virus present in multiple organs, including the brain. In fact, 1 day of nursing was sufficient to transmit MCMV from latent mothers to breastfed neonatal mice. Together, these data validate this mouse model of vertical transmission of MCMV from mothers with acute or latent MCMV infection to breastfed neonates. Its relevance to human disease should prove useful in future studies designed to elucidate the immunological and pathological ramifications of neonatal infection acquired via this natural route.
Collapse
|
32
|
Slavuljica I, Busche A, Babić M, Mitrović M, Gašparović I, Cekinović D, Markova Car E, Pernjak Pugel E, Ciković A, Lisnić VJ, Britt WJ, Koszinowski U, Messerle M, Krmpotić A, Jonjić S. Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J Clin Invest 2010; 120:4532-45. [PMID: 21099111 DOI: 10.1172/jci43961] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/22/2010] [Indexed: 12/21/2022] Open
Abstract
Human CMV (HCMV) is a major cause of morbidity and mortality in both congenitally infected and immunocompromised individuals. Development of an effective HCMV vaccine would help protect these vulnerable groups. NK group 2, member D (NKG2D) is a potent activating receptor expressed by cells of the innate and adaptive immune systems. Its importance in HCMV immune surveillance is indicated by the elaborative evasion mechanisms evolved by the virus to avoid NKG2D. In order to study this signaling pathway, we engineered a recombinant mouse CMV expressing the high-affinity NKG2D ligand RAE-1γ (RAE-1γMCMV). Expression of RAE-1γ by MCMV resulted in profound virus attenuation in vivo and lower latent viral DNA loads. RAE-1γMCMV infection was efficiently controlled by immunodeficient hosts, including mice lacking type I interferon receptors or immunosuppressed by sublethal γ-irradiation. Features of MCMV infection in neonates were also diminished. Despite tight innate immune control, RAE-1γMCMV infection elicited strong and long-lasting protective immunity. Maternal RAE-1γMCMV immunization protected neonatal mice from MCMV disease via placental transfer of antiviral Abs. Despite strong selective pressure, the RAE-1γ transgene did not exhibit sequence variation following infection. Together, our results indicate that use of a recombinant virus encoding the ligand for an activating NK cell receptor could be a powerful approach to developing a safe and immunogenic HCMV vaccine.
Collapse
Affiliation(s)
- Irena Slavuljica
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lemmermann NAW, Böhm V, Holtappels R, Reddehase MJ. In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 2010; 157:161-74. [PMID: 20933556 DOI: 10.1016/j.virusres.2010.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 12/13/2022]
Abstract
Cytomegaloviruses (CMVs) co-exist with their respective host species and have evolved to avoid their elimination by the hosts' immune effector mechanisms and to persist in a non-replicative state, known as viral latency. There is evidence to suggest that latency is nevertheless a highly dynamic condition during which episodes of viral gene desilencing, which can be viewed as incomplete reactivations, cause intermittent antigenic activity that stimulates CD8 memory-effector T cells and drives their clonal expansion. These T cells are supposed to terminate reactivation before completion of the productive viral cycle. In this view, CMVs do not "evade" their respective host's immune response but are actually held in check all the time, unless the host gets immunocompromised. Accordingly, CMV disease is typically a disease of the immunocompromised host only. Here we review current knowledge about the in vivo role of viral proteins involved in subverting the immune recognition of infected cells with focus on the CD8 T-cell response and viral interference with the MHC class-I pathway of antigenic peptide presentation. Whereas the intracellular functions of these "immune-evasion proteins" are known in molecular detail, knowledge of their in vivo role in CMV biology is only beginning to take shape. Experimental studies on the in vivo function of human CMV (hCMV) immune-evasion proteins prohibits, of course. Studying animal CMVs paradigmatically in the corresponding natural host is therefore used to identify principles from which the role of hCMV immune-evasion proteins can hopefully be inferred. Here we summarize recent insights gained primarily from the murine model.
Collapse
Affiliation(s)
- Niels A W Lemmermann
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
34
|
Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, Früh K. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 2010; 328:102-6. [PMID: 20360110 DOI: 10.1126/science.1185350] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytomegalovirus (CMV) can superinfect persistently infected hosts despite CMV-specific humoral and cellular immunity; however, how it does so remains undefined. We have demonstrated that superinfection of rhesus CMV-infected rhesus macaques (RM) requires evasion of CD8+ T cell immunity by virally encoded inhibitors of major histocompatibility complex class I (MHC-I) antigen presentation, particularly the homologs of human CMV US2, 3, 6, and 11. In contrast, MHC-I interference was dispensable for primary infection of RM, or for the establishment of a persistent secondary infection in CMV-infected RM transiently depleted of CD8+ lymphocytes. These findings demonstrate that US2-11 glycoproteins promote evasion of CD8+ T cells in vivo, thus supporting viral replication and dissemination during superinfection, a process that complicates the development of preventive CMV vaccines but that can be exploited for CMV-based vector development.
Collapse
Affiliation(s)
- Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 2009; 84:1221-36. [PMID: 19906905 DOI: 10.1128/jvi.02087-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For recognition of infected cells by CD8 T cells, antigenic peptides are presented at the cell surface, bound to major histocompatibility complex class I (MHC-I) molecules. Downmodulation of cell surface MHC-I molecules is regarded as a hallmark function of cytomegalovirus-encoded immunoevasins. The molecular mechanisms by which immunoevasins interfere with the MHC-I pathway suggest, however, that this downmodulation may be secondary to an interruption of turnover replenishment and that hindrance of the vesicular transport of recently generated peptide-MHC (pMHC) complexes to the cell surface is the actual function of immunoevasins. Here we have used the model of murine cytomegalovirus (mCMV) infection to provide experimental evidence for this hypothesis. To quantitate pMHC complexes at the cell surface after infection in the presence and absence of immunoevasins, we generated the recombinant viruses mCMV-SIINFEKL and mCMV-Deltam06m152-SIINFEKL, respectively, expressing the K(b)-presented peptide SIINFEKL with early-phase kinetics in place of an immunodominant peptide of the viral carrier protein gp36.5/m164. The data revealed approximately 10,000 K(b) molecules presenting SIINFEKL in the absence of immunoevasins, which is an occupancy of approximately 10% of all cell surface K(b) molecules, whereas immunoevasins reduced this number to almost the detection limit. To selectively evaluate their effect on preexisting pMHC complexes, cells were exogenously loaded with SIINFEKL peptide shortly after infection with mCMV-SIINFEKA, in which endogenous presentation is prevented by an L174A mutation of the C-terminal MHC-I anchor residue. The data suggest that pMHC complexes present at the cell surface in advance of immunoevasin gene expression are downmodulated due to constitutive turnover in the absence of resupply.
Collapse
|
36
|
The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 2009; 83:9611-5. [PMID: 19553308 DOI: 10.1128/jvi.00936-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cytomegaloviruses (CMVs) code for immunoevasins, glycoproteins that are specifically dedicated to interfere with the presentation of antigenic peptides to CD8 T cells. Nonetheless, the biological outcome is not an immune evasion of the virus, since CD8 T cells can control CMV infection even when immunoevasins are expressed. Here, we compare the processing of a protective and a nonprotective epitope derived from the same viral protein, the antiapoptotic protein M45 in the murine model. The data provide evidence to conclude that protection against CMVs critically depends on antigenic peptides generated in an amount sufficient to exhaust the inhibitory capacity of immunoevasins.
Collapse
|
37
|
Mans J, Zhi L, Revilleza MJR, Smith L, Redwood A, Natarajan K, Margulies DH. Structure and function of murine cytomegalovirus MHC-I-like molecules: how the virus turned the host defense to its advantage. Immunol Res 2009; 43:264-79. [PMID: 19011767 DOI: 10.1007/s12026-008-8081-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mouse cytomegalovirus (CMV), a beta-herpesvirus, exploits its large (~230 kb) double-stranded DNA genome for both essential and non-essential functions. Among the non-essential functions are those that offer the virus a selective advantage in eluding both the innate and adaptive immune responses of the host. Several non-essential genes of MCMV are thought to encode MHC-I-like genes and to function as immunoevasins. To understand further the evolution and function of these viral MHC-I (MHC-Iv) molecules, X-ray structures of several of them have been determined, not only confirming the overall MHC-I-like structure, but also elucidating features unique to this family. Future efforts promise to clarify the nature of the molecular ligands of these molecules, their evolution in the context of the adapting immune response of the murine host, and by analogy the evolution of the host response to human CMV as well.
Collapse
Affiliation(s)
- Janet Mans
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10; Room 11N311, 10 Center Drive, Bethesda, MD 20892-1892, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The NKG2D receptor is one of the most potent activating natural killer cell receptors involved in antiviral responses. The mouse NKG2D ligands MULT-1, RAE-1, and H60 are regulated by murine cytomegalovirus (MCMV) proteins m145, m152, and m155, respectively. In addition, the m138 protein interferes with the expression of both MULT-1 and H60. We show here that one of five RAE-1 isoforms, RAE-1delta, is resistant to downregulation by MCMV and that this escape has functional importance in vivo. Although m152 retained newly synthesized RAE-1delta and RAE-1gamma in the endoplasmic reticulum, no viral regulator was able to affect the mature RAE-1delta form which remains expressed on the surfaces of infected cells. This differential susceptibility to downregulation by MCMV is not a consequence of faster maturation of RAE-1delta compared to RAE-1gamma but rather an intrinsic property of the mature surface-resident protein. This difference can be attributed to the absence of a PLWY motif from RAE-1delta. Altogether, these findings provide evidence for a novel mechanism of host escape from viral immunoevasion of NKG2D-dependent control.
Collapse
|
39
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
40
|
Abstract
Antigen presenting cells (APCs) are recognized as key initiators of adaptive immunity, particularly to pathogens, by eliciting a rapid and potent immune attack on infected cells. Amongst APCs, dendritic cells (DCs) are specially equipped to initiate and regulate immune responses in a manner that depends on signals they receive from microbes and their cellular environment. To achieve this, they are equipped with highly efficient mechanisms that allow them to detect pathogens, to capture, process and present antigens, and to activate and guide the differentiation of T cells into effector and memory cells. DCs can no longer be considered as a homogeneous cell type performing a single function, but are heterogeneous both in phenotype, function and dependence on inflammatory stimuli for their formation and responsiveness. Recent studies of DC subtypes have highlighted the contrasting roles of different professional APCs in activating divergent arms of the immune response towards pathogens. In this review, we discuss the progress that has been made in dissecting the attributes of different DC subsets that migrate into, or reside permanently, within lymphoid tissues and their putative roles in the induction of the anti-viral immune response.
Collapse
Affiliation(s)
- Gabrielle Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | |
Collapse
|
41
|
The CD8 T-cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J Virol 2008; 82:12205-12. [PMID: 18922872 DOI: 10.1128/jvi.01463-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of mice with murine gammaherpesvirus 68 (MHV-68) robustly activates CD8 T cells, but only six class I major histocompatibility complex (MHC)-restricted epitopes have been described to date for the widely used H-2(b) haplotype mice. To explore the specificity and kinetics of the cytotoxic T-lymphocyte response in MHV-68-infected C57BL/6 mice, we screened for H-2K(b)- and H-2D(b)-restricted epitopes using a set of 384 candidate epitopes in an MHC tetramer-based approach and identified 19 new epitopes in 16 different open reading frames. Of the six known H-2K(b)- and H-2D(b)-restricted epitopes, we confirmed a response against three and did not detect CD8 T-cell-specific responses for the remaining three. The peak of the CD8 T-cell response to most peptides occurs between 6 and 10 days postinfection. The respective MHC tetramer-positive CD8 T cells display an activated/effector phenotype (CD62L(lo) and CD44(hi)) and produce gamma interferon upon peptide stimulation ex vivo. MHV-68 infection in vivo elicits a response to multiple viral epitopes, derived from both early and late viral antigens, illustrating a far broader T-cell repertoire and more-rapid activation than those previously recorded.
Collapse
|
42
|
Gustems M, Busche A, Messerle M, Ghazal P, Angulo A. In vivo competence of murine cytomegalovirus under the control of the human cytomegalovirus major immediate-early enhancer in the establishment of latency and reactivation. J Virol 2008; 82:10302-7. [PMID: 18684819 PMCID: PMC2566294 DOI: 10.1128/jvi.01255-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 07/29/2008] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early enhancer has been postulated to play a pivotal role in the control of latency and reactivation. However, the absence of an animal model has obstructed a direct test of this hypothesis. Here we report on the establishment of an in vivo, experimentally tractable system for quantitatively investigating physiological functions of the HCMV enhancer. Using a neonate BALB/c mouse model, we show that a chimeric murine CMV under the control of the HCMV enhancer is competent in vivo, replicating in key organs of mice with acute CMV infection and exhibiting latency/reactivation features comparable for the most part to those of the parental and revertant viruses.
Collapse
Affiliation(s)
- Montse Gustems
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, C/Villarroel 170, Barcelona 08036, Spain.
| | | | | | | | | |
Collapse
|
43
|
The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 2008; 82:11637-50. [PMID: 18815306 DOI: 10.1128/jvi.01510-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses express glycoproteins that interfere with antigen presentation to CD8 T cells. Although the molecular modes of action of these "immunoevasins" differ between cytomegalovirus species, the convergent biological outcome is an inhibition of the recognition of infected cells. In murine cytomegalovirus, m152/gp40 retains peptide-loaded major histocompatibility complex class I molecules in a cis-Golgi compartment, m06/gp48 mediates their vesicular sorting for lysosomal degradation, and m04/gp34, although not an immunoevasin in its own right, appears to assist in the concerted action of all three molecules. Using the L(d)-restricted IE1 epitope YPHFMPTNL in the BALB/c mouse model as a paradigm, we provide here an explanation for the paradox that immunoevasins enhance CD8 T-cell priming although they inhibit peptide presentation in infected cells. Adaptive immune responses are initiated in the regional lymph node (RLN) draining the site of pathogen exposure. In particular for antigens that are not virion components, the magnitude of viral gene expression providing the antigens is likely a critical parameter in priming efficacy. We have therefore focused on the events in the RLN and have related priming to intranodal viral gene expression. We show that immunoevasins enhance priming by downmodulating an early CD8 T-cell-mediated "negative feedback" control of the infection in the cortical region of the RLN, thus supporting the model that immunoevasins improve antigen supply for indirect priming by uninfected antigen-presenting cells. As an important consequence, these findings predict that deletion of immunoevasin genes in a replicative vaccine virus is not a favorable option but may, rather, be counterproductive.
Collapse
|
44
|
Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 2008; 325:417-70. [PMID: 18637519 DOI: 10.1007/978-3-540-77349-8_23] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with human cytomegalovirus (HCMV) are a major cause of morbidity and mortality in humans with acquired or developmental deficits in innate and adaptive immunity. In the normal immunocompetent host, symptoms rarely accompany acute infections, although prolonged virus shedding is frequent. Virus persistence is established in all infected individuals and appears to be maintained by both a chronic productive infections as well as latency with restricted viral gene expression. The contributions of the each of these mechanisms to the persistence of this virus in the individual is unknown but frequent virus shedding into the saliva and genitourinary tract likely accounts for the near universal incidence of infection in most populations in the world. The pathogenesis of disease associated with acute HCMV infection is most readily attributable to lytic virus replication and end organ damage either secondary to virus replication and cell death or from host immunological responses that target virus-infected cells. Antiviral agents limit the severity of disease associated with acute HCMV infections, suggesting a requirement for virus replication in clinical syndromes associated with acute infection. End organ disease secondary to unchecked virus replication can be observed in infants infected in utero, allograft recipients receiving potent immunosuppressive agents, and patients with HIV infections that exhibit a loss of adaptive immune function. In contrast, diseases associated with chronic or persistent infections appear in normal individuals and in the allografts of the transplant recipient. The manifestations of these infections appear related to chronic inflammation, but it is unclear if poorly controlled virus replication is necessary for the different phenotypic expressions of disease that are reported in these patients. Although the relationship between HCMV infection and chronic allograft rejection is well known, the mechanisms that account for the role of this virus in graft loss are not well understood. However, the capacity of this virus to persist in the midst of intense inflammation suggests that its persistence could serve as a trigger for the induction of host-vs-graft responses or alternatively host responses to HCMV could contribute to the inflammatory milieu characteristic of chronic allograft rejection.
Collapse
Affiliation(s)
- W Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital, Harbor Bldg. 104, 1600 7th Ave. South Birmingham, AL 35233, USA.
| |
Collapse
|
45
|
Jonjic S, Krmpotic A, Arapovic J, Koszinowski UH. Dissection of the antiviral NK cell response by MCMV mutants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008; 415:127-49. [PMID: 18370152 DOI: 10.1007/978-1-59745-570-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Our understanding of virus control by natural killer (NK) cells relies mainly on in vitro observations. The significance of these findings for virus control in vivo is not yet fully understood. Complexity is added by the fact that many viruses, particularly herpesviruses, are equipped with sets of genes that, dependent on the genetic background of the host, modify the NK cell response. The advent of recombinant DNA technology and mutagenesis procedures for BAC-cloned viral genomes has made it possible not only to screen for viral proteins with such functions but also to assess their biological relevance. Mutant viruses with gene defects reveal the efficacy and complexity of NK cell control. Here, we describe procedures to assess the NK cell response to mouse cytomegalovirus (MCMV), a prominent virus model for studying NK cell functions in vivo.
Collapse
Affiliation(s)
- Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | | | | |
Collapse
|
46
|
Abstract
Murine cytomegalovirus (MCMV) is a well-studied model of natural beta-herpesvirus infection. However, many questions remain regarding its control by and evasion of the immune response it generates. CD8 and CD4 T cells have both unique and redundant roles in control of the virus that differ based on the immunocompetence of the infected mice. MCMV encodes major histocompatibility complex (MHC) class I immune evasion genes that can have an impact in vitro, but their role in infection of immunocompetent mice has been difficult to identify. This review addresses the evidence for their in vivo function and suggests why they may be evolutionarily conserved.
Collapse
Affiliation(s)
- Carmen M Doom
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
47
|
Lenac T, Arapović J, Traven L, Krmpotić A, Jonjić S. Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 2008; 197:159-66. [PMID: 18259774 DOI: 10.1007/s00430-008-0080-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes morbidity risk in immunologically suppressed and immunodeficient patients including congenital infections. Approaches to curb the consequences of HCMV infections are restricted by a lack of complete understanding of viral pathogenesis. The infection of mice with murine cytomegalovirus (MCMV) as a model of HCMV infection has been particularly useful in elucidating the role of innate and adaptive immune response mechanisms. A large number of cytomegalovirus genes modulate the innate and the adaptive host immune response. The products of several MCMV genes are involved in subverting the natural killer (NK) cell response by down-modulating cellular ligands for the NKG2D receptor expressed on NK cells and CD8(+) T cells. Mutant viruses lacking these immunoevasion genes are attenuated with respect to virus growth in vivo. Given the importance of the NKG2D receptor in controlling both NK- and T cell-mediated immunity, it is of tremendous importance to understand the molecular mechanisms and consequences of viral regulation of the NKG2D ligands.
Collapse
Affiliation(s)
- Tihana Lenac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia
| | | | | | | | | |
Collapse
|
48
|
Roy CR, Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2008; 8:1179-87. [PMID: 17952043 DOI: 10.1038/ni1528] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.
Collapse
Affiliation(s)
- Craig R Roy
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut 06535, USA
| | | |
Collapse
|
49
|
Abstract
Human cytomegalovirus (HCMV) has become a paradigm for viral immune evasion due to its unique multitude of immune-modulatory strategies. HCMV modulates the innate as well as adaptive immune response at every step of its life cycle. It dampens the induction of antiviral interferon-induced genes by several mechanisms. Further striking is the multitude of genes and strategies devoted to modulating and escaping the cellular immune response. Several genes are independently capable of inhibiting antigen presentation to cytolytic T cells by downregulating MHC class I. Recent data revealed an astounding variety of methods in triggering or inhibiting activatory and inhibitory receptors found on NK cells, NKT cells, T cells as well as auxiliary cells of the immune system. The multitude and complexity of these mechanisms is fascinating and continues to reveal novel insights into the host-pathogen interaction and novel cell biological and immunological concepts.
Collapse
Affiliation(s)
- C Powers
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
50
|
Beutler B, Eidenschenk C, Crozat K, Imler JL, Takeuchi O, Hoffmann JA, Akira S. Genetic analysis of resistance to viral infection. Nat Rev Immunol 2007; 7:753-66. [PMID: 17893693 DOI: 10.1038/nri2174] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As machines that reprogramme eukaryotic cells to suit their own purposes, viruses present a difficult problem for multicellular hosts, and indeed, have become one of the central pre-occupations of the immune system. Unable to permanently outpace individual viruses in an evolutionary footrace, higher eukaryotes have evolved broadly active mechanisms with which to sense viruses and suppress their proliferation. These mechanisms have recently been elucidated by a combination of forward and reverse genetic methods. Some of these mechanisms are clearly ancient, whereas others are relatively new. All are remarkably adept at discriminating self from non-self, and allow the host to cope with what might seem an impossible predicament.
Collapse
Affiliation(s)
- Bruce Beutler
- Department of Genetics, The Scripps Research Institute, IMM-3-1, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|