1
|
Huang H, Li Y, Zhang G, Ruan GX, Zhu Z, Chen W, Zou J, Zhang R, Wang J, Ouyang Y, Xu S, Ou X. The RNA-binding protein hnRNP F is required for the germinal center B cell response. Nat Commun 2023; 14:1731. [PMID: 36997512 PMCID: PMC10063658 DOI: 10.1038/s41467-023-37308-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
The T cell-dependent (TD) antibody response involves the generation of high affinity, immunoglobulin heavy chain class-switched antibodies that are generated through germinal center (GC) response. This process is controlled by coordinated transcriptional and post-transcriptional gene regulatory mechanisms. RNA-binding proteins (RBPs) have emerged as critical players in post-transcriptional gene regulation. Here we demonstrate that B cell-specific deletion of RBP hnRNP F leads to diminished production of class-switched antibodies with high affinities in response to a TD antigen challenge. B cells deficient in hnRNP F are characterized by defective proliferation and c-Myc upregulation upon antigenic stimulation. Mechanistically, hnRNP F directly binds to the G-tracts of Cd40 pre-mRNA to promote the inclusion of Cd40 exon 6 that encodes its transmembrane domain, thus enabling appropriate CD40 cell surface expression. Furthermore, we find that hnRNP A1 and A2B1 can bind to the same region of Cd40 pre-mRNA but suppress exon 6 inclusion, suggesting that these hnRNPs and hnRNP F might antagonize each-other's effects on Cd40 splicing. In summary, our study uncovers an important posttranscriptional mechanism regulating the GC response.
Collapse
Affiliation(s)
- Hengjun Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxing Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gaopu Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gui-Xin Ruan
- Medical School, Taizhou University, Taizhou, 318000, China
| | - Zhijian Zhu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenjing Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jia Zou
- Department of Computer Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jing Wang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Ouyang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, 138648, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Xijun Ou
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Hasan KMM, Haque MA. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8257217. [PMID: 37180758 PMCID: PMC10171987 DOI: 10.1155/2023/8257217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 05/16/2023]
Abstract
Autophagy is a dynamic process that regulates the selective and nonselective degradation of cytoplasmic components, such as damaged organelles and protein aggregates inside lysosomes to maintain tissue homeostasis. Different types of autophagy including macroautophagy, microautophagy, and chaperon-mediated autophagy (CMA) have been implicated in a variety of pathological conditions, such as cancer, aging, neurodegeneration, and developmental disorders. Furthermore, the molecular mechanism and biological functions of autophagy have been extensively studied in vertebrate hematopoiesis and human blood malignancies. In recent years, the hematopoietic lineage-specific roles of different autophagy-related (ATG) genes have gained more attention. The evolution of gene-editing technology and the easy access nature of hematopoietic stem cells (HSCs), hematopoietic progenitors, and precursor cells have facilitated the autophagy research to better understand how ATG genes function in the hematopoietic system. Taking advantage of the gene-editing platform, this review has summarized the roles of different ATGs at the hematopoietic cell level, their dysregulation, and pathological consequences throughout hematopoiesis.
Collapse
Affiliation(s)
- Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
- Department of Neurology, David Geffen School of Medicine, The University of California, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Md Anwarul Haque
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| |
Collapse
|
3
|
Chicana B, Abbasizadeh N, Burns C, Taglinao H, Spencer JA, Manilay JO. Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Front Immunol 2022; 13:780945. [PMID: 35250971 PMCID: PMC8889104 DOI: 10.3389/fimmu.2022.780945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
The contributions of skeletal cells to the processes of B cell development in the bone marrow (BM) have not been completely described. The von-Hippel Lindau protein (VHL) plays a key role in cellular responses to hypoxia. Previous work showed that Dmp1-Cre;Vhl conditional knockout mice (VhlcKO), which deletes Vhl in subsets of mesenchymal stem cells, late osteoblasts and osteocytes, display dysregulated bone growth and reduction in B cells. Here, we investigated the mechanisms underlying the B cell defects using flow cytometry and high-resolution imaging. In the VhlcKO BM, B cell progenitors were increased in frequency and number, whereas Hardy Fractions B-F were decreased. VhlcKO Fractions B-C cells showed increased apoptosis and quiescence. Reciprocal BM chimeras confirmed a B cell-extrinsic source of the VhlcKO B cell defects. In support of this, VhlcKO BM supernatant contained reduced CXCL12 and elevated EPO levels. Intravital and ex vivo imaging revealed VhlcKO BM blood vessels with increased diameter, volume, and a diminished blood-BM barrier. Staining of VhlcKO B cells with an intracellular hypoxic marker indicated the natural existence of distinct B cell microenvironments that differ in local oxygen tensions and that the B cell developmental defects in VhlcKO BM are not initiated by hypoxia. Our studies identify novel mechanisms linking altered bone homeostasis with drastic BM microenvironmental changes that dysregulate B cell development.
Collapse
Affiliation(s)
- Betsabel Chicana
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Nastaran Abbasizadeh
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Christian Burns
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Hanna Taglinao
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Joel A Spencer
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States.,Bioengineering Graduate Program, University of California, Merced, Merced, CA, United States
| | - Jennifer O Manilay
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| |
Collapse
|
4
|
Carsetti R, Terreri S, Conti MG, Fernandez Salinas A, Corrente F, Capponi C, Albano C, Piano Mortari E. Comprehensive phenotyping of human peripheral blood B lymphocytes in healthy conditions. Cytometry A 2021; 101:131-139. [PMID: 34664397 PMCID: PMC9546334 DOI: 10.1002/cyto.a.24507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
The B cell compartment provides innate and adaptive immune defenses against pathogens. Different B cell subsets, reflecting the maturation stages of B cells, have noninterchangeable functions and roles in innate and adaptive immune responses. In this review, we provide an overview of the B cell subsets present in peripheral blood of healthy individuals. A specific gating strategy is also described to clearly and univocally identify B cell subsets based on the their phenotypic traits by flow cytometric analysis.
Collapse
Affiliation(s)
- Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Corrente
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Claudia Capponi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Cheung MB, Enyindah-Asonye G, Matsui K, Kosik I, Dvorina N, Baldwin WM, Yewdell JW, Gupta N. Cutting Edge: Myosin 18A Is a Novel Checkpoint Regulator in B Cell Differentiation and Antibody-Mediated Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:2521-2526. [PMID: 34001658 DOI: 10.4049/jimmunol.2100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/04/2021] [Indexed: 01/28/2023]
Abstract
We investigated the function of the newly discovered myosin family protein myosin 18A (Myo18A) in Ab-mediated immunity by generating B cell-conditional Myo18A-deficient mice. Myo18A deficiency led to expansion of bone marrow progenitor B cells and mature B cells in secondary lymphoid organs. Myo18A-deficient mice displayed serum IgM hyperglobulinemia and increased splenic IgM-secreting cells, with older mice switching to IgG1 hyperglobulinemia and autoantibody development. Immunization of Myo18A-deficient mice with inactivated influenza virus led to development of more potent neutralizing Abs against the major Ag hemagglutinin, associated with persistent accumulation of Ag-specific germinal center B cells and more Ag-specific bone marrow plasma cells. In vitro stimulation with TLR7 and BCR ligands revealed a greater ability of Myo18A-deficient B cells to differentiate into Ab-secreting cells, associated with higher AID and Blimp-1 expression. Overall, our study demonstrates that Myo18A is a novel negative regulator of B cell homeostasis, differentiation, and humoral immunity.
Collapse
Affiliation(s)
- Michael B Cheung
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Gospel Enyindah-Asonye
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ken Matsui
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Ivan Kosik
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Neetu Gupta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and
| |
Collapse
|
6
|
Kaur S, Sehgal A, Wu AC, Millard SM, Batoon L, Sandrock CJ, Ferrari-Cestari M, Levesque JP, Hume DA, Raggatt LJ, Pettit AR. Stable colony-stimulating factor 1 fusion protein treatment increases hematopoietic stem cell pool and enhances their mobilisation in mice. J Hematol Oncol 2021; 14:3. [PMID: 33402221 PMCID: PMC7786999 DOI: 10.1186/s13045-020-00997-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Prior chemotherapy and/or underlying morbidity commonly leads to poor mobilisation of hematopoietic stem cells (HSC) for transplantation in cancer patients. Increasing the number of available HSC prior to mobilisation is a potential strategy to overcome this deficiency. Resident bone marrow (BM) macrophages are essential for maintenance of niches that support HSC and enable engraftment in transplant recipients. Here we examined potential of donor treatment with modified recombinant colony-stimulating factor 1 (CSF1) to influence the HSC niche and expand the HSC pool for autologous transplantation. Methods We administered an acute treatment regimen of CSF1 Fc fusion protein (CSF1-Fc, daily injection for 4 consecutive days) to naive C57Bl/6 mice. Treatment impacts on macrophage and HSC number, HSC function and overall hematopoiesis were assessed at both the predicted peak drug action and during post-treatment recovery. A serial treatment strategy using CSF1-Fc followed by granulocyte colony-stimulating factor (G-CSF) was used to interrogate HSC mobilisation impacts. Outcomes were assessed by in situ imaging and ex vivo standard and imaging flow cytometry with functional validation by colony formation and competitive transplantation assay. Results CSF1-Fc treatment caused a transient expansion of monocyte-macrophage cells within BM and spleen at the expense of BM B lymphopoiesis and hematopoietic stem and progenitor cell (HSPC) homeostasis. During the recovery phase after cessation of CSF1-Fc treatment, normalisation of hematopoiesis was accompanied by an increase in the total available HSPC pool. Multiple approaches confirmed that CD48−CD150+ HSC do not express the CSF1 receptor, ruling out direct action of CSF1-Fc on these cells. In the spleen, increased HSC was associated with expression of the BM HSC niche macrophage marker CD169 in red pulp macrophages, suggesting elevated spleen engraftment with CD48−CD150+ HSC was secondary to CSF1-Fc macrophage impacts. Competitive transplant assays demonstrated that pre-treatment of donors with CSF1-Fc increased the number and reconstitution potential of HSPC in blood following a HSC mobilising regimen of G-CSF treatment. Conclusion These results indicate that CSF1-Fc conditioning could represent a therapeutic strategy to overcome poor HSC mobilisation and subsequently improve HSC transplantation outcomes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Anuj Sehgal
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Lena Batoon
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Cheyenne J Sandrock
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Michelle Ferrari-Cestari
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Jean-Pierre Levesque
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - David A Hume
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Translational Research Institute, 37 Kent St, Woolloongabba, 4102, Australia.
| |
Collapse
|
7
|
Müller U, Schaub GA, Mossmann H, Köhler G, Carsetti R, Hölscher C. Immunosuppression in Experimental Chagas Disease Is Mediated by an Alteration of Bone Marrow Stromal Cell Function During the Acute Phase of Infection. Front Immunol 2018; 9:2794. [PMID: 30619242 PMCID: PMC6295583 DOI: 10.3389/fimmu.2018.02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/13/2018] [Indexed: 01/29/2023] Open
Abstract
After infection with Trypanosoma cruzi, the etiologic agent of Chagas disease, immunosuppression, and apoptosis of mature lymphocytes contribute to the establishment of the parasite in the host and thereby to persistence and pathology in the chronic stage of infection. In a systemic mouse model of experimental Chagas disease, we have demonstrated a strong depletion of mature B cells in the spleen during the first 2 weeks of infection. Remarkably, the decrease in this cell population commenced already in the bone marrow from infected mice and was a concomitant of an increased apoptosis in pro- and pre-B cell populations. Pro- and pre-B cells in the bone marrow showed a significant reduction accompanied by a functional disturbance of bone marrow-derived stromal cells resulting in diminished levels of IL-7, an essential factor for the development of B cell precursors. Ex vivo, stromal cells isolated from the bone marrow of infected mice had a strikingly impaired capacity to maintain the development of pro- and pre-B cells obtained from uninfected animals. Together, the reduction of an active humoral immune response during acute Chagas disease suggests to be an initial immune evasion mechanism of the parasite to establish persistent infection. Therefore, prevention of B cell depletion by rescuing the stromal cells during this early phase, could give rise to new therapeutic approaches.
Collapse
Affiliation(s)
- Uwe Müller
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Institute of Immunology, Veterinary Medicine, University Leipzig Leipzig, Germany
| | - Günter A Schaub
- Department of Animal Ecology, Evolution, and Biodiversity, Ruhr-Universität-Bochum, Bochum, Germany
| | - Horst Mossmann
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gabriele Köhler
- Department of Pathology, University of Freiburg, Freiburg, Germany
| | - Rita Carsetti
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Christoph Hölscher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,Infection Immunology, Research Center Borstel, Borstel, Germany
| |
Collapse
|
8
|
Shum T, Kruse RL, Rooney CM. Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opin Biol Ther 2018; 18:653-664. [PMID: 29727246 DOI: 10.1080/14712598.2018.1473368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer therapy has been transformed by the demonstration that tumor-specific T-cells can eliminate tumor cells in a clinical setting with minimal long-term toxicity. However, significant success in the treatment of leukemia and lymphoma with T-cells using native receptors or redirected with chimeric antigen receptors (CARs) has not been recapitulated in the treatment of solid tumors. This lack of success is likely related to the paucity of costimulatory and cytokine signaling available in solid tumors, in addition to a range of inhibitory mechanisms. AREAS COVERED We summarize the latest developments in engineered T-cell immunotherapy, describe the limitations of these approaches in treating solid tumors, and finally highlight several strategies that may be useful in mediating solid tumor responses in the future, while also ensuring safety of engineered cells. EXPERT OPINION CAR-T therapies require further engineering to achieve their potential against solid tumors. Facilitating cytokine signaling in CAR T-cells appears to be essential in achieving better responses. However, the engineering of T-cells with potentially unchecked proliferation and potency raises the question of whether the simultaneous combination of enhancements will prove safe, necessitating continued advancements in regulating CAR-T activity at the tumor site and methods to safely switch off these engineered cells.
Collapse
Affiliation(s)
- Thomas Shum
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Robert L Kruse
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,b Medical Scientist Training Program , Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA
| | - Cliona M Rooney
- a Center for Cell and Gene Therapy, Texas Children's Hospital , Houston Methodist Hospital, and Baylor College of Medicine , Houston , Texas , USA.,c Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , Texas , USA.,d Department of Pediatrics , Baylor College of Medicine , Houston , Texas , USA.,e Texas Children's Cancer and Hematology Centers , Baylor College of Medicine , Houston , Texas , USA.,f Department of Pathology and Immunology , Baylor College of Medicine , Houston , Texas , USA.,g Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , Texas , USA
| |
Collapse
|
9
|
Xiao S, Zhang W, Manley NR. Thymic B cell development is controlled by the B potential of progenitors via both hematopoietic-intrinsic and thymic microenvironment-intrinsic regulatory mechanisms. PLoS One 2018; 13:e0193189. [PMID: 29462202 PMCID: PMC5819817 DOI: 10.1371/journal.pone.0193189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) derived from birth through adult possess differing differentiation potential for T or B cell fate in the thymus; neonatal bone marrow (BM) cells also have a higher potential for B cell production in BM compared to adult HSCs. We hypothesized that this hematopoietic-intrinsic B potential might also regulate B cell development in the thymus during ontogeny. METHODS Foxn1lacZ mutant mice are a model in which down regulation of a thymic epithelial cell (TEC) specific transcription factor beginning one week postnatal causes a dramatic reduction of thymocytes production. In this study, we found that while T cells were decreased, the frequency of thymic B cells was greatly increased in these mutants in the perinatal period. We used this model to characterize the mechanisms in the thymus controlling B cell development. RESULTS Foxn1lacZ mutants, T cell committed intrathymic progenitors (DN1a,b) were progressively reduced beginning one week after birth, while thymic B cells peaked at 3-4 weeks with pre-B-II progenitor phenotype, and originated in the thymus. Heterochronic chimeras showed that the capacity for thymic B cell production was due to a combination of higher B potential of neonatal HSCs, combined with a thymic microenvironment deficiency including reduction of DL4 and increase of IL-7 that promoted B cell fate. CONCLUSION Our findings indicate that the capacity and time course for thymic B-cell production are primarily controlled by the hematopoietic-intrinsic potential for B cells themselves during ontogeny, but that signals from TECs microenvironment also influence the frequency and differentiation potential of B cell development in the thymus.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
10
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
11
|
Ubieta K, Garcia M, Grötsch B, Uebe S, Weber GF, Stein M, Ekici A, Schett G, Mielenz D, Bozec A. Fra-2 regulates B cell development by enhancing IRF4 and Foxo1 transcription. J Exp Med 2017; 214:2059-2071. [PMID: 28566276 PMCID: PMC5502419 DOI: 10.1084/jem.20160514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/21/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
The role of AP-1 transcription factors in early B cell development and function is still incompletely characterized. Ubieta at al. describe the function of the Fra-2/AP-1 transcription factor as a regulator of Foxo1 and Irf4 expression in B cells. Fra-2 affects B cell proliferation and maintains their number in bone marrow. The role of AP-1 transcription factors in early B cell development and function is still incompletely characterized. Here we address the role of Fra-2 in B cell differentiation. Deletion of Fra-2 leads to impaired B cell proliferation in the bone marrow. In addition, IL-7–stimulated pro–B cell cultures revealed a reduced differentiation from large pre–B cells to small B cells and immature B cells. Gene profiling and chromatin immunoprecipitation sequencing analyses unraveled a transcriptional reduction of the transcription factors Foxo1, Irf4, Ikaros, and Aiolos in Fra-2–deficient B cells. Moreover, expression of IL7Rα and Rag 1/2, downstream targets of Irf4 and Foxo1, were also reduced in the absence of Fra-2. Pro–B cell proliferation and small pre–B cell differentiation were fully rescued by expression of Foxo1 and Irf4 in Fra-2–deficient pro–B cells. Hence, Fra-2 is a key upstream regulator of Foxo1 and Irf4 expression and influences proliferation and differentiation of B cells at multiple stages.
Collapse
Affiliation(s)
- Kenia Ubieta
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.,Department of Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Mireia Garcia
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bettina Grötsch
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Merle Stein
- Division of Molecular Immunology, Department of Internal Medicine 3 - Rheumatology and Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3 - Rheumatology and Immunology, Nikolaus-Fiebiger-Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Khong DM, Dudakov JA, Hammett MV, Jurblum MI, Khong SML, Goldberg GL, Ueno T, Spyroglou L, Young LF, van den Brink MRM, Boyd RL, Chidgey AP. Enhanced hematopoietic stem cell function mediates immune regeneration following sex steroid blockade. Stem Cell Reports 2015; 4:445-58. [PMID: 25733018 PMCID: PMC4375937 DOI: 10.1016/j.stemcr.2015.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 01/24/2015] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general. Sex steroid ablation (SSA) increases number of hematopoietic stem cells (HSCs) SSA enhances reconstitution potential and self-renewal of HSCs SSA reverses the age-associated decline in Foxo1 expression by hematopoietic niche There is an increase in niche expression of hematopoiesis-associated factors after SSA
Collapse
Affiliation(s)
- Danika M Khong
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jarrod A Dudakov
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Maree V Hammett
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Marc I Jurblum
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sacha M L Khong
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Gabrielle L Goldberg
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Tomoo Ueno
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lisa Spyroglou
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Lauren F Young
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | | | - Richard L Boyd
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ann P Chidgey
- Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
13
|
Feng X, Che N, Liu Y, Chen H, Wang D, Li X, Chen W, Ma X, Hua B, Gao X, Tsao BP, Sun L. Restored immunosuppressive effect of mesenchymal stem cells on B cells after olfactory 1/early B cell factor-associated zinc-finger protein down-regulation in patients with systemic lupus erythematosus. Arthritis Rheumatol 2015; 66:3413-23. [PMID: 25219468 DOI: 10.1002/art.38879] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/09/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To evaluate whether olfactory 1/early B cell factor-associated zinc-finger protein (OAZ), a candidate lupus susceptibility gene involved in antinuclear antibody (ANA) production, plays a role in the regulation of B cells by mesenchymal stem cells (MSCs). METHODS MSCs derived from the bone marrow of patients with systemic lupus erythematosus (SLE) and healthy control subjects were expanded and incubated with small interfering RNAs specific for OAZ or a nontargeting sequence. Knockdown of messenger RNA levels of OAZ and its downstream genes was measured using real-time polymerase chain reaction, and protein levels of chemokine/cytokine and immunoglobulins were determined by enzyme-linked immunosorbent assay or Western blotting. The effects of modulating the OAZ levels in MSCs, by either silencing or overexpression, on B cell proliferation and terminal differentiation were assessed by coculturing MSCs with mouse spleen cells. RESULTS OAZ gene expression was highly enriched in MSCs compared with peripheral blood leukocytes and was increased in patients with SLE compared with control subjects. After the silencing of OAZ expression, SLE MSCs could regain the ability to inhibit B cell proliferation and terminal differentiation, as indicated by decreased percentages of bromodeoxyuridine-positive cells and CD138+ cells as well as decreased levels of IgG, IgM, and ANAs. The level of CCL2 was increased after OAZ knockdown, while anti-CCL2 antibodies completely counteracted the effect of OAZ silencing. Umbilical cord-derived normal MSCs that overexpressed OAZ had a diminished ability to inhibit B cell proliferation and terminal differentiation. CONCLUSION OAZ down-regulation could restore the impaired function of SLE MSCs in the immune regulation of B cells, contributing to a reduction in ANA levels. OAZ might represent a new target for therapy in patients with SLE.
Collapse
Affiliation(s)
- Xuebing Feng
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sangaletti S, Tripodo C, Portararo P, Dugo M, Vitali C, Botti L, Guarnotta C, Cappetti B, Gulino A, Torselli I, Casalini P, Chiodoni C, Colombo MP. Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. Oncoimmunology 2014; 3:e28989. [PMID: 25083326 PMCID: PMC4108469 DOI: 10.4161/onci.28989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/23/2014] [Indexed: 12/26/2022] Open
Abstract
Neoplastic B-cell clones commonly arise within secondary lymphoid organs (SLO). However, during disease progression, lymphomatous cells may also colonize the bone marrow (BM), where they localize within specialized stromal niches, namely the osteoblastic and the vascular niche, according to their germinal center- or extra-follicular-derivation, respectively. We hypothesized the existence of common stromal motifs in BM and SLO B-cell lymphoid niches involved in licensing normal B-cell development as well as in fostering transformed B lymphoid cells. Thus, we tested the expression of prototypical mesenchymal stromal cell (MSC) markers and regulatory matricellular proteins in human BM and SLO under physiologically unperturbed conditions and during B-cell lymphoma occurrence. We identified common stromal features in the BM osteoblastic niche and SLO germinal center (GC) microenvironments, traits that were also enriched within BM infiltrates of GC-associated B-cell lymphomas, suggesting that stromal programs involved in central and peripheral B-cell lymphopoiesis are also involved in malignant B-cell nurturing. Among factors co-expressed by stromal elements within these different specialized niches, we identified the pleiotropic matricellular protein secreted protein acidic and rich in cysteine (SPARC). The actual role of stromal SPARC in normal B-cell lymphopoiesis, investigated in Sparc-/- mice and BM chimeras retaining the Sparc-/- genotype in host stroma, demonstrated defective BM and splenic B-cell lymphopoiesis. Moreover, in the Trp53 knockout (KO) lymphoma model, p53-/-/Sparc-/- double-KO mice displayed impaired spontaneous splenic B-cell lymphomagenesis and reduced neoplastic clone BM infiltration in comparison with their p53-/-/Sparc+/+ counterparts. Our results are among the first to demonstrate the existence of common stromal programs regulating both the BM osteoblastic niche and the SLO GC lymphopoietic functions potentially fostering the genesis and progression of B-cell malignancies.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Paola Portararo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Matteo Dugo
- Functional Genomics Core Facility; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Caterina Vitali
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Carla Guarnotta
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Alessandro Gulino
- Tumor Immunology Unit, Department of Health Sciences; University of Palermo; Palermo, Italy
| | - Ilaria Torselli
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Patrizia Casalini
- Molecular Therapies Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| | - Mario P Colombo
- Molecular Immunology Unit; Department of Experimental Oncology and Molecular Medicine; Fondazione IRCCS Istituto Nazionale Tumori; Milan, Italy
| |
Collapse
|
15
|
Ezeh PC, Lauer FT, MacKenzie D, McClain S, Liu KJ, Hudson LG, Gandolfi AJ, Burchiel SW. Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS One 2014; 9:e93920. [PMID: 24714590 PMCID: PMC3979857 DOI: 10.1371/journal.pone.0093920] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/11/2014] [Indexed: 12/02/2022] Open
Abstract
It is known that exposure to As+3 via drinking water causes a disruption of the immune system and significantly compromises the immune response to infection. The purpose of these studies was to assess the effects of As+3 on bone marrow progenitor cell colony formation and the humoral immune response to a T-dependent antigen response (TDAR) in vivo. In a 30 day drinking water study, mice were exposed to 19, 75, or 300 ppb As+3. There was a decrease in bone marrow cell recovery, but not spleen cell recovery at 300 ppb As+3. In the bone marrow, As+3 altered neither the expression of CD34+ and CD38+ cells, markers of early hematopoietic stem cells, nor CD45−/CD105+, markers of mesenchymal stem cells. Spleen cell surface marker CD45 expression on B cells (CD19+), T cells (CD3+), T helper cells (CD4+) and cytotoxic T cells (CD8+), natural killer (NK+), and macrophages (Mac 1+) were not altered by the 30 day in vivo As+3 exposure. Functional assays of CFU-B colony formation showed significant selective suppression (p<0.05) by 300 ppb As+3 exposure, whereas CFU-GM formation was not altered. The TDAR of the spleen cells was significantly suppressed at 75 and 300 ppb As+3. In vitro studies of the bone marrow revealed a selective suppression of CFU-B by 50 nM As+3 in the absence of apparent cytotoxicity. Monomethylarsonous acid (MMA+3) demonstrated a dose-dependent and selective suppression of CFU-B beginning at 5 nM (p<0.05). MMA+3 suppressed CFU-GM formation at 500 nM, a concentration that proved to be nonspecifically cytotoxic. As+5 did not suppress CFU-B and/or CFU-GM in vitro at concentrations up to 500 nM. Collectively, these results demonstrate that As+3 and likely its metabolite (MMA+3) target lymphoid progenitor cells in mouse bone marrow and mature B and T cell activity in the spleen.
Collapse
Affiliation(s)
- Peace C. Ezeh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Debra MacKenzie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Shea McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
16
|
Teague H, Fhaner CJ, Harris M, Duriancik DM, Reid GE, Shaikh SR. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res 2013; 54:3130-8. [PMID: 23986558 DOI: 10.1194/jlr.m042457] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of n-3 polyunsaturated fatty acids (PUFA) on in vivo B-cell immunity is unknown. We first investigated how n-3 PUFAs impacted in vivo B-cell phenotypes and antibody production in the absence and presence of antigen compared with a control diet. Lean mice consuming n-3 PUFAs for 4 weeks displayed increased percentage and frequency of splenic transitional 1 B cells. Upon stimulation with trinitrophenylated-lipopolysaccharide, n-3 PUFAs increased the number of splenic transitional 1/2, follicular, premarginal, and marginal zone B cells. n-3 PUFAs also increased surface, but not circulating, IgM. We next tested the effects of n-3 PUFAs in a model of obesity that is associated with suppressed humoral immunity. An obesogenic diet after ten weeks of feeding, relative to a lean control, had no effect on the frequency of B cells but lowered circulating IgM upon antigen stimulation. Administration of n-3 PUFAs to lean and obese mice increased the percentage and/or frequency of transitional 1 and marginal zone B cells. Furthermore, n-3 PUFAs in lean and obese mice increased circulating IgM relative to controls. Altogether, the data show n-3 PUFAs enhance B cell-mediated immunity in vivo, which has implications for immunocompromised populations, such as the obese.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | | | | | | | | | | |
Collapse
|
17
|
B-Cell Response during Protozoan Parasite Infections. J Parasitol Res 2012; 2012:362131. [PMID: 22315659 PMCID: PMC3270435 DOI: 10.1155/2012/362131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/06/2011] [Indexed: 02/03/2023] Open
Abstract
In this review, we discuss how protozoan parasites alter immature and mature B cell compartment. B1 and marginal zone (MZ) B cells, considered innate like B cells, are activated during protozoan parasite infections, and they generate short lived plasma cells providing a prompt antibody source. In addition, protozoan infections induce massive B cell response with polyclonal activation that leads to hypergammaglobulnemia with serum antibodies specific for the parasites and self and/or non related antigens. To protect themselves, the parasites have evolved unique ways to evade B cell immune responses inducing apoptosis of MZ and conventional mature B cells. As a consequence of the parasite induced-apoptosis, the early IgM response and an already establish humoral immunity are affected during the protozoan parasite infection. Moreover, some trypanosomatides trigger bone marrow immature B cell apoptosis, influencing the generation of new mature B cells. Simultaneously with their ability to release antibodies, B cells produce cytokines/quemokines that influence the characteristic of cellular immune response and consequently the progression of parasite infections.
Collapse
|
18
|
Vossenkämper A, Spencer J. Transitional B cells: how well are the checkpoints for specificity understood? Arch Immunol Ther Exp (Warsz) 2011; 59:379-84. [PMID: 21789626 DOI: 10.1007/s00005-011-0135-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
It is crucial for the immune system to minimise the number of circulating mature self-reactive B cells, in order to reduce the potential for the development of autoantibody-related autoimmune diseases. Studies of animal models have identified two major checkpoints that ensure that such cells do not contribute to the naïve B cell repertoire. The first is in the bone marrow as B cells develop and the second is in the spleen; B cells that are released from the bone marrow as transitional B cells go through more stringent selection in the spleen before they develop into mature naïve B cells. Transitional B cells and their maturation have mostly been studied in mice. However, recent studies characterised human transitional B cells and found considerable differences to current models. In this review, we will consider these differences alongside known differences in mouse and human splenic function and ask whether human transitional B cells might develop along a different pathway.
Collapse
Affiliation(s)
- Anna Vossenkämper
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Blizard Institute, UK.
| | | |
Collapse
|
19
|
Perez-Andres M, Paiva B, Nieto WG, Caraux A, Schmitz A, Almeida J, Vogt RF, Marti GE, Rawstron AC, Van Zelm MC, Van Dongen JJM, Johnsen HE, Klein B, Orfao A. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2010; 78 Suppl 1:S47-60. [PMID: 20839338 DOI: 10.1002/cyto.b.20547] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A relatively high number of different subsets of B-cells are generated through the differentiation of early B-cell precursors into mature B-lymphocytes in the bone marrow (BM) and antigen-triggered maturation of germinal center B-cells into memory B-lymphocytes and plasmablasts in lymphoid tissues. These B-cell subpopulations, which are produced in the BM and lymphoid tissues, recirculate through peripheral blood (PB), into different tissues including mucosa and the BM, where long-living plasma cells produce antibodies. These circulating PB B-cells can be classified according to their maturation stage into i) immature/transitional, ii) naïve, and iii) memory B-lymphocytes, and iv) plasmablasts/plasma cells. Additionally, unique subsets of memory B-lymphocytes and plasmablasts/plasma cells can be identified based on their differential expression of unique Ig-heavy chain isotypes (e.g.: IgM, IgD, IgG, IgA). In the present paper, we review recent data reported in the literature about the distribution, immunophenotypic and functional characteristics of these cell subpopulations, as well as their distribution in PB according to age and seasonal changes. Additional information is also provided in this regard based on the study of a population-based cohort of 600 healthy adults aged from 20 to 80 years, recruited in the Salamanca area in western Spain. Detailed knowledge of the distribution and traffic of B-cell subsets through PB mirrors the immune status of an individual subject and it may also contribute to a better understanding of B-cell disorders related to B-cell biology and homeostasis, such as monoclonal B-cell lymphocytosis (MBL).
Collapse
Affiliation(s)
- M Perez-Andres
- Centro de Investigación del Cáncer, University of Salamanca-CSIC, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Salopek D, Grcević D, Katavić V, Kovacić N, Lukić IK, Marusić A. Increased bone resorption and osteopenia are a part of the lymphoproliferative phenotype of mice with systemic over-expression of interleukin-7 gene driven by MHC class II promoter. Immunol Lett 2008; 121:134-9. [PMID: 18992278 DOI: 10.1016/j.imlet.2008.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 10/04/2008] [Indexed: 11/27/2022]
Abstract
Mice with interleukin (IL)-7 transgene under the control of E(alpha) promoter over-express IL-7 in MHC class II-positive cells and develop specific immune phenotype, marked by an increase in CD45R(+) cells in both the bone marrow and peripheral blood. We show that IL-7 transgenic mice have a bone phenotype characterized by an age-related loss of trabecular bone in both axial and long bones. Osteopenia was the result of increased number of active osteoclasts on the surface of trabecular bone. Furthermore, IL-7 transgenic mice showed increased osteoclastic but unchanged osteoblastic potential of the bone marrow in vitro. IL-7 over-expression also created osteoclastogenic microenvironment within the bone marrow which promoted the commitment of precursors towards the osteoclast lineage. These findings are important for immunological disturbances where IL-7 is involved and where alterations in the immune system are accompanied by changes in bone metabolism, such as multiple myeloma, rheumatoid arthritis and postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Daniela Salopek
- Department of Oncology and Nuclear Medicine, Sisters of Mercy University Hospital, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
21
|
Wang H, Pierce LJ, Spangrude GJ. Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T-cell differentiation culture system. Exp Hematol 2007; 34:1730-40. [PMID: 17157170 PMCID: PMC1762031 DOI: 10.1016/j.exphem.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/08/2006] [Accepted: 08/02/2006] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The OP9-DL1 culture system is an in vitro model for T-cell development in which activation of the Notch pathway by Delta-like 1 promotes differentiation of mature T cells from progenitors. The roles of specific cytokines in this culture system have not been well defined, and controversy regarding the role of IL-7 has recently emerged. We examined the roles played by IL-7, Flt3 ligand, and stem cell factor (SCF) in differentiation of adult bone marrow cells in the OP9-DL1 culture system. METHODS Hematopoietic progenitor cells isolated from mouse bone marrow were cultured with OP9 or OP9-DL1 stromal cells and evaluated for T and B lymphocyte differentiation using immunofluorescent staining. RESULTS IL-7 provided both survival/proliferation and differentiation signals in a dose-dependent manner. T-cell development from the CD4/CD8 double-negative (DN) stage to the CD4/CD8 double-positive (DP) stage required IL-7 provided by the stromal cells, while differentiation from the DP to the CD8 single-positive (SP) stage required addition of exogenous IL-7. SCF favored the proliferation of DN lymphoid progenitors and inhibited differentiation to the DP stage in a dose-dependent manner. Conversely, blocking the function of SCF expressed endogenously by OP9-DL1 cells inhibited proliferation of lymphoid progenitors and accelerated T-lineage differentiation. Flt3 ligand promoted proliferation without affecting differentiation. CONCLUSION These results validate the OP9-DL1 model for the analysis of T-cell development from bone marrow-derived progenitor cells, and demonstrate specific roles of SCF, IL-7, and Flt3L in promoting efficient T-lineage differentiation.
Collapse
Affiliation(s)
| | - L. Jeanne Pierce
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | - Gerald J. Spangrude
- Department of Pathology
- Division of Hematology, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
- Corresponding author: Gerald J. Spangrude, Ph.D., University of Utah, Division of Hematology Rm 4C416, 30 N 1900 East, Salt Lake City, UT 84132-2022, voice: (801)-585-5544
| |
Collapse
|
22
|
Acosta-Rodríguez EV, Merino MC, Montes CL, Motrán CC, Gruppi A. Cytokines and chemokines shaping the B-cell compartment. Cytokine Growth Factor Rev 2007; 18:73-83. [PMID: 17336579 DOI: 10.1016/j.cytogfr.2007.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The whole life of a B-cell from a stem cell to a mature plasma cell is governed, among other factors, by cytokines and growth factors in their microenvironment. Remarkable progress in the understanding of the mechanisms of cytokines action on the B-cell compartment was achieved by analysis of gene-targeted mice. The generation of mice deficient for individual cytokines or their receptors has shed light on the in vivo function of cytokines in B-cell responses. This review focuses on the role of cytokines in the development, maturation and differentiation of different B-cell subsets into antibody-secreting cells or memory B-cells.
Collapse
Affiliation(s)
- Eva V Acosta-Rodríguez
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
23
|
Lindsley RC, Thomas M, Srivastava B, Allman D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 2006; 109:2521-8. [PMID: 17105816 DOI: 10.1182/blood-2006-04-018085] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have identified a population of newly formed bone marrow (BM) B cells that shares multiple characteristics with late transitional B cells in the spleen. Both late splenic transitional B cells and cells within this uncharacterized BM population expressed the cell-surface phenotype AA4(+) CD23(+), yet the developmental kinetics and the renewal rate of AA4(+) CD23(+) BM B cells mirrored recently formed BM B cells. Further, unlike the least mature B cells in the BM and spleen, AA4(+) CD23(+) BM B cells expressed the homing receptor CD62L, were dependent on the antiapoptotic cytokine receptor BR3 and the tec family kinase Btk, and proliferated in response to IL-4 plus CD40 stimulation. Finally, frequencies of lambda light chain-positive B cells declined among AA4(+) CD23(+) B cells in both the BM and spleen, suggesting that V-gene selection events correlate with CD23 expression in both compartments. These observations indicate that the first step in B-cell maturation occurs in both the BM and the periphery and suggest that recently formed B cells exit the BM as a heterogeneous pool of immature and semimature B cells.
Collapse
Affiliation(s)
- Robert Coleman Lindsley
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
24
|
de la Fuente MA, Kumar L, Lu B, Geha RS. 3BP2 deficiency impairs the response of B cells, but not T cells, to antigen receptor ligation. Mol Cell Biol 2006; 26:5214-25. [PMID: 16809760 PMCID: PMC1592712 DOI: 10.1128/mcb.00087-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The adapter protein 3BP2 is expressed in lymphocytes; binds to Syk/ZAP-70, Vav, and phospholipase C-gamma (PLC-gamma); and is thought to be important for interleukin-2 gene transcription in T cells. To define the role of 3BP2 in lymphocyte development and function, we generated 3BP2-deficient mice. T-cell development, proliferation, cytokine secretion, and signaling in response to T-cell receptor (TCR) ligation were all normal in 3BP2(-/-) mice. 3BP2(-/-) mice had increased accumulation of pre-B cells in the bone marrow and a block in the progression of transitional B cells in the spleen from the T1 to the T2 stage, but normal numbers of mature B cells. B-cell proliferation, cell cycle progression, PLC-gamma2 phosphorylation, calcium mobilization, NF-ATp dephosphorylation, and Erk and Jnk activation in response to B-cell receptor (BCR) ligation were all impaired. These results suggest that 3BP2 is important for BCR, but not for TCR signaling.
Collapse
Affiliation(s)
- Miguel A de la Fuente
- Division of Immunology, Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Mehr R. Feedback Loops, Reversals and Nonlinearities in Lymphocyte Development. Bull Math Biol 2006; 68:1073-94. [PMID: 16794916 DOI: 10.1007/s11538-006-9124-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/13/2006] [Indexed: 02/06/2023]
Abstract
Systems of differentiating cells are often regarded by experimental biologists as unidirectional processes, in which cells spend a fixed time at each successive developmental stage. However, mathematical modeling has in several cases revealed that differentiating cell systems are more complex than previously believed. For example, non-linear transitions, feedback effects, and even apparent reversals have been suggested by our studies on models for the development of lymphocytes and their receptor repertoires, and are reviewed in this paper. These studies have shown that cell population growth in developing lymphocyte subsets is usually nonlinear, as it depends on the density of cells in each compartment. Additionally, T cell development has been shown to be subject to feedback regulation by mature T cell subsets, and B cell development has been shown to include a phenotypic reflux from an advanced to an earlier developmental stage. The challenges we face in our efforts to understand how the repertoires of these cells are generated and regulated are also discussed here.
Collapse
Affiliation(s)
- Ramit Mehr
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
26
|
Zuniga E, Acosta-Rodriguez E, Merino MC, Montes C, Gruppi A. Depletion of immature B cells during Trypanosoma cruzi infection: involvement of myeloid cells and the cyclooxygenase pathway. Eur J Immunol 2005; 35:1849-58. [PMID: 15864778 DOI: 10.1002/eji.200526005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability of a microorganism to elicit or evade B cell responses represents a determinant factor for the final outcome of an infection. Although pathogens may subvert humoral responses at different stages of B cell development, most studies addressing the impact of an infection on the B cell compartment have focused on mature B cells within peripheral lymphoid organs. Herein, we report that a protozoan infection, i.e. a Trypanosoma cruzi infection, induces a marked loss of immature B cells in the BM, which also compromises recently emigrated B cells in the periphery. The depletion of BM immature B cells is associated with an increased rate of apoptosis mediated by a parasite-indirect mechanism in a Fas/FasL-independent fashion. Finally, we demonstrated that myeloid cells play an important role in B cell depletion, since CD11b(+) BM cells from infected mice secrete a product of the cyclooxygenase pathway that eliminates immature B cells. These results highlight a previously unrecognized maneuver used by a protozoan parasite to disable B cell generation, limiting host defense and favoring its chronic establishment.
Collapse
Affiliation(s)
- Elina Zuniga
- Department of Clinical Biochemistry, School of Chemical Science, National University of Cordoba, Argentina
| | | | | | | | | |
Collapse
|
27
|
Abstract
In man and in mouse, B-cell maturation occurs in steps, first in the bone marrow from hematopoietic precursors to immature/transitional B cells, then in the periphery from transitional to fully mature B cells. Each developmental step is tightly controlled by the expression and function of the B-cell receptor (BCR) and by the ability to interact with the microenvironment. Mature B cells collaborate with T cells in the adaptive immune response, leading to the production of high-affinity antibodies. This response is very accurate, but slow. Immediately after pathogen entry, however, antibodies already present in the serum reinforce the innate immune response and contribute to the first-line defense against infection. Low-affinity natural antibodies are produced by B-1a B cells in the mouse and immunoglobulin M (IgM) memory cells in man. These antibodies represent an immediate protection against all microorganisms and the only one against encapsulated bacteria. B-1a and IgM memory B cells may function as a link between the innate and adaptive immune response and thus perform a primordial B-cell function.
Collapse
|
28
|
Hendriks RW, Middendorp S. The pre-BCR checkpoint as a cell-autonomous proliferation switch. Trends Immunol 2004; 25:249-56. [PMID: 15099565 DOI: 10.1016/j.it.2004.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Amino Acid Motifs
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Carrier Proteins/physiology
- Cell Division/physiology
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Switch Region
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Mice
- Mice, Knockout
- Models, Immunological
- Multienzyme Complexes/physiology
- Phosphoproteins/deficiency
- Phosphoproteins/physiology
- Phosphorylation
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Interleukin-7/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Immunology, Erasmus MC Rotterdam, PO Box 1738, NL-3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
29
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJH, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002; 110:1539-48. [PMID: 12438451 PMCID: PMC151816 DOI: 10.1172/jci16143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Apart from its role in the synthesis of protein and nitric oxide (NO), and in ammonia detoxification, the amino acid arginine exerts an immunosupportive function. We have studied the role of arginine in immune defense mechanisms in the developing postnatal immune system. In suckling mice, arginine is produced in the small intestine. In F/A-2(+/+) transgenic mice, which overexpress arginase in their enterocytes, circulating and tissue arginine concentrations are reduced to 30-35% of controls. In these mice, the development and composition of the T cell compartment did not reveal abnormalities. However, in peripheral lymphoid organs and the small intestine, B cell cellularity and the number and size of Peyer's patches were drastically reduced, and serum IgM levels were significantly decreased. These phenotypes could be traced to an impaired transition from the pro- to pre-B cell stage in the bone marrow. Cytokine receptor levels in the bone marrow were normal. The development of the few peripheral B cells and their proliferative response after in vitro stimulation was normal. The disturbance in B cell maturation was dependent on decreased arginine levels, as this phenotype disappeared upon arginine supplementation and was not seen in NO synthase- or ornithine transcarbamoylase-deficient mice. We conclude that arginine deficiency impairs early B cell maturation.
Collapse
Affiliation(s)
- Wouter J de Jonge
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002. [DOI: 10.1172/jci0216143] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Smith KS, Rhee JW, Cleary ML. Transformation of bone marrow B-cell progenitors by E2a-Hlf requires coexpression of Bcl-2. Mol Cell Biol 2002; 22:7678-87. [PMID: 12370314 PMCID: PMC135651 DOI: 10.1128/mcb.22.21.7678-7688.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 05/28/2002] [Accepted: 07/30/2002] [Indexed: 11/20/2022] Open
Abstract
The chimeric transcription factor E2a-Hlf is an oncoprotein associated with a subset of acute lymphoblastic leukemias of early B-lineage derivation. We employed a retroviral transduction-transplantation approach to evaluate the oncogenic effects of E2a-Hlf on murine B-cell progenitors harvested from adult bone marrow. Expression of E2a-Hlf induced short-lived clusters of primary hematopoietic cells but no long-term growth on preformed bone marrow stromal cell layers comprised of the AC6.21 cell line. Coexpression with Bcl-2, however, resulted in the sustained self-renewal of early preB-I cells that required stromal and interleukin-7 (IL-7) support for growth in vitro. Immortalized cells were unable to induce leukemias after transplantation into nonirradiated syngeneic hosts, unlike the leukemic properties and cytokine independence of preB-I cells transformed by p190(Bcr-Abl) under identical in vitro conditions. However, bone marrow cells expressing E2a-Hlf in combination with Bcl-2, but not E2a-Hlf alone, induced leukemias in irradiated recipients with long latencies, demonstrating both a requirement for suppression of apoptosis and the need for further secondary mutations in leukemia pathogenesis. Coexpression of IL-7 substituted for Bcl-2 to induce the in vitro growth of pre-B cells expressing E2a-Hlf, but leukemic conversion required additional abrogation of undefined stromal requirements and was associated with alterations in the Arf/Mdm2/p53 pathway. Thus, E2a-Hlf enhances the self-renewal of bone marrow B-cell progenitors without inciting a p53 tumor surveillance response or abrogating stromal and cytokine requirements for growth, which are nevertheless abrogated during progression to a leukemogenic phenotype.
Collapse
Affiliation(s)
- Kevin S Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
32
|
Spangrude GJ. Divergent models of lymphoid lineage specification: do clonal assays provide all the answers? Immunol Rev 2002; 187:40-7. [PMID: 12366681 DOI: 10.1034/j.1600-065x.2002.18704.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hematopoietic stem cells that drive blood development in mouse and man have been well characterized in recent years. In contrast, detailed analysis of the next stages of development, the progenitor cells that have begun to differentiate along specific hematopoietic lineages, is now only in its infancy. The process of myeloid differentiation has been relatively accessible to experimental manipulation due to the availability of culture systems able to support the progenitors for myeloid lineages, and the identification of cytokines capable of driving myeloid differentiation. Studies of early lymphoid differentiation, however, have lagged behind. In particular, the characterization of the first progenitors for the lymphoid lineages is far from complete, due mainly to inefficient assay systems for growing these cell lineages in vitro. Two laboratories have published conflicting data regarding the specification of lymphoid lineages in the mouse. Both groups of investigators utilize elegant clonal approaches to characterize progenitor cell subsets. While these experiments define lineage potential in the most rigorous manner possible, the divergent results suggest that clonal assays must be supplemented with more physiologic studies in order to define the actual differentiation pathways that function in vivo.
Collapse
|
33
|
Heltemes LM, Manser T. Level of B cell antigen receptor surface expression influences both positive and negative selection of B cells during primary development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1283-92. [PMID: 12133950 DOI: 10.4049/jimmunol.169.3.1283] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To examine the effect of B cell Ag receptor (BCR) surface density on B cell development, we studied multiple lines of mice containing various copy numbers of an IgH micro delta transgene. The V(H) gene in this transgene encodes multireactive BCRs with low affinity for self Ags. These BCRs promote differentiation to a B cell subpopulation that shares some, but not all of the properties of marginal zone (MZ) B cells. Surface BCR level was found to be related to transgene gene copy number in these mice. In mice containing 1-15 copies of the transgene, elevated surface BCR levels were correlated with increased numbers of B cells in the MZ-like subset. However, in mice containing 20-30 copies of the transgene, massive clonal deletion of B cells was observed in the bone marrow, few B cells populated the spleen, and B cells were essentially absent from the lymph nodes. These data support the idea that autoantigens mediate not only negative, but positive selection of developing B cells as well. More importantly, they illustrate the profound influence of BCR surface density on the extent to which either of these selective processes take place.
Collapse
Affiliation(s)
- Lynn M Heltemes
- Kimmel Cancer Center and Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
34
|
Wienands J, Engels N. Multitasking of Ig-alpha and Ig-beta to regulate B cell antigen receptor function. Int Rev Immunol 2002; 20:679-96. [PMID: 11913945 DOI: 10.3109/08830180109045585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Since their discovery as signaling subunits of the B cell antigen receptor (BCR), Ig-alpha and Ig-beta are discussed to serve either a redundant or distinct function for B cell development, maintenance, and activation. Dependent upon the experimental system that has been used to address this issue, evidence could be provided to support both possibilities. Only recently has it become clear that Ig-alpha and Ig-beta possess a unique signaling identity but that both together are required to orchestrate proper B cell function in vivo. Here we discuss some of the underlying mechanisms that may involve direct coupling to discrete subsets of BCR effector proteins, such as protein tyrosine kinases or the intracellular adaptor SLP-65/BLNK.
Collapse
Affiliation(s)
- J Wienands
- Department of Biochemistry and Molecular Immunology, University of Bielefeld, Germany.
| | | |
Collapse
|
35
|
Cutrona G, Tasso P, Dono M, Roncella S, Ulivi M, Carpaneto EM, Fontana V, Comis M, Morabito F, Spinelli M, Frascella E, Boffa LC, Basso G, Pistoia V, Ferrarini M. CD10 is a marker for cycling cells with propensity to apoptosis in childhood ALL. Br J Cancer 2002; 86:1776-85. [PMID: 12087466 PMCID: PMC2375395 DOI: 10.1038/sj.bjc.6600329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2002] [Accepted: 03/27/2002] [Indexed: 12/04/2022] Open
Abstract
CD10 constitutes a favourable prognostic marker for childhood acute lymphoblastic leukaemia. Since correlations between CD10, cell cycle and apoptotic abilities were demonstrated in various cell types, we investigated whether differences existed in the cycling/apoptotic abilities of CD10-positive and CD10-negative B acute lymphoblastic leukaemia cells. Twenty-eight cases of childhood acute lymphoblastic leukaemia (mean age of 6.8 years) were subdivided into two groups according to high (17 cases, 93.2+/-4.5%, MRFI 211+/-82 CD10-positive cells) or low (11 cases, 11.5+/-6.2%, MRFI 10+/-7 CD10-negative cells) expression of CD10. CD10-positive acute lymphoblastic leukaemia cells were cycling cells with elevated c-myc levels and propensity to apoptosis, whereas CD10-negative acute lymphoblastic leukaemia cells had lower cycling capacities and c-myc levels, and were resistant to apoptosis in vitro. A close correlation between all these properties was demonstrated by the observations that the few CD10-positive cells found in the CD10-negative acute lymphoblastic leukaemia group displayed elevated c-myc and cycling capacities and were apoptosis prone. Moreover, exposure of CD10-positive acute lymphoblastic leukaemia B cells to a peptide nucleic acid anti-gene specific for the second exon of c-myc caused inhibition of c-myc expression and reduced cell cycling and apoptotic abilities as well as decreased CD10 expression.
Collapse
Affiliation(s)
- G Cutrona
- Servizi di Immunologia Clinica, Istituto Nazionale per la Ricerca sul Cancro, IST, Genoa, Italy, and Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Recent results obtained in mice harboring cytoplasmic mutations of Igalpha and/or Igbeta have reinforced the concept that the strength of BCR signaling is important for ensuring appropriate developmental outcomes as well as antigen-specific responses. To establish the optimal signaling intensity and duration, the BCR utilizes positive and negative regulatory molecules. Studies are beginning to reveal how these molecules maintain immunological homeostasis and tolerance.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, and Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, 570-8506, Moriguchi, Japan.
| |
Collapse
|
37
|
Murasawa M, Okada S, Obata S, Hatano M, Moriya H, Tokuhisa T. GL7 defines the cycling stage of pre-B cells in murine bone marrow. Eur J Immunol 2002; 32:291-8. [PMID: 11782020 DOI: 10.1002/1521-4141(200201)32:1<291::aid-immu291>3.0.co;2-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have identified a novel subset of early B lineage cells in the mouse bone marrow (BM) by GL7 expression on cell surface. GL7(+)B220(low) BM cells have a large cell size and are CD43(-to low), CD95(-), Sca-1(-), I-A(low), IgM(-) and IgD(-), suggesting that they are large pre-B cells. These BM cells express lambda5 and VpreB but not terminal deoxytransferase (TdT) and Bcl-2, and approximately 50 % of them are in cell cycle. This fraction was not detected in BM cells of Rag-1-deficient and Scid mice, supporting that GL7(+)B220(low) BM cells belong to fraction C' and D according to Hardy's criteria or to an early large pre-B-II fraction according to Melchers-Rolink's criteria. Furthermore, GL7(+)B220(low) BM cells can differentiate into IgM(+) immature B cells in co-culture with stromal cells. These results suggest that B lymphocytes pass through the GL7(+) pre-B cell stage during differentiation in the BM. Thus, GL7 is the critical marker to define the proliferation stage of large pre-B cells.
Collapse
Affiliation(s)
- Mitsuhiro Murasawa
- Department of Developmental Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Ruiz-Vela A, Serrano F, González MA, Abad JL, Bernad A, Maki M, Martínez-A C. Transplanted long-term cultured pre-BI cells expressing calpastatin are resistant to B cell receptor-induced apoptosis. J Exp Med 2001; 194:247-54. [PMID: 11489944 PMCID: PMC2193469 DOI: 10.1084/jem.194.3.247] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long-term cultured pre-B cells are able to differentiate into immunoglobulin (Ig)M-positive B cells (IgM(+) cells) when transplanted into severe combined immunodeficient (SCID) mice. Based on previous studies, here we report the development of a reconstitution assay in nonobese diabetic/SCID (NOD/SCID) mice using pre-B cells, which allows us to study the role of calpains (calcium-activated endopeptidases) during B cell development as well as in B cell clonal deletion. Using this model, we show that calpastatin (the natural inhibitor of calpains) inhibits B cell receptor-induced apoptosis in IgM(+) cells derived from transplanted mice. We thus hypothesize an important function for calpain in sculpting the B cell repertoire.
Collapse
Affiliation(s)
- A Ruiz-Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Campus de Cantoblanco UAM, E-28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Sandel PC, Gendelman M, Kelsoe G, Monroe JG. Definition of a novel cellular constituent of the bone marrow that regulates the response of immature B cells to B cell antigen receptor engagement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5935-44. [PMID: 11342608 DOI: 10.4049/jimmunol.166.10.5935] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we defined a Thy1(dull) bone marrow-derived cell population that regulated fate decisions by immature B cells after Ag receptor signaling. The microenvironmental signals provided by this cell population were shown to redirect the B cell Ag receptor -induced apoptotic response of immature B cells toward continued recombination-activating gene (RAG) expression and secondary light chain recombination (receptor editing). Neither the identity of the cell responsible for this activity nor its role in immature B cell development in vivo were addressed by these previous studies. Here we show that this protective microenvironmental niche is defined by the presence of a novel Thy1(dull), DX5(pos) cell that can be found in close association with immature B cells in vivo. Depletion of this cell eliminates the anti-apoptotic effect of bone marrow in vitro and leads to a significant decrease in the number and frequency of bone marrow immature B cells in vivo. We propose that, just as the bone marrow environment is essential for the survival and progression of pro-B and pre-B cells through their respective developmental checkpoints, this cellular niche regulates the progression of immature stage B cells through negative selection.
Collapse
Affiliation(s)
- P C Sandel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
40
|
Law S, Maiti D, Palit A, Majumder D, Basu K, Chaudhuri S, Chaudhuri S. Facilitation of functional compartmentalization of bone marrow cells in leukemic mice by biological response modifiers: an immunotherapeutic approach. Immunol Lett 2001; 76:145-52. [PMID: 11306141 DOI: 10.1016/s0165-2478(00)00317-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biological Response Modifiers (BRMs) including interleukin-2 (IL-2), interferon-gamma (IFN-gamma) and sheep erythrocytes (SRBC) protected N,N'-ethylnitrosourea (ENU) induced leukaemic mice. Two cell types from the bone marrow were isolated in density specific gradient representing two distinct compartments, the low density cells being more CD34 positive than the high density group. Investigations with the functional efficacy of such compartments revealed significant improvement of cytotoxic efficacy and phagocytic burst at the high density compartment (HDC) level. The high density compartment was found to be more responsive towards the BRMs compared to the cells of the low density compartment (LDC). It was suggested that use of BRMs in vivo can stimulate a potent functional progenitor compartmentalization in normal as well as leukaemic mice. These observations are expected to help a logistic approach towards combined BRM therapy at the clinical level.
Collapse
Affiliation(s)
- S Law
- Department of Haematology, Immunology Laboratory, School of Tropical Medicine, C.R. Avenue, Calcutta 700 073, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Tumas-Brundage KM, Notidis E, Heltemes L, Zhang X, Wysocki LJ, Manser T. Predominance of a novel splenic B cell population in mice expressing a transgene that encodes multireactive antibodies: support for additional heterogeneity of the B cell compartment. Int Immunol 2001; 13:475-84. [PMID: 11282987 DOI: 10.1093/intimm/13.4.475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We generated IgHmudelta transgenic mice using a V(H) gene that in A/J mice encodes multireactive BCR in the preimmune B cell compartment and is predominantly expressed by a memory B cell subpopulation. Most primary splenic B cells in these mice have a size, cell-surface phenotype and in vitro response profile distinct from mature follicular (B2), marginal zone (MZ) or B1 B cells, but are long-lived and appear to be slowly cycling. They reside in conventional B cell areas of the spleen and mount robust foreign antigen-driven germinal center responses, but do not efficiently differentiate to secretory phenotype. We propose that these qualities result from ongoing, low-avidity BCR-self-ligand interactions and promote entry into the memory pathway. Given these data, and the enormous diversity and characteristic multireactivity of the preimmune antibody repertoire, we also suggest that it may be more appropriate to view the primary B cell compartment as a continuum of functional and phenotypic 'layers', rather than as a group of discrete B1, B2 and MZ subsets.
Collapse
Affiliation(s)
- K M Tumas-Brundage
- Department of Immunology, National Jewish Medical and Research Center and University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Mojica MP, Perry SS, Searles AE, Elenitoba-Johnson KS, Pierce LJ, Wiesmann A, Slayton WB, Spangrude GJ. Phenotypic distinction and functional characterization of pro-B cells in adult mouse bone marrow. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3042-51. [PMID: 11207254 DOI: 10.4049/jimmunol.166.5.3042] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A lymphoid-committed progenitor population was isolated from mouse bone marrow based on the cell surface phenotype Thy-1.1(neg)Sca-1(pos)c-Kit(low)Lin(neg). These cells were CD43(pos)CD24(pos) on isolation and proliferated in response to the cytokine combination of steel factor, IL-7, and Flt3 ligand. Lymphoid-committed progenitors could be segregated into more primitive and more differentiated subsets based on expression of AA4.1. The more differentiated subset generated only B lymphoid cells in 92% of total colonies assayed, lacked T lineage potential, and expressed Pax5. These studies have therefore defined and isolated a B lymphoid-committed progenitor population at a developmental stage corresponding to the initial expression of CD45R.
Collapse
Affiliation(s)
- M P Mojica
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Senftleben U, Li ZW, Baud V, Karin M. IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 2001; 14:217-30. [PMID: 11290332 DOI: 10.1016/s1074-7613(01)00104-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transcription factor NF-kappaB, whose activation depends on the IKKbeta catalytic subunit of the IkappaB kinase, was assigned with both anti- and proapoptotic functions in T lymphocytes. To critically evaluate these functions, we transferred Ikkbeta-/- or wild-type (wt) fetal liver (FL) stem cells into lethally irradiated mice. Ikkbeta-/- radiation chimeras show thymic rudiments, aberrant lymphoid organs, and absence of T cells. T lymphopoiesis is rescued when Ikkbeta-/- stem cells are cotransferred with wt bone marrow, suggesting that IKKbeta may mediate its lymphopoietic function via extrinsic factors. However, almost normal development of Ikkbeta-/- T cells is observed upon removal of type 1 TNFalpha receptor, indicating that TNFalpha signaling accounts for the absence of Ikkbeta-/- T cells. Indeed, Ikkbeta-/- radiation chimeras exibit elevated circulating TNFalpha, and Ikkbeta-/- thymocytes display increased TNFalpha sensitivity.
Collapse
Affiliation(s)
- U Senftleben
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
45
|
Litzenburger T, Blüthmann H, Morales P, Pham-Dinh D, Dautigny A, Wekerle H, Iglesias A. Development of myelin oligodendrocyte glycoprotein autoreactive transgenic B lymphocytes: receptor editing in vivo after encounter of a self-antigen distinct from myelin oligodendrocyte glycoprotein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5360-6. [PMID: 11046072 DOI: 10.4049/jimmunol.165.9.5360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We explored mechanisms involved in B cell self-tolerance against brain autoantigens in a double-transgenic mouse model carrying the Ig H-chain (introduced by gene replacement) and/or the L-chain kappa (conventional transgenic) of the mAb 8.18C5, specific for the myelin oligodendrocyte glycoprotein (MOG). Previously, we demonstrated that B cells expressing solely the MOG-specific Ig H-chain differentiate without tolerogenic censure. We show now that double-transgenic (THkappa(mog)) B cells expressing transgenic Ig H- and L-chains are subjected to receptor editing. We show that in adult mice carrying both MOG-specific Ig H- and L-chains, the frequency of MOG-binding B cells is not higher than in mice expressing solely the transgenic Ig H-chain. In fact, in THkappa(mog) double-transgenic mice, the transgenic kappa(mog) L-chain was commonly replaced by endogenous L-chains, i.e., by receptor editing. In rearrangement-deficient RAG-2(-) mice, differentiation of THkappa(mog) B cells is blocked at an immature stage (defined by the B220(low)IgM(low)IgD(-) phenotype), reflecting interaction of the autoreactive B cells with a local self-determinant. The tolerogenic structure in the bone marrow is not classical MOG, because back-crossing THkappa(mog) mice into a MOG-deficient genetic background does not lead to an increase in the proportion of MOG-binding B cells. We propose that an as yet undefined self-Ag distinct from MOG cross-reacts with the THkappa(mog) B cell receptor and induces editing of the transgenic kappa(mog) L-chain in early immature B cells without affecting the pathogenic potential of the remaining MOG-specific B cells. This phenomenon represents a particular form of chain-specific split tolerance.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Separation
- Crosses, Genetic
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Epitopes, B-Lymphocyte/biosynthesis
- Epitopes, B-Lymphocyte/genetics
- Gene Expression Regulation/immunology
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Humans
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin kappa-Chains/genetics
- Immunophenotyping
- Infant, Newborn
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Mice, Transgenic
- Myelin Proteins
- Myelin-Associated Glycoprotein/biosynthesis
- Myelin-Associated Glycoprotein/genetics
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Nuclear Proteins
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Self Tolerance/genetics
- Transgenes/immunology
Collapse
Affiliation(s)
- T Litzenburger
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The current structural model of the B cell antigen receptor (BCR) describes it as a symmetric protein complex in which one membrane-bound immunoglobulin molecule (mIg) is noncovalently bound on each side by an Ig-alpha/Ig-beta heterodimer. Using peptide-tagged Ig-alpha proteins, blue native polyacrylamide gel electrophoresis (BN-PAGE), and biosynthetical labeling of B cells, we find that the mIg:Ig-alpha/Ig-beta complex has a stoichiometry of 1:1 and not 1:2. An anti-Flag stimulation of B cells coexpressing Flag-tagged and wild-type Ig-alpha proteins results in the phosphorylation of both Ig-alpha proteins, suggesting that on the surface of living B cells, several BCR monomers are in contact with each other. A BN-PAGE analysis after limited detergent lysis provides further evidence for an oligomeric BCR structure.
Collapse
Affiliation(s)
- W W Schamel
- Department of Molecular Immunology, University of Freiburg and Max Planck Institute for Immunobiology, Germany
| | | |
Collapse
|
47
|
Abstract
Signal transduction by the BCR is critical for progression through developmental checkpoints as well as for immune responses. Recent results obtained in mice deficient either in an adaptor molecule, BLNK (alternatively named SLP-65 or BASH), or in phosphatidylinositol 3-kinase have revealed similar - though not identical - phenotypes to those of Btk(-/-) mice, suggesting a functional link between BLNK, Btk and phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Moriguchi, 570-8506, Japan. kurosaki@mxr. mesh.ne.jp
| |
Collapse
|