1
|
Vogg L, Winkler TH. Nurturing the phenotype: Environmental signals and transcriptional regulation of intestinal γδ T cells. Eur J Immunol 2024; 54:e2451076. [PMID: 39136644 DOI: 10.1002/eji.202451076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 11/08/2024]
Abstract
The intestinal epithelium harbours a unique lymphocyte population, the intraepithelial lymphocytes (IELs). A large fraction of IELs is represented by γδ T cells. Their role in epithelial homeostasis and immune response is well documented, but a conclusive view of their developmental pathway is still missing. In this review, we discuss the existing literature as well as recent advances regarding the tissue adaptation of γδ IELs, both for the characteristic cytotoxic subset and the newly described noncytotoxic subset. We particularly highlight the environmental cues and the transcriptional regulation that equip γδ T cells with their IEL phenotype.
Collapse
Affiliation(s)
- Lisa Vogg
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Lockhart A, Mucida D, Bilate AM. Intraepithelial Lymphocytes of the Intestine. Annu Rev Immunol 2024; 42:289-316. [PMID: 38277691 PMCID: PMC11608099 DOI: 10.1146/annurev-immunol-090222-100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
3
|
Didriksen BJ, Eshleman EM, Alenghat T. Epithelial regulation of microbiota-immune cell dynamics. Mucosal Immunol 2024; 17:303-313. [PMID: 38428738 PMCID: PMC11412483 DOI: 10.1016/j.mucimm.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The mammalian gastrointestinal tract hosts a diverse community of trillions of microorganisms, collectively termed the microbiota, which play a fundamental role in regulating tissue physiology and immunity. Recent studies have sought to dissect the cellular and molecular mechanisms mediating communication between the microbiota and host immune system. Epithelial cells line the intestine and form an initial barrier separating the microbiota from underlying immune cells, and disruption of epithelial function has been associated with various conditions ranging from infection to inflammatory bowel diseases and cancer. From several studies, it is now clear that epithelial cells integrate signals from commensal microbes. Importantly, these non-hematopoietic cells also direct regulatory mechanisms that instruct the recruitment and function of microbiota-sensitive immune cells. In this review, we discuss the central role that has emerged for epithelial cells in orchestrating intestinal immunity and highlight epithelial pathways through which the microbiota can calibrate tissue-intrinsic immune responses.
Collapse
Affiliation(s)
- Bailey J Didriksen
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Hou P, Wang D, Lang H, Yao Y, Zhou J, Zhou M, Zhu J, Yi L, Mi M. Dihydromyricetin Attenuates High-Intensity Exercise-Induced Intestinal Barrier Dysfunction Associated with the Modulation of the Phenotype of Intestinal Intraepithelial Lymphocytes. Int J Mol Sci 2022; 24:ijms24010221. [PMID: 36613665 PMCID: PMC9820179 DOI: 10.3390/ijms24010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exercise-induced gastrointestinal syndrome (GIS) has symptoms commonly induced by strenuous sports. The study aimed to determine the effect of dihydromyricetin (DHM) administration on high-intensity exercise (HIE)-induced intestinal barrier dysfunction and the underlying mechanism involved with intestinal intraepithelial lymphocytes (IELs). METHODS The HIE model was established with male C57BL/6 mice using a motorized treadmill for 2 weeks, and DHM was given once a day by oral gavage. After being sacrificed, the small intestines of the mice were removed immediately. RESULTS We found that DHM administration significantly suppressed HIE-induced intestinal inflammation, improved intestinal barrier integrity, and inhibited a HIE-induced increase in the number of IELs and the frequency of CD8αα+ IELs. Meanwhile, several markers associated with the activation, gut homing and immune functions of CD8αα+ IELs were regulated by DHM. Mechanistically, luciferase reporter assay and molecular docking assay showed DHM could activate the aryl hydrocarbon receptor (AhR). CONCLUSIONS These data indicate that DHM exerts a preventive effect against HIE-induced intestinal barrier dysfunction, which is associated with the modulation of the quantity and phenotype of IELs in the small intestine. The findings provide a foundation to identify novel preventive strategies based on DHM supplementation for HIE-induced GIS.
Collapse
Affiliation(s)
- Pengfei Hou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dawei Wang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hedong Lang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yu Yao
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Long Yi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mantian Mi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- Correspondence: ; Tel.: +86-23-6877-1549
| |
Collapse
|
6
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Lemme-Dumit JM, Song Y, Lwin HW, Hernandez-Chavez C, Sundararajan S, Viscardi RM, Ravel J, Pasetti MF, Ma B. Altered Gut Microbiome and Fecal Immune Phenotype in Early Preterm Infants With Leaky Gut. Front Immunol 2022; 13:815046. [PMID: 35280991 PMCID: PMC8905226 DOI: 10.3389/fimmu.2022.815046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal barrier immaturity, or "leaky gut", is the proximate cause of susceptibility to necrotizing enterocolitis in preterm neonates. Exacerbated intestinal immune responses, gut microbiota dysbiosis, and heightened barrier injury are considered primary triggers of aberrant intestinal maturation in early life. Inordinate host immunity contributes to this process, but the precise elements remain largely uncharacterized, leaving a significant knowledge gap in the biological underpinnings of gut maturation. In this study, we investigated the fecal cytokine profile and gut microbiota in a cohort of 40 early preterm infants <33-weeks-gestation to identify immune markers of intestinal barrier maturation. Three distinct microbiota types were demonstrated to be differentially associated with intestinal permeability (IP), maternal breast milk feeding, and immunological profiles. The Staphylococcus epidermidis- and Enterobacteriaceae-predominant microbiota types were associated with an elevated IP, reduced breast milk feeding, and less defined fecal cytokine profile. On the other hand, a lower IP was associated with increased levels of fecal IL-1α/β and a microbiota type that included a wide array of anaerobes with expanded fermentative capacity. Our study demonstrated the critical role of both immunological and microbiological factors in the early development of intestinal barrier that collectively shape the intestinal microenvironment influencing gut homeostasis and postnatal intestinal maturation in early preterm newborns.
Collapse
Affiliation(s)
- Jose M Lemme-Dumit
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hnin Wai Lwin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Claudia Hernandez-Chavez
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sripriya Sundararajan
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rose M Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F Pasetti
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
9
|
Rivière E, Pascaud J, Mariette X, Nocturne G. Response to «Are Salivary Gland Epithelial Cells the Main Source of Increased IL-7 in Primary Sjögren's Syndrome?» by Caiqun Chen et al. Arthritis Rheumatol 2021; 74:732-733. [PMID: 34694060 DOI: 10.1002/art.42004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Elodie Rivière
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM U1184, Le Kremlin Bicêtre & Fontenay aux Roses.,Rheumatology, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Juliette Pascaud
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM U1184, Le Kremlin Bicêtre & Fontenay aux Roses.,Rheumatology, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Xavier Mariette
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM U1184, Le Kremlin Bicêtre & Fontenay aux Roses.,Rheumatology, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Gaetane Nocturne
- Immunology of viral Infections and Autoimmune Diseases, IDMIT, CEA - Université Paris Sud - INSERM U1184, Le Kremlin Bicêtre & Fontenay aux Roses.,Rheumatology, Université Paris Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
10
|
Hu Y, Fang K, Wang Y, Lu N, Sun H, Zhang C. Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-γ-producing γδ T cells. Cell Mol Immunol 2021; 18:954-968. [PMID: 33692482 PMCID: PMC8115257 DOI: 10.1038/s41423-021-00656-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/13/2021] [Indexed: 11/09/2022] Open
Abstract
γδ T cells are heterogeneous lymphocytes located in various tissues. However, a systematic and comprehensive understanding of the origins of γδ T cell heterogeneity and the extrathymic developmental pathway associated with liver γδ T cells remain largely unsolved. In this study, we performed single-cell RNA sequencing (scRNA-seq) to comprehensively catalog the heterogeneity of γδ T cells derived from murine liver and thymus samples. We revealed the developmental trajectory of γδ T cells and found that the liver contains γδ T cell precursors (pre-γδ T cells). The developmental potential of hepatic γδ T precursor cells was confirmed through in vitro coculture experiments and in vivo adoptive transfer experiments. The adoptive transfer of hematopoietic progenitor Lin-Sca-1+Mac-1+ (LSM) cells from fetal or adult liver samples to sublethally irradiated recipients resulted in the differentiation of liver LSM cells into pre-γδ T cells and interferon-gamma+ (IFN-γ+) but not interleukin-17a+ (IL-17a+) γδ T cells in the liver. Importantly, thymectomized mouse models showed that IFN-γ-producing γδ T cells could originate from liver LSM cells in a thymus-independent manner. These results suggested that liver hematopoietic progenitor LSM cells were able to differentiate into pre-γδ T cells and functionally mature γδ T cells, which implied that these cells are involved in a distinct developmental pathway independent of thymus-derived γδ T cells.
Collapse
Affiliation(s)
- Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Keke Fang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoyu Sun
- Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Rivière E, Pascaud J, Virone A, Dupré A, Ly B, Paoletti A, Seror R, Tchitchek N, Mingueneau M, Smith N, Duffy D, Cassard L, Chaput N, Pengam S, Gauttier V, Poirier N, Mariette X, Nocturne G. Interleukin-7/Interferon Axis Drives T Cell and Salivary Gland Epithelial Cell Interactions in Sjögren's Syndrome. Arthritis Rheumatol 2021; 73:631-640. [PMID: 33058491 DOI: 10.1002/art.41558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Primary Sjögren's syndrome (SS) is characterized by a lymphocytic infiltration of salivary glands (SGs) and the presence of an interferon (IFN) signature. SG epithelial cells (SGECs) play an active role in primary SS pathophysiology. We undertook this study to examine the interactions between SGECs and T cells in primary SS and the role of the interleukin-7 (IL-7)/IFN axis. METHODS Primary cultured SGECs from control subjects and patients with primary SS were stimulated with poly(I-C), IFNα, or IFNγ. T cells were sorted from blood and stimulated with IL-7. CD25 expression was assessed by flow cytometry. SG explants were cultured for 4 days with anti-IL-7 receptor (IL-7R) antagonist antibody (OSE-127), and transcriptomic analysis was performed using the NanoString platform. RESULTS Serum IL-7 level was increased in patients with primary SS compared to controls and was associated with B cell biomarkers. IL7R expression was decreased in T cells from patients with primary SS compared to controls. SGECs stimulated with poly(I-C), IFNα, or IFNγ secreted IL-7. IL-7 stimulation increased the activation of T cells, as well as IFNγ secretion. Transcriptomic analysis of SG explants showed a correlation between IL7 and IFN expression. Finally, explants cultured with anti-IL-7R antibody showed decreased IFN-stimulated gene expression. CONCLUSION These results suggest the presence of an IL-7/IFNγ amplification loop involving SGECs and T cells in primary SS. IL-7 was secreted by SGECs stimulated with type I or type II IFN and, in turn, activated T cells that secrete type II IFN. An anti-IL-7R antibody decreased the IFN signature in T cells in primary SS and could be of therapeutic interest.
Collapse
Affiliation(s)
- Elodie Rivière
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Recherche et Développement, Arthritis Fondation Courtin, Paris, France
| | - Juliette Pascaud
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Alexandre Virone
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Anastasia Dupré
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Bineta Ly
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Audrey Paoletti
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Raphaèle Seror
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Nicolas Tchitchek
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | | | - Nikaïa Smith
- Laboratoire d'Immunobiologie des Cellules Dendritiques, INSERM U1223, Institut Pasteur, Paris, France
| | - Darragh Duffy
- Laboratoire d'Immunobiologie des Cellules Dendritiques, INSERM U1223, Institut Pasteur, Paris, France
| | - Lydie Cassard
- Université Paris-Saclay, Institut Gustave Roussy, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, INSERM, CNRS, Paris, France
| | - Nathalie Chaput
- Université Paris-Saclay, Institut Gustave Roussy, Analyse moléculaire, modélisation et imagerie de la maladie cancéreuse, Laboratoire d'Immunomonitoring en Oncologie, INSERM, CNRS, Paris, France
| | | | | | | | - Xavier Mariette
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| | - Gaetane Nocturne
- Université Paris-Saclay, INSERM, CEA, Centre de Recherche en Immunologie des Infections Virales et des Maladies Auto-Immunes, Hôpital Bicêtre, AP-HP, Paris, France
| |
Collapse
|
12
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
13
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
14
|
Panebra A, Lillehoj HS. Eimeria tenella Elongation Factor-1α (EF-1α) Coadministered with Chicken IL-7 (chIL-7) DNA Vaccine Emulsified in Montanide Gel 01 Adjuvant Enhanced the Immune Response to E. acervulina Infection in Broiler Chickens. Avian Dis 2020; 63:342-350. [PMID: 31251536 DOI: 10.1637/11976-092418-reg.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 11/05/2022]
Abstract
The current study was undertaken to assess the vaccine efficacy of Eimeria tenella EF-1α/chicken IL-7 (chIL-7) DNA vaccine when administered with Montanide Gel 01 adjuvant against live Eimeria acervulina challenge in commercial broiler chickens. The criteria used for the evaluation of vaccine efficacy were weight gain, duodenal lesion scores, oocyst counts, humoral antibody response, and duodenal proinflammatory cytokine gene expression. Chickens vaccinated with EF-1α (100 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed body weight gain similar to the uninfected control and higher oocyst shedding, a lower gut lesion score, and higher proinflammatory cytokine gene expression than did the infected controls. Moreover, chickens vaccinated with chIL-7 (20 µg) in Gel 01 PR adjuvant shed fewer oocysts with reduced gut lesion scores and produced higher levels of anti-EF-1α serum antibody than did the infected control. Chickens vaccinated with EF-1α (50 µg)/chIL-7 (20 µg) in Gel 01 PR adjuvant showed higher weight gains than did the infected control and shed significantly fewer oocysts than the infected control. Furthermore, chickens vaccinated with EF-1α (100 µg) in Gel 01 PR adjuvant demonstrated the lowest anti-EF-1α serum antibody levels. This study demonstrated the beneficial effects of using EF-1α and/or host cytokine chIL-7 DNA vaccine together with Gel 01 PR adjuvant to improve T-cell-mediated effector function in broiler chickens challenged with live E. acervulina.
Collapse
Affiliation(s)
- Alfredo Panebra
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Service, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705,
| |
Collapse
|
15
|
"Hierarchy" and "Holacracy"; A Paradigm of the Hematopoietic System. Cells 2019; 8:cells8101138. [PMID: 31554248 PMCID: PMC6830102 DOI: 10.3390/cells8101138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
The mammalian hematopoietic system has long been viewed as a hierarchical paradigm in which a small number of hematopoietic stem cells (HSCs) are located at the apex. HSCs were traditionally thought to be homogeneous and quiescent in a homeostatic state. However, recent observations, through extramedullary hematopoiesis and clonal assays, have cast doubt on the validity of the conventional interpretation. A key issue is understanding the characteristics of HSCs from different viewpoints, including dynamic physics and social network theory. The aim of this literature review is to propose a new paradigm of our hematopoietic system, in which individual HSCs are actively involved.
Collapse
|
16
|
Zaidi N, Quezada SA, Kuroiwa JM, Zhang L, Jaffee EM, Steinman RM, Wang B. Anti-CTLA-4 synergizes with dendritic cell-targeted vaccine to promote IL-3-dependent CD4 + effector T cell infiltration into murine pancreatic tumors. Ann N Y Acad Sci 2019; 1445:62-73. [PMID: 30945313 PMCID: PMC6557673 DOI: 10.1111/nyas.14049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022]
Abstract
One successful class of cancer immunotherapies, immune checkpoint inhibitory antibodies, disrupts key pathways that regulate immune checkpoints, such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). These agents unleash the potency of antigen-experienced T cells that have already been induced as a consequence of the existing tumor. But only 20% of cancers naturally induce T cells. For most cancers, vaccines are require to induce and mobilize T effector cells (Teffs ) to traffick into tumors. We evaluated the effects of anti-CTLA-4 given in combination with an antigen-specific dendritic cell vaccine on intratumoral Teffs in a murine pancreatic cancer model. The dendritic cell-targeted tumor antigen plus anti-CTLA-4 significantly increased the number of vaccine-induced CD4+ Teffs within the tumor. This increase was accompanied by a reduction in the size of the peripheral CD4+ Teff pool. We also found that IL-3 production by activated CD4+ T cells was significantly increased with this combination. Importantly, the CD4+ Teff response was attenuated in Il3-/- mice, suggesting mediation of the effect by IL-3. Finally, the induced T cell infiltration was associated with activation of the tumor endothelium by T cell-derived IL-3. Our findings collectively provide a new insight into the mechanism driving Teff infiltration and vascular activation in a murine pancreatic cancer model, specifically identifying a new role for IL-3 in the anticancer immune response.
Collapse
Affiliation(s)
- Neeha Zaidi
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center of Immunology and Immune Disease, The Rockefeller University, New York
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg–Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sergio A. Quezada
- University College London Cancer Institute, Research Department of Haematology, London, United Kingdom
| | - Janelle M.Y. Kuroiwa
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center of Immunology and Immune Disease, The Rockefeller University, New York
| | - Li Zhang
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center of Immunology and Immune Disease, The Rockefeller University, New York
| | - Elizabeth M. Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, The Skip Viragh Center for Pancreatic Cancer, The Bloomberg–Kimmel Institute for Cancer Immunotherapy, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center of Immunology and Immune Disease, The Rockefeller University, New York
| | - Bei Wang
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center of Immunology and Immune Disease, The Rockefeller University, New York
| |
Collapse
|
17
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
18
|
Kelly D, Kotliar M, Woo V, Jagannathan S, Whitt J, Moncivaiz J, Aronow BJ, Dubinsky MC, Hyams JS, Markowitz JF, Baldassano RN, Stephens MC, Walters TD, Kugathasan S, Haberman Y, Sundaram N, Rosen MJ, Helmrath M, Karns R, Barski A, Denson LA, Alenghat T. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn's disease. JCI Insight 2018; 3:122104. [PMID: 30232290 PMCID: PMC6237229 DOI: 10.1172/jci.insight.122104] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/19/2022] Open
Abstract
Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients. Genes characterized by significant alterations in histone H3-lysine 4 trimethylation (H3K4me3) showed differential enrichment in pathways involving immunoregulation, cell survival and signaling, and metabolism. Interestingly, a large subset of these genes was epigenetically regulated by microbiota in mice and several microbiota-sensitive epigenetic targets demonstrated altered expression in IBD patients. Remarkably though, a substantial proportion of these genes exhibited H3K4me3 levels that correlated with the severity of intestinal inflammation in IBD, despite lacking significant differential expression. Collectively, these data uncover a previously unrecognized epigenetic profile of IBD that can be primed by commensal microbes and indicate sensitive targets in the epithelium that may underlie how microbiota predispose to subsequent intestinal inflammation and disease.
Collapse
Affiliation(s)
- Daniel Kelly
- Division of Immunobiology, Center for Inflammation and Tolerance
- Division of Gastroenterology, Hepatology, and Nutrition
| | | | - Vivienne Woo
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Jordan Whitt
- Division of Immunobiology, Center for Inflammation and Tolerance
| | | | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center (CCHMC) and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marla C. Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York, USA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut, USA
| | | | - Robert N. Baldassano
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Stephens
- Department of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition
- Sheba Medical Center, Tel Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Michael Helmrath
- Division of Pediatric General and Thoracic Surgery, CCHMC and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Artem Barski
- Divisions of Allergy and Immunology and Human Genetics, and
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology, and Nutrition
| | - Theresa Alenghat
- Division of Immunobiology, Center for Inflammation and Tolerance
| |
Collapse
|
19
|
NAD(P)H Oxidase Activity in the Small Intestine Is Predominantly Found in Enterocytes, Not Professional Phagocytes. Int J Mol Sci 2018; 19:ijms19051365. [PMID: 29734661 PMCID: PMC5983677 DOI: 10.3390/ijms19051365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.
Collapse
|
20
|
Konjar Š, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal Barrier Interactions with Specialized CD8 T Cells. Front Immunol 2017; 8:1281. [PMID: 29075263 PMCID: PMC5641586 DOI: 10.3389/fimmu.2017.01281] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
The trillions of microorganisms that reside in the gastrointestinal tract, essential for nutrient absorption, are kept under control by a single cell barrier and large amounts of immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment supporting microbial colonization and immunological tolerance. A large population of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and external environment and the host tissues, they seem ideally positioned to balance immune tolerance and protection to preserve the fragile intestinal barrier from invasion as well as immunopathology. IELs are a heterogeneous population, with a large innate-like contribution of unknown specificity, intercalated with antigen-specific tissue-resident memory T cells. In this review, we provide a comprehensive overview of IEL physiology and how they interact with the IECs and contribute to immune surveillance to preserve intestinal homeostasis and host-microbial relationships.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Fukatsu K, Moriya T, Ikezawa F, Maeshima Y, Omata J, Yaguchi Y, Okamoto K, Mochizuki H, Hiraide H, Hardy G. Interleukin-7 Dose-Dependently Restores Parenteral Nutrition–Induced Gut-Associated Lymphoid Tissue Cell Loss but Does Not Improve Intestinal Immunoglobulin A Levels. JPEN J Parenter Enteral Nutr 2017; 30:388-93; discussion 393-4. [PMID: 16931606 DOI: 10.1177/0148607106030005388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Without enteral nutrition, the mass and function of gut-associated lymphoid tissue (GALT), a center of systemic mucosal immunity, are reduced. Therefore, new therapeutic methods, designed to preserve mucosal immunity during parenteral nutrition (PN), are needed. Our recent study revealed that exogenous interleukin-7 (IL-7; 1 microg/kg twice a day) restores the GALT cell mass lost during intravenous (IV) PN but does not improve secretory immunoglobulin A (IgA) levels. Herein, we studied the IL-7 dose response to determine the optimal IL-7 dose for recovery of GALT mass and function during IV PN. We hypothesized that a high dose of IL-7 would increase intestinal IgA levels, as well as GALT cell numbers. METHODS Male mice (n = 42) were randomized to chow, IL-7-0, IL-7-0.1, IL-7-0.33, IL-7-1 and IL-7-3.3 groups and underwent jugular vein catheter insertion. The IL-7 groups were fed a standard PN solution and received IV injections of normal saline (IL-7-0), 0.1, 0.33, 1, or 3.3 microg/kg of IL-7 twice a day. The chow group was fed chow ad libitum. After 5 days of treatment, the entire small intestine was harvested and lymphocytes were isolated from Peyer's patches (PPs), intraepithelial (IE) spaces, and the lamina propria (LP). The lymphocytes were counted and phenotypes determined by flow cytometry (alphabetaTCR, gammadeltaTCR, CD4, CD8, B cell). IgA levels of small intestinal washings were also examined using ELISA (enzyme-linked immunoabsorbent assay). RESULTS IL-7 dose-dependently increased total lymphocyte numbers in PPs and the LP. The number of lymphocytes harvested from IE spaces reached a plateau at 1 microg/kg of IL-7. There were no significant differences in any phenotype percentages at any GALT sites among the groups. IgA levels of intestinal washings were significantly higher in the chow group than in any of the IL-7 groups, with similar levels in all IL-7 groups. CONCLUSIONS Exogenous IL-7 dose-dependently reverses PN-induced GALT cell loss, with no major changes in small intestinal IgA levels. IL-7 treatment during PN appears to have beneficial effects on gut immunity, but other therapeutic methods are needed to restore secretory IgA levels.
Collapse
Affiliation(s)
- Kazuhiko Fukatsu
- Division of Basic Traumatology, National Defense Medical College Research Institute, Tokorozawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ito K, Nakajima A, Fukushima Y, Suzuki K, Sakamoto K, Hamazaki Y, Ogasawara K, Minato N, Hattori M. The potential role of Osteopontin in the maintenance of commensal bacteria homeostasis in the intestine. PLoS One 2017; 12:e0173629. [PMID: 28296922 PMCID: PMC5351998 DOI: 10.1371/journal.pone.0173629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/22/2017] [Indexed: 01/28/2023] Open
Abstract
Osteopontin (Opn), a multifunctional extracellular matrix protein, is implicated in the pathogenesis of various inflammatory disorders. Under physiologic conditions, its expression is restricted to certain tissues including bone and kidney tubule. However, cellular activation during disease development induces Opn expression in various immune cells. In this study, using Opn-EGFP knock-in (KI) mice we found that CD8α+ T cells in the intestinal tissues, including Peyer’s patch, lamina propria and epithelium, express Opn under steady state conditions. Therefore, we examined the role of Opn-expressing CD8α+ T cells in intestinal homeostasis. Interestingly, Opn knockout (KO) mice had altered fecal microflora concordant with a reduction of TCRγδ+ intraepithelial lymphocytes (IELs). Consistent with this result, both treatment with anti-Opn blocking antibody and deficiency of Opn resulted in decreased survival of TCRγδ+ and TCRαβ+ IELs. This data suggests that a possibility that Opn may function as a survival factor for IELs in the intestinal tissue. Collectively, these data suggest the possibility that Opn might regulate the homeostasis of intestinal microflora through maintenance of TCRγδ+ IELs, possibly by support of IEL survival.
Collapse
Affiliation(s)
- Koyu Ito
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
- Department of Immunobiology, Institute of Development, Ageing, and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail: (KI); (MH)
| | - Akira Nakajima
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yuji Fukushima
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Keiichiro Suzuki
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Keiko Sakamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Ageing, and Cancer, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Masakazu Hattori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, Japan
- * E-mail: (KI); (MH)
| |
Collapse
|
23
|
Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat Sci Int 2016; 91:301-12. [PMID: 27056578 DOI: 10.1007/s12565-016-0341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s).
Collapse
|
24
|
Qiu Y, Wang W, Xiao W, Yang H. Role of the intestinal cytokine microenvironment in shaping the intraepithelial lymphocyte repertoire. J Leukoc Biol 2015; 97:849-857. [PMID: 25765675 DOI: 10.1189/jlb.3ru1014-465r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Local resident IELs are composed of distinct subsets of T cells with potent cytolytic and immunoregulatory capacities. As IELs are located within this unique interface between the core of the body and the outside environment, the specific development and function of intestinal IELs must be tightly regulated. To accomplish this, the cytokine microenvironment of the intestine has evolved sophisticated mechanisms that modulate the phenotype, ontogeny, and function of these cells. In this review, we summarize the evidence demonstrating the origin of certain intestinal cytokines, including IL-7, IL-15, IL-2, TGF-β, and SCF and discuss what influence such cytokines may have on IELs. Moreover, we review data suggesting that the abnormal expression of cytokines that leads to the heightened activation of IELs may also contribute to immunopathological responses or exacerbate inflammatory diseases, such as IBD and celiac disease, or promote cancer development and progression.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
|
26
|
|
27
|
Lysakova-Devine T, O'Farrelly C. Tissue-specific NK cell populations and their origin. J Leukoc Biol 2014; 96:981-90. [DOI: 10.1189/jlb.1ru0514-241r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
28
|
Qiu Y, Yang Y, Yang H. The unique surface molecules on intestinal intraepithelial lymphocytes: from tethering to recognizing. Dig Dis Sci 2014; 59:520-9. [PMID: 24248415 DOI: 10.1007/s10620-013-2933-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/23/2013] [Indexed: 12/12/2022]
Abstract
Interspersed among epithelial cells (ECs), intraepithelial lymphocytes (IELs) might be important constituents of the physiological and immunological barriers of the intestinal epithelial layer. IELs are composed of memory-effector T cell subtypes bearing the T cell receptor-γδ (TCRγδ) and TCRαβ. The intimate cell adhesion molecules- and tight junction proteins-mediated biological interactions between IELs and ECs ensure that IELs can reside within the intraepithelial compartment and survey large areas of the villus epithelium. As sentinels in this critical interface, IELs express TCRs that recognize antigenic peptides presented by conventional major histocompatibility complex (MHC) molecules or by non-classical MHC molecules. Moreover, IELs monitor for stressed or damaged ECs to mediate pathological responses and maintain intestinal homeostasis. In this review, we address how IELs reside within the epithelium and exert their sentinel functions.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Chongqing, 400037, China,
| | | | | |
Collapse
|
29
|
Battersby AJ, Gibbons DL. The gut mucosal immune system in the neonatal period. Pediatr Allergy Immunol 2013; 24:414-21. [PMID: 23682966 DOI: 10.1111/pai.12079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 12/19/2022]
Abstract
Invasive sepsis in the newborn period is a major cause of childhood morbidity and mortality worldwide. The infant immune system undoubtedly differs intrinsically from the mature adult immune system. Current understanding is that the newborn infant immune system displays a range of competencies and is developing rather than deficient. The infant gut mucosal immune system is complex and displays a plethora of phenotypic and functional irregularities that may be clinically important. Various factors affect and modulate the infant gut mucosal immune system: components of the intestinal barrier, the infant gut microbiome, nutrition and the maternal-infant hybrid immune system. Elucidation of the phenotypic distribution of immune cells, their functional significance and the mucosa-specific pathways used by these cells is essential to the future of research in the field of infant immunology.
Collapse
Affiliation(s)
- Anna J Battersby
- Academic Department of Paediatrics, Imperial College London, London, UK.
| | | |
Collapse
|
30
|
Shitara S, Hara T, Liang B, Wagatsuma K, Zuklys S, Holländer GA, Nakase H, Chiba T, Tani-ichi S, Ikuta K. IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRγδ+ intraepithelial lymphocytes. THE JOURNAL OF IMMUNOLOGY 2013; 190:6173-9. [PMID: 23686483 DOI: 10.4049/jimmunol.1202573] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
IL-7 is a cytokine essential for T cell development and survival. However, the local function of IL-7 produced by thymic epithelial cells (TECs) is poorly understood. To address this question, we generated IL-7-floxed mice and crossed them with FoxN1 promoter-driven Cre (FoxN1-Cre) mice to establish knockout mice conditionally deficient for the expression of IL-7 by TECs. We found that αβ and γδ T cells were significantly reduced in the thymus of IL-7(f/f) FoxN1-Cre mice. Proportion of mature single-positive thymocytes was increased. In lymph nodes and the spleen, the numbers of T cells were partially restored in IL-7(f/f) FoxN1-Cre mice. In addition, γδ T cells were absent from the fetal thymus and epidermis of IL-7(f/f) FoxN1-Cre mice. Furthermore, TCRγδ(+) intraepithelial lymphocytes (IELs) were significantly decreased in the small intestines of IL-7(f/f) FoxN1-Cre mice. To evaluate the function of IL-7 produced in the intestine, we crossed the IL-7(f/f) mice with villin promoter-driven Cre (Vil-Cre) mice to obtain the mice deficient in IL-7 production from intestinal epithelial cells. We observed that αβ and γδ IELs of IL-7(f/f) Vil-Cre mice were comparable to control mice. Collectively, our results suggest that TEC-derived IL-7 plays a major role in proliferation, survival, and maturation of thymocytes and is indispensable for γδ T cell development. This study also demonstrates that IL-7 produced in the thymus is essential for the development of γδ IELs and indicates the thymic origin of γδ IELs.
Collapse
Affiliation(s)
- Soichiro Shitara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol 2013; 91:204-14. [PMID: 23318659 DOI: 10.1038/icb.2012.80] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal-host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium.
Collapse
|
32
|
Abstract
γδ-T cells represent a small population of immune cells, but play an indispensable role in host defenses against exogenous pathogens, immune surveillance of endogenous pathogenesis and even homeostasis of the immune system. Activation and expansion of γδ-T cells are generally observed in diverse human infectious diseases and correlate with their progression and prognosis. γδ-T cells have both 'innate' and 'adaptive' characteristics in the immune response, and their anti-infection activities are mediated by multiple pathways that are under elaborate regulation by other immune components. In this review, we summarize the current state of the literature and the recent advancements in γδ-T cell-mediated immune responses against common human infectious pathogens. Although further investigation is needed to improve our understanding of the characteristics of different γδ-T cell subpopulations under specific conditions, γδ-T cell-based therapy has great potential for the treatment of infectious diseases.
Collapse
|
33
|
Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13:684-98. [PMID: 22801555 DOI: 10.1038/embor.2012.96] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium--which constitutes the interface between the enteric microbiota and host tissues--actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease.
Collapse
Affiliation(s)
- Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
34
|
Vonarbourg C, Diefenbach A. Multifaceted roles of interleukin-7 signaling for the development and function of innate lymphoid cells. Semin Immunol 2012; 24:165-74. [PMID: 22541512 DOI: 10.1016/j.smim.2012.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/22/2012] [Indexed: 12/20/2022]
Abstract
Recently, additional innate lymphocyte subsets have been identified that express germline encoded immunoreceptors and respond to cytokine cues. Among these, innate lymphoid cells (ILC) at mucosal surfaces are of significant interest because they were found to play important roles for lymphoid organogenesis, tissue homeostasis and repair, for immunity to various infections but also have been involved as disease-promoting cells in models of chronic inflammatory diseases and of autoimmunity. Their functional and transcriptional programs strikingly resemble that of the various T helper cell subsets suggesting that these programs are already pre-formed in the innate immune system and that these may be more conserved than previously appreciated. Interestingly, all ILC subsets express the interleukin 7 receptor α chain and IL-7 signaling has been involved in various aspects of their developmental and functional programs. Here, we will review the role of IL-7 signaling for the differentiation, maintenance and function of two important ILC subsets, lymphoid tissue inducer cells (i.e., RORγt(+) ILC) and natural helper cells (i.e., type 2 ILC). We will also put emphasis on the recently discovered role of IL-7 in controlling plasticity of RORγt(+) ILC.
Collapse
Affiliation(s)
- Cedric Vonarbourg
- Institute of Medical Microbiology & Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, Freiburg, Germany
| | | |
Collapse
|
35
|
Isakov D, Dzutsev A, Berzofsky JA, Belyakov IM. Lack of IL-7 and IL-15 signaling affects interferon-γ production by, more than survival of, small intestinal intraepithelial memory CD8+ T cells. Eur J Immunol 2012; 41:3513-28. [PMID: 21928282 DOI: 10.1002/eji.201141453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival of antigen-specific CD8(+) T cells in peripheral lymphoid organs during viral infection is known to be dependent predominantly on IL-7 and IL-15. However, little is known about a possible influence of tissue environmental factors on this process. To address this question, we studied survival of memory antigen-specific CD8(+) T cells in the small intestine. Here, we show that 2 months after vaccinia virus infection, B8R(20-27) /H2-K(b) tetramer(+) CD8(+) T cells in the small intestinal intraepithelial (SI-IEL) layer are found in mice deficient in IL-15 expression. Moreover, SI-IEL and lamina propria lymphocytes do not express the receptor for IL-7 (IL-7Rα/CD127). In addition, after in vitro stimulation with B8R(20-27) peptide, SI-IEL cells do not produce high amounts of IFN-γ neither at 5 days nor at 2 months postinfection (p.i.). Importantly, the lack of IL-15 was found to shape the functional activity of antigen-specific CD8(+) T cells, by narrowing the CTL avidity repertoire. Taken together, these results reveal that survival factors, as well as the functional activity, of antigen-specific CD8(+) T cells in the SI-IEL compartments may markedly differ from their counterparts in peripheral lymphoid tissues.
Collapse
Affiliation(s)
- Dmitry Isakov
- Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
36
|
Peaudecerf L, Rocha B. Role of the gut as a primary lymphoid organ. Immunol Lett 2011; 140:1-6. [DOI: 10.1016/j.imlet.2011.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022]
|
37
|
Murakami R, Yamada K, Nagafuchi S, Hachimura S, Takahashi T, Kaminogawa S, Totsuka M. Nucleotides enhance the secretion of interleukin 7 from primary-cultured murine intestinal epithelial cells. Cytotechnology 2011; 40:59-65. [PMID: 19003105 DOI: 10.1023/a:1023914105151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous studies showed that dietary nucleotides fed to mice enhanced the secretion of interleukin 7 (IL-7) and transforming growth factor beta (TGF-beta) from intestinal epithelial cells (IECs). To explore whether nucleotides influence IECs directly to enhance the secretion of the cytokines or not, the effects of nucleotides added in vitro on the cytokine secretion from primary-cultured murine IECs were examined. When the mixture of nucleotide 5'-monophosphates (CMP, GMP, IMP, and UMP) or individual nucleotide 5'-monophosphates were added to the primary culture of IECs derived from BALB/c mice, the secretion of IL-7, but not that of TGF-beta, was increased significantly. Addition of nucleotides to the culture did not alter the number of the IECs. Secretion of IL-6 and granulocyte-macrophage colony-stimulating factor, which are known to be secreted from IECs, was not enhanced by the addition of nucleotides. These results demonstrate that nucleotides can affect IECs directly to enhance the secretion of IL-7, and suggest that the increased secretion of TGF-beta from IECs by dietary nucleotides was due to indirect effects of the nucleotides, which may affect intestinal microflora or cells other than IECs that in turn influence the cytokine secretion of IECs.
Collapse
Affiliation(s)
- Ryuji Murakami
- Department of Applied Biological Chemistry, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Nagafuchi S, Totsuka M, Hachimura S, Goto M, Takahashi T, Yajima T, Kuwata T, Kaminogawa S. Dietary nucleotides increase the mucosal IgA response and the secretion of transforming growth factor beta from intestinal epithelial cells in mice. Cytotechnology 2011; 40:49-58. [PMID: 19003104 DOI: 10.1023/a:1023962021081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have investigated the influence of dietary nucleotides on the intestinal immune system in ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice (OVA-TCR Tg mice). When mice were supplied with water supplemented with 2% OVA ad libitum, the faecal OVA-specific immunoglobulin A (IgA) level significantly increased in those fed a nucleotide-supplemented diet (NT(+) diet) compared with those fed a nucleotide-free control diet (NT(-) diet). In the NT(+) diet-fed mice, secretion of transforming growth factor beta (TGF-beta), which is an isotype-specific switch factor for IgA, from intestinal epithelial cells (IECs) was significantly increased. Furthermore, an increased proportion of intestinal intraepithelial lymphocytes (IELs) bearing gammadelta TCR (TCRgammadelta(+) IELs) and increased secretion from IECs of interleukin 7 (IL-7), which is essential for the development of TCRgammadelta(+) IELs, were also observed in OVA-TCR-Tg mice fed the NT(+) diet, as we previously demonstrated using BALB/c mice (Nagafuchi et al., Biosci. Biotechnol. Biochem. 64: 1459-65 (2000)). Considering that TCRgammadelta(+) T cells and TGF-beta are important for an induction of the mucosal IgA response, our results suggest that dietary nucleotides augment the mucosal OVA-specific IgA response by increasing the secretion of TGF-beta from IECs and the proportion of TCRgammadelta(+) IELs.
Collapse
Affiliation(s)
- Shinya Nagafuchi
- Nutrition Science Institute, Meiji Dairies Co., Ltd., 540, Naruda, Odawara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Prinz I. Dynamics of the interaction of γδ T cells with their neighbors in vivo. Cell Mol Life Sci 2011; 68:2391-8. [PMID: 21584813 PMCID: PMC11114905 DOI: 10.1007/s00018-011-0701-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/15/2022]
Abstract
γδ T cells are a diverse component of the immune system in humans and mice with presumably important but still largely unknown functions. Understanding the dynamic interaction of γδ T cells with their neighbors should help to understand their physiological role. This review addresses recent advances and strategies to visualize the dynamic interactions of γδ T cells with their neighbors in vivo. Current knowledge regarding the dynamic contacts of tissue resident γδ T cells and epithelial cells, but also of the communication between circulating γδ T cells and DCs, monocytes and FoxP3(+) regulatory T cells is revisited with emphasis on the role of γδ T cell motility.
Collapse
MESH Headings
- Animals
- Cell Communication/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/methods
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany, Prinz.
| |
Collapse
|
40
|
Gammadelta intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc Natl Acad Sci U S A 2011; 108:8743-8. [PMID: 21555560 DOI: 10.1073/pnas.1019574108] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The mammalian gastrointestinal tract harbors thousands of bacterial species that include symbionts as well as potential pathogens. The immune responses that limit access of these bacteria to underlying tissue remain poorly defined. Here we show that γδ intraepithelial lymphocytes (γδ IEL) of the small intestine produce innate antimicrobial factors in response to resident bacterial "pathobionts" that penetrate the intestinal epithelium. γδ IEL activation was dependent on epithelial cell-intrinsic MyD88, suggesting that epithelial cells supply microbe-dependent cues to γδ IEL. Finally, γδ T cells protect against invasion of intestinal tissues by resident bacteria specifically during the first few hours after bacterial encounter, indicating that γδ IEL occupy a unique temporal niche among intestinal immune defenses. Thus, γδ IEL detect the presence of invading bacteria through cross-talk with neighboring epithelial cells and are an essential component of the hierarchy of immune defenses that maintain homeostasis with the intestinal microbiota.
Collapse
|
41
|
The role of the gut as a primary lymphoid organ: CD8αα intraepithelial T lymphocytes in euthymic mice derive from very immature CD44+ thymocyte precursors. Mucosal Immunol 2011; 4:93-101. [PMID: 20737000 DOI: 10.1038/mi.2010.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intestinal CD8αα intraepithelial T lymphocytes (T-IELs) have a key role in mucosal immunity and, unlike other T cells, were proposed to differentiate locally. In apparent contradiction, these cells were also shown to originate from a wave of thymus migrants colonizing the gut in the first 3 weeks after birth. We here identify previously uncharacterized very immature CD4(-)CD8(-)CD3(-)CD44(+)CD25(int) thymocytes, which have not yet rearranged their T-cell antigen receptor (TCR), as having the capacity to leave the thymus, migrate to the blood, colonize the gut, and reconstitute CD8αα T-IEL, and show that this cell set is fully responsible for the generation of the CD8αα T-IEL pool. Thus, although the thymus may be fundamental for efficient T-cell commitment, CD8αα T-IEL' complete TCR rearrangements and TCR-αβ/γδ lineage commitment must occur in the gut. These results demonstrate a major role of the gut environment as a primary lymphoid organ.
Collapse
|
42
|
Shalapour S, Deiser K, Sercan O, Tuckermann J, Minnich K, Willimsky G, Blankenstein T, Hämmerling GJ, Arnold B, Schüler T. Commensal microflora and interferon-gamma promote steady-state interleukin-7 production in vivo. Eur J Immunol 2010; 40:2391-400. [PMID: 20690180 DOI: 10.1002/eji.201040441] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-7 is a major regulator of lymphocyte homeostasis; however, little is known about the mechanisms that regulate IL-7 production. To study Il7 gene regulation in vivo, we generated a novel IL-7-reporter mouse, which allows the non-invasive quantification of Il7 gene activity in live mice and, additionally, the simultaneous activation/inactivation of target genes in IL-7-producing cells. With these IL-7-reporter mice, we identify thymus, skin and intestine as major sources of IL-7 in vivo. Importantly, we show that IFN-gamma and the commensal microflora promote steady-state IL-7 production in the intestine. Furthermore, we demonstrate that the blockade of IFN-gamma signaling in intestinal epithelial cells strongly reduces their IFN-gamma-driven IL-7 production. In summary, our data suggest a feedback loop in which commensal bacteria drive IFN-gamma production by lymphocytes, which in turn promotes epithelial cell IL-7 production and the survival of IL-7-dependent lymphocytes.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing γδ T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:6518-27. [PMID: 20974990 DOI: 10.4049/jimmunol.1002766] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Ag receptors on αβ and γδ T cells differ not only in the nature of the ligands that they recognize but also in their signaling potential. We hypothesized that the differences in αβ- and γδTCR signal transduction were due to differences in the intracellular signaling pathways coupled to these two TCRs. To investigate this, we used transcriptional profiling to identify genes encoding signaling molecules that are differentially expressed in mature αβ and γδ T cell populations. Unexpectedly, we found that B lymphoid kinase (Blk), a Src family kinase expressed primarily in B cells, is expressed in γδ T cells but not in αβ T cells. Analysis of Blk-deficient mice revealed that Blk is required for the development of IL-17-producing γδ T cells. Furthermore, Blk is expressed in lymphoid precursors and, in this capacity, plays a role in regulating thymus cellularity during ontogeny.
Collapse
Affiliation(s)
- Renee M Laird
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
44
|
Jung YW, Rutishauser RL, Joshi NS, Haberman AM, Kaech SM. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. THE JOURNAL OF IMMUNOLOGY 2010; 185:5315-25. [PMID: 20921525 DOI: 10.4049/jimmunol.1001948] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is unclear where within tissues subsets of effector and memory CD8 T cells persist during viral infection and whether their localization affects function and long-term survival. Following lymphocytic choriomeningitis virus infection, we found most killer cell lectin-like receptor G1 (KLRG1)(lo)IL-7R(hi) effector and memory cells, which are long-lived and high proliferative capacity, in the T cell zone of the spleen. In contrast, KLRG1(hi)IL-7R(lo) cells, which appear terminally differentiated and have shorter life spans, were exclusively localized to the red pulp. KLRG1(lo)IL-7R(hi) T cells homed to the T cell zone using pertussis toxin-sensitive chemokine receptors and appeared to contact gp38(+) stromal cells, which produce the chemokines CCL19 and CCL21 and the T cell survival cytokine IL-7. The transcription factors T-bet and B lymphocyte-induced maturation protein-1 controlled effector CD8 T cell splenic migration. Effector CD8 T cells overexpressing T-bet homed to the red pulp, whereas those lacking B lymphocyte-induced maturation protein-1 homed to the T cell zone. Upon memory formation, CD62L(+) memory T cells were predominantly found in the T cell zone, whereas CD62L(-) cells were found in the red pulp. Thus, effector and memory CD8 T cell subset localization within tissues is linked to their differentiation states, and this may identify anatomical niches that regulate their longevity and homeostasis.
Collapse
Affiliation(s)
- Yong Woo Jung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
45
|
Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the 'epimmunome'. Nat Immunol 2010; 11:656-65. [PMID: 20644571 PMCID: PMC2950874 DOI: 10.1038/ni.1905] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frequent microbial and nonmicrobial challenges to epithelial cells trigger discrete pathways, promoting molecular changes such as the secretion of specific cytokines and chemokines and alterations to molecules displayed at the epithelial cell surface. In combination, these molecules impose key decisions on innate and adaptive immune cells. Depending on context, those decisions can be as diverse as those imposed by professional antigen-presenting cells, benefiting the host by balancing immune competence with the avoidance of immunopathology. Nonetheless, this potency of epithelial cells is also consistent with the causal contribution of epithelial dysregulation to myriad inflammatory diseases. This pathogenic axis provides an attractive target for tissue-specific clinical manipulation. In this context, a research goal should be to identify all molecules used by epithelial cells to instruct immune cells. We term this the 'epimmunome'.
Collapse
Affiliation(s)
- Mahima Swamy
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| | - Colin Jamora
- Section of Cell and Developmental Biology, Division of Biological Sciences, Natural Science Building, Room 6311, 9500 Gilman Drive, MC 0380, La Jolla, California 92093, USA
| | - Wendy Havran
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adrian Hayday
- London Research Institute, CRUK, and Peter Gorer Dept of Immunobiology, King’s College London at Guy’s Hospital, London, UK
| |
Collapse
|
46
|
Zufferey C, Erhart D, Saurer L, Mueller C. Production of interferon-gamma by activated T-cell receptor-alphabeta CD8alphabeta intestinal intraepithelial lymphocytes is required and sufficient for disruption of the intestinal barrier integrity. Immunology 2010; 128:351-9. [PMID: 20067535 DOI: 10.1111/j.1365-2567.2009.03110.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maintenance of intestinal epithelial barrier function is of vital importance in preventing uncontrolled influx of antigens and the potentially ensuing inflammatory disorders. Intestinal intraepithelial lymphocytes (IEL) are in intimate contact with epithelial cells and may critically regulate the epithelial barrier integrity. While a preserving impact has been ascribed to the T-cell receptor (TCR)-gammadelta subset of IEL, IEL have also been shown to attenuate the barrier function. The present study sought to clarify the effects of IEL by specifically investigating the influence of the TCR-alphabeta CD8alphabeta and TCR-alphabeta CD8alphaalpha subsets of IEL on the intestinal epithelial barrier integrity. To this end, an in vitro coculture system of the murine intestinal crypt-derived cell-line mIC(cl2) and syngeneic ex vivo isolated IEL was employed. Epithelial integrity was assessed by analysis of transepithelial resistance (TER) and paracellular flux of fluorescein isothiocyanate-conjugated (FITC-) dextran. The TCR-alphabeta CD8alphaalpha IEL and resting TCR-alphabeta CD8alphabeta IEL did not affect TER of mIC(cl2) or flux of FITC-dextran. In contrast, activated TCR-alphabeta CD8alphabeta IEL clearly disrupted the integrity of the mIC(cl2) monolayer. No disrupting effect was seen with activated TCR-alphabeta CD8alphabeta IEL from interferon-gamma knockout mice. These findings demonstrate that secretion of interferon-gamma by activated TCR-alphabeta CD8alphabeta IEL is strictly required and also sufficient for disrupting the intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Christel Zufferey
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
47
|
Yang H, Feng Y, Sun X, Teitelbaum DH. Enteral versus parenteral nutrition: effect on intestinal barrier function. Ann N Y Acad Sci 2009; 1165:338-46. [PMID: 19538325 DOI: 10.1111/j.1749-6632.2009.04026.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Total parenteral nutrition (TPN), or the complete absence of enteral nutrients, is commonly used in a clinical setting. However, a major consequence of TPN administration is the development of mucosal atrophy and a loss of epithelial barrier function (EBF); and this loss may lead to an increase in clinical infections and septicemia. Our laboratory has investigated the mechanism of this TPN-associated loss of EBF using a mouse model. We have demonstrated that the mucosal lymphoid population significantly changes with TPN, and leads to a rise in interferon gamma (IFN-gamma) and decline in interleukin-10 (IL-10) expression-both of which contribute to the loss of EBF. Associated with these cytokine changes is a dramatic decline in the expression of tight junction and adherens junction proteins. This article discusses the potential mechanisms responsible for these changes, and potential strategies to alleviate this loss in EBF.
Collapse
Affiliation(s)
- Hua Yang
- Department of Surgery, the University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
48
|
Agace WW. T-cell recruitment to the intestinal mucosa. Trends Immunol 2009; 29:514-22. [PMID: 18838302 DOI: 10.1016/j.it.2008.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 01/02/2023]
Abstract
The intestinal epithelium and underlying lamina propria contains large numbers of T cells that play an important role in maintaining intestinal homeostasis and defense against intestinal pathogens. Recent years have seen several significant advances in our understanding of the mechanisms regulating T-cell localization to the intestinal mucosa. For instance, we now know that the small intestine 'imprints' gut homing properties on T cells by inducing the expression of specific integrins and chemokine receptors. Further studies have identified distinct subsets of intestinal dendritic cells that use retinoic acid to generate both gut-tropic and regulatory T cells. As our understanding of the mechanisms regulating the generation of gut tropic T-cell populations evolves, the possibility of targeting these processes for mucosal vaccine development and treatment of intestinal immune pathology become more apparent.
Collapse
|
49
|
Intestinal specific overexpression of interleukin-7 attenuates the alternation of intestinal intraepithelial lymphocytes after total parenteral nutrition administration. Ann Surg 2008; 248:849-56. [PMID: 18948814 DOI: 10.1097/sla.0b013e31818a1522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Total parenteral nutrition (TPN), with the complete removal of enteral nutrition, results in marked changes in intestinal intraepithelial lymphocyte (IEL) function and phenotype. Previous work shows that TPN results in a loss of intestinal epithelial cell-derived interleukin-7 (IL-7), and this loss may play an important role in development of such TPN-associated IEL changes. METHODS To further understand this relation, we generated a transgenic mouse (IL-7), which overexpresses IL-7 specifically in intestinal epithelial cells. We hypothesized that this localized overexpression would attenuate many of the observed TPN-associated IEL changes. RESULTS Our study showed that TPN administration led to significant changes in IEL phenotype, including a marked decline in the CD8alphabeta+, CD4+, and alphabeta-TCR+ populations. IEL basal proliferation decreased 1.7-fold compared with wild-type TPN mice. TPN administration in wild-type mice resulted in several changes in IEL-derived cytokine expression. IL-7 mice given TPN, however, maintained IEL proliferation, and sustained normal IEL numbers and phenotype. CONCLUSIONS We conclude that specific intestinal IL-7 overexpression significantly attenuated many IEL changes in phenotype and function after TPN administration. These findings suggest a mechanism by which TPN results in observed IEL changes.
Collapse
|
50
|
Yoshioka A, Okamoto R, Oshima S, Akiyama J, Tsuchiya K, Nakamura T, Kanai T, Watanabe M. Flagellin stimulation suppresses IL-7 secretion of intestinal epithelial cells. Cytokine 2008; 44:57-64. [DOI: 10.1016/j.cyto.2008.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/07/2008] [Accepted: 06/12/2008] [Indexed: 01/12/2023]
|