1
|
Ignatova TN, Chaitin HJ, Kukekov NV, Suslov ON, Dulatova GI, Hanafy KA, Vrionis FD. Gliomagenesis is orchestrated by the Oct3/4 regulatory network. J Neurosurg Sci 2024; 68:148-156. [PMID: 34342203 DOI: 10.23736/s0390-5616.21.05437-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by developmental hierarchical phenotypic heterogeneity, therapy resistance and recurrent growth. Neural stem cells (NSCs) from human central nervous system (CNS), and glioblastoma stem cells from patient-derived GBM (pdGSC) samples were cultured in both 2D well-plate and 3D monoclonal neurosphere culture system (pdMNCS). The pdMNCS model shows promise to establish a relevant 3D-tumor environment that maintains GBM cells in the stem cell phase within suspended neurospheres. METHODS Utilizing the pdMNCS, we examined GBM cell-lines for a wide spectrum of developmental cancer stem cell markers, including the early blastocyst inner-cell mass (ICM)-specific Nanog, Oct3/4,B, and CD133. RESULTS We observed that MNCS epigenotype is recapitulated using gliomasphere-derived cells. CD133, the marker of GSC is robustly expressed in 3D-gliomaspheres and localized within the plasma membrane compartment. Conversely, gliomasphere cultures grown in conventional 2D culture quickly lost CD133 expression, indicating its variable expression is dependent on cell-culture conditions. Incomplete differentiation of cytoskeleton microtubules and intermediate filaments (IFs) of patient derived cells, similar to commercially available GBM cell lines, was seen. Subsequently, in order to determine whether Oct3/4 it was necessary for CD133 expression and cancer stemness, we transfected 2D and 3D culture with siRNA against Oct3/4 and found a significant reduction in gliomasphere formation. CONCLUSIONS These results suggest that expression of Oct3/4,A- and CD133 suppress differentiation of GSCs.
Collapse
Affiliation(s)
- Tatyana N Ignatova
- Department of Neurosurgery, University of Tennessee, Health Science Center, Memphis, TN, USA
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA
| | - Hersh J Chaitin
- College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Nickolay V Kukekov
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Oleg N Suslov
- McKnight Brain Institute, Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Galina I Dulatova
- Department of Neurosurgery, University of Tennessee, Health Science Center, Memphis, TN, USA
| | - Khalid A Hanafy
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA
| | - Frank D Vrionis
- Marcus Neuroscience Institute, Boca Raton Regional Hospital and Florida Atlantic University, Boca Raton, FL, USA -
| |
Collapse
|
2
|
Yang Z, Xiang Q, Nicholas J. Direct and biologically significant interactions of human herpesvirus 8 interferon regulatory factor 1 with STAT3 and Janus kinase TYK2. PLoS Pathog 2023; 19:e1011806. [PMID: 37983265 PMCID: PMC10695398 DOI: 10.1371/journal.ppat.1011806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/04/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes four viral interferon regulatory factors (vIRFs) that target cellular IRFs and/or other innate-immune and stress signaling regulators and suppress the cellular response to viral infection and replication. For vIRF-1, cellular protein targets include IRFs, p53, p53-activating ATM kinase, BH3-only proteins, and antiviral signaling effectors MAVS and STING; vIRF-1 inhibits each, with demonstrated or likely promotion of HHV-8 de novo infection and productive replication. Here, we identify direct interactions of vIRF-1 with STAT3 and STAT-activating Janus kinase TYK2 (the latter reported previously by us to be inhibited by vIRF-1) and suppression by vIRF-1 of cytokine-induced STAT3 activation. Suppression of active, phosphorylated STAT3 (pSTAT3) by vIRF-1 was evident in transfected cells and vIRF-1 ablation in lytically-reactivated recombinant-HHV-8-infected cells led to increased levels of pSTAT3. Using a panel of vIRF-1 deletion variants, regions of vIRF-1 required for interactions with STAT3 and TYK2 were identified, which enabled correlation of STAT3 signaling inhibition by vIRF-1 with TYK2 binding, independently of STAT3 interaction. A viral mutant expressing vIRF-1 deletion-variant Δ198-222 refractory for TYK2 interaction and pSTAT3 suppression was severely compromised for productive replication. Conversely, expression of phosphatase-resistant, protractedly-active STAT3 led to impaired HHV-8 replication. Cells infected with HHV-8 mutants expressing STAT3-refractory vIRF-1 deletion variants or depleted of STAT3 displayed reduced vIRF-1 expression, while custom-peptide-promoted STAT3 interaction could effect increased vIRF-1 expression and enhanced virus replication. Taken together, our data identify vIRF-1 targeting and inhibition of TYK2 as a mechanism of STAT3-signaling suppression and critical for HHV-8 productive replication, the importance of specific pSTAT3 levels for replication, positive roles of STAT3 and vIRF-1-STAT3 interaction in vIRF-1 expression, and significant contributions to lytic replication of STAT3 targeting by vIRF-1.
Collapse
Affiliation(s)
- Zunlin Yang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qiwang Xiang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Nicholas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Zhang MQ, Jia X, Cheng CQ, Wang YX, Li YY, Kong LD, Li QQ, Xie F, Yu YL, He YT, Dong QT, Jia ZH, Wang Y, Xu AL. Capsaicin functions as a selective degrader of STAT3 to enhance host resistance to viral infection. Acta Pharmacol Sin 2023; 44:2253-2264. [PMID: 37311796 PMCID: PMC10618195 DOI: 10.1038/s41401-023-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023] Open
Abstract
Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.
Collapse
Affiliation(s)
- Mei-Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cui-Qin Cheng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Xi Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yi-Ying Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling-Dong Kong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qi-Qi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Li Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Ting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiu-Tong Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhan-Hong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - An-Long Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Banerjee P, Gaddam N, Chandler V, Chakraborty S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1400-1414. [PMID: 37355037 DOI: 10.1016/j.ajpath.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
As an organ critically important for targeting and clearing viruses, bacteria, and other foreign material, the liver operates via immune-tolerant, anti-inflammatory mechanisms indispensable to the immune response. Stress and stress-induced factors disrupt the homeostatic balance in the liver, inflicting tissue damage, injury, and remodeling. These factors include oxidative stress (OS) induced by viral infections, environmental toxins, drugs, alcohol, and diet. A recurrent theme seen among stressors common to multiple liver diseases is the induction of mitochondrial dysfunction, increased reactive oxygen species expression, and depletion of ATP. Inflammatory signaling additionally exacerbates the condition, generating a proinflammatory, immunosuppressive microenvironment and activation of apoptotic and necrotic mechanisms that disrupt the integrity of liver morphology. These pathways initiate signaling pathways that significantly contribute to the development of liver steatosis, inflammation, fibrosis, cirrhosis, and liver cancers. In addition, hypoxia and OS directly enhance angiogenesis and lymphangiogenesis in chronic liver diseases. Late-stage consequences of these conditions often narrow the outcomes for liver transplantation or result in death. This review provides a detailed perspective on various stress-induced factors and the specific focus on role of OS in different liver diseases with special emphasis on different molecular mechanisms. It also highlights how resultant changes in the liver vasculature correlate with pathogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Vanessa Chandler
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
5
|
Rokan A, Hernandez JC, Nitiyanandan R, Lin ZY, Chen CL, Machida T, Li M, Khanuja J, Chen ML, Tahara SM, Siddiqi I, Machida K. Gut-derived Endotoxin-TLR4 Signaling Drives MYC-Ig Translocation to Promote Lymphoproliferation through c-JUN and STAT3 Activation. Mol Cancer Res 2023; 21:155-169. [PMID: 36287175 PMCID: PMC9898117 DOI: 10.1158/1541-7786.mcr-19-1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/14/2020] [Accepted: 10/19/2022] [Indexed: 02/06/2023]
Abstract
Synergism between obesity and virus infection promotes the development of B-cell lymphoma. In this study, we tested whether obesity-associated endotoxin release induced activation-induced cytidine deaminase (AID). TLR4 activation in turn caused c-JUN-dependent and STAT3-dependent translocations of MYC loci to suppress transactivation of CD95/FAS. We used viral nucleocapside Core transgenic (Tg) mice fed alcohol Western diet to determine whether oncogenesis arising from obesity and chronic virus infection occurred through TLR4-c-JUN-STAT3 pathways. Our results showed B cell-specific, c-Jun and/or Stat3 disruption reduced the incidence of splenomegaly in these mice. AID-dependent t(8;14) translocation was observed between the Ig promoter and MYC loci. Comparison with human B cells showed MYC-immunoglobulin (Ig) translocations after virus infection with lipopolysaccharide stimulation. Accordingly, human patients with lymphoma with virus infections and obesity showed a 40% incidence of MYC-Ig translocations. Thus, obesity and virus infection promote AID-mediated translocation between the Ig promoter and MYC through the TLR4-c-JUN axis, resulting in lymphoproliferation. Taken together, preventative treatment targeting either c-JUN and/or STAT3 may be effective strategies to prevent tumor development. IMPLICATIONS Obesity increases gut-derived endotoxin which induces Toll-like receptor-mediated MYC-Ig translocation via c-JUN-STAT3, leading to lymphoproliferation.
Collapse
Affiliation(s)
- Ahmed Rokan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Department of Medical Laboratory Sciences (MLS), Prince Sattam Bin Abdulaziz University (PSAU)
| | - Juan Carlos Hernandez
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- California State University Channel Islands, Los Angeles, CA
| | - Rajeshwar Nitiyanandan
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Zi-Ying Lin
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Tatsuya Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Jasleen Khanuja
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Mo Li Chen
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Stanley M. Tahara
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Imran Siddiqi
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA
| |
Collapse
|
6
|
Ren Z, Ding T, He H, Wei Z, Shi R, Deng J. Mechanism of selenomethionine inhibiting of PDCoV replication in LLC-PK1 cells based on STAT3/miR-125b-5p-1/HK2 signaling. Front Immunol 2022; 13:952852. [PMID: 36059492 PMCID: PMC9436478 DOI: 10.3389/fimmu.2022.952852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
There are no licensed therapeutics or vaccines available against porcine delta coronavirus (PDCoV) to eliminate its potential for congenital disease. In the absence of effective treatments, it has led to significant economic losses in the swine industry worldwide. Similar to the current coronavirus disease 2019 (COVID-19) pandemic, PDCoV is trans-species transmissible and there is still a large desert for scientific exploration. We have reported that selenomethionine (SeMet) has potent antiviral activity against PDCoV. Here, we systematically investigated the endogenous immune mechanism of SeMet and found that STAT3/miR-125b-5p-1/HK2 signalling is essential for the exertion of SeMet anti-PDCoV replication function. Meanwhile, HK2, a key rate-limiting enzyme of the glycolytic pathway, was able to control PDCoV replication in LLC-PK1 cells, suggesting a strategy for viruses to evade innate immunity using glucose metabolism pathways. Overall, based on the ability of selenomethionine to control PDCoV infection and transmission, we provide a molecular basis for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongyi He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanyong Wei,
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
8
|
Association Between Chronic Hepatitis C Virus Infection and Esophageal Cancer: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2022; 56:55-63. [PMID: 33780211 DOI: 10.1097/mcg.0000000000001532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is associated with increased risk of hepatobiliary tract cancer. However, whether chronic HCV infection is also associated with elevated risk of other types of cancer is still unknown. This systematic review and meta-analysis was conducted in order to investigate whether chronic HCV infection is positively associated with esophageal cancer. METHODS A systematic review was conducted using Embase and MEDLINE databases from inception to November 2019, with a search strategy that comprised the terms for "hepatitis C virus" and "cancer." Eligible studies were cohort studies consisting of patients with chronic HCV infection and comparators without HCV infection, and followed them for incident esophageal cancer. Hazard risk ratio, incidence rate ratio, relative risk or standardized incidence ratio of this association were extracted from each eligible study along with their 95% confidence intervals and were combined to calculate the pooled effect estimate using the random effect, generic inverse variance method. RESULTS A total of 20,459 articles were identified using this search strategy. After 2 rounds of independent review, 7 studies satisfied the inclusion criteria and were included in the meta-analysis. Chronic HCV infection was significantly associated with a higher incidence of esophageal cancer with the pooled relative risk of 1.61 (95% confidence interval: 1.19-2.17; I2=39%). The funnel plot was relatively symmetric which was not suggestive of publication bias. CONCLUSION This systematic review and meta-analysis demonstrated that there is a modest association between chronic HCV and incident esophageal cancer. However, more studies are needed to investigate the causality of this association.
Collapse
|
9
|
Wang Q, Xin Q, Shang W, Wan W, Xiao G, Zhang LK. Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus. Viruses 2021; 13:v13060976. [PMID: 34070281 PMCID: PMC8225222 DOI: 10.3390/v13060976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses cause chronic and asymptomatic infections in their natural host, rodents, and several arenaviruses cause severe hemorrhagic fever that has a high mortality in infected humans, seriously threatening public health. There are currently no FDA-licensed drugs available against arenaviruses; therefore, it is important to develop novel antiviral strategies to combat them, which would be facilitated by a detailed understanding of the interactions between the viruses and their hosts. To this end, we performed a transcriptomic analysis on cells infected with arenavirus lymphocytic choriomeningitis virus (LCMV), a neglected human pathogen with clinical significance, and found that the signal transducer and activator of transcription 3 (STAT3) signaling pathway was activated. A further investigation indicated that STAT3 could be activated by the RNA-dependent RNA polymerase L protein (Lp) of LCMV. Our functional analysis found that STAT3 cannot affect LCMV multiplication in A549 cells. We also found that STAT3 was activated by the Lp of Mopeia virus and Junin virus, suggesting that this activation may be conserved across certain arenaviruses. Our study explored the interactions between arenaviruses and STAT3, which may help us to better understand the molecular and cell biology of arenaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Xin
- UMR754, Viral Infections and Comparative Pathology, 50 Avenue Tony Garnier, CEDEX 07, 69366 Lyon, France;
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
| | - Weiwei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| |
Collapse
|
10
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Pant A, Dsouza L, Cao S, Peng C, Yang Z. Viral growth factor- and STAT3 signaling-dependent elevation of the TCA cycle intermediate levels during vaccinia virus infection. PLoS Pathog 2021; 17:e1009303. [PMID: 33529218 PMCID: PMC7880457 DOI: 10.1371/journal.ppat.1009303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/12/2021] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
Metabolism is a crucial frontier of host-virus interaction as viruses rely on their host cells to provide nutrients and energy for propagation. Vaccinia virus (VACV) is the prototype poxvirus. It makes intensive demands for energy and macromolecules in order to build hundreds and thousands of viral particles in a single cell within hours of infection. Our comprehensive metabolic profiling reveals profound reprogramming of cellular metabolism by VACV infection, including increased levels of the intermediates of the tri-carboxylic acid (TCA) cycle independent of glutaminolysis. By investigating the level of citrate, the first metabolite of the TCA cycle, we demonstrate that the elevation of citrate depends on VACV-encoded viral growth factor (VGF), a viral homolog of cellular epidermal growth factor. Further, the upregulation of citrate is dependent on STAT3 signaling, which is activated non-canonically at the serine727 upon VACV infection. The STAT3 activation is dependent on VGF, and VGF-dependent EGFR and MAPK signaling. Together, our study reveals a novel mechanism by which VACV manipulates cellular metabolism through a specific viral factor and by selectively activating a series of cellular signaling pathways. Vaccinia virus (VACV) is a large DNA virus with an acute and increasing demand for energy and macromolecules to build hundreds and thousands of viral particles in a single cell within hours of infection. The demand postulates reprogramming of the TCA cycle, as it is the central metabolic hub of a cell that generates metabolites for energy production and macromolecule synthesis. We show that VACV infection reprograms cellular metabolism globally, elevating the TCA cycle intermediate levels and modulating related cell metabolism. The elevation of the TCA cycle intermediates depends on the virus-encoded growth factor that stimulates non-canonical STAT3 signaling during VACV infection. Our results provide the metabolic foundation of viral growth factor to boost VACV infection.
Collapse
Affiliation(s)
- Anil Pant
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Lara Dsouza
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Chen Peng
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
The Dark Side of the Force: When the Immune System Is the Fuel of Tumor Onset. Int J Mol Sci 2021; 22:ijms22031224. [PMID: 33513730 PMCID: PMC7865698 DOI: 10.3390/ijms22031224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
Nowadays, it is well accepted that inflammation is a critical player in cancer, being, in most cases, the main character of the process. Different types of tumor arise from sites of infection or chronic inflammation. This non-resolving inflammation is responsible for tumor development at different levels: it promotes tumor initiation, as well as tumor progression, stimulating both tumor growth and metastasis. Environmental factors, lifestyle and infections are the three main triggers of chronic immune activation that promote or increase the risk of many different cancers. In this review, we focus our attention on tumor onset; in particular, we summarize the knowledge about the cause and the mechanisms behind the inflammation-driven cancer development.
Collapse
|
13
|
Thakuri BKC, Zhang J, Zhao J, Nguyen LN, Nguyen LNT, Schank M, Khanal S, Dang X, Cao D, Lu Z, Wu XY, Jiang Y, El Gazzar M, Ning S, Wang L, Moorman JP, Yao ZQ. HCV-Associated Exosomes Upregulate RUNXOR and RUNX1 Expressions to Promote MDSC Expansion and Suppressive Functions through STAT3-miR124 Axis. Cells 2020; 9:cells9122715. [PMID: 33353065 PMCID: PMC7766103 DOI: 10.3390/cells9122715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA and plays a pivotal role in the differentiation of myeloid cells via targeting runt-related transcription factor 1 (RUNX1). We and others have previously reported that myeloid-derived suppressor cells (MDSCs) expand and inhibit host immune responses during chronic viral infections; however, the mechanisms responsible for MDSC differentiation and suppressive functions, in particular the role of RUNXOR–RUNX1, remain unclear. Here, we demonstrated that RUNXOR and RUNX1 expressions are significantly upregulated and associated with elevated levels of immunosuppressive molecules, such as arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), signal transducer and activator of transcription 3 (STAT3), and reactive oxygen species (ROS) in MDSCs during chronic hepatitis C virus (HCV) infection. Mechanistically, we discovered that HCV-associated exosomes (HCV-Exo) can induce the expressions of RUNXOR and RUNX1, which in turn regulates miR-124 expression via STAT3 signaling, thereby promoting MDSC differentiation and suppressive functions. Importantly, overexpression of RUNXOR in healthy CD33+ myeloid cells promoted differentiation and suppressive functions of MDSCs. Conversely, silencing RUNXOR or RUNX1 expression in HCV-derived CD33+ myeloid cells significantly inhibited their differentiation and expressions of suppressive molecules and improved the function of co-cultured autologous CD4 T cells. Taken together, these results indicate that the RUNXOR–RUNX1–STAT3–miR124 axis enhances the differentiation and suppressive functions of MDSCs and could be a potential target for immunomodulation in conjunction with antiviral therapy during chronic HCV infection.
Collapse
Affiliation(s)
- Bal Krishna Chand Thakuri
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N. T. Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Zeyuan Lu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (B.K.C.T.); (J.Z.); (J.Z.); (L.N.N.); (L.N.T.N.); (M.S.); (S.K.); (X.D.); (D.C.); (Z.L.); (X.Y.W.); (Y.J.); (M.E.G.); (S.N.); (L.W.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +1-423-439-8029; Fax: +1-423-439-7010
| |
Collapse
|
14
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
15
|
Genotypic Regulation of Type I Interferon Induction Pathways by Frameshift (F) Proteins of Hepatitis C Virus. J Virol 2020; 94:JVI.00312-20. [PMID: 32434887 DOI: 10.1128/jvi.00312-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) has evolved mechanisms to evade innate immunity that are leading to chronic infections. The immunological function of the HCV frameshift (F) protein, which is a frameshift product of core coding sequences, has not been well characterized. The HCV F protein is produced during natural HCV infections and is found most commonly in genotype 1 HCV. In this study, we investigated whether the F protein plays a role in type I interferon (IFN) induction pathways. We engineered F expression constructs from core coding sequences of 4 genotypes (1a, 2a, 3a, and 4a) of HCV as well as the sequences which would only be able to produce core proteins. The peptide lengths and amino acids sequences of F proteins are highly variable. We hypothesized that F proteins from different genotypes might control the type I IFN production and response differently. We found that both IFN-beta (IFN-β) promoter activities are significantly higher in genotype 1a F protein (F1a)-expressing cells. Conversely, the IFN-β promoter activities are lower in genotype 2a F (F2a) protein-expressing cells. We also used real-time PCR to confirm IFN-β mRNA expression levels. By generating chimera F proteins, we discovered that the effects of F proteins were determined by the amino acid sequence 40 to 57 of genotype 1a. The regulation of type I IFN induction pathway is related but not limited to the activity of F1a to interact with proteasome subunits and to disturb the proteasome activity. Further molecular mechanisms of how F proteins from different genotypes of HCV control these pathways differently remain to be investigated.IMPORTANCE Although naturally present in HCV infection patient serum, the virological or immunological functions of the HCV F protein, which is a frameshift product of core coding sequences, remain unclear. Here, we report the effects of the HCV F protein between genotypes and discuss a potential explanation for the differential responses to type I IFN-based therapy among patients infected with different genotypes of HCV. Our study provides one step forward to understanding the host response during HCV infection and new insights for the prediction of the outcome of IFN-based therapy in HCV patients.
Collapse
|
16
|
Ghosh S, Chakraborty J, Goswami A, Bhowmik S, Roy S, Ghosh A, Dokania S, Kumari P, Datta S, Chowdhury A, Bhattacharyya SN, Chatterjee R, Banerjee S. A novel microRNA boosts hyper-β-oxidation of fatty acids in liver by impeding CEP350-mediated sequestration of PPARα and thus restricts chronic hepatitis C. RNA Biol 2020; 17:1352-1363. [PMID: 32507013 DOI: 10.1080/15476286.2020.1768353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imbalance in lipid metabolism induces steatosis in liver during Chronic hepatitis C (CHC). Contribution of microRNAs in regulating lipid homoeostasis and liver disease progression is well established using small RNA-transcriptome data. Owing to the complexity in the development of liver diseases, the existence and functional importance of yet undiscovered regulatory miRNAs in disease pathogenesis was explored in this study using the unmapped sequences of the transcriptome data of HCV-HCC liver tissues following miRDeep2.pl pipeline. MicroRNA-c12 derived from the first intron of LGR5 of chromosome 12 was identified as one of the miRNA like sequences retrieved in this analysis that showed human specific origin. Northern blot hybridization has proved its existence in the hepatic cell line. Enrichment of premiR-c12 in dicer-deficient cells and miR-c12 in Ago2-RISC complex clearly suggested that it followed canonical miRNA biogenesis pathway and accomplished its regulatory function. Expression of this miRNA was quite low in CHC tissues than normal liver implying HCV-proteins might be regulating its biogenesis. Promoter scanning and ChIP analysis further revealed that under expression of p53 and hyper-methylation of STAT3 binding site upon HCV infection restricted its expression in CHC tissues. Centrosomal protein 350 (CEP350), which sequestered PPARα, was identified as one of the targets of miR-c12 using Miranda and validated by luciferase assay/western blot analysis. Furthermore, reduced triglyceride accumulation and enhanced PPARα mediated transcription of β-oxidation genes upon restoration of miR-c12 in liver cells suggested its role in lipid catabolism. Thus this study is reporting miR-c12 for the first time and showed its' protective role during chronic HCV infection.
Collapse
Affiliation(s)
- Suchandrima Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Avijit Goswami
- Department of Molecular Genetics, Indian Institute of Chemical Biology , Kolkata, India
| | - Sayantani Bhowmik
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Susree Roy
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Amit Ghosh
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Sakshi Dokania
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Priyanka Kumari
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| | | | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute , Kolkata, Human Genetics Unit, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research , Kolkata, India
| |
Collapse
|
17
|
Tavakolian S, Goudarzi H, Faghihloo E. Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers. Infect Agent Cancer 2020; 15:27. [PMID: 32377232 PMCID: PMC7195796 DOI: 10.1186/s13027-020-00295-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The role of several risk factors, such as pollution, consumption of alcohol, age, sex and obesity in cancer progression is undeniable. Human malignancies are mainly characterized by deregulation of cyclin-dependent kinases (CDK) and cyclin inhibitor kinases (CIK) activities. Viruses express some onco-proteins which could interfere with CDK and CIKs function, and induce some signals to replicate their genome into host's cells. By reviewing some studies about the function of CDK and CIKs in cells infected with oncoviruses, such as HPV, HTLV, HERV, EBV, KSHV, HBV and HCV, we reviewed the mechanisms of different onco-proteins which could deregulate the cell cycle proteins.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Goto K, Roca Suarez AA, Wrensch F, Baumert TF, Lupberger J. Hepatitis C Virus and Hepatocellular Carcinoma: When the Host Loses Its Grip. Int J Mol Sci 2020; 21:ijms21093057. [PMID: 32357520 PMCID: PMC7246584 DOI: 10.3390/ijms21093057] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is a major cause of hepatocellular carcinoma (HCC). Novel treatments with direct-acting antivirals achieve high rates of sustained virologic response; however, the HCC risk remains elevated in cured patients, especially those with advanced liver disease. Long-term HCV infection causes a persistent and accumulating damage of the liver due to a combination of direct and indirect pro-oncogenic mechanisms. This review describes the processes involved in virus-induced disease progression by viral proteins, derailed signaling, immunity, and persistent epigenetic deregulation, which may be instrumental to develop urgently needed prognostic biomarkers and as targets for novel chemopreventive therapies.
Collapse
Affiliation(s)
- Kaku Goto
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Florian Wrensch
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Pôle Hépato-digestif, Institut Hopitalo-Universitaire, F-67000 Strasbourg, France
- Institut Universitaire de France, F-75231 Paris, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| | - Joachim Lupberger
- Université de Strasbourg, F-67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg (IVH), F-67000 Strasbourg, France
- Correspondence: (T.F.B.); (J.L.); Tel.: +33-3-68-85-37-03 (T.F.B. & J.L.); Fax: +33-3-68-85-37-24 (T.F.B. & J.L.)
| |
Collapse
|
19
|
Resham S, Saalim M, Manzoor S, Ahmad H, Bangash TA, Latif A, Jaleel S. Mechanistic study of interaction between IL-22 and HCV core protein in the development of hepatocellular carcinoma among liver transplant recipients. Microb Pathog 2020; 142:104071. [PMID: 32074496 DOI: 10.1016/j.micpath.2020.104071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infects more than 170 million people worldwide that represents a major threat to global public health. Several viruses including HCV have developed mechanisms against the cellular responses essentially "hijacking" the antiviral responses generated against it. Interleukin 22 activated JAK-STAT pathways are responsible for several functions including liver regeneration, antiviral responses and cell cycle regulation. OBJECTIVES Present study aims to un-reveal the speculated role of HCV core protein in perturbing IL-22 mediated JAK-STAT pathway. Principally investigating through interaction with IL-22 and SOCS-3 proteins. PATIENTS AND METHODOLOGY Total 36 liver transplant patients were enrolled in the study. Out of which 24 were found HCV + ve. Immunohistochemistry (IHC) based qualitative expression analysis of IL-22, SOCS-3 and HCV core protein was carried out. Microscopy was performed for detection and visualization of immunostained liver tissues and biopsies. RESULTS Hepatic expression of IL-22, HCV core protein and SOCS-3 showed that SOCS-3 expression levels were considerably high compared to HCV core and IL-22 protein. IL-22's moderate to high expression was found in 70% of the liver transplant patient sample. Total 87% patients showed moderate to high SOCS-3 expression. However, the overall expression of HCV core was stronger in 87% of cirrhotic patients and 14% in HCC patients. Suggesting the presence of HCV core protein clearly impacted the IL-22 mediated cellular signaling (JAK-STAT pathway leading towards hepatocarcinogenesis. CONCLUSION HCV core and IL-22 and SOCS-3 molecules are found to be correlated statistically under this study. Concluded from this study that HCV core protein plays a potential role in diverging the hepatocytes from normal to carcinogenic. One cell signaling path cannot decide, the direct role of a single viral protein in developing viral induced hepatocarcinogenesis. Interpreting the complex network of cell signaling involved in HCC development is impractical to study under single study. That is why step by step unmasking the interactive role of few molecules under single study is the ideal way to resolve the impact of viral proteins on cell signaling. SOCS-3 is mediator for dysregulating IL-22 mediated liver regenerative pathway. Moreover, SOCS-3 and STAT-3 molecules are proposed to be a potential therapeutic target for managing HCC progression.
Collapse
Affiliation(s)
- Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital Lahore, 54000, Punjab, Pakistan
| | - Tariq Ali Bangash
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital Lahore, 54000, Punjab, Pakistan
| | - Amer Latif
- HepatopancreatoBiliary Liver Transplant Unit, Shaikh Zayd Hospital Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayd Hospital Lahore, 54000, Punjab, Pakistan
| |
Collapse
|
20
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Rewiring Host Signaling: Hepatitis C Virus in Liver Pathogenesis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037366. [PMID: 31501266 DOI: 10.1101/cshperspect.a037366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease including metabolic disease, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCV induces and promotes liver disease progression by perturbing a range of survival, proliferative, and metabolic pathways within the proinflammatory cellular microenvironment. The recent breakthrough in antiviral therapy using direct-acting antivirals (DAAs) can cure >90% of HCV patients. However, viral cure cannot fully eliminate the HCC risk, especially in patients with advanced liver disease or comorbidities. HCV induces an epigenetic viral footprint that promotes a pro-oncogenic hepatic signature, which persists after DAA cure. In this review, we summarize the main signaling pathways deregulated by HCV infection, with potential impact on liver pathogenesis. HCV-induced persistent signaling patterns may serve as biomarkers for the stratification of HCV-cured patients at high risk of developing HCC. Moreover, these signaling pathways are potential targets for novel chemopreventive strategies.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France.,Institut Universitaire de France (IUF), 75231 Paris, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.,Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
21
|
Chang WH, Lai AG. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components. Mol Med 2019; 25:46. [PMID: 31684858 PMCID: PMC6829980 DOI: 10.1186/s10020-019-0114-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Since its discovery almost three decades ago, the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway has paved the road for understanding inflammatory and immunity processes related to a wide range of human pathologies including cancer. Several studies have demonstrated the importance of JAK-STAT pathway components in regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. METHODS Focusing on 133 genes involved in JAK-STAT signaling, we investigated genomic, transcriptomic and clinical profiles of over 18,000 patients representing 21 diverse cancer types. We identified a core set of 28 putative gain- or loss-of-function JAK-STAT genes that correlated with survival outcomes using Cox proportional hazards regression and Kaplan-Meier analyses. Differential expression analyses between high- and low-expressing patient groups were performed to evaluate the consequences of JAK-STAT misexpression. RESULTS We found that copy number alterations underpinning transcriptional dysregulation of JAK-STAT pathway genes differ within and between cancer types. Integrated analyses uniting genomic and transcriptomic datasets revealed a core set of JAK-STAT pathway genes that correlated with survival outcomes in brain, renal, lung and endometrial cancers. High JAK-STAT scores were associated with increased mortality rates in brain and renal cancers, but not in lung and endometrial cancers where hyperactive JAK-STAT signaling is a positive prognostic factor. Patients with aberrant JAK-STAT signaling demonstrated pan-cancer molecular features associated with misexpression of genes in other oncogenic pathways (Wnt, MAPK, TGF-β, PPAR and VEGF). Brain and renal tumors with hyperactive JAK-STAT signaling had increased regulatory T cell gene (Treg) expression. A combined model uniting JAK-STAT and Tregs allowed further delineation of risk groups where patients with high JAK-STAT and Treg scores consistently performed the worst. CONCLUSION Providing a pan-cancer perspective of clinically-relevant JAK-STAT alterations, this study could serve as a framework for future research investigating anti-tumor immunity using combination therapy involving JAK-STAT and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
22
|
Clinical impact of serum α-fetoprotein and its relation on changes in liver fibrosis in hepatitis C virus patients receiving direct-acting antivirals. Eur J Gastroenterol Hepatol 2019; 31:1129-1134. [PMID: 30896550 DOI: 10.1097/meg.0000000000001400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND α-Fetoprotein (AFP) is used widely as a serological marker for hepatocellular carcinoma. However, the AFP value is elevated in chronic hepatitis C virus (HCV) patients without hepatocellular carcinoma. Yet, data on the impact of direct-acting antiviral agents (DAAs) therapy on AFP levels after viral eradication are still lacking. AIM The aim of this study was to elucidate the changes in the serum AFP level in chronic hepatitis C patients treated with DAA-based therapy and their relation to response and liver fibrosis parameters. PATIENTS AND METHODS A total of 456 chronic HCV patients who received different DAAs-based treatment regimens were enrolled. Laboratory data including serum AFP, transient elastography values, and fibrosis scores were recorded at baseline and sustained virological response at 24 weeks after treatment (SVR24). The outcome was the changes in the AFP level from baseline to SVR24 and its relation to changes in liver fibrosis parameters at SVR24 using Spearman's rank correlation test. RESULTS Overall, 96.9% of enrolled patients were responders. A statistically significant improvement in serum transaminases, albumin, transient elastography values, and fibrosis scores at SVR24 was reported. The AFP level was significantly decreased from a median (interquartile range) of 6 (3.2-10.8) ng/ml before DAAs to 4 (2.3-6) ng/ml at SVR24 (P < 0.0001). Only 22.6% of patients showed an increase in the AFP level after treatment. On multivariate analysis, the only independent baseline variable associated with an increase in the AFP level after treatment was baseline AFP (odds ratio: 0.95, 95% confidence interval: 0.91-0.99, P = 0.02). There is a significant correlation between changes in AFP and liver fibrosis parameters at SVR24. CONCLUSION DAAs-based regimens are a highly efficient antiviral therapy for chronic hepatitis C patients that resulted in improvements in the serum AFP level.
Collapse
|
23
|
Gal-Tanamy M. Multi-omic Analyses Reveal Complex Interactions Between HCV and Hepatocytes Demonstrating That the Red Queen Is Up and Running. Gastroenterology 2019; 157:300-302. [PMID: 31255661 DOI: 10.1053/j.gastro.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Meital Gal-Tanamy
- Molecular Virology Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
24
|
Convery O, Gargan S, Kickham M, Schroder M, O'Farrelly C, Stevenson NJ. The hepatitis C virus (HCV) protein, p7, suppresses inflammatory responses to tumor necrosis factor (TNF)-α via signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK)-mediated induction of suppressor of cytokine signaling (SOCS)3. FASEB J 2019; 33:8732-8744. [PMID: 31163989 DOI: 10.1096/fj.201800629rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viruses use a spectrum of immune evasion strategies that enable infection and replication. The acute phase of hepatitis C virus (HCV) infection is characterized by nonspecific and often mild clinical symptoms, suggesting an immunosuppressive mechanism that, unless symptomatic liver disease presents, allows the virus to remain largely undetected. We previously reported that HCV induced the regulatory protein suppressor of cytokine signaling (SOCS)3, which inhibited TNF-α-mediated inflammatory responses. However, the mechanism by which HCV up-regulates SOCS3 remains unknown. Here we show that the HCV protein, p7, enhances both SOCS3 mRNA and protein expression. A p7 inhibitor reduced SOCS3 induction, indicating that p7's ion channel activity was required for optimal up-regulation of SOCS3. Short hairpin RNA and chemical inhibition revealed that both the Janus kinase-signal transducer and activator of transcription (JAK-STAT) and MAPK pathways were required for p7-mediated induction of SOCS3. HCV-p7 expression suppressed TNF-α-mediated IκB-α degradation and subsequent NF-κB promoter activity, revealing a new and functional, anti-inflammatory effect of p7. Together, these findings identify a molecular mechanism by which HCV-p7 induces SOCS3 through STAT3 and ERK activation and demonstrate that p7 suppresses proinflammatory responses to TNF-α, possibly explaining the lack of inflammatory symptoms observed during early HCV infection.-Convery, O., Gargan, S., Kickham, M., Schroder, M., O'Farrelly, C., Stevenson, N. J. The hepatitis C virus (HCV) protein, p7, suppresses inflammatory responses to tumor necrosis factor (TNF)-α via signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK)-mediated induction of suppressor of cytokine signaling (SOCS)3.
Collapse
Affiliation(s)
- Orla Convery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Gargan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Xu H, Xu SJ, Xie SJ, Zhang Y, Yang JH, Zhang WQ, Zheng MN, Zhou H, Qu LH. MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. eLife 2019; 8:41159. [PMID: 30735121 PMCID: PMC6389286 DOI: 10.7554/elife.41159] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-122 (miR-122) is the most abundant microRNA in hepatocytes and a central player in liver biology and disease. Herein, we report a previously unknown role for miR-122 in hepatocyte intrinsic innate immunity. Restoration of miR-122 levels in hepatoma cells markedly enhanced the activation of interferons (IFNs) in response to a variety of viral nucleic acids or simulations, especially in response to hepatitis C virus RNA and poly (I:C). Mechanistically, miR-122 downregulated the phosphorylation (Tyr705) of STAT3, thereby removing the negative regulation of STAT3 on IFN-signaling. STAT3 represses IFN expression by inhibiting interferon regulatory factor 1 (IRF1), whereas miR-122 targets MERTK, FGFR1 and IGF1R, three receptor tyrosine kinases (RTKs) that directly promote STAT3 phosphorylation. This work identifies a miR-122–RTKs/STAT3–IRF1–IFNs regulatory circuitry, which may play a pivotal role in regulating hepatocyte innate immunity. These findings renewed our knowledge of miR-122’s function and have important implications for the treatment of hepatitis viruses.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi-Jun Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Qi Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Man-Ni Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
27
|
Zahra M, Azzazy H, Moustafa A. Transcriptional Regulatory Networks in Hepatitis C Virus-induced Hepatocellular Carcinoma. Sci Rep 2018; 8:14234. [PMID: 30250040 PMCID: PMC6155139 DOI: 10.1038/s41598-018-32464-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
Understanding the transcriptional regulatory elements that influence the progression of liver disease in the presence of hepatitis C virus (HCV) infection is critical for the development of diagnostic and therapeutic approaches. Systems biology provides a roadmap by which these elements may be integrated. In this study, a previously published dataset of 124 microarray samples was analyzed in order to determine differentially expressed genes across four tissue types/conditions (normal, cirrhosis, cirrhosis HCC, and HCC). Differentially expressed genes were assessed for their functional clustering and those genes were annotated with their potential transcription factors and miRNAs. Transcriptional regulatory networks were constructed for each pairwise comparison between the 4 tissue types/conditions. Based on our analysis, it is predicted that the disruption in the regulation of transcription factors such as AP-1, PPARγ, and NF-κB could contribute to the liver progression from cirrhosis to steatosis and eventually to HCC. Whereas the condition of the liver digresses, the downregulation of miRNAs' (such as miR-27, Let-7, and miR-106a) expression makes the transition of the liver through each pathological stage more apparent. This preliminary data can be used to guide future experimental work. An understanding of the transcriptional regulatory attributes acts as a road map to help design interference strategies in order to target the key regulators of progression of HCV induced HCC.
Collapse
Affiliation(s)
- Marwa Zahra
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt
| | - Hassan Azzazy
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt. .,Department of Chemistry, The American University in Cairo, School of Sciences & Engineering, New Cairo, 11835, Egypt.
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University, New Cairo, 11835, Egypt.,Department of Biology, The American University in Cairo, New Cairo, 11835, Egypt
| |
Collapse
|
28
|
Chang Z, Wang Y, Zhou X, Long JE. STAT3 roles in viral infection: antiviral or proviral? Future Virol 2018; 13:557-574. [PMID: 32201498 PMCID: PMC7079998 DOI: 10.2217/fvl-2018-0033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translocates into the nucleus and combines with DNA to regulate the expression of target genes involved in cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infections, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However, in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, severe acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Zhangmei Chang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China
| | - Yan Wang
- Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| | - Xin Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| |
Collapse
|
29
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous physiological functions, including the immune response. As pathogens elicit an acute phase response with concerted activation of STAT3, they are confronted with two evolutionary options: either curtail it or employ it. This has important consequences for the host, since abnormal STAT3 function is associated with cancer development and other diseases. This review provides a comprehensive outline of how human viruses cope with STAT3-mediated inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
30
|
Valadkhan S, Fortes P. Regulation of the Interferon Response by lncRNAs in HCV Infection. Front Microbiol 2018; 9:181. [PMID: 29503633 PMCID: PMC5820368 DOI: 10.3389/fmicb.2018.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Saba Valadkhan, Puri Fortes,
| | - Puri Fortes
- Center for Applied Medical Research, Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Saba Valadkhan, Puri Fortes,
| |
Collapse
|
31
|
Pei T, Meng Q, Han J, Sun H, Li L, Song R, Sun B, Pan S, Liang D, Liu L. (-)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma. Oncotarget 2017; 7:43475-43491. [PMID: 27259268 PMCID: PMC5190038 DOI: 10.18632/oncotarget.9782] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 01/07/2023] Open
Abstract
We explored the anti-cancer capacity of (-)-oleocanthal in human hepatocellular carcinoma (HCC). (-)-Oleocanthal inhibited proliferation and cell cycle progression and induced apoptosis in HCC cells in vitro and suppressed tumor growth in an orthotopic HCC model. (-)-Oleocanthal also inhibited HCC cell migration and invasion in vitro and impeded HCC metastasis in an in vivo lung metastasis model. ( )-Oleocanthal acted by inhibiting epithelial-mesenchymal transition (EMT) through downregulation Twist, which is a direct target of STAT3. (-)-Oleocanthal also reduced STAT3 nuclear translocation and DNA binding activity, ultimately downregulating its downstream effectors, including the cell cycle protein Cyclin D1, the anti-apoptotic proteins Bcl-2 and survivin, and the invasion-related protein MMP 2. Overexpression of constitutively active STAT3 partly reversed the anti cancer effects of (-)-oleocanthal, which inhibited STAT3 activation by decreasing the activities of JAK1 and JAK2 and increasing the activity of SHP-1. These data suggest that (-)-oleocanthal may be a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Tiemin Pei
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinghui Meng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihua Han
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haobo Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshi Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Desen Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianxin Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
32
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
33
|
Caccuri F, Giordano F, Barone I, Mazzuca P, Giagulli C, Andò S, Caruso A, Marsico S. HIV-1 matrix protein p17 and its variants promote human triple negative breast cancer cell aggressiveness. Infect Agent Cancer 2017; 12:49. [PMID: 29021819 PMCID: PMC5613317 DOI: 10.1186/s13027-017-0160-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Background The introduction of cART has changed the morbidity and mortality patterns affecting HIV-infected (HIV+) individuals. The risk of breast cancer in HIV+ patients has now approached the general population risk. However, breast cancer has a more aggressive clinical course and poorer outcome in HIV+ patients than in general population, without correlation with the CD4 or virus particles count. These findings suggest a likely influence of HIV-1 proteins on breast cancer aggressiveness and progression. The HIV-1 matrix protein (p17) is expressed in different tissues and organs of successfully cART-treated patients and promotes migration of different cells. Variants of p17 (vp17s), characterized by mutations and amino acid insertions, differently from the prototype p17 (refp17), also promote B-cell proliferation and transformation. Methods Wound-healing assay, matrigel-based invasion assay, and anchorage-independent proliferation assay were employed to compare the biological activity exerted by refp17 and three different vp17s on the triple-negative human breast cancer cell line MDA-MB 231. Intracellular signaling was investigated by western blot analysis. Results Motility and invasiveness increased in cells treated with both refp17 and vp17s compared to untreated cells. The effects of the viral proteins were mediated by binding to the chemokine receptor CXCR2 and activation of the ERK1/2 signaling pathway. However, vp17s promoted MDA-MB 231 cell growth and proliferation in contrast to refp17-treated or not treated cells. Conclusions In the context of the emerging role of the microenvironment in promoting and supporting cancer cell growth and metastatic spreading, here we provide the first evidence that exogenous p17 may play a crucial role in sustaining breast cancer cell migration and invasiveness, whereas some p17 variants may also be involved in cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia , Brescia, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
34
|
Amano R, Yamashita A, Kasai H, Hori T, Miyasato S, Saito S, Yokoe H, Takahashi K, Tanaka T, Otoguro T, Maekawa S, Enomoto N, Tsubuki M, Moriishi K. Cinnamic acid derivatives inhibit hepatitis C virus replication via the induction of oxidative stress. Antiviral Res 2017; 145:123-130. [PMID: 28780423 DOI: 10.1016/j.antiviral.2017.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/02/2017] [Accepted: 07/30/2017] [Indexed: 02/08/2023]
Abstract
Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC50 values of 1.5-8.1 μM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr705 at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705, but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress.
Collapse
Affiliation(s)
- Ryota Amano
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomoka Hori
- Institute of Medical Chemistry, Hoshi University, Tokyo, Japan
| | - Sayoko Miyasato
- Institute of Medical Chemistry, Hoshi University, Tokyo, Japan
| | - Setsu Saito
- Institute of Medical Chemistry, Hoshi University, Tokyo, Japan
| | - Hiromasa Yokoe
- Institute of Medical Chemistry, Hoshi University, Tokyo, Japan
| | | | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Teruhime Otoguro
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | | | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
35
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Zhou JJ, Meng Z, He XY, Cheng D, Ye HL, Deng XG, Chen RF. Hepatitis C virus core protein increases Snail expression and induces epithelial-mesenchymal transition through the signal transducer and activator of transcription 3 pathway in hepatoma cells. Hepatol Res 2017; 47:574-583. [PMID: 27381678 DOI: 10.1111/hepr.12771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 12/07/2022]
Abstract
AIM Aberrant expression of Snail, a mediator of epithelial-mesenchymal transition (EMT), is crucial for cancer invasiveness and metastasis. Although hepatitis C virus (HCV) core protein has been implicated in hepatocarcinogenesis, the relationship between HCV core and Snail expression has not been clarified. METHODS HepG2 and Huh7 stable cell lines were established by transfection with pcDNA-HCVc. HepG2-HCVc and Huh7-HCVc cells were co-administered with AG490. Cell migration and invasiveness were tested. STAT3 and Snail expression was analyzed by Real-time PCR and Western blot. RESULTS We found that HCV core is capable of increasing Snail expression and inducing EMT in hepatoma cells. HCV core-induced Snail expression was accompanied by activation of signal transducer and activator of transcription 3 (STAT3), inhibition of STAT3 abrogated HCV core-induced Snail expression and EMT. Furthermore, chromatin immunoprecipitation showed that phosphorylated STAT3 directly binds to the Snail promoter. CONCLUSION Collectively, these results suggest that HCV core would play a role in hepatocellular carcinoma invasiveness and metastasis by activating the STAT3 pathway, increasing Snail expression and subsequently triggering EMT. These findings would advance the understanding of HCV-mediated invasiveness and metastasis, and might provide a new potential therapeutic target for HCV-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jia-Jia Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhe Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Yu He
- Laboratory of Biomechanics and Physiology, Guangdong Provincial Institute of Sports Science, Guangzhou, Guangdong Province, China
| | - Di Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Hui-Lin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Geng Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Ru-Fu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Kasai Y, Toriguchi K, Hatano E, Nishi K, Ohno M, Yoh T, Fukuyama K, Nishio T, Okuno M, Iwaisako K, Seo S, Taura K, Kurokawa M, Kunichika M, Uemoto S, Nishi E. Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer Sci 2017; 108:910-917. [PMID: 28207963 PMCID: PMC5448622 DOI: 10.1111/cas.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin‐6‐signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non‐tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine‐induced hepatocarcinogenesis was suppressed in heterozygous NRDC‐deficient mice compared to their wild‐type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh‐7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC‐depleted Huh‐7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I‐201) on the growth of Huh‐7 spheroids was reduced in NRDC‐depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.
Collapse
Affiliation(s)
- Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Fukuyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Okuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
38
|
Kim JH, Sung PS, Lee EB, Hur W, Park DJ, Shin EC, Windisch MP, Yoon SK. GRIM-19 Restricts HCV Replication by Attenuating Intracellular Lipid Accumulation. Front Microbiol 2017; 8:576. [PMID: 28443075 PMCID: PMC5387058 DOI: 10.3389/fmicb.2017.00576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Gene-associated with retinoid-interferon-induced mortality 19 (GRIM-19) targets multiple signaling pathways involved in cell death and growth. However, the role of GRIM-19 in the pathogenesis of hepatitis virus infections remains unexplored. Here, we investigated the restrictive effects of GRIM-19 on the replication of hepatitis C virus (HCV). We found that GRIM-19 protein levels were reduced in HCV-infected Huh7 cells and Huh7 cells harboring HCV replicons. Moreover, ectopically expressed GRIM-19 caused a reduction in both intracellular viral RNA levels and secreted viruses in HCVcc-infected cell cultures. The restrictive effect on HCV replication was restored by treatment with siRNA against GRIM-19. Interestingly, GRIM-19 overexpression did not alter the level of phosphorylated STAT3 or its subcellular distribution. Strikingly, forced expression of GRIM-19 attenuated an increase in intracellular lipid droplets after oleic acid (OA) treatment or HCVcc infection. GRIM-19 overexpression abrogated fatty acid-induced upregulation of sterol regulatory element-binding transcription factor-1 (SREBP-1c), resulting in attenuated expression of its target genes such as fatty acid synthase (FAS) and acetyl CoA carboxylase (ACC). Treatment with OA or overexpression of SREBP-1c in GRIM-19-expressing, HCVcc-infected cells restored HCV replication. Our results suggest that GRIM-19 interferes with HCV replication by attenuating intracellular lipid accumulation and therefore is an anti-viral host factor that could be a promising target for HCV treatment.
Collapse
Affiliation(s)
- Jung-Hee Kim
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Pil S Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Eun B Lee
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Wonhee Hur
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Dong J Park
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| | - Marc P Windisch
- Hepatitis Research Laboratory, Discovery Biology Department, Institut Pasteur Korea, Seongnam-siGyeonggi-do, South Korea
| | - Seung K Yoon
- The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, The Catholic University of KoreaSeoul, South Korea
| |
Collapse
|
39
|
Bathige SDNK, Thulasitha WS, Umasuthan N, Jayasinghe JDHE, Wan Q, Nam BH, Lee J. A homolog of teleostean signal transducer and activator of transcription 3 (STAT3) from rock bream, Oplegnathus fasciatus: Structural insights, transcriptional modulation, and subcellular localization. Vet Immunol Immunopathol 2017; 186:29-40. [PMID: 28413047 DOI: 10.1016/j.vetimm.2017.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors in the Janus kinase (JAK)/STAT signaling pathway, and it was previously considered as acute phase response factor. A number of interleukins (ILs) such as IL-5, IL-6, IL-9, IL-10, IL-12, and IL-22 are known to be involved in activation of STAT3. In addition, various growth factors and pathogenic or oxidative stresses mediate the activation of a wide range of functions via STAT3. In this study, a STAT3 homolog was identified and functionally characterized from rock bream (RbSTAT3), Oplegnathus fasciatus. In silico characterization revealed that the RbSTAT3 amino acid sequence shares highly conserved common domain architectural features including N-terminal domain, coiled coil domain, DNA binding domain, linker domain, and Src homology 2 (SH2) domains. In addition, a fairly conserved transcriptional activation domain (TAD) was located at the C-terminus. Comparison of RbSTAT3 with other counterparts revealed higher identities (>90%) with fish orthologs. The genomic sequence of RbSTAT3 was obtained from a bacterial artificial chromosome (BAC) library, and was identified as a multi-exonic gene (24 exons), as found in other vertebrates. Genomic structural comparison and phylogenetic studies have showed that the evolutionary routes of teleostean and non-teleostean vertebrates were distinct. Quantitative real time PCR (qPCR) analysis revealed that the spatial distribution of RbSTAT3 mRNA expression was ubiquitous and highly detectable in blood, heart, and liver tissues. Transcriptional modulation of RbSTAT3 was examined in blood and liver tissues after challenges with bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus (RBIV), and immune stimulants (LPS and poly (I:C)). Significant changes in RbSTAT3 transcription were also observed in response to tissue injury. In addition, the transcriptional up-regulation of RbSTAT3 was detected in rock bream heart cells upon recombinant rock bream IL-10 (rRbIL-10) treatment. Subcellular localization and nuclear translocation of rock bream STAT3 following poly (I:C) treatment were also demonstrated. Taken together, the results of the current study provide important evidence for potential roles of rock bream STAT3 in the immune system and wound healing processes.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - J D H E Jayasinghe
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Qiang Wan
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
40
|
Alhmada Y, Selimovic D, Murad F, Hassan SL, Haikel Y, Megahed M, Hannig M, Hassan M. Hepatitis C virus-associated pruritus: Etiopathogenesis and therapeutic strategies. World J Gastroenterol 2017; 23:743-750. [PMID: 28223719 PMCID: PMC5296191 DOI: 10.3748/wjg.v23.i5.743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023] Open
Abstract
In addition to its contributing role in the development of chronic liver diseases, chronic hepatitis C virus (HCV) infection is associated with extrahepatic manifestations, particularly, cutaneous-based disorders including those with pruritus as a symptom. Pruritus is frequently associated with the development of chronic liver diseases such as cholestasis and chronic viral infection, and the accumulation of bile acids in patients’ sera and tissues as a consequence of liver damage is considered the main cause of pruritus. In addition to their role in dietary lipid absorption, bile acids can trigger the activation of specific receptors, such as the G protein-coupled bile acid receptor (GPBA/ TGR5). These types of receptors are known to play a crucial role in the modulation of the systemic actions of bile acids. TGR5 expression in primary sensory neurons triggers the activation of the transient receptor potential vanilloid 1 (TRPV1) leading to the induction of pruritus by an unknown mechanism. Although the pathologic phenomenon of pruritus is common, there is no uniformly effective therapy available. Understanding the mechanisms regulating the occurrence of pruritus together with the conduction of large-scale clinical and evidence-based studies, may help to create a standard treatment protocol. This review focuses on the etiopathogenesis and treatment strategies of pruritus associated with chronic HCV infection.
Collapse
|
41
|
Yao D, Ruan L, Lu H, Shi H, Xu X. Shrimp STAT was hijacked by white spot syndrome virus immediate-early protein IE1 involved in modulation of viral genes. FISH & SHELLFISH IMMUNOLOGY 2016; 59:268-275. [PMID: 27815197 DOI: 10.1016/j.fsi.2016.10.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/18/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
STATs are a family of transcription factors that regulate a cascade of cellular processes including cell growth, differentiation, apoptosis and immune responses. However, they are usually targeted by viruses to assist infection. In this study, we identified that white spot syndrome virus (WSSV) immediate-early protein IE1 interacted with Litopenaeus vannamei STAT (LvSTAT) and thereby led to its phosphorylation activation. In addition, we demonstrated that LvSTAT could bind to the promoters of the viral immediate-early genes wsv051 and ie1 through STAT-binding motifs in vitro and vivo, allowing the enhancement of their promoters' activities. Moreover, IE1 could promote the transcriptional activation activity of LvSTAT to augment the transcription of wsv051 and ie1. In conclusion, our findings revealed a novel linkage between WSSV IE1 and shrimp STAT, which was a clue to well understand how WSSV adopted the active strategies to modulate the shrimp signaling pathway.
Collapse
Affiliation(s)
- Defu Yao
- School of Life Science, Xiamen University, Xiamen 361005, People's Republic of China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China.
| | - Huasong Lu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, State Oceanic Administration, Key Laboratory of Marine Genetic Resources of Fujian Province, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen 361005, People's Republic of China
| |
Collapse
|
42
|
Pinkham C, An S, Lundberg L, Bansal N, Benedict A, Narayanan A, Kehn-Hall K. The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection. Virology 2016; 496:175-185. [PMID: 27318793 PMCID: PMC4969177 DOI: 10.1016/j.virol.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/27/2022]
Abstract
Rift Valley fever (RVF) is a zoonotic disease that can cause severe illness in humans and livestock, triggering spontaneous abortion in almost 100% of pregnant ruminants. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3) is phosphorylated on its conserved tyrosine residue (Y705) following RVFV infection. This phosphorylation was dependent on a major virulence factor, the viral nonstructural protein NSs. Loss of STAT3 had little effect on viral replication, but rather resulted in cells being more susceptible to RVFV-induced cell death. Phosphorylated STAT3 translocated to the nucleus, coinciding with inhibition of fos, jun, and nr4a2 gene expression, and the presence of STAT3 and NSs at the nr4a2 promoter. NSs was found predominantly in the cytoplasm of STAT3 null cells, indicating that STAT3 influences NSs nuclear localization. Collectively, these data demonstrate that STAT3 functions in a pro-survival capacity through modulation of NSs localization.
Collapse
Affiliation(s)
- Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Soyeon An
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Neha Bansal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Ashwini Benedict
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, United States.
| |
Collapse
|
43
|
Roque Cuéllar MC, García-Lozano JR, Sánchez B, Praena-Fernández JM, Martínez Sierra C, Núñez-Roldán A, Aguilar-Reina J. Lymphomagenesis-related gene expression in B cells from sustained virological responders with occult hepatitis C virus infection. J Viral Hepat 2016; 23:606-13. [PMID: 26946048 DOI: 10.1111/jvh.12526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022]
Abstract
The expression of activation-induced cytidine deaminase, B-aggressive lymphoma, cyclin D1 and serine/threonine kinase 15 genes, among others, is increased in B cells from patients with chronic hepatitis C virus (HCV) infection. It is unknown whether the level of expression of these genes in B cells is increased in patients with hepatitis C who have achieved a sustained virological response (SVR) but who have persistent, detectable HCV RNA, so-called occult infection. Eighty-three patients who achieved and SVR, 27 with detectable HCV and 56 without detectable HCV RNA, 28 chronic hepatitis C patients and 32 healthy controls were studied. RNA was extracted from B cells, and gene expression levels were measured by RT-PCR. Patients with chronic HCV and those who achieved an SVR (with and without persistent low-level HCV RNA) showed a statistically significant higher expression compared to healthy controls, of activation-induced cytidine deaminase (P = 0.004, P < 0.001 and P = 0.002, respectively), B-aggressive lymphoma (P < 0.001, P = 0.001 and P = 0.006) and cyclin D1 (P = 0.026, P = 0.001; P = 0.038). For activation-induced cytidine deaminase patients with an SVR and 'occult infection' had a statistically significantly higher expression level than patients with and SVR without 'occult infection' (P = 0.014). The higher expression levels found for activation-induced cytidine deaminase, together with other genes indicates that these B lymphomagenesis-related genes are upregulated following HCV therapy and this is more marked when HCV can be detected in PBMCs.
Collapse
Affiliation(s)
- M C Roque Cuéllar
- Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - J R García-Lozano
- Department of Immunology, IBIS, University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - B Sánchez
- Department of Immunology, IBIS, University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - J M Praena-Fernández
- Statistics, Methodology and Research Evaluation Unit, Andalusian Public Foundation for Health Research Management in Seville (FISEVI), IBIS, University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - C Martínez Sierra
- Department of Gastroenterology, University Hospital Virgen del Rocio, Seville, Spain
| | - A Núñez-Roldán
- Department of Immunology, IBIS, University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| | - J Aguilar-Reina
- Biomedicine Institute of Seville (IBIS), University Hospital Virgen del Rocio, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
44
|
Vallianou I, Dafou D, Vassilaki N, Mavromara P, Hadzopoulou-Cladaras M. Hepatitis C virus suppresses Hepatocyte Nuclear Factor 4 alpha, a key regulator of hepatocellular carcinoma. Int J Biochem Cell Biol 2016; 78:315-326. [PMID: 27477312 DOI: 10.1016/j.biocel.2016.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Hepatitis C Virus (HCV) infection presents with a disturbed lipid profile and can evolve to hepatic steatosis and hepatocellular carcinoma (HCC). Hepatocyte Nuclear Factor 4 alpha (HNF4α) is the most abundant transcription factor in the liver, a key regulator of hepatic lipid metabolism and a critical determinant of Epithelial to Mesenchymal Transition and hepatic development. We have previously shown that transient inhibition of HNF4α initiates transformation of immortalized hepatocytes through a feedback loop consisting of miR-24, IL6 receptor (IL6R), STAT3, miR-124 and miR-629, suggesting a central role of HNF4α in HCC. However, the role of HNF4α in Hepatitis C Virus (HCV)-related hepatocarcinoma has not been evaluated and remains controversial. In this study, we provide strong evidence suggesting that HCV downregulates HNF4α expression at both transcriptional and translational levels. The observed decrease of HNF4α expression correlated with the downregulation of its downstream targets, HNF1α and MTP. Ectopic overexpression of HCV proteins also exhibited an inhibitory effect on HNF4α levels. The inhibition of HNF4α expression by HCV appeared to be mediated at transcriptional level as HCV proteins suppressed HNF4α gene promoter activity. HCV also up-regulated IL6R, activated STAT3 protein phosphorylation and altered the expression of acute phase genes. Furthermore, as HCV triggered the loss of HNF4α a consequent change of miR-24, miR-629 or miR-124 was observed. Our findings demonstrated that HCV-related HCC could be mediated through HNF4α-microRNA deregulation implying a possible role of HNF4α in HCV hepatocarcinogenesis. HCV inhibition of HNF4α could be sustained to promote HCC.
Collapse
Affiliation(s)
- Ioanna Vallianou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Vassilaki
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Penelope Mavromara
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | - Margarita Hadzopoulou-Cladaras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
45
|
Shao J, Meng Q, Li Y. Theaflavins suppress tumor growth and metastasis via the blockage of the STAT3 pathway in hepatocellular carcinoma. Onco Targets Ther 2016; 9:4265-75. [PMID: 27478384 PMCID: PMC4951064 DOI: 10.2147/ott.s102858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Theaflavins, the major black tea polyphenols, have been reported to exhibit promising antitumor activities in several human cancers. However, the role of theaflavins in hepatocellular carcinoma (HCC) is still unknown. In this study, we found that theaflavins could significantly inhibit proliferation, migration, and invasion, and induce apoptosis in HCC cells in vitro. Furthermore, we found that theaflavins inhibited the growth and metastasis of HCC in an orthotopic model and a lung metastasis model. Immunohistochemical analyses and terminal deoxynucleotidyl transferase dUTP nick end-labeling assays showed that theaflavins could suppress proliferation and induce apoptosis in vivo. Theaflavins also suppressed constitutive and inducible signal transducer and activator of transcription 3 (STAT3) phosphorylation. The downstream proteins regulated by STAT3, including the antiapoptotic proteins (Bcl-2 and Survivin) and the invasion-related proteins (MMP-2, MMP-9), were also downregulated after theaflavins treatment. Theaflavins induced apoptosis by activating the caspase pathway. Together, our results suggest that theaflavins suppress the growth and metastasis of human HCC through the blockage of the STAT3 pathway, and thus may act as potential therapeutic agents for HCC.
Collapse
Affiliation(s)
| | - Qingyan Meng
- Outpatient Department, The Fifth Central Hospital of Tianjin, Tianjin, People's Republic of China
| | | |
Collapse
|
46
|
Li X, Bhaduri-McIntosh S. A Central Role for STAT3 in Gammaherpesvirus-Life Cycle and -Diseases. Front Microbiol 2016; 7:1052. [PMID: 27458446 PMCID: PMC4937026 DOI: 10.3389/fmicb.2016.01052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Having co-evolved with humans, herpesviruses have adapted to exploit the host molecular machinery to ensure viral persistence. The cellular protein Signal Transducer and Activator of Transcription 3 (STAT3) is a leading example. STAT3 is a prominent transcription factor that functions in a variety of physiologic processes including embryonic development, inflammation, immunity, and wound healing. Generally activated via growth factor and cytokine signaling, STAT3 can transcriptionally drive oncoproteins, pro-survival and pro-proliferative proteins as well as angiogenic factors, thereby contributing to cancer. As in most non-viral cancers, STAT3 is constitutively active in EBV-related B and epithelial cell cancers and in animal models of KSHV-cancers. Again, similar to non-viral cancers, STAT3 contributes to gammaherpesvirus (EBV and KSHV)-mediated cancers by driving cell proliferation, invasion and angiogenesis. Being herpesviruses, EBV and KSHV establish latency in humans with episodic lytic activation. Importantly, both viruses activate STAT3 almost immediately upon infection of primary cells. In the setting of infection of primary B cells by EBV, this rapidly activated STAT3 plays a key role in suppressing the DNA damage response (DDR) to EBV-oncogene triggered replication stress, thereby facilitating B cell proliferation and ultimately establishment of latency. STAT3 also contributes to maintenance of latency by curbing lytic activation of EBV and KSHV in latent cells that express high levels of STAT3. In this way, gammaherpesviruses exploit STAT3 to overcome cellular anti-proliferative and anti-lytic barriers to promote viral persistence. These investigations into gammaherpesviruses and STAT3 have simultaneously revealed a novel function for STAT3 in suppression of the DDR, a process fundamental to physiologic cell proliferation as well as development of cancer.
Collapse
Affiliation(s)
- Xiaofan Li
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine Stony Brook, NY, USA
| | - Sumita Bhaduri-McIntosh
- Pediatric Infectious Diseases, Department of Pediatrics, Stony Brook University School of MedicineStony Brook, NY, USA; Department of Molecular Genetics and Microbiology, Stony Brook University School of MedicineStony Brook, NY, USA
| |
Collapse
|
47
|
Moon J, Kaowinn S, Cho IR, Min DS, Myung H, Oh S, Kaewpiboon C, Kraemer OH, Chung YH. Hepatitis C virus core protein enhances hepatocellular carcinoma cells to be susceptible to oncolytic vesicular stomatitis virus through down-regulation of HDAC4. Biochem Biophys Res Commun 2016; 474:428-434. [PMID: 27150631 DOI: 10.1016/j.bbrc.2016.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/01/2016] [Indexed: 11/18/2022]
Abstract
Since hepatitis C virus (HCV) core protein is known to possess potential oncogenic activity, we explored whether oncolytic vesicular stomatitis virus (VSV) could efficiently induce cytolysis in hepatocellular carcinoma cells stably expressing HCV core protein (Hep3B-Core). We found that Hep3B-Core cells were more susceptible to VSV as compared to control (Hep3B-Vec) cells owing to core-mediated inactivation of STAT1 and STAT2 proteins. Core expression induced lower phosphorylation levels of type I IFN signaling proteins such as Tyk2 and Jak1, and a reduced response to exogenous IFN-α, which resulted in susceptibility to VSV. Furthermore, as STAT1 acetylation by switching phosphorylation regulated its activity, the role of STAT1 acetylation in susceptibility of Hep3B-Core cells to VSV was investigated. Treatment with trichostatin A, an inhibitor of histone deacetylase (HDAC), increased STAT1 acetylation but blocked IFN-α-induced phosphorylation of STAT1, leading to increase of susceptibility to VSV. Interestingly, the core protein decreased HDCA4 transcript levels, leading to down-regulation of HDAC4 protein. However, ectopic expression of HDAC4 conversely enforced phosphorylation of STAT1 and hindered VSV replication, indicating that core-mediated reduction of HDAC4 provides a suitable intracellular circumstance for VSV replication. Collectively, we suggest that VSV treatment will be a useful therapeutic strategy for HCV-infected hepatocellular carcinoma cells because HCV core protein suppresses the anti-viral threshold by down-regulation of the STAT1-HDAC4 signaling axis.
Collapse
Affiliation(s)
- Jeong Moon
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Sirichat Kaowinn
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Il-Rae Cho
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea
| | - Do Sik Min
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, 449-791, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Chutima Kaewpiboon
- Department of Biology, Faculty of Science, Thakshin University, Phatthalung, 93210, Thailand
| | - Olive H Kraemer
- Center for Molecular Biomedicine, Department of Biochemistry, University of Jena, Jena, 07745, Germany
| | - Young-Hwa Chung
- BK21+, Department of Cogno-Mechatronics Engineering, Republic of Korea.
| |
Collapse
|
48
|
Li M, Wang W, Jin R, Zhang T, Li N, Han Q, Wei P, Liu Z. Differential association of STAT3 and HK-II expression in hepatitis B virus- and hepatitis C virus-related hepatocellular carcinoma. J Med Virol 2016; 88:1552-9. [PMID: 26889748 DOI: 10.1002/jmv.24498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/14/2022]
Abstract
STAT3 and hexokinase II (HK-II) are involved in viral infection and carcinogenesis of various cancers including hepatocellular carcinoma (HCC). The roles of STAT3 and HK-II in hepatitis B virus (HBV)- and hepatitis C virus (HCV)-related HCC remain largely unclear. This study examined STAT3 and HK-II expression in HBV- and HCV-related HCC, HBV-related liver fibrosis, and normal control liver by using tissue microarray and immunohistochemical method. Results showed that STAT3 expression in HBV-related HCC, HCV-related HCC, and HBV-related liver fibrosis was significantly higher than in control liver (P < 0.001, P = 0.016, and P = 0.005, respectively) and had no significant differences between these three diseased liver tissues. The HK-II expression in HBV-related HCC was significantly higher than that in HCV-related HCC, HBV-related liver fibrosis, and control liver (P = 0.007, P = 0.029, and P = 0.008, respectively) but had no significant elevation in and no significant differences between HCV-related HCC, HBV-related liver fibrosis, and control liver. The HK-II expression was significantly correlated to STAT3 expression in HBV-related HCC (P = 0.022), but no correlation was observed in HCV-related HCC, HBV-related liver fibrosis, and control liver. In conclusion, STAT3 expression is upregulated in both HBV- and HCV-related HCC, while HK-II is predominantly upregulated and correlated to STAT3 in HBV-related HCC. These differential expression and association may suggest the distinct roles of STAT3 and HK-II in hepatocarcinogenesis of HBV and HCV infection. Studies are needed to confirm the relationship of STAT3 and HK-II and to examine the underlying mechanisms. J. Med. Virol. 88:1552-1559, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Man Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,Department of Internal Medicine, The Second Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Weihua Wang
- Department of Pharmacogenomics, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Rui Jin
- Department of Radiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Tieying Zhang
- Department of Internal Medicine, The Second Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ping Wei
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
49
|
Saalim M, Resham S, Manzoor S, Ahmad H, Jaleel S, Ashraf J, Imran M, Naseem S. IL-22: a promising candidate to inhibit viral-induced liver disease progression and hepatocellular carcinoma. Tumour Biol 2016; 37:105-14. [PMID: 26541758 DOI: 10.1007/s13277-015-4294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a growing concern all over the world. With the number of patients rising exponentially with each passing day, HCC is a problem that needs immediate attention. Currently, available treatment strategies focus on controlling the damage after the development of HCC. The options available from chemo- and radio-embolization to surgical resection and transplantation are not efficacious as required due to the complex nature of the disease. Liver regeneration and tissue healing are the subject of great interest today. Interleukin-22 (IL-22) is a cytokine with the ability to regenerate and therefore reverse the injuries caused by a wide range of agents. IL-22 acts via STAT molecule and controls the activity of a wide variety of cell survival and proliferation genes. Experimental data has given a positive insight into the role of IL-22 in inhibition of viral and alcohol-induced hepatocellular carcinoma. A further insight into the nature of IL-22 and the factors that can be manipulated in controlling the activity of IL-22 can help to counter the menace caused by the devastating effects of HCC.
Collapse
Affiliation(s)
- Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- Hepatopancreatobiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Javed Ashraf
- Islam Dental College, Sialkot, 51310, Punjab, Pakistan
| | - Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
50
|
Clark AL, Naya FJ. MicroRNAs in the Myocyte Enhancer Factor 2 (MEF2)-regulated Gtl2-Dio3 Noncoding RNA Locus Promote Cardiomyocyte Proliferation by Targeting the Transcriptional Coactivator Cited2. J Biol Chem 2015; 290:23162-72. [PMID: 26240138 DOI: 10.1074/jbc.m115.672659] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/04/2023] Open
Abstract
Understanding cell cycle regulation in postmitotic cardiomyocytes may lead to new therapeutic approaches to regenerate damaged cardiac tissue. We have demonstrated previously that microRNAs encoded by the Gtl2-Dio3 noncoding RNA locus function downstream of the MEF2A transcription factor in skeletal muscle regeneration. We have also reported expression of these miRNAs in the heart. Here we investigated the role of two Gtl2-Dio3 miRNAs, miR-410 and miR-495, in cardiac muscle. Overexpression of miR-410 and miR-495 robustly stimulated cardiomyocyte DNA synthesis and proliferation. Interestingly, unlike our findings in skeletal muscle, these miRNAs did not modulate the activity of the WNT signaling pathway. Instead, these miRNAs targeted Cited2, a coactivator required for proper cardiac development. Consistent with miR-410 and miR-495 overexpression, siRNA knockdown of Cited2 in neonatal cardiomyocytes resulted in robust proliferation. This phenotype was associated with reduced expression of Cdkn1c/p57/Kip2, a cell cycle inhibitor, and increased expression of VEGFA, a growth factor with proliferation-promoting effects. Therefore, miR-410 and miR-495 are among a growing number of miRNAs that have the ability to potently stimulate neonatal cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Amanda L Clark
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|