1
|
Seibel C, Pudewell S, Rafii P, Ettich J, Weitz HT, Lang A, Petzsch P, Köhrer K, Floss DM, Scheller J. Synthetic trimeric interleukin-6 receptor complexes with a STAT3 phosphorylation dominated activation profile. Cytokine 2024; 184:156766. [PMID: 39348731 DOI: 10.1016/j.cyto.2024.156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
In Interleukin (IL)-6 signalling, IL-6 site I binds to the IL-6 receptor (IL-6R) first, following by IL-6 site II interaction to domain 2/3 of gp130 to form premature trimeric IL-6:IL-6R:gp130 receptor complexes. Formation of the mature hexameric receptor complex is then facilitated by the inter-trimeric interaction of IL-6 site III with domain 1 of the opposing gp130. The two gp130-associated Janus kinases (JAKs) trans-phosphorylate when their spatiotemporal pairing is correct, which causes the activation of STAT, ERK, and AKT pathways in a balanced manner. Since the intracellular domain (ICD) of IL-6R is not needed for STAT/ERK/AKT phosphorylation, we investigated the conditions under which a chimeric IL-6RECD-gp130TMD/ICD receptor protein confers biological activity. For IL-6RECD-gp130TMD/ICD, the extracellular domain (ECD) of IL-6R was fused to the transmembrane domain (TMD) and ICD of gp130. Co-expression of IL-6RECD-gp130TMD/ICD with signalling-deficient gp130 variants did not induce IL-6 signalling, suggesting that the assembly of hexameric complexes failed to dimerize the IL-6R-associated JAKs correctly. By mimicking the premature trimeric receptor complex, IL-6-mediated dimerization of IL-6RECD-gp130TMD/ICD with the single-cytokine-binding variant gp130ΔD1 induced signalling. Of note, IL-6 signalling via these synthetic gp130ΔD1:IL-6RECD-gp130TMD/ICD complexes resulted predominantly in STAT3 phosphorylation. A STAT3-dominated profile was also observed after IL-6-induced signalling mediated by a JAK-deficient IL-6RECD-gp130TMD/ICDΔJAK variant in complex with the JAK-proficient but STAT/ERK/AKT-deficient gp130JAKΔICD variant. Our data showed that effective ERK/AKT signalling could not be executed after intracellular domain swapping from gp130 to the IL-6R. Taken together, the chimeric IL-6R/gp130 receptor may be helpful in the creation of customized synthetic IL-6 signalling.
Collapse
Affiliation(s)
- Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
2
|
Maeda K, Ogawa T, Kayama T, Sasaki T, Tainaka K, Murakami M, Haseyama M. Trial Analysis of Brain Activity Information for the Presymptomatic Disease Detection of Rheumatoid Arthritis. Bioengineering (Basel) 2024; 11:523. [PMID: 38927759 PMCID: PMC11200460 DOI: 10.3390/bioengineering11060523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
This study presents a trial analysis that uses brain activity information obtained from mice to detect rheumatoid arthritis (RA) in its presymptomatic stages. Specifically, we confirmed that F759 mice, serving as a mouse model of RA that is dependent on the inflammatory cytokine IL-6, and healthy wild-type mice can be classified on the basis of brain activity information. We clarified which brain regions are useful for the presymptomatic detection of RA. We introduced a matrix completion-based approach to handle missing brain activity information to perform the aforementioned analysis. In addition, we implemented a canonical correlation-based method capable of analyzing the relationship between various types of brain activity information. This method allowed us to accurately classify F759 and wild-type mice, thereby identifying essential features, including crucial brain regions, for the presymptomatic detection of RA. Our experiment obtained brain activity information from 15 F759 and 10 wild-type mice and analyzed the acquired data. By employing four types of classifiers, our experimental results show that the thalamus and periaqueductal gray are effective for the classification task. Furthermore, we confirmed that classification performance was maximized when seven brain regions were used, excluding the electromyogram and nucleus accumbens.
Collapse
Affiliation(s)
- Keisuke Maeda
- Data-Driven Interdisciplinary Research Emergence Department, Hokkaido University, N-13, W-10, Kita-ku, Sapporo 060-0813, Japan;
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan;
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan; (T.K.); (T.S.)
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai 980-8578, Japan; (T.K.); (T.S.)
- Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan;
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan;
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
- Group of Quantum Immunology, National Institute for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage 263-8555, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan
| | - Miki Haseyama
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Japan;
| |
Collapse
|
3
|
Tanaka H, Hasebe R, Murakami K, Sugawara T, Yamasaki T, Murakami M. Gateway reflexes describe novel neuro-immune communications that establish immune cell gateways at specific vessels. Bioelectron Med 2023; 9:24. [PMID: 37936169 PMCID: PMC10631009 DOI: 10.1186/s42234-023-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan.
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Nishi-11, Kita-21, Kuta-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
4
|
Yamamoto R, Yamada S, Atsumi T, Murakami K, Hashimoto A, Naito S, Tanaka Y, Ohki I, Shinohara Y, Iwasaki N, Yoshimura A, Jiang JJ, Kamimura D, Hojyo S, Kubota SI, Hashimoto S, Murakami M. Computer model of IL-6-dependent rheumatoid arthritis in F759 mice. Int Immunol 2023; 35:403-421. [PMID: 37227084 DOI: 10.1093/intimm/dxad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.
Collapse
Affiliation(s)
- Reiji Yamamoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Yamada
- Faculty of Information Science and Engineering, Okayama University of Science, Okayama, Japan
| | - Toru Atsumi
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Seiichiro Naito
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Izuru Ohki
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yuta Shinohara
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
5
|
Akabane K, Murakami K, Murakami M. Gateway reflexes are neural circuits that establish the gateway of immune cells to regulate tissue specific inflammation. Expert Opin Ther Targets 2023; 27:469-477. [PMID: 37318003 DOI: 10.1080/14728222.2023.2225215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Tissue-specific inflammatory diseases are regulated by several mechanisms. The gateway reflex and IL-6 amplifier are two mechanisms involved in diseases that depend on the inflammatory cytokine IL-6. The gateway reflex activates specific neural pathways that cause autoreactive CD4+ T cells to pass through gateways in blood vessels toward specific tissues in tissue-specific inflammatory diseases. These gateways are mediated by the IL-6 amplifier, which describes enhanced NF-κB activation in nonimmune cells including endothelial cells at specific sites. In total, we have reported six gateway reflexes defined by their triggering stimulus: gravity, pain, electric stimulation, stress, light, and joint inflammation. AREAS COVERED This review summarizes the gateway reflex and IL-6 amplifier for the development of tissue-specific inflammatory diseases. EXPERT OPINION We expect that the IL-6 amplifier and gateway reflex will lead to novel therapeutic and diagnostic methods for inflammatory diseases, particularly tissue-specific ones.
Collapse
Affiliation(s)
- Keiichiroh Akabane
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Vaccine Research and Development(HU-IVRed), Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Tabansky I, Tanaka AJ, Wang J, Zhang G, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, King A, Drulovic J, Yunis E, Brusic V, Shen Y, Keskin DB, Najjar S, Stern JNH. Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:900605. [PMID: 36268024 PMCID: PMC9578444 DOI: 10.3389/fimmu.2022.900605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Akemi J. Tanaka
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jiayao Wang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Guanglan Zhang
- Department of Computer Science, Boston University, Boston, MA, United States
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simone Mader
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | - Venkatesh Jeganathan
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tracey DeAngelis
- Department of Neurology, Neurological Associates of Long Island, New Hyde Park, NY, United States
| | - Michael Funaro
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Asaff Harel
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Mark Messina
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Maya Shabbir
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vishaan Nursey
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - William DeGouvia
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Micheline Laurent
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Karen Blitz
- Department of Neurology, South Shore Neurologic Associates, Patchogue, NY, United States
| | - Peter Jindra
- Division of Abdominal Transplantation, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark Gudesblatt
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alejandra King
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
| | - Edmond Yunis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vladimir Brusic
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Yufeng Shen
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Derin B. Keskin
- Department of Translational Immuno-Genomics for Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Souhel Najjar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Joel N. H. Stern
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- *Correspondence: Joel N. H. Stern, ;
| |
Collapse
|
7
|
Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F, Ohira Y, Kawamoto T, Yull FE, Blackwell TS, Nio-Kobayashi J, Iwanaga T, Watanabe M, Watanabe N, Hotta H, Yamashita T, Kamimura D, Tanaka Y, Murakami M. ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 2022; 219:213221. [PMID: 35579694 DOI: 10.1084/jem.20212019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nada Halaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakagawa
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Fuminori Kawano
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinobu Ohira
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Department of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Millrine D, Jenkins RH, Hughes STO, Jones SA. Making sense of IL-6 signalling cues in pathophysiology. FEBS Lett 2022; 596:567-588. [PMID: 34618359 PMCID: PMC9673051 DOI: 10.1002/1873-3468.14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine-receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes.
Collapse
Affiliation(s)
- David Millrine
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
- Present address:
Medical Research Council Protein Phosphorylation and Ubiquitylation UnitSir James Black CentreSchool of Life SciencesUniversity of Dundee3rd FloorDundeeUK
| | - Robert H. Jenkins
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Stuart T. O. Hughes
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| | - Simon A. Jones
- Division of Infection & ImmunitySchool of MedicineCardiff UniversityUK
- Systems Immunity University Research InstituteCardiff UniversityUK
| |
Collapse
|
9
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
10
|
Murakami K, Tanaka Y, Murakami M. The gateway reflex: breaking through the blood barriers. Int Immunol 2021; 33:743-748. [PMID: 34505147 DOI: 10.1093/intimm/dxab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
We have been studying inflammatory diseases, with a special focus on IL-6, and discovered two concepts related to inflammation development. One is the gateway reflex, which is induced by the activation of specific neural circuits followed by establishing gateways for autoreactive CD4 + T cells to pass through blood barriers toward the central nervous system (CNS) and retina during tissue-specific inflammatory diseases. We found that the formation of these gateways is dependent on the IL-6 amplifier, which is machinery for enhanced NF-κB activation in endothelial cells at specific sites. We have found five gateway reflexes in total. Here, we introduce the gateway reflex and the IL-6 amplifier.
Collapse
Affiliation(s)
- Kaoru Murakami
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan
| | - Yuki Tanaka
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Masaaki Murakami
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
11
|
Lu S, Peng X, Lin G, Xu K, Wang S, Qiu W, Du H, Chang K, Lv Y, Liu Y, Deng H, Hu C, Xu X. Grass carp (Ctenopharyngodon idellus) SHP2 suppresses IFN I expression via decreasing the phosphorylation of GSK3β in a non-contact manner. FISH & SHELLFISH IMMUNOLOGY 2021; 116:150-160. [PMID: 34265416 DOI: 10.1016/j.fsi.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
As a tyrosine phosphatase, Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) serves as an inhibitor in PI3K-Akt pathway. In mammals, SHP2 can phosphorylate GSK3β at Y216 site to control the expression of IFN. So far, the multiple functions of SHP2 have been reported in mammals. However, little is known about fish SHP2. In this study, we cloned and identified a grass carp (Ctenopharyngodon idellus) SHP2 gene (CiSHP2, MT373151). SHP2 is conserved among different vertebrates by amino acid sequences alignment and the phylogenetic tree analysis. CiSHP2 shared the closest homology with Danio rerio SHP2. Simultaneously, SHP2 was also tested in grass carp tissues and CIK (C. idellus kidney) cells. We found that it responded to poly I:C stimulation. CiSHP2 was located in the cytoplasm just as the same as those of mammals. Interestingly, it inhibited the phosphorylation level of GSK3β in a non-contact manner. Meanwhile CiGSK3β interacted with and directly phosphorylated CiTBK1. In addition, we found that CiSHP2 also reduced the phosphorylation level of CiTBK1 by CiGSK3β, and then it depressed the expression of IFN I via GSK3β-TBK1 axis. These results suggested that CiSHP2 was involved in CiGSK3β and CiTBK1 activity but not regulated their transcriptional level. At the same time, we also found that CiSHP2 also influenced the activity of CiIRF3. Therefore, fish SHP2 inhibited IFN I expression through blocking GSK3β-TBK1 signal axis.
Collapse
Affiliation(s)
- Shina Lu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojue Peng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Gang Lin
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kang Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, Nanchang, 330046, Jiangxi, China
| | - Hailing Du
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yangfeng Lv
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yapeng Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hang Deng
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
12
|
Inhibition of interleukin-6 signaling attenuates aortitis, left ventricular hypertrophy and arthritis in interleukin-1 receptor antagonist deficient mice. Clin Sci (Lond) 2021; 134:2771-2787. [PMID: 33064141 DOI: 10.1042/cs20201036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to examine whether inhibition of Interleukin (IL)-6 signaling by MR16-1, an IL-6 receptor antibody, attenuates aortitis, cardiac hypertrophy, and arthritis in IL-1 receptor antagonist deficient (IL-1RA KO) mice. Four weeks old mice were intraperitoneally administered with either MR16-1 or non-immune IgG at dosages that were adjusted over time for 5 weeks. These mice were stratified into four groups: MR16-1 treatment groups, KO/MR low group (first 2.0 mg, following 0.5 mg/week, n=14) and KO/MR high group (first 4.0 mg, following 2.0 mg/week, n=19) in IL-1RA KO mice, and IgG treatment groups, KO/IgG group (first 2.0 mg, following 1.0 mg/week, n=22) in IL-1RA KO mice, and wild/IgG group (first 2.0 mg, following 1.0 mg/week, n=17) in wild mice. Aortitis, cardiac hypertrophy and arthropathy were histologically analyzed. Sixty-eight percent of the KO/IgG group developed aortitis (53% developed severe aortitis). In contrast, only 21% of the KO/MR high group developed mild aortitis, without severe aortitis (P<0.01, vs KO/IgG group). Infiltration of inflammatory cells, such as neutrophils, T cells, and macrophages, was frequently observed around aortic sinus of the KO/IgG group. Left ventricle and cardiomyocyte hypertrophy were observed in IL-1RA KO mice. Administration of high dosage of MR16-1 significantly suppressed cardiomyocyte hypertrophy. MR16-1 attenuated the incidence and severity of arthritis in IL-1RA KO mice in a dose-dependent manner. In conclusion, blockade of IL-6 signaling may exert a beneficial effect to attenuate severe aortitis, left ventricle hypertrophy, and arthritis.
Collapse
|
13
|
Abstract
IL-6 is involved both in immune responses and in inflammation, hematopoiesis, bone metabolism and embryonic development. IL-6 plays roles in chronic inflammation (closely related to chronic inflammatory diseases, autoimmune diseases and cancer) and even in the cytokine storm of corona virus disease 2019 (COVID-19). Acute inflammation during the immune response and wound healing is a well-controlled response, whereas chronic inflammation and the cytokine storm are uncontrolled inflammatory responses. Non-immune and immune cells, cytokines such as IL-1β, IL-6 and tumor necrosis factor alpha (TNFα) and transcription factors nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) play central roles in inflammation. Synergistic interactions between NF-κB and STAT3 induce the hyper-activation of NF-κB followed by the production of various inflammatory cytokines. Because IL-6 is an NF-κB target, simultaneous activation of NF-κB and STAT3 in non-immune cells triggers a positive feedback loop of NF-κB activation by the IL-6-STAT3 axis. This positive feedback loop is called the IL-6 amplifier (IL-6 Amp) and is a key player in the local initiation model, which states that local initiators, such as senescence, obesity, stressors, infection, injury and smoking, trigger diseases by promoting interactions between non-immune cells and immune cells. This model counters dogma that holds that autoimmunity and oncogenesis are triggered by the breakdown of tissue-specific immune tolerance and oncogenic mutations, respectively. The IL-6 Amp is activated by a variety of local initiators, demonstrating that the IL-6-STAT3 axis is a critical target for treating diseases.
Collapse
Affiliation(s)
- Toshio Hirano
- National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Wang L, Yang H, Huang J, Pei S, Wang L, Feng JQ, Jing D, Zhao H, Kronenberg HM, Moore DC, Yang W. Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res 2021; 9:6. [PMID: 33500396 PMCID: PMC7838289 DOI: 10.1038/s41413-020-00129-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The maturation and function of osteoblasts (OBs) rely heavily on the reversible phosphorylation of signaling proteins. To date, most of the work in OBs has focused on phosphorylation by tyrosyl kinases, but little has been revealed about dephosphorylation by protein tyrosine phosphatases (PTPases). SHP2 (encoded by PTPN11) is a ubiquitously expressed PTPase. PTPN11 mutations are associated with both bone and cartilage manifestations in patients with Noonan syndrome (NS) and metachondromatosis (MC), although the underlying mechanisms remain elusive. Here, we report that SHP2 deletion in bone gamma-carboxyglutamate protein-expressing (Bglap+) bone cells leads to massive osteopenia in both trabecular and cortical bones due to the failure of bone cell maturation and enhanced osteoclast activity, and its deletion in Bglap+ chondrocytes results in the onset of enchondroma and osteochondroma in aged mice with increased tubular bone length. Mechanistically, SHP2 was found to be required for osteoblastic differentiation by promoting RUNX2/OSTERIX signaling and for the suppression of osteoclastogenesis by inhibiting STAT3-mediated RANKL production by osteoblasts and osteocytes. These findings are likely to explain the compromised skeletal system in NS and MC patients and to inform the development of novel therapeutics to combat skeletal disorders.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Huiliang Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Jiahui Huang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Shaopeng Pei
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, DE19716, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Douglas C Moore
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA
| | - Wentian Yang
- Department of Orthopedic Surgery, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
15
|
Damerau A, Gaber T, Ohrndorf S, Hoff P. JAK/STAT Activation: A General Mechanism for Bone Development, Homeostasis, and Regeneration. Int J Mol Sci 2020; 21:E9004. [PMID: 33256266 PMCID: PMC7729940 DOI: 10.3390/ijms21239004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway serves as an important downstream mediator for a variety of cytokines, hormones, and growth factors. Emerging evidence suggests JAK/STAT signaling pathway plays an important role in bone development, metabolism, and healing. In this light, pro-inflammatory cytokines are now clearly implicated in these processes as they can perturb normal bone remodeling through their action on osteoclasts and osteoblasts at both intra- and extra-articular skeletal sites. Here, we summarize the role of JAK/STAT pathway on development, homeostasis, and regeneration based on skeletal phenotype of individual JAK and STAT gene knockout models and selective inhibition of components of the JAK/STAT signaling including influences of JAK inhibition in osteoclasts, osteoblasts, and osteocytes.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Timo Gaber
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah Ohrndorf
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
| | - Paula Hoff
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; (A.D.); (S.O.); (P.H.)
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, 10117 Berlin, Germany
- Endokrinologikum Berlin am Gendarmenmarkt, 10117 Berlin, Germany
| |
Collapse
|
16
|
Ota M, Tanaka Y, Nakagawa I, Jiang JJ, Arima Y, Kamimura D, Onodera T, Iwasaki N, Murakami M. Role of Chondrocytes in the Development of Rheumatoid Arthritis Via Transmembrane Protein 147-Mediated NF-κB Activation. Arthritis Rheumatol 2020; 72:931-942. [PMID: 31785076 DOI: 10.1002/art.41182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We have previously reported that the coactivation of NF-κB and STAT3 in nonimmune cells, including synovial fibroblasts, enhances the expression of NF-κB target genes and plays a role in chronic inflammation and rheumatoid arthritis (RA). This study was undertaken to examine the role of NF-κB activation in chondrocytes and better understand the pathogenesis of RA. Furthermore, transmembrane protein 147 (TMEM147) was investigated as a representative NF-κB activator in chondrocytes. METHODS Clinical samples from RA patients were analyzed by immunohistochemistry. Specimens obtained from patients with polydactyly were used as control samples. The functional contribution of chondrocytes and TMEM147 to arthritis was examined in several murine models of RA. In vitro experiments (quantitative polymerase chain reaction, RNA interference, immunoprecipitation, and confocal microscopy) were performed to investigate the mechanism of action of TMEM147 in chondrocytes. RESULTS Samples obtained from RA patients and mouse models of RA showed coactivation of NF-κB and STAT3 in chondrocytes (P < 0.001). This coactivation induced a synergistic expression of NF-κB targets in vitro (P < 0.01). Chondrocyte-specific deletion of STAT3 significantly suppressed the development of cytokine-induced RA (P < 0.01). TMEM147 was highly expressed in chondrocytes from RA patient samples and the mouse models of RA. Gene silencing of TMEM147 or anti-TMEM147 antibody treatment inhibited the cytokine-mediated activation of NF-κB in vitro (P < 0.01) and suppressed cytokine-induced RA in vivo (P < 0.01). Mechanistically, TMEM147 molecules acted as scaffold proteins for the NF-κB complex, which included breakpoint cluster region and casein kinase 2, and enhanced NF-κB activity. CONCLUSION These results suggest that chondrocytes play a role in the development of RA via TMEM147-mediated NF-κB activation and indicate a novel therapeutic strategy for RA.
Collapse
Affiliation(s)
- Mitsutoshi Ota
- Department of Orthopaedic Surgery, Institute of Genetic Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Ikuma Nakagawa
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, and Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University,, Xian, China
| | - Yasunobu Arima
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University,, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University,, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
17
|
Ohsugi Y. The immunobiology of humanized Anti-IL6 receptor antibody: From basic research to breakthrough medicine. J Transl Autoimmun 2019; 3:100030. [PMID: 32743515 PMCID: PMC7388389 DOI: 10.1016/j.jtauto.2019.100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
The clinical use of monoclonal antibodies is well established in human medicine and has been amongst the most important contributions of basic science to clinical disease. One such antibody, the humanized anti-human IL-6 receptor antibody, is used to treat a variety of autoimmune diseases, particularly rheumatoid arthritis. It is extremely difficult and a laborious process to go from a concept at the research bench, to government approval. Such approval implies not only efficacy but, more importantly, an appropriate safety profile. In this review, the history of anti-human IL-6 receptor antibody is discussed in depth beginning with the author's experience during a sabbatical visit at the University of California at Davis in 1978. At that time, it was discovered that B cell activation was at least one critical factor in the development of autoimmunity. Approximately six years later, the cDNA encoding for IL-6 was cloned as BSF-2 (B cell stimulatory factor 2) to differentiate B cells to produce antibody. Soon after, it was suggested that this cytokine plays an important role in the development of autoimmune diseases. Based on this evidence, the journey began to search for an IL-6 inhibitor. Although there were numerous obstacles in finding lead compounds, ultimately, basic science developed the methodology for high throughput readouts that would inhibit the biologic function of IL-6. It was finally concluded that a mouse monoclonal antibody against IL-6 receptor would be optimal. In 1991, this antibody was humanized by using CDR-grafting technology in collaboration with the MRC (Medical Research Council). The drug was named tocilizumab and launched as an innovative anti-rheumatic drug in 2008 in Japan. Subsequently, the drug has been used throughout the world and has achieved enormous success in helping patients who suffer from inflammatory arthropathies. The lessons learned in the development of this antibody have application to the study of biologics and their application to other human diseases.
Collapse
Affiliation(s)
- Yoshiyuki Ohsugi
- Ohsugi BioPharma Consulting Co., Ltd., 5th Fl. Denbo Bldg., 1-39-11 Asakusa, Taito-ku, Tokyo, 111-0032, Japan
| |
Collapse
|
18
|
ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11111736. [PMID: 31694340 PMCID: PMC6895846 DOI: 10.3390/cancers11111736] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023] Open
Abstract
All ligands of the epidermal growth factor receptor (EGF-R) are transmembrane proteins, which need to be proteolytically cleaved in order to be systemically active. The major protease responsible for this cleavage is the membrane metalloprotease ADAM17, which also has been implicated in cleavage of TNFα and interleukin-6 (IL-6) receptor. It has been recently shown that in the absence of ADAM17, the main protease for EGF-R ligand processing, colon cancer formation is largely abrogated. Intriguingly, colon cancer formation depends on EGF-R activity on myeloid cells rather than on intestinal epithelial cells. A major activity of EGF-R on myeloid cells is the stimulation of IL-6 synthesis. Subsequently, IL-6 together with the ADAM17 shed soluble IL-6 receptor acts on intestinal epithelial cells via IL-6 trans-signaling to induce colon cancer formation, which can be blocked by the inhibitor of IL-6 trans-signaling, sgp130Fc. Blockade of IL-6 trans-signaling therefore offers a new therapeutic window downstream of the EGF-R for the treatment of colon cancer and possibly of other EGF-R related neoplastic diseases.
Collapse
|
19
|
Niogret C, Birchmeier W, Guarda G. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Front Immunol 2019; 10:2468. [PMID: 31708921 PMCID: PMC6823243 DOI: 10.3389/fimmu.2019.02468] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is crucial for the activation of extracellular signal-regulated kinase (ERK) downstream of various growth factor receptors, thereby exerting essential developmental functions. This phosphatase also deploys proto-oncogenic functions and specific inhibitors have recently been developed. With respect to the immune system, the role of SHP-2 in the signaling of cytokines relevant for myelopoiesis and myeloid malignancies has been intensively studied. The function of this phosphatase downstream of cytokines important for lymphocytes is less understood, though multiple lines of evidence suggest its importance. In addition, SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors (IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and NK lymphocytes. Further, we highlight the importance of broadening our understanding of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and unanticipated benefits of its therapeutic blockade.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Greta Guarda
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| |
Collapse
|
20
|
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis. Proc Natl Acad Sci U S A 2019; 116:18517-18527. [PMID: 31455730 PMCID: PMC6744919 DOI: 10.1073/pnas.1904271116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How arthritis-causing T cells trigger rheumatoid arthritis (RA) is not understood since it is difficult to differentiate T cells activated by inflammation in arthritic joints from those activated through their T cell antigen receptor (TCR) by self-antigens. We developed a model to identify and study antigen-specific T cell responses in arthritis. Nur77—a specific marker of TCR signaling—was used to identify antigen-activated T cells in the SKG arthritis model and in patients with RA. Nur77 could distinguish highly arthritogenic and autoreactive T cells in SKG mice. The enhanced autoreactivity was associated with increased interleukin-6 (IL-6) receptor signaling, likely contributing to their arthritogenicity. These data highlight a functional correlate between Nur77 expression, arthritogenic T cell populations, and heightened IL-6 sensitivity in SKG mice with translatable implications for human RA. How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77—a marker of T cell antigen receptor (TCR) signaling—to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)–producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)—a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.
Collapse
|
21
|
Ridgley LA, Anderson AE, Maney NJ, Naamane N, Skelton AJ, Lawson CA, Emery P, Isaacs JD, Carmody RJ, Pratt AG. IL-6 Mediated Transcriptional Programming of Naïve CD4+ T Cells in Early Rheumatoid Arthritis Drives Dysregulated Effector Function. Front Immunol 2019; 10:1535. [PMID: 31333666 PMCID: PMC6618050 DOI: 10.3389/fimmu.2019.01535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: We have previously shown that increased circulating interleukin-6 (IL-6) results in enhanced CD4+ T cell signaling via signal transduction and activator of transcription-3 (STAT3) in early rheumatoid arthritis (RA). We tested the hypothesis that transcriptional “imprinting” of T-cells by this mechanism skews downstream effector responses, reinforcing immune dysregulation at a critical, but targetable, disease phase. Methods: We modeled naïve CD4+ T cell exposure to pathophysiological concentrations of IL-6 in vitro, assessing the dynamic transcriptional and functional consequences for downstream effector cells utilizing microarray and flow cytometry. Fresh blood from treatment-naïve early arthritis patients was phenotyped in parallel for comparison. Results: T cell sensitivity to IL-6 was most marked in the naïve subset, and related to gp130 rather than IL-6R expression. Exposure of healthy naïve CD4+ T cells to IL-6 induced the same STAT3 target genes as previously seen to discriminate RA patients from disease controls. After TCR stimulation IL-6 pre-exposed cells exhibited enhanced proliferative capacity, activation, and a propensity toward Th1 differentiation, compared to non-exposed cells. An entirely analogous phenotype was observed in early RA compared to control CD4+ T cells. Conclusions: Sustained IL-6 exposure at a critical point in the natural history of RA “primes” the adaptive immune system to respond aberrantly to TCR stimulation, potentiating disease induction with implications for the optimal timing of targeted therapy.
Collapse
Affiliation(s)
- Laura A Ridgley
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amy E Anderson
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola J Maney
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Najib Naamane
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Skelton
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A Lawson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,Leeds NIHR Biomedical Research Centre, The Leeds Teaching Hospitals Trust, Leeds, United Kingdom
| | - John D Isaacs
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ruaidhrí J Carmody
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Arthur G Pratt
- Institute of Cellular Medicine (Musculoskeletal Research Group), Newcastle University, Newcastle upon Tyne, United Kingdom.,Directorate of Musculoskeletal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Fang H, De Wolf H, Knezevic B, Burnham KL, Osgood J, Sanniti A, Lledó Lara A, Kasela S, De Cesco S, Wegner JK, Handunnetthi L, McCann FE, Chen L, Sekine T, Brennan PE, Marsden BD, Damerell D, O'Callaghan CA, Bountra C, Bowness P, Sundström Y, Milani L, Berg L, Göhlmann HW, Peeters PJ, Fairfax BP, Sundström M, Knight JC. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet 2019; 51:1082-1091. [PMID: 31253980 PMCID: PMC7124888 DOI: 10.1038/s41588-019-0456-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022]
Abstract
Most candidate drugs currently fail later-stage clinical trials, largely due to poor prediction of efficacy on early target selection1. Drug targets with genetic support are more likely to be therapeutically valid2,3, but the translational use of genome-scale data such as from genome-wide association studies for drug target discovery in complex diseases remains challenging4-6. Here, we show that integration of functional genomic and immune-related annotations, together with knowledge of network connectivity, maximizes the informativeness of genetics for target validation, defining the target prioritization landscape for 30 immune traits at the gene and pathway level. We demonstrate how our genetics-led drug target prioritization approach (the priority index) successfully identifies current therapeutics, predicts activity in high-throughput cellular screens (including L1000, CRISPR, mutagenesis and patient-derived cell assays), enables prioritization of under-explored targets and allows for determination of target-level trait relationships. The priority index is an open-access, scalable system accelerating early-stage drug target selection for immune-mediated disease.
Collapse
Affiliation(s)
- Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Bogdan Knezevic
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katie L Burnham
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julie Osgood
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna Sanniti
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alicia Lledó Lara
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Silva Kasela
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Stephane De Cesco
- Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | | | - Fiona E McCann
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Liye Chen
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Takuya Sekine
- Botnar Research Centre, University of Oxford, Oxford, UK
| | - Paul E Brennan
- Alzheimer's Research UK Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Brian D Marsden
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - David Damerell
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Chris A O'Callaghan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Chas Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Paul Bowness
- Botnar Research Centre, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Yvonne Sundström
- Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Lili Milani
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Louise Berg
- Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | | | | | - Benjamin P Fairfax
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Sundström
- Structural Genomics Consortium, Department of Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
23
|
Yahagi A, Saika T, Hirano H, Takai-Imamura M, Tsuji F, Aono H, Iseki M, Morita Y, Igarashi H, Saeki Y, Ishihara K. IL-6-PAD4 axis in the earliest phase of arthritis in knock-in gp130F759 mice, a model for rheumatoid arthritis. RMD Open 2019; 5:e000853. [PMID: 31321075 PMCID: PMC6606081 DOI: 10.1136/rmdopen-2018-000853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/29/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Animal models for human diseases are especially valuable for clarifying molecular mechanisms before or around the onset. As a model for rheumatoid arthritis (RA), we utilise knock-in mice gp130F759. They have a Y759F mutation in gp130, a common receptor subunit for interleukin 6 (IL-6) family cytokines. Definitive arthritis develops around 8 months old and the incidence reaches 100% around 1 year old. Careful examination in the clinical course revealed very subtle resistance in flexibility of joints at 5 months old. Therefore, pathophysiological changes in gp130F759 were examined to dissect molecular mechanisms for preclinical phase of RA. Methods Severity of arthritis in gp130F759 was evaluated with a clinical score system and histological quantification. Serum cytokines, autoantibodies and C reactive protein (CRP) were measured. Changes in the synovium were analysed by real-time PCR, flow cytometry and immunohistochemistry. Results Around 5 months old, various types of cytokines, rheumatoid factor (RF), anti-circular citrullinated peptide IgM and CRP increased in the sera of gp130F759. Enhancement of neovascularisation, synovial hyperplasia and fibrosis was observed. Also, increases in haematopoietic cells dominated by innate immune cells and gene expression of Il6 and Padi4 were detected in the joints. Il6 was expressed by non-haematopoietic synovial cells, whereas PAD4 protein was detected in the synovial neutrophils. Padi4 is induced in neutrophils in vitro by IL-6. Increases of phospho-STAT3 and PAD4 protein were detected in the synovium. Deletion of IL-6 in gp130F759 normalised the amount of PAD4 protein in the joints. Conclusion The IL-6-PAD4 axis operates in the earliest phase of arthritis in gp130F759, implicating it in early RA.
Collapse
Affiliation(s)
- Ayano Yahagi
- Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Taro Saika
- Otorhinolaryngology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | - Fumio Tsuji
- Nara Research and Development Center, Santen Pharmaceutical Co Ltd, Nara, Japan
| | - Hiroyuki Aono
- R&D Division, Ayumi Pharmaceutical Corp, Kyoto, Japan
| | - Masanori Iseki
- Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | | | - Hideya Igarashi
- Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | - Yukihiko Saeki
- Department of Clinical Research, National Hospital Organization, Osaka Minami Medical Center, Kawachinagano, Japan
| | - Katsuhiko Ishihara
- Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
24
|
Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 Receptor in Rheumatoid Arthritis: What's the Difference? BioDrugs 2019; 32:531-546. [PMID: 30488231 DOI: 10.1007/s40259-018-0320-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) signaling is a critical target in inflammatory pathways. Today, tocilizumab (TCZ) and sarilumab (SAR), two IL-6 receptor-inhibiting monoclonal antibodies, are widely used in the treatment of rheumatoid arthritis (RA), with a favorable efficacy/safety profile. Successful introduction of such agents in the treatment of RA has encouraged the development of other agents targeting different points of the pathway. Sirukumab (SRK), a human anti-IL-6 monoclonal antibody, has been evaluated in clinical trials and showed largely similar clinical efficacy compared with TCZ and other IL-6 pathway-targeting agents. Furthermore, the drug safety profile seemed to reflect the profile of adverse effects and laboratory abnormalities seen in other inhibitors of the IL-6 pathway. However, increased death rates under SRK treatment compared with placebo raised safety concerns, which led to the decision by the FDA to decline the approval of SRK in August 2017. However, during the 18-week true placebo-controlled period, mortality rates were identical in the placebo- and SRK-treated patients. Comparisons after week 18 may be confounded by some factors, and also the 'crossover' design resulted in various treatment groups with varying drug exposure periods. The limited placebo exposure relative to SRK exposure makes interpretation of mortality rates difficult. We do not know whether the imbalance in mortality rates seen for SRK is a true safety signal or a result of bias due to the study design. Therefore, further long-term clinical data as well as basic research is needed to allow deeper insight into IL-6 signaling.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/mortality
- Clinical Trials as Topic
- Drug Approval
- Humans
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/immunology
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- Ali Berkant Avci
- Department of Internal Medicine, Rheumatology, Life Hospital, Antalya, Turkey
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany.
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
25
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
26
|
Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler S. Cardiac phenotype in mouse models of systemic autoimmunity. Dis Model Mech 2019; 12:dmm036947. [PMID: 30858306 PMCID: PMC6451423 DOI: 10.1242/dmm.036947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.
Collapse
Affiliation(s)
- Chandan Sanghera
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Lok Man Wong
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Mona Panahi
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Muneer Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
27
|
Fujita M, Yamamoto Y, Jiang JJ, Atsumi T, Tanaka Y, Ohki T, Murao N, Funayama E, Hayashi T, Osawa M, Maeda T, Kamimura D, Murakami M. NEDD4 Is Involved in Inflammation Development during Keloid Formation. J Invest Dermatol 2019; 139:333-341. [DOI: 10.1016/j.jid.2018.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
|
28
|
Jones SA, Takeuchi T, Aletaha D, Smolen J, Choy EH, McInnes I. Interleukin 6: The biology behind the therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.1136/conmed-2018-000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokine interleukin (IL)−6 performs a diverse portfolio of functions in normal physiology and disease. These functions extend beyond the typical role for an inflammatory cytokine, and IL-6 often displays hormone-like properties that affect metabolic processes associated with lipid metabolism, insulin resistance, and the neuroendocrine system. Consequently, the biology of IL-6 is complex. Recent advances in the field have led to novel interpretations of how IL-6 delivers immune homeostasis in health and yet drives disease pathology during infection, autoimmunity, and cancer. Various biological drugs that target IL-6 are in clinical practice or emerging in clinical trials and pre-clinical development programmes. The challenge is knowing how and when to apply these therapies. In this review, we will explore the biology behind IL-6 directed therapies and identify some key hurdles for future investigation.
Collapse
|
29
|
Frey O, Hückel M, Gajda M, Petrow PK, Bräuer R. Induction of chronic destructive arthritis in SCID mice by arthritogenic fibroblast-like synoviocytes derived from mice with antigen-induced arthritis. Arthritis Res Ther 2018; 20:261. [PMID: 30466479 PMCID: PMC6251107 DOI: 10.1186/s13075-018-1720-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023] Open
Abstract
Background Fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA) are autonomously activated to maintain inflammation and joint destruction in co-transplantation models. To elucidate inducing mechanisms involved in this altered behavior, the arthritogenic potential of FLSs from murine antigen-induced arthritis (AIA) were investigated in a transfer model. Methods FLSs were isolated, expanded in vitro, and transferred into knee joint cavities of severe combined immunodeficient (SCID) mice. Their arthritogenic capacity was assessed by monitoring joint swelling and evaluation of histological parameters 70 to 100 days after transfer. Results FLSs from AIA mice were able to transfer arthritis into recipient SCID mice. FLS transfer induced a chronic arthritis with recruitment of inflammatory cells and marked cartilage destruction. Long-lasting inflammation was not required for imprinting of arthritogenicity in FLSs since cells isolated from acute arthritic joints were fully competent to transfer arthritis. We also observed arthritogenic potential in FLSs isolated from contralateral non-arthritic joints in our monoarticular arthritis model. Conclusions We show that the transformation of FLSs into arthritogenic cells occurs early in arthritis development. This challenges current hypotheses on the role of these cells in arthritis pathogenesis and opens up the way for further mechanistic studies.
Collapse
Affiliation(s)
- Oliver Frey
- Institute of Pathology, University Hospital, Jena, Germany. .,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Am Klinikum 1, D-07743, Jena, Germany. .,Present address: Institute of Medical Diagnostics, Berlin, Germany.
| | - Marion Hückel
- Institute of Pathology, University Hospital, Jena, Germany
| | | | - Peter K Petrow
- Institute of Pathology, University Hospital, Jena, Germany
| | - Rolf Bräuer
- Institute of Pathology, University Hospital, Jena, Germany
| |
Collapse
|
30
|
Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018; 18:773-789. [DOI: 10.1038/s41577-018-0066-7] [Citation(s) in RCA: 435] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Okuyama Y, Tanaka Y, Jiang JJ, Kamimura D, Nakamura A, Ota M, Ohki T, Higo D, Ogura H, Ishii N, Atsumi T, Murakami M. Bmi1 Regulates IκBα Degradation via Association with the SCF Complex. THE JOURNAL OF IMMUNOLOGY 2018; 201:2264-2272. [PMID: 30209188 DOI: 10.4049/jimmunol.1701223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Bmi1 is a polycomb group protein and regulator that stabilizes the ubiquitination complex PRC1 in the nucleus with no evidently direct link to the NF-κB pathway. In this study, we report a novel function of Bmi1: its regulation of IκBα ubiquitination in the cytoplasm. A deficiency of Bmi1 inhibited NF-κB-mediated gene expression in vitro and a NF-κB-mediated mouse model of arthritis in vivo. Mechanistic analysis showed that Bmi1 associated with the SCF ubiquitination complex via its N terminus and with phosphorylation by an IKKα/β-dependent pathway, leading to the ubiquitination of IκBα. These effects on NF-κB-related inflammation suggest Bmi1 in the SCF complex is a potential therapeutic target for various diseases and disorders, including autoimmune diseases.
Collapse
Affiliation(s)
- Yuko Okuyama
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Jing-Jing Jiang
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Daisuke Kamimura
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; .,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Akihiro Nakamura
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Mitsutoshi Ota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Takuto Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Daisuke Higo
- Thermo Fisher Scientific, Tokyo 140-0002, Japan; and
| | - Hideki Ogura
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Toru Atsumi
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Masaaki Murakami
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan; .,Laboratory of Developmental Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.,World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.,Division of Molecular Psychoimmunology, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
32
|
Nakajima K, Sano S. Mouse models of psoriasis and their relevance. J Dermatol 2018; 45:252-263. [PMID: 29226571 DOI: 10.1111/1346-8138.14112] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Psoriasis is an inflammatory skin disorder that includes dynamic interactions between the immune system and skin and is clinically characterized by keratinocyte proliferation and distinct inflammatory cell infiltrates. Cross-talk between keratinocytes and immunocytes is essential for the development of psoriasis given that it mediates the production of cytokines, chemokines and growth factors. To resolve the pathogenesis of psoriasis, numerous experimental animal models have been generated. In this review, we discuss recent findings from mouse models, their relevancy to psoriasis and use, including the discovery of new therapies.
Collapse
Affiliation(s)
- Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
33
|
Th17 in Animal Models of Rheumatoid Arthritis. J Clin Med 2017; 6:jcm6070073. [PMID: 28753982 PMCID: PMC5532581 DOI: 10.3390/jcm6070073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 01/04/2023] Open
Abstract
IL-17-secreting helper CD4 T cells (Th17 cells) constitute a newly identified subset of helper CD4 T cells that play a key role in the development of rheumatoid arthritis (RA) in its animal models. Recently, several models of spontaneous RA, which elucidate the mechanism of RA onset, have been discovered. These animal models shed new light on the role of Th17 in the development of autoimmune arthritis. Th17 cells coordinate inflammation and promote joint destruction, acting on various cells, including neutrophils, macrophages, synovial fibroblasts, and osteoclasts. Regulatory T cells cannot control Th17 cells under conditions of inflammation. In this review, the pathogenic role of Th17 cells in arthritis development, which was revealed by the recent animal models of RA, is discussed.
Collapse
|
34
|
Raimondo A, Lembo S, Di Caprio R, Donnarumma G, Monfrecola G, Balato N, Ayala F, Balato A. Psoriatic cutaneous inflammation promotes human monocyte differentiation into active osteoclasts, facilitating bone damage. Eur J Immunol 2017; 47:1062-1074. [DOI: 10.1002/eji.201646774] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/18/2017] [Accepted: 04/05/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Annunziata Raimondo
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| | - Roberta Di Caprio
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology; Second University of Naples; Napoli Italy
| | - Giuseppe Monfrecola
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Nicola Balato
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Fabio Ayala
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Anna Balato
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Napoli Italy
| |
Collapse
|
35
|
Su H, Lei CT, Zhang C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front Immunol 2017; 8:405. [PMID: 28484449 PMCID: PMC5399081 DOI: 10.3389/fimmu.2017.00405] [Citation(s) in RCA: 317] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that not only regulates the immune and inflammatory response but also affects hematopoiesis, metabolism, and organ development. IL-6 can simultaneously elicit distinct or even contradictory physiopathological processes, which is likely discriminated by the cascades of signaling pathway, termed classic and trans-signaling. Besides playing several important physiological roles, dysregulated IL-6 has been demonstrated to underlie a number of autoimmune and inflammatory diseases, metabolic abnormalities, and malignancies. This review provides an overview of basic concept of IL-6 signaling pathway as well as the interplay between IL-6 and renal-resident cells, including podocytes, mesangial cells, endothelial cells, and tubular epithelial cells. Additionally, we summarize the roles of IL-6 in several renal diseases, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, acute kidney injury, and chronic kidney disease.
Collapse
Affiliation(s)
- Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Ohki T, Kamimura D, Arima Y, Murakami M. Gateway reflexes: A new paradigm of neuroimmune interactions. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takuto Ohki
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Daisuke Kamimura
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Yasunobu Arima
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Masaaki Murakami
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| |
Collapse
|
37
|
Mahony R, Ahmed S, Diskin C, Stevenson NJ. SOCS3 revisited: a broad regulator of disease, now ready for therapeutic use? Cell Mol Life Sci 2016; 73:3323-36. [PMID: 27137184 PMCID: PMC11108554 DOI: 10.1007/s00018-016-2234-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/24/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Abstract
Since their discovery, SOCS have been characterised as regulatory cornerstones of intracellular signalling. While classically controlling the JAK/STAT pathway, their inhibitory effects are documented across several cascades, underpinning their essential role in homeostatic maintenance and disease. After 20 years of extensive research, SOCS3 has emerged as arguably the most important family member, through its regulation of both cytokine- and pathogen-induced cascades. In fact, low expression of SOCS3 is associated with autoimmunity and oncogenesis, while high expression is linked to diabetes and pathogenic immune evasion. The induction of SOCS3 by both viruses and bacteria and its impact upon inflammatory disorders, underscores this protein's increasing clinical potential. Therefore, with the aim of highlighting SOCS3 as a therapeutic target for future development, this review revisits its multi-faceted immune regulatory functions and summarises its role in a broad ranges of diseases.
Collapse
Affiliation(s)
- R Mahony
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - S Ahmed
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
| | - N J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
38
|
Liang XJ, Guo YC, Sun TY, Song HR, Gao YX. Anti-angiogenic effect of total saponins of Rhizoma Dioscorea nipponica on collagen induced-arthritis in rats. Exp Ther Med 2016; 12:2155-2160. [PMID: 27698704 DOI: 10.3892/etm.2016.3586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune and incurable disease. The aim of the present study was to investigate the therapeutic effect and mechanism of the total saponins of Rhizoma Dioscorea nipponica (TSRDN) in RA. A collagen induced-arthritis (CIA) rat model was established. CIA rats were randomly divided into three groups and lavaged with an equal volume of solvent (CIA group), TSRDN (25 mg/kg/day, RDN group) and tripterygium (TP; 12 mg/kg/day, TP group) for 21 days, respectively. Normal rats served as a control group. Hematoxylin-eosin (HE) staining was used to observe the histopathological injury of synovial tissues. The level of CD31, which used for marking and counting, micro vessel density (MVD) and the expression levels of vascular endothelial growth factor (VEGF) and signal transducer and activator of transcription 3 (STAT3) were detected by immunohistochemical analysis. Additionally, the DNA-binding activity of nuclear factor-κB (NF-κB) was determined using an ELISA kit. HE staining showed obvious synovial hyperplasia, inflammatory cell infiltration, pannus formation, cartilage and bone erosion in the CIA group rats. In addition, compared with control group, the level of MVD, the expression of VEGF and STAT3, and the DNA-binding activity of NF-κB were all increased in CIA group rat synovial tissue (all P<0.01); however, TSRDN or tripterygium were able to inhibit these changes (all P<0.01). It was speculated that TSRDN may prevent angiogenesis by inhibiting the expression of STAT3 and the DNA-binding activity of NF-κB p65, thereby potentially improving CIA.
Collapse
Affiliation(s)
- Xiu-Jun Liang
- Basic Medical Institute, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Ya-Chun Guo
- Department of Pathogen Biology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Tong-You Sun
- Center of Radiation and Chemotherapy, Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Hong-Ru Song
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Ya-Xian Gao
- Department of Immunology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
39
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
40
|
Jones GW, Bombardieri M, Greenhill CJ, McLeod L, Nerviani A, Rocher-Ros V, Cardus A, Williams AS, Pitzalis C, Jenkins BJ, Jones SA. Interleukin-27 inhibits ectopic lymphoid-like structure development in early inflammatory arthritis. ACTA ACUST UNITED AC 2015; 212:1793-802. [PMID: 26417004 PMCID: PMC4612100 DOI: 10.1084/jem.20132307] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 08/28/2015] [Indexed: 01/31/2023]
Abstract
Decreased interleukin-27 signaling in humans and mice induces the formation of ectopic lymphoid-like structures (ELSs), which are associated with severe disease pathology and resistance to biological therapy in rheumatoid arthritis patients. Increased numbers of podoplanin-expressing Th17 cells in the absence of IL-27R signaling may be involved in driving ELS formation. Ectopic lymphoid-like structures (ELSs) reminiscent of secondary lymphoid organs often develop at sites of chronic inflammation where they contribute to immune-mediated pathology. Through evaluation of synovial tissues from rheumatoid arthritis (RA) patients, we now show that low interleukin-27 (IL-27) expression corresponds with an increased incidence of ELS and gene signatures associated with their development and activity. The presence of synovial ELS was also noted in mice deficient in the IL-27 receptor (IL-27R) after the onset of inflammatory arthritis. Here, pathology was associated with increased synovial expression of pro-inflammatory cytokines, homeostatic chemokines, and transcriptional regulators linked with lymphoid neogenesis. In both clinical and experimental RA, synovial ELS coincided with the heightened local expression of cytokines and transcription factors of the Th17 and T follicular helper (Tfh) cell lineages, and included podoplanin-expressing T cells within lymphoid aggregates. IL-27 inhibited the differentiation of podoplanin-expressing Th17 cells, and an increased number of these cells were observed in IL-27R–deficient mice with inflammatory arthritis. Thus, IL-27 appears to negatively regulate ELS development in RA through control of effector T cells. These studies open new opportunities for patient stratification and treatment.
Collapse
Affiliation(s)
- Gareth W Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Claire J Greenhill
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Vidalba Rocher-Ros
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Anna Cardus
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Anwen S Williams
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, London EC1M 6BQ, England, UK
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson (formerly Monash) Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF10 3XQ, Wales, UK
| |
Collapse
|
41
|
Andersson KME, Cavallini NF, Hu D, Brisslert M, Cialic R, Valadi H, Erlandsson MC, Silfverswärd S, Pullerits R, Kuchroo VK, Weiner HL, Bokarewa MI. Pathogenic Transdifferentiation of Th17 Cells Contribute to Perpetuation of Rheumatoid Arthritis during Anti-TNF Treatment. Mol Med 2015; 21:536-43. [PMID: 26062018 DOI: 10.2119/molmed.2015.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 12/21/2022] Open
Abstract
T-helper cells producing interleukin (IL)-17A and IL-17F cytokines (Th17 cells) are considered the source of autoimmunity in rheumatoid arthritis (RA). In this study, we characterized specific pathogenic features of Th17 cells in RA. By using nano-string technology, we analyzed transcription of 419 genes in the peripheral blood CCR6(+)CXCR3(-) CD4(+) cells of 14 RA patients and 6 healthy controls and identified 109 genes discriminating Th17 cells of RA patients from the controls. Th17 cells of RA patients had an aggressive pathogenic profile and in addition to signature cytokines IL-17, IL-23 and IL-21, and transcriptional regulators RAR-related orphan receptor gamma of T cells (RORγt) and Janus kinase 2 (JAK2), they produced high levels of IL-23R, C-C chemokine ligand type 20 (CCL20), granulocyte-monocyte colony-stimulating factor (GM-CSF ) and transcription factor Tbet required for synovial homing. We showed that Th17 cells are enriched with Helios-producing Foxp3- and IL2RA-deficient cells, indicating altered regulatory profile. The follicular T-helper (Tfh) cells presented a functional profile of adaptor molecules, transcriptional regulator Bcl-6 and B-cell activating cytokines IL-21, IL-31 and leukemia inhibitory factor (LIF ). We observed that anti-tumor necrosis factor (TNF) treatment had a limited effect on the transcription signature of Th17 cells. Patients in remission retained the machinery of receptors (IL-23R and IL-1R1), proinflammatory cytokines (IL-17F, IL-23, IL-21 and TNF ) and adaptor molecules (C-X-C chemokine receptor 5 [CXCR5] and cytotoxic T-lymphocyte-associated protein 4 [CTLA-4]), essential for efficient transdifferentiation and accumulation of Th17 cells. This study convincingly shows that the peripheral blood CCR6(+)CXCR3(-) CD4(+) cells of RA patients harbor pathogenic subsets of Th17 and Tfh cells, which may transdifferentiate from Tregs and contribute to perpetuation of the disease.
Collapse
Affiliation(s)
- Karin M E Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Nicola Filluelo Cavallini
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Dan Hu
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mikael Brisslert
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Ron Cialic
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Malin C Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Sofia Silfverswärd
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Vijay K Kuchroo
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Howard L Weiner
- Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria I Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
42
|
Abstract
Interleukin 6 (IL-6) has a broad effect on cells of the immune system and those not of the immune system and often displays hormone-like characteristics that affect homeostatic processes. IL-6 has context-dependent pro- and anti-inflammatory properties and is now regarded as a prominent target for clinical intervention. However, the signaling cassette that controls the activity of IL-6 is complicated, and distinct intervention strategies can inhibit this pathway. Clinical experience with antagonists of IL-6 has raised new questions about how and when to block this cytokine to improve disease outcome and patient wellbeing. Here we discuss the effect of IL-6 on innate and adaptive immunity and the possible advantages of various antagonists of IL-6 and consider how the immunobiology of IL-6 may inform clinical decisions.
Collapse
Affiliation(s)
- Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, The School of Medicine, Cardiff University, Heath Campus, Cardiff, UK
| |
Collapse
|
43
|
IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16:448-57. [DOI: 10.1038/ni.3153] [Citation(s) in RCA: 1392] [Impact Index Per Article: 154.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 02/07/2023]
|
44
|
Kamimura D, Stofkova A, Nishikawa N, Atsumi T, Arima Y, Murakami M. Immune cell gateways in the central nervous system regulated by regional neural stimulations. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/cen3.12198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Daisuke Kamimura
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Andrea Stofkova
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Naoki Nishikawa
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Toru Atsumi
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Yasunobu Arima
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| | - Masaaki Murakami
- Molecular Neuroimmunology; Institute for Genetic Medicine; Graduate School of Medicine; Hokkaido University; Sapporo Hokkaido Japan
| |
Collapse
|
45
|
Benson RA, McInnes IB, Brewer JM, Garside P. Cellular imaging in rheumatic diseases. Nat Rev Rheumatol 2015; 11:357-67. [DOI: 10.1038/nrrheum.2015.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Harada M, Kamimura D, Arima Y, Kohsaka H, Nakatsuji Y, Nishida M, Atsumi T, Meng J, Bando H, Singh R, Sabharwal L, Jiang JJ, Kumai N, Miyasaka N, Sakoda S, Yamauchi-Takihara K, Ogura H, Hirano T, Murakami M. Temporal Expression of Growth Factors Triggered by Epiregulin Regulates Inflammation Development. THE JOURNAL OF IMMUNOLOGY 2015; 194:1039-46. [DOI: 10.4049/jimmunol.1400562] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
van den Berg WB. Animal models of arthritis. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
48
|
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14:736-46. [PMID: 25342631 DOI: 10.1038/nrc3818] [Citation(s) in RCA: 1567] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Janus kinases (JAKs) and signal transducer and activator of transcription (STAT) proteins, particularly STAT3, are among the most promising new targets for cancer therapy. In addition to interleukin-6 (IL-6) and its family members, multiple pathways, including G-protein-coupled receptors (GPCRs), Toll-like receptors (TLRs) and microRNAs were recently identified to regulate JAK-STAT signalling in cancer. Well known for its role in tumour cell proliferation, survival, invasion and immunosuppression, JAK-STAT3 signalling also promotes cancer through inflammation, obesity, stem cells and the pre-metastatic niche. In addition to its established role as a transcription factor in cancer, STAT3 regulates mitochondrion functions, as well as gene expression through epigenetic mechanisms. Newly identified regulators and functions of JAK-STAT3 in tumours are important targets for potential therapeutic strategies in the treatment of cancer.
Collapse
Affiliation(s)
- Hua Yu
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Heehyoung Lee
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Andreas Herrmann
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Ralf Buettner
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA
| | - Richard Jove
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida 34987, USA
| |
Collapse
|
49
|
A systems model of phosphorylation for inflammatory signaling events. PLoS One 2014; 9:e110913. [PMID: 25333362 PMCID: PMC4205014 DOI: 10.1371/journal.pone.0110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022] Open
Abstract
Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits.
Collapse
|
50
|
Sabharwal L, Kamimura D, Meng J, Bando H, Ogura H, Nakayama C, Jiang JJ, Kumai N, Suzuki H, Atsumi T, Arima Y, Murakami M. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J Biochem 2014; 156:299-304. [PMID: 25286911 DOI: 10.1093/jb/mvu057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The brain-blood barrier (BBB) tightly limits immune cell migration into the central nervous system (CNS), avoiding unwanted inflammation under the normal state. However, immune cells can traverse the BBB when inflammation occurs within the CNS, suggesting a certain signal that creates a gateway that bypasses the BBB might exist. We revealed the inflammation amplifier as a mechanism of this signal, and identified dorsal vessels of the fifth lumber (L5) spinal cord as the gateway. The inflammation amplifier is driven by a simultaneous activation of NF-κB and STATs in non-immune cells, causing the production of a large amount of inflammatory chemokines to open the gateway at L5 vessels. It was found that the activation of the amplifier can be modulated by neural activation and artificially operated by electric pulses followed by establishment of new gateways, Gateway Reflex, at least in mice. Furthermore, genes required for the inflammation amplifier have been identified and are highly associated with various inflammatory diseases and disorders in the CNS. Thus, physical and/or pharmacological manipulation of the inflammation amplifier holds therapeutic value to control neuro-inflammation.
Collapse
Affiliation(s)
- Lavannya Sabharwal
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Daisuke Kamimura
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Jie Meng
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Hidenori Bando
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Hideki Ogura
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Chiemi Nakayama
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Jing-Jing Jiang
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Noriko Kumai
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Hironao Suzuki
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Toru Atsumi
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Yasunobu Arima
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Masaaki Murakami
- Molecular Neuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| |
Collapse
|