1
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
4
|
Cavalcante-Silva J, Koh TJ. Role of NK Cells in Skin Wound Healing of Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:981-990. [PMID: 36883869 PMCID: PMC10181875 DOI: 10.4049/jimmunol.2200637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
NK cells are best known for their killing of virus-infected cells and tumor cells via release of cytotoxic factors. However, NK cells can also produce growth factors and cytokines, and thus have the potential to influence physiological processes such as wound healing. In this study, we test the hypothesis that NK cells play a physiological role in skin wound healing of C57BL/6J mice. Immunohistochemical and flow cytometry assays showed that NK cells accumulate in excisional skin wounds, peaking on day 5 postinjury. We also found that NK cells proliferate locally in wounds, and blocking IL-15 activity locally reduces NK cell proliferation and accumulation in wounds. Wound NK cells exhibit primarily a mature CD11b+CD27- and NKG2A+NKG2D- phenotype and express LY49I and proinflammatory cytokines such as IFN-γ, Tnf-a, and Il-1β. Systemic depletion of NK cells resulted in enhanced re-epithelization and collagen deposition, suggesting a negative role for these cells in skin wound healing. Depletion of NK cells did not influence accumulation of neutrophils or monocytes/macrophages in wounds but did reduce expression of IFN-γ, Tnf-a, and Il-1β, indicating that NK cells contribute to proinflammatory cytokine expression in wounds. In short, NK cells may impede physiological wound healing via production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL; and Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| | - Timothy J Koh
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, IL; and Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
5
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
6
|
Oh BLZ, Chan LWY, Chai LYA. Manipulating NK cellular therapy from cancer to invasive fungal infection: promises and challenges. Front Immunol 2023; 13:1044946. [PMID: 36969979 PMCID: PMC10034767 DOI: 10.3389/fimmu.2022.1044946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
The ideal strategy to fight an infection involves both (i) weakening the invading pathogen through conventional antimicrobial therapy, and (ii) strengthening defense through the augmentation of host immunity. This is even more pertinent in the context of invasive fungal infections whereby the majority of patients have altered immunity and are unable to mount an appropriate host response against the pathogen. Natural killer (NK) cells fit the requirement of an efficient, innate executioner of both tumour cells and pathogens – their unique, targeted cell killing mechanism, combined with other arms of the immune system, make them potent effectors. These characteristics, together with their ready availability (given the various sources of extrinsic NK cells available for harvesting), make NK cells an attractive choice as adoptive cellular therapy against fungi in invasive infections. Improved techniques in ex vivo NK cell activation with expansion, and more importantly, recent advances in genetic engineering including state-of-the-art chimeric antigen receptor platform development, have presented an opportune moment to harness this novel therapeutic as a key component of a multipronged strategy against invasive fungal infections.
Collapse
Affiliation(s)
- Bernice Ling Zhi Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Louis Wei Yong Chan
- Clinician Scientist Academy, National University Health System, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- *Correspondence: Louis Yi Ann Chai,
| |
Collapse
|
7
|
Bakhtiari T, Ahmadvand M, Salmaninejad A, Ghaderi A, Yaghmaie M, Sadeghi A, Mousavi SA, Rostami T, Ganjalikhani-Hakemi M. The Influence of KIR Gene Polymorphisms and KIR-ligand Binding on Outcomes in Hematologic Malignancies following Haploidentical Stem Cell Transplantation: A Comprehensive Review. Curr Cancer Drug Targets 2023; 23:868-878. [PMID: 37226789 DOI: 10.2174/1568009623666230523155808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023]
Abstract
Natural killer (NK) cell behavior and function are controlled by a balance between negative or positive signals generated by an extensive array of activating and inhibiting receptors, including killer cell immunoglobulin-like receptor (KIR) proteins, main components of the innate immune system that contribute to initial responses against viral infected-transformed cells through generation of the release of cytokines and cytotoxicity. What is certain is that KIRs are genetically polymorphic and the extent of KIRs diversity within the individuals may have the potential outcomes for hematopoietic stem cell transplantation (HSCT). In this regard, recent studies suggest that KIR is as imperative as its ligand (HLA) in stem cell transplantation for malignant diseases. However, unlike HLA epitope mismatches, which are well-known causes of NK alloreactivity, a complete understanding of KIR genes' role in HSCT remains unclear. Because of genetic variability in KIR gene content, allelic polymorphism, and cell-surface expression among individuals, an appropriate selection of donors based on HLA and KIR profiles is crucial to improve outcomes of stem cell transplantation. In addition, the impact of the KIR/HLA interaction on HSCT outcomes needs to be investigated more comprehensively. The present work aimed to review the NK cell regeneration, KIR gene polymorphisms, and KIRligand binding on outcomes in hematologic malignancies following haploidentical stem cell transplantation. Comprehensive data gathered from the literature can provide new insight into the significance of KIR matching status in transplantations.
Collapse
Affiliation(s)
- Tahereh Bakhtiari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University Medical Sciences, Rasht, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marjan Yaghmaie
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghi
- Department of Internal Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seied Asadollah Mousavi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Rostami
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
8
|
Rahnama R, Bonifant CL. Engineering builds multipotency for iPSC-NKs. Blood 2022; 140:2414-2416. [PMID: 36480219 DOI: 10.1182/blood.2022017794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Hassan N, Eldershaw S, Stephens C, Kinsella F, Craddock C, Malladi R, Zuo J, Moss P. CMV reactivation initiates long-term expansion and differentiation of the NK cell repertoire. Front Immunol 2022; 13:935949. [PMID: 36531994 PMCID: PMC9753568 DOI: 10.3389/fimmu.2022.935949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction NK cells play an important role in suppression of viral replication and are critical for effective control of persistent infections such as herpesviruses. Cytomegalovirus infection is associated with expansion of 'adaptive-memory' NK cells with a characteristic CD56dimCD16bright NKG2C+ phenotype but the mechanisms by which this population is maintained remain uncertain. Methods We studied NK cell reconstitution in patients undergoing haemopoietic stem cell transplantation and related this to CMV reactivation. Results NK cells expanded in the early post-transplant period but then remained stable in the absence of viral reactivation. However, CMV reactivation led to a rapid and sustained 10-fold increase in NK cell number. The proportion of NKG2C-expressing cells increases on all NK subsets although the kinetics of expansion peaked at 6 months on immature CD56bright cells whilst continuing to rise on the mature CD56dim pool. Phenotypic maturation was observed by acquisition of CD57 expression. Effective control of viral reactivation was seen when the peripheral NK cell count reached 20,000/ml. Discussion These data show that short term CMV reactivation acts to reprogramme hemopoiesis to drive a sustained modulation and expansion of the NK cell pool and reveal further insight into long term regulation of the innate immune repertoire by infectious challenge.
Collapse
Affiliation(s)
- Norfarazieda Hassan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Suzy Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christine Stephens
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
10
|
Al-Kadhimi Z, Callahan M, Fehniger T, Cole KE, Vose J, Hinrichs S. Enrichment of innate immune cells from PBMC followed by triple cytokine activation for adoptive immunotherapy. Int Immunopharmacol 2022; 113:109387. [DOI: 10.1016/j.intimp.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
11
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
12
|
Rahnama R, Christodoulou I, Bonifant CL. Gene-Based Natural Killer Cell Therapies for the Treatment of Pediatric Hematologic Malignancies. Hematol Oncol Clin North Am 2022; 36:745-768. [PMID: 35773048 PMCID: PMC10158845 DOI: 10.1016/j.hoc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pediatric blood cancers are among the most common malignancies that afflict children. Intensive chemotherapy is not curative in many cases, and novel therapies are urgently needed. NK cells hold promise for use as immunotherapeutic effectors due to their favorable safety profile, intrinsic cytotoxic properties, and potential for genetic modification that can enhance specificity and killing potential. NK cells can be engineered to express CARs targeting tumor-specific antigens, to downregulate inhibitory and regulatory signals, to secrete cytokine, and to optimize interaction with small molecule engagers. Understanding NK cell biology is key to designing immunotherapy for clinical translation.
Collapse
|
13
|
Ramos-Mejia V, Arellano-Galindo J, Mejía-Arangure JM, Cruz-Munoz ME. A NK Cell Odyssey: From Bench to Therapeutics Against Hematological Malignancies. Front Immunol 2022; 13:803995. [PMID: 35493522 PMCID: PMC9046543 DOI: 10.3389/fimmu.2022.803995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In 1975 two independent groups noticed the presence of immune cells with a unique ability to recognize and eliminate transformed hematopoietic cells without any prior sensitization or expansion of specific clones. Since then, NK cells have been the axis of thousands of studies that have resulted until June 2021, in more than 70 000 publications indexed in PubMed. As result of this work, which include approaches in vitro, in vivo, and in natura, it has been possible to appreciate the role played by the NK cells, not only as effectors against specific pathogens, but also as regulators of the immune response. Recent advances have revealed previous unidentified attributes of NK cells including the ability to adapt to new conditions under the context of chronic infections, or their ability to develop some memory-like characteristics. In this review, we will discuss significant findings that have rule our understanding of the NK cell biology, the developing of these findings into new concepts in immunology, and how these conceptual platforms are being used in the design of strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Veronica Ramos-Mejia
- GENYO: Centro Pfizer, Universidad de Granada, Junta de Andalucía de Genómica e Investigación Oncológica, Granada, Spain
| | - Jose Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México “Dr. Federico Gomez”, Ciudad de México, Mexico
| | - Juan Manuel Mejía-Arangure
- Genómica del Cancer, Instituto Nacional de Medicina Genómica (INMEGEN) & Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Mario Ernesto Cruz-Muñoz, ; Juan Manuel Mejía-Arangure,
| |
Collapse
|
14
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
15
|
Park JY, Won HY, DiPalma DT, Kim HK, Kim TH, Li C, Sato N, Hong C, Abraham N, Gress RE, Park JH. In vivo availability of the cytokine IL-7 constrains the survival and homeostasis of peripheral iNKT cells. Cell Rep 2022; 38:110219. [PMID: 35021100 DOI: 10.1016/j.celrep.2021.110219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2022] Open
Abstract
Understanding the homeostatic mechanism of invariant natural killer T (iNKT) cells is a critical issue in iNKT cell biology. Because interleukin (IL)-15 is required for the thymic generation of iNKT cells, IL-15 has also been considered necessary for the homeostasis of peripheral iNKT cells. Here, we delineated the in vivo cytokine requirement for iNKT cells, and we came to the surprising conclusion that IL-7, not IL-15, is the homeostatic cytokine for iNKT cells. Employing a series of experimental mouse models where the availability of IL-7 or IL-15 was manipulated in peripheral tissues, either by genetic tools or by adult thymectomy and cytokine pump installation, we demonstrate that the abundance of IL-7, and not IL-15, limits the size of the peripheral iNKT cell pool. These results redefine the cytokine requirement for iNKT cells and indicate competition for IL-7 between iNKT and conventional αβ T cells.
Collapse
Affiliation(s)
- Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA; Department of Oral and Maxillofacial Surgery, Seoul National University School of Dentistry, Seoul National University Dental Hospital, 101 Daehakno, Jongno-gu, Seoul 03080, South Korea.
| | - Hee Yeun Won
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Devon T DiPalma
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Hye Kyung Kim
- Experimental Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tae-Hyoun Kim
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 626-870, South Korea
| | - Ninan Abraham
- Department of Microbiology and Immunology, and Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ronald E Gress
- Experimental Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 10, Room 5B17, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
17
|
Abdelbaky SB, Ibrahim MT, Samy H, Mohamed M, Mohamed H, Mustafa M, Abdelaziz MM, Forrest ML, Khalil IA. Cancer immunotherapy from biology to nanomedicine. J Control Release 2021; 336:410-432. [PMID: 34171445 DOI: 10.1016/j.jconrel.2021.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
With the significant drawbacks of conventional cancer chemotherapeutics, cancer immunotherapy has demonstrated the ability to eradicate cancer cells and circumvent multidrug resistance (MDR) with fewer side effects than traditional cytotoxic therapies. Various immunotherapeutic agents have been investigated for that purpose including checkpoint inhibitors, cytokines, monoclonal antibodies and cancer vaccines. All these agents aid immune cells to recognize and engage tumor cells by acting on tumor-specific pathways, antigens or cellular targets. However, immunotherapeutics are still associated with some concerns such as off-target side effects and poor pharmacokinetics. Nanomedicine may resolve some limitations of current immunotherapeutics such as localizing delivery, controlling release and enhancing the pharmacokinetic profile. Herein, we discuss recent advances of immunotherapeutic agents with respect to their development and biological mechanisms of action, along with the advantages that nanomedicine strategies lend to immunotherapeutics by possibly improving therapeutic outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Salma B Abdelbaky
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Molecular, Cellular, and Developmental Biology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, United States of America
| | - Mayar Tarek Ibrahim
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States of America
| | - Hebatallah Samy
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Menatalla Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Hebatallah Mohamed
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Mahmoud Mustafa
- University of Science and Technology, Zewail City, 6th of October City, Giza 12578, Egypt
| | - Moustafa M Abdelaziz
- Department of Bioengineering, School of Engineering, The University of Kansas, Lawrence, KS 66045, USA
| | - M Laird Forrest
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
18
|
Lee SH, Lim YJ, Kim CJ, Yu D, Lee JJ, Won Hong J, Baek YJ, Jung JY, Shin DJ, Kim SK. Safety and immunological effects of recombinant canine IL-15 in dogs. Cytokine 2021; 148:155599. [PMID: 34103211 DOI: 10.1016/j.cyto.2021.155599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Interleukin-15 (IL-15) is a pleiotropic cytokine that plays pivotal roles in innate and adaptive immunity. It is also a promising cytokine for treating cancer. Despite growing interest in its use as an immunotherapeutic, its safety and immunological effects in dogs have not been reported. In this study, healthy dogs were given recombinant canine IL-15 (rcIL-15) intravenously at a daily dose of 20 μg/kg for 8 days and monitored for 32 days to determine the safety and immunological effects of rcIL-15. The repeated administration of rcIL-15 was well tolerated, did not cause any serious side effects, and promoted the selective proliferation and activation of canine anti-cancer effector cells, including CD3+CD8+ cytotoxic T lymphocytes, CD3+CD5dimCD21-, and non-B/non-T NK cell populations, without stimulating Treg lymphocytes. The rcIL-15 injections also stimulated the expression of molecules and transcription factors associated with the activation and effector functions of NK cells, including CD16, NKG2D, NKp30, NKp44, NKp46, perforin, granzyme B, Ly49, T-bet, and Eomes. These results suggest that rcIL-15 might be a valuable therapeutic adjuvant to improve immunity against cancer in dogs.
Collapse
Affiliation(s)
- Soo-Hyeon Lee
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Yu-Jin Lim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Cheol-Jung Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Dohyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Je-Jung Lee
- Department of Hemotology-Oncology, Chonnam National Univresity Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Jeong Won Hong
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Yeon-Ju Baek
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Ji-Youn Jung
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea
| | - Dong-Jun Shin
- Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; SD Medic Co, Gwangju, Republic of Korea.
| | - Sang-Ki Kim
- Department of Integrated Life Science and Technology, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan-gun, Chungnam, Republic of Korea; Research Institute for Natural Products, Kongju National University, Yesan-gun, Chungnam, Republic of Korea.
| |
Collapse
|
19
|
Mah-Som AY, Keppel MP, Tobin JM, Kolicheski A, Saucier N, Sexl V, French AR, Wagner JA, Fehniger TA, Cooper MA. Reliance on Cox10 and oxidative metabolism for antigen-specific NK cell expansion. Cell Rep 2021; 35:109209. [PMID: 34077722 PMCID: PMC8229496 DOI: 10.1016/j.celrep.2021.109209] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cell effector functions are dependent on metabolic regulation of cellular function; however, less is known about in vivo metabolic pathways required for NK cell antiviral function. Mice with an inducible NK-specific deletion of Cox10, which encodes a component of electron transport chain complex IV, were generated to investigate the role of oxidative phosphorylation in NK cells during murine cytomegalovirus (MCMV) infection. Ncr1-Cox10Δ/Δ mice had normal numbers of NK cells but impaired expansion of antigen-specific Ly49H+ NK cells and impaired NK cell memory formation. Proliferation in vitro and homeostatic expansion were intact, indicating a specific metabolic requirement for antigen-driven proliferation. Cox10-deficient NK cells upregulated glycolysis, associated with increased AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) activation, although this was insufficient to protect the host. These data demonstrate that oxidative metabolism is required for NK cell antiviral responses in vivo.
Collapse
Affiliation(s)
- Annelise Y Mah-Som
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly P Keppel
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua M Tobin
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Veronika Sexl
- Department of Biomedical Science, University of Veterinary Medicine of Vienna, Vienna, Austria
| | - Anthony R French
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Bagheri Y, Barati A, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. Current progress in cancer immunotherapy based on natural killer cells. Cell Biol Int 2020; 45:2-17. [PMID: 32910474 DOI: 10.1002/cbin.11465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/08/2022]
Abstract
One of the most common diseases in the present era is cancer. The common treatment methods used to control cancer include surgery, chemotherapy, and radiotherapy. Despite progress in the treatment of cancers, there still is no definite therapeutic approach. Among the currently proposed strategies, immunotherapy is a new approach that can provide better outcomes compared with existing therapies. Employing natural killer (NK) cells is one of the means of immunotherapy. As innate lymphocytes, NK cells are capable of rapidly responding to cancer cells without being sensitized or restricted to the cognate antigen in advance, as compared to T cells that are tumor antigen-specific. Latest insights into the biology of NK cells have clarified the underlying molecular mechanisms of NK cell maturation and differentiation, as well as controlling their effector functions through the investigation of the ligands and receptors engaged in recognizing cancer cells by NK cells. Elucidating the fact that NK cells recognize cancer cells could similarly show the mechanism through which cancer cells possibly avoid NK cell-dependent immune surveillance. Additionally, the expectations for novel immunotherapies by targeting NK cells have increased through the latest clinical outcomes of T-cell-targeted cancer immunotherapy. For this emerging method, researchers are still attempting to develop protocols for conferring the best proliferation and expansion medium, activation pathways, utilization dosage, transferring methods, as well as reducing possible side effects in cancer therapy. This study reviews the NK cells, their proliferation and expansion methods, and their recent applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasin Bagheri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Barati
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Abstract
One of the hallmarks of the vertebrate adaptive immune system is the prolific expansion of individual cell clones that encounter their cognate antigen. More recently, however, there is growing evidence for the clonal expansion of innate lymphocytes, particularly in the context of pathogen challenge. Clonal expansion not only serves to amplify the number of specific lymphocytes to mount a robust protective response to the pathogen at hand but also results in selection and differentiation of the responding lymphocytes to generate a multitude of cell fates. Here, we summarize the evidence for clonal expansion in innate lymphocytes, which has primarily been observed in natural killer (NK) cells responding to cytomegalovirus infection, and consider the requirements for such a response in NK cells in light of those for T cells. Furthermore, we discuss multiple aspects of heterogeneity that both contribute to and result from the fundamental immunological process of clonal expansion, highlighting the parallels between innate and adaptive lymphocytes, with a particular focus on NK cells and CD8+ T cells.
Collapse
|
22
|
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19:200-218. [PMID: 31907401 DOI: 10.1038/s41573-019-0052-1] [Citation(s) in RCA: 690] [Impact Index Per Article: 172.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Jain
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Alvarez M, Ochoa MC, Minute L, Melero I, Berraondo P. Rapid isolation and enrichment of mouse NK cells for experimental purposes. Methods Enzymol 2019; 631:257-275. [PMID: 31948551 DOI: 10.1016/bs.mie.2019.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells have shown to play a critical, but as yet poorly defined, role in the process by which the immune system controls tumor progression. Indeed, NK cell-based immunotherapy, particularly NK cell adoptive transfer therapy, has become a very attractive cancer weapon against multiple types of cancers such as metastatic and hematological cancers. Unfortunately, the implementation of these therapies has been challenged by the existence of immunosuppression mechanisms that have prevented NK cell functionality. Additionally, the development of protocols to obtain purified and functional NK cells has faced some difficulties due to the limitations in the numbers of cells that can be obtained and the development of an exhaustion phenotype with impaired proliferative and functional capabilities during lengthy ex vivo NK cell expansion protocols. Thus, the development of new strategies to obtain a rapid expansion of highly functional NK cells without the appearance of exhaustion is still much needed. This is particularly true in the case of mouse NK cells, a surrogate commonly used to evaluate NK cell biology and human NK cell-based immunotherapeutic alternatives. Here, we describe a feasible and rapid protocol to produce strongly activated mouse NK cells in vivo taking advantage of the hydrodynamic delivery of a plasmid that contains interleukin-15, a cytokine known to cause NK cell expansion and activation, fused with the binding domain of the IL-15Rα ("sushi" domain) and apolipoprotein A-I.
Collapse
Affiliation(s)
- Maite Alvarez
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luna Minute
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clinica Universidad de Navarra, Pamplona, Spain.
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
24
|
Niogret C, Miah SMS, Rota G, Fonta NP, Wang H, Held W, Birchmeier W, Sexl V, Yang W, Vivier E, Ho PC, Brossay L, Guarda G. Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nat Commun 2019; 10:1444. [PMID: 30926899 PMCID: PMC6441079 DOI: 10.1038/s41467-019-09431-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
The phosphatase Shp-2 was implicated in NK cell development and functions due to its interaction with NK inhibitory receptors, but its exact role in NK cells is still unclear. Here we show, using mice conditionally deficient for Shp-2 in the NK lineage, that NK cell development and responsiveness are largely unaffected. Instead, we find that Shp-2 serves mainly to enforce NK cell responses to activation by IL-15 and IL-2. Shp-2-deficient NK cells have reduced proliferation and survival when treated with high dose IL-15 or IL-2. Mechanistically, Shp-2 deficiency hampers acute IL-15 stimulation-induced raise in glycolytic and respiration rates, and causes a dramatic defect in ERK activation. Moreover, inhibition of the ERK and mTOR cascades largely phenocopies the defect observed in the absence of Shp-2. Together, our data reveal a critical function of Shp-2 as a molecular nexus bridging acute IL-15 signaling with downstream metabolic burst and NK cell expansion.
Collapse
Affiliation(s)
- Charlène Niogret
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - S M Shahjahan Miah
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Nicolas P Fonta
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland
| | - Haiping Wang
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland
| | - Walter Birchmeier
- Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Society, 13125, Berlin, Germany
| | - Veronica Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Wentian Yang
- Department of Orthopaedics, Rhode Island Hospital and Brown University Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Avenue de Luminy, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, 13385, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, 117 Avenue de Luminy, 13276, Marseille, France
| | - Ping-Chih Ho
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, 1066, Epalinges, Switzerland
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology and Graduate Program in Pathobiology, Division of Biology and Medicine, Brown University Alpert Medical School, Providence, RI, 02912, USA.
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland. .,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500, Bellinzona, Switzerland.
| |
Collapse
|
25
|
IL-27 promotes NK cell effector functions via Maf-Nrf2 pathway during influenza infection. Sci Rep 2019; 9:4984. [PMID: 30899058 PMCID: PMC6428861 DOI: 10.1038/s41598-019-41478-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 01/06/2023] Open
Abstract
Influenza virus targets epithelial cells in the upper respiratory tract. Natural Killer (NK) cell-mediated early innate defense responses to influenza infection include the killing of infected epithelial cells and generation of anti-viral cytokines including interferon gamma (IFN-γ). To date, it is unclear how the underlying cytokine milieu during infection regulates NK cell effector functions. Our data show during influenza infection myeloid cell-derived IL-27 regulates the early-phase effector functions of NK cells in the bronchioalveolar and lung tissue. Lack of IL-27R (Il27ra−/−) or IL-27 (Ebi3−/−) resulted in impaired NK cell effector functions including the generation of anti-viral IFN-γ responses. We identify CD27+CD11b+ NK cells as the primary subset that expresses IL-27R, which predominantly produces IFN-γ within the upper respiratory tract of the infected mice. IL-27 alone was incapable of altering the effector functions of NK cells. However, IL-27 sensitizes NK cells to augment both in vitro and in vivo responses mediated via the NKG2D receptor. This ‘priming’ function of IL-27 is mediated partly via transcriptional pathways regulated by Mafs and Nrf2 transcriptionally regulating TFAM and CPT1. Our data for the first time establishes a novel role for IL-27 in regulating early-phase effector functions of NK cells during influenza infection.
Collapse
|
26
|
The Potential Role of a Soluble γ-Chain Cytokine Receptor as a Regulator of IL-7-Induced Lymphoproliferative Disorders. Int J Mol Sci 2018; 19:ijms19113375. [PMID: 30373315 PMCID: PMC6274946 DOI: 10.3390/ijms19113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023] Open
Abstract
IL-7 is an essential, nonredundant growth factor for T and B cell generation and maintenance. While IL-7 deficiency results in lymphopenia, overexpression of IL-7 can cause neoplasia in experimental models. IL-7’s involvement in neoplasia has been appreciated through studies of IL-7 transgenic (Tg) mice models and human lymphoma patients. Since we recently found that a soluble form of the common γ-chain (γc) cytokine receptor (sγc) antagonistically regulates IL-7 signaling, IL-7 and sγc double-Tg mice were generated to investigate the effects of sγc overexpression in IL-7-mediated lymphoproliferative disorders (LPDs). The overexpression of sγc prevents IL-7Tg-induced abnormal increase of LN cell numbers and the development of splenomegaly, resulting in striking amelioration of mortality and disease development. These results suggest that modification of γc cytokine responsiveness by sγc molecules might control various γc cytokine-associated hematologic malignancy, and also provide an alternative view to approach antitumor therapy.
Collapse
|
27
|
Neely HR, Mazo IB, Gerlach C, von Andrian UH. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Natural Killer Cells in Vaccination. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029488. [PMID: 29254978 DOI: 10.1101/cshperspect.a029488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes.
Collapse
Affiliation(s)
- Harold R Neely
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Irina B Mazo
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Carmen Gerlach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115.,The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
Rapp M, Wiedemann GM, Sun JC. Memory responses of innate lymphocytes and parallels with T cells. Semin Immunopathol 2018; 40:343-355. [PMID: 29808388 PMCID: PMC6054893 DOI: 10.1007/s00281-018-0686-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
Natural killer (NK) cells are classified as innate immune cells, given their ability to rapidly respond and kill transformed or virally infected cells without prior sensitization. Recently, accumulating evidence suggests that NK cells also exhibit many characteristics similar to cells of the adaptive immune system. Analogous to T cells, NK cells acquire self-tolerance during development, express antigen-specific receptors, undergo clonal-like expansion, and can become long-lived, self-renewing memory cells with potent effector function providing potent protection against reappearing pathogens. In this review, we discuss the requirements for memory NK cell generation and highlight the similarities with the formation of memory T cells.
Collapse
Affiliation(s)
- Moritz Rapp
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
- Immunology Program, Memorial Sloan Kettering Cancer Center, 408 East 69th Street, ZRC-1462, New York, NY, 10065, USA
| | - Gabriela M Wiedemann
- Immunology Program, Memorial Sloan Kettering Cancer Center, 408 East 69th Street, ZRC-1462, New York, NY, 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, 408 East 69th Street, ZRC-1462, New York, NY, 10065, USA.
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Adams NM, Lau CM, Fan X, Rapp M, Geary CD, Weizman OE, Diaz-Salazar C, Sun JC. Transcription Factor IRF8 Orchestrates the Adaptive Natural Killer Cell Response. Immunity 2018; 48:1172-1182.e6. [PMID: 29858012 PMCID: PMC6233715 DOI: 10.1016/j.immuni.2018.04.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/08/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate lymphocytes that display features of adaptive immunity during viral infection. Biallelic mutations in IRF8 have been reported to cause familial NK cell deficiency and susceptibility to severe viral infection in humans; however, the precise role of this transcription factor in regulating NK cell function remains unknown. Here, we show that cell-intrinsic IRF8 was required for NK-cell-mediated protection against mouse cytomegalovirus infection. During viral exposure, NK cells upregulated IRF8 through interleukin-12 (IL-12) signaling and the transcription factor STAT4, which promoted epigenetic remodeling of the Irf8 locus. Moreover, IRF8 facilitated the proliferative burst of virus-specific NK cells by promoting expression of cell-cycle genes and directly controlling Zbtb32, a master regulator of virus-driven NK cell proliferation. These findings identify the function and cell-type-specific regulation of IRF8 in NK-cell-mediated antiviral immunity and provide a mechanistic understanding of viral susceptibility in patients with IRF8 mutations.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiying Fan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Diaz-Salazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
30
|
Baar MP, Perdiguero E, Muñoz-Cánoves P, de Keizer PLJ. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol 2018; 40:147-155. [DOI: 10.1016/j.coph.2018.05.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
|
31
|
Strutt TM, Dhume K, Finn CM, Hwang JH, Castonguay C, Swain SL, McKinstry KK. IL-15 supports the generation of protective lung-resident memory CD4 T cells. Mucosal Immunol 2018; 11:668-680. [PMID: 29186108 PMCID: PMC5975122 DOI: 10.1038/mi.2017.101] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Tissue-resident memory T cells (TRM) provide optimal defense at the sites of infection, but signals regulating their development are unclear, especially for CD4 T cells. Here we identify two distinct pathways that lead to the generation of CD4 TRM in the lungs following influenza infection. The TRM are transcriptionally distinct from conventional memory CD4 T cells and share a gene signature with CD8 TRM. The CD4 TRM are superior cytokine producers compared with conventional memory cells, can protect otherwise naive mice against a lethal influenza challenge, and display functional specialization by inducing enhanced inflammatory responses from dendritic cells compared with conventional memory cells. Finally, we demonstrate than an interleukin (IL)-2-dependent and a novel IL-2-independent but IL-15-dependent pathway support the generation of cohorts of lung TRM.
Collapse
Affiliation(s)
- Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Caroline M. Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ji Hae Hwang
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
32
|
New interleukin-15 superagonist (IL-15SA) significantly enhances graft-versus-tumor activity. Oncotarget 2018; 8:44366-44378. [PMID: 28574833 PMCID: PMC5546486 DOI: 10.18632/oncotarget.17875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/28/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin-15 (IL-15) is a potent cytokine that increases CD8+ T and NK cell numbers and function in experimental models. However, obstacles remain in using IL-15 therapeutically, specifically its low potency and short in vivo half-life. To help overcome this, a new IL-15 superagonist complex comprised of an IL-15N72D mutation and IL-15RαSu/Fc fusion (IL-15SA, also known as ALT-803) was developed. IL-15SA exhibits a significantly longer serum half-life and increased in vivo activity against various tumors. Herein, we evaluated the effects of IL-15SA in recipients of allogeneic hematopoietic stem cell transplantation. Weekly administration of IL-15SA to transplant recipients significantly increased the number of CD8+ T cells (specifically CD44+ memory/activated phenotype) and NK cells. Intracellular IFN-γ and TNF-α secretion by CD8+ T cells increased in the IL-15SA-treated group. IL-15SA also upregulated NKG2D expression on CD8+ T cells. Moreover, IL-15SA enhanced proliferation and cytokine secretion of adoptively transferred CFSE-labeled T cells in syngeneic and allogeneic models by specifically stimulating the slowly proliferative and nonproliferative cells into actively proliferating cells. We then evaluated IL-15SA's effects on anti-tumor activity against murine mastocytoma (P815) and murine B cell lymphoma (A20). IL-15SA enhanced graft-versus-tumor (GVT) activity in these tumors following T cell infusion. Interestingly, IL-15 SA administration provided GVT activity against A20 lymphoma cells in the murine donor leukocyte infusion (DLI) model without increasing graft versus host disease. In conclusion, IL-15SA could be a highly potent T- cell lymphoid growth factor and novel immunotherapeutic agent to complement stem cell transplantation and adoptive immunotherapy.
Collapse
|
33
|
Lieberman NAP, DeGolier K, Haberthur K, Chinn H, Moyes KW, Bouchlaka MN, Walker KL, Capitini CM, Crane CA. An Uncoupling of Canonical Phenotypic Markers and Functional Potency of Ex Vivo-Expanded Natural Killer Cells. Front Immunol 2018; 9:150. [PMID: 29456538 PMCID: PMC5801405 DOI: 10.3389/fimmu.2018.00150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 12/31/2022] Open
Abstract
Recent advances in cellular therapies for patients with cancer, including checkpoint blockade and ex vivo-expanded, tumor-specific T cells, have demonstrated that targeting the immune system is a powerful approach to the elimination of tumor cells. Clinical efforts have also demonstrated limitations, however, including the potential for tumor cell antigenic drift and neoantigen formation, which promote tumor escape and recurrence, as well as rapid onset of T cell exhaustion in vivo. These findings suggest that antigen unrestricted cells, such as natural killer (NK) cells, may be beneficial for use as an alternative to or in combination with T cell based approaches. Although highly effective in lysing transformed cells, to date, few clinical trials have demonstrated antitumor function or persistence of transferred NK cells. Several recent studies describe methods to expand NK cells for adoptive transfer, although the effects of ex vivo expansion are not fully understood. We therefore explored the impact of a clinically validated 12-day expansion protocol using a K562 cell line expressing membrane-bound IL-15 and 4-1BB ligand with high-dose soluble IL-2 on the phenotype and functions of NK cells from healthy donors. Following expansions using this protocol, we found expression of surface proteins that implicate preferential expansion of NK cells that are not fully mature, as is typically associated with highly cytotoxic NK cell subsets. Despite increased expression of markers associated with functional exhaustion in T cells, we found that ex vivo-expanded NK cells retained cytokine production capacity and had enhanced tumor cell cytotoxicity. The preferential expansion of an NK cell subset that is phenotypically immature and functionally pleiotropic suggests that adoptively transferred cells may persist better in vivo when compared with previous methods using this approach. Ex vivo expansion does not quell killer immunoglobulin-like receptor diversity, allowing responsiveness to various factors in vivo that may influence activation and inhibition. Collectively, our data suggest that in addition to robust NK cell expansion that has been described using this method, expanded NK cells may represent an ideal cell therapy that is longer lived, highly potent, and responsive to an array of activating and inhibitory signals.
Collapse
Affiliation(s)
- Nicole A P Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kole DeGolier
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kristen Haberthur
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Harrison Chinn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kara W Moyes
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Myriam N Bouchlaka
- Department of Pediatrics, Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kirsti L Walker
- Department of Pediatrics, Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M Capitini
- Department of Pediatrics, Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Chan YLT, Zuo J, Inman C, Croft W, Begum J, Croudace J, Kinsella F, Maggs L, Nagra S, Nunnick J, Abbotts B, Craddock C, Malladi R, Moss P. NK cells produce high levels of IL-10 early after allogeneic stem cell transplantation and suppress development of acute GVHD. Eur J Immunol 2018; 48:316-329. [PMID: 28944953 PMCID: PMC5836991 DOI: 10.1002/eji.201747134] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells rapidly reconstitute following allogeneic stem cell transplantation (allo-SCT), at the time when alloreactive T cell immunity is being established. We investigated very early NK cell reconstitution in 82 patients following T cell-depleted allo-SCT. NK cell number rapidly increased, exceeding T cell reconstitution such that the NK:T cell ratio was over 40 by day 14. NK cells at day 14 (NK-14) were donor-derived, intensely proliferating and expressed chemokine receptors targeted to lymphoid and peripheral tissue. Spontaneous production of the immunoregulatory cytokine IL-10 was observed in over 70% of cells and transcription of cytokines and growth factors was augmented. NK-14 cell number was inversely correlated with the incidence of grade II-IV acute graft versus host disease (GVHD). These findings reveal that robust reconstitution of immunoregulatory NK cells by day 14 after allo-SCT is an important determinant of the clinical outcome, suggesting that NK cells may suppress the development of the T cell-mediated alloreactive immune response through production of IL-10.
Collapse
Affiliation(s)
| | - Jianmin Zuo
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | - Charlotte Inman
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | - Wayne Croft
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
- Centre for Computational BiologyUniversity of BirminghamUK
| | - Jusnara Begum
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | - Joanne Croudace
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | | | - Luke Maggs
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | - Sandeep Nagra
- Birmingham Health PartnersCentre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| | - Jane Nunnick
- Birmingham Health PartnersCentre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| | - Ben Abbotts
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
| | - Charles Craddock
- Birmingham Health PartnersCentre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| | - Ram Malladi
- Birmingham Health PartnersCentre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| | - Paul Moss
- Institute of Immunology and ImmunotherapyUniversity of BirminghamUK
- Birmingham Health PartnersCentre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| |
Collapse
|
35
|
Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunol Cell Biol 2017; 95:870-877. [PMID: 28875977 DOI: 10.1038/icb.2017.72] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
Targeting survival mechanisms of immune cells may provide an avenue for immune intervention to dampen unwanted responses (e.g. autoimmunity, immunopathology and transplant rejection) or enhance beneficial ones (e.g. immune deficiency, microbial defence and cancer immunotherapy). The selective survival mechanisms of the various immune cell types also avails the possibility of specific tailoring of such interventions. Here, we review the role of the BCL-2 anti-apoptotic family members (BCL-2, BCL-XL, BCL-W, MCL-1 and A1) on cell death/survival of the major immune cell types, for example, T, NK, B, dendritic cell (DC) lineages. There is both selectivity and redundancy among this family. Selectivity comes partly from the expression levels in each of the cell types. For example, plasmacytoid DC express abundant BCL-2 and are susceptible to BCL-2 antagonism or deficiency, whereas conventional DC express abundant A1 and are susceptible to A1 deficiency. There is, however, also functional redundancy; for example, overexpression of MCL-1 can override BCL-2 antagonism in plasmacytoid DC. Moreover, susceptibility to another anti-apoptotic family member can be unmasked, when one or other member is removed. These dual principles of selectivity and redundancy should guide the use of antagonists for manipulating immune cells.
Collapse
Affiliation(s)
- Emma M Carrington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Daniel H Gray
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas D Huntington
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew M Lew
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Memory responses of natural killer cells. Semin Immunol 2017; 31:11-19. [PMID: 28863960 DOI: 10.1016/j.smim.2017.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have traditionally been classified as a cellular component of the innate immune system, given their ability to rapidly produce effector cytokines and kill infected or transformed cells without prior exposure. More recently, NK cells have been shown to possess features of adaptive immunity such as clonal expansion, longevity, and robust recall responses. NK cell memory can be broadly divided into two categories: antigen-specific and antigen-independent. In the first case, exposure to certain viral or hapten stimuli endows NK cells with antigen-specific immunological memory, similar to T and B cells. In the second case, exposure of NK cells to specific cytokine milieus can imprint long-lasting changes on effector functions, resulting in antigen-independent memory-like NK cells. In this review, we discuss the various conditions that promote generation of these two categories of memory NK cells, and the mechanistic requirements underlying these processes.
Collapse
|
37
|
The number of CD56 dim NK cells in the graft has a major impact on risk of disease relapse following allo-HSCT. Blood Adv 2017; 1:1589-1597. [PMID: 29296800 DOI: 10.1182/bloodadvances.2017008631] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/23/2017] [Indexed: 12/31/2022] Open
Abstract
The graft-versus-leukemia (GVL) effect of allogeneic hemopoietic stem cell transplantation (allo-HSCT) is mediated by the donor immune system and acts to decrease the rate of disease relapse. Although studies of posttransplant immune reconstitution have identified correlates of clinical outcome, the number and profile of mature immune cells infused with the stem cell graft is also likely to be an important determinant and has been relatively poorly studied. We characterized immune cells within the stem cell graft of 107 patients who underwent T-cell-depleted allo-HSCT and related this to clinical outcome. The number of natural killer (NK) cells and T cells that were infused varied markedly between patients, but T-cell dose was not an important factor in subsequent outcome. In contrast, the number of NK cells was a powerful determinant of the risk of disease relapse. Patients who received an NK cell dose below the median level of 6.3 × 106 cells per kg had a relapse rate of 40% at 2 years posttransplant compared with only 6% for those whose stem cell graft contained a dose above this value. Analysis of NK subsets showed that this effect was mediated primarily by the CD56dim population of mature effector cells and that high-level expression of the activatory protein DNAM on donor NK cells was also strongly protective. These observations offer important insights into the mechanism of GVL and suggest that optimization studies of the number of NK cells within the stem cell graft should be considered as a means to reduce disease relapse.
Collapse
|
38
|
Adams NM, O'Sullivan TE, Geary CD, Karo JM, Amezquita RA, Joshi NS, Kaech SM, Sun JC. NK Cell Responses Redefine Immunological Memory. THE JOURNAL OF IMMUNOLOGY 2017; 197:2963-2970. [PMID: 27824591 DOI: 10.4049/jimmunol.1600973] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 01/16/2023]
Abstract
Immunological memory has traditionally been regarded as a unique trait of the adaptive immune system. Nevertheless, there is evidence of immunological memory in lower organisms and invertebrates, which lack an adaptive immune system. Despite their innate ability to rapidly produce effector cytokines and kill virally infected or transformed cells, NK cells also exhibit adaptive characteristics such as clonal expansion, longevity, self-renewal, and robust recall responses to antigenic or nonantigenic stimuli. In this review, we highlight the intracellular and extracellular requirements for memory NK cell generation and describe the emerging evidence for memory precursor NK cells and their derivation.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | | | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jenny M Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Robert A Amezquita
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; .,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
39
|
Venkatasubramanian S, Cheekatla S, Paidipally P, Tripathi D, Welch E, Tvinnereim AR, Nurieva R, Vankayalapati R. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol 2017; 10:1031-1042. [PMID: 27924822 PMCID: PMC5462891 DOI: 10.1038/mi.2016.105] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/25/2016] [Indexed: 02/04/2023]
Abstract
Natural killer (NK) cells are traditionally considered as innate cells, but recent studies suggest that NK cells can distinguish antigens, and that memory NK cells expand and protect against viral pathogens. Limited information is available about the mechanisms involved in memory-like NK cell expansion, and their role in bacterial infections and vaccine-induced protective immune responses. In the current study, using a mouse model of tuberculosis (TB) infection, we found that interferon-gamma producing CD3-NKp46+CD27+KLRG1+ memory-like NK cells develop during Bacille Calmette-Guérin vaccination, expand, and provide protection against challenge with Mycobacterium tuberculosis (M. tb). Using antibodies, short interfering RNA and gene-deleted mice, we found that expansion of memory-like NK cells depends on interleukin 21 (IL-21). NKp46+CD27+KLRG1+ NK cells expanded in healthy individuals with latent TB infection in an IL-21-dependent manner. Our study provides first evidence that memory-like NK cells survive long term, expansion depends on IL-21, and involved in vaccine-induced protective immunity against a bacterial pathogen.
Collapse
Affiliation(s)
- Sambasivan Venkatasubramanian
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Satyanarayana Cheekatla
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Elwyn Welch
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Amy R. Tvinnereim
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Roza Nurieva
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| |
Collapse
|
40
|
Mathias CB, Schramm CM, Guernsey LA, Wu CA, Polukort SH, Rovatti J, Ser-Dolansky J, Secor E, Schneider SS, Thrall RS, Aguila HL. IL-15-deficient mice develop enhanced allergic responses to airway allergen exposure. Clin Exp Allergy 2017; 47:639-655. [PMID: 28093832 PMCID: PMC5407912 DOI: 10.1111/cea.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Interleukin-15 is a pleiotropic cytokine that is critical for the development and survival of multiple haematopoietic lineages. Mice lacking IL-15 have selective defects in populations of several pro-allergic immune cells including natural killer (NK) cells, NKT cells, and memory CD8+ T cells. We therefore hypothesized that IL-15-/- mice will have reduced inflammatory responses during the development of allergic airway disease (AAD). OBJECTIVE To determine whether IL-15-/- mice have attenuated allergic responses in a mouse model of AAD. METHODS C57BL/6 wild-type (WT) and IL-15-/- mice were sensitized and challenged with ovalbumin (OVA), and the development of AAD was ascertained by examining changes in airway inflammatory responses, Th2 responses, and lung histopathology. RESULTS Here, we report that IL-15-/- mice developed enhanced allergic responses in an OVA-induced model of AAD. In the absence of IL-15, OVA-challenged mice exhibited enhanced bronchial eosinophilic inflammation, elevated IL-13 production, and severe lung histopathology in comparison with WT mice. In addition, increased numbers of CD4+ T and B cells in the spleens and bronchoalveolar lavage (BAL) were also observed. Examination of OVA-challenged IL-15Rα-/- animals revealed a similar phenotype resulting in enhanced airway eosinophilia compared to WT mice. Adoptive transfer of splenic CD8+ T cells from OVA-sensitized WT mice suppressed the enhancement of eosinophilia in IL-15-/- animals to levels observed in WT mice, but had no further effects. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that mice with an endogenous IL-15 deficiency are susceptible to the development of severe, enhanced Th2-mediated AAD, which can be regulated by CD8+ T cells. Furthermore, the development of disease as well as allergen-specific Th2 responses occurs despite deficiencies in several IL-15-dependent cell types including NK, NKT, and γδ T cells, suggesting that these cells or their subsets are dispensable for the induction of AAD in IL-15-deficient mice.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Craig M. Schramm
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Linda A. Guernsey
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol A. Wu
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Stephanie H. Polukort
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jeffrey Rovatti
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA 01119
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Eric Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, Springfield, MA 01199
| | - Roger S. Thrall
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
41
|
Lopez-Lastra S, Di Santo JP. Modeling Natural Killer Cell Targeted Immunotherapies. Front Immunol 2017; 8:370. [PMID: 28405194 PMCID: PMC5370275 DOI: 10.3389/fimmu.2017.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
- Université Paris-Sud (Paris-Saclay), Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| |
Collapse
|
42
|
Lam VC, Lanier LL. NK cells in host responses to viral infections. Curr Opin Immunol 2016; 44:43-51. [PMID: 27984782 DOI: 10.1016/j.coi.2016.11.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that play an important role in viral clearance. NK cell responses to viral infections were originally believed to be non-specific and lacked immune memory recall responses. It is now appreciated that NK cell responses to viral infections can be specific and in some cases memory recall responses are established. Increasing evidence also illuminates the complexity of NK cell interactions with both innate and adaptive immune cells. Here, we summarize the evidence for NK cell-specific memory responses to viral infections and the intricate reciprocal interactions between NK cells and other immune cells that dictate their activation and effector functions.
Collapse
Affiliation(s)
- Viola C Lam
- Biomedical Sciences Graduate Program, San Francisco, CA 94143, United States; Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, United States.
| |
Collapse
|
43
|
Luu TT, Ganesan S, Wagner AK, Sarhan D, Meinke S, Garbi N, Hämmerling G, Alici E, Kärre K, Chambers BJ, Höglund P, Kadri N. Independent control of natural killer cell responsiveness and homeostasis at steady-state by CD11c+ dendritic cells. Sci Rep 2016; 6:37996. [PMID: 27905484 PMCID: PMC5131354 DOI: 10.1038/srep37996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
During infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e. at steady-state, is less well studied. We here demonstrate that as early as 1 day after DC depletion, NK cells in naïve mice downregulated the NKG2D receptor and showed decreased constitutive phosphorylation of AKT and mTOR. Subsequently, apoptotic NK cells appeared in the spleen concomitant with reduced NK cell numbers. At 4 days after the onset of DC depletion, increased NK cell proliferation was seen in the spleen resulting in an accumulation of Ly49 receptor-negative NK cells. In parallel, NK cell responsiveness to ITAM-mediated triggering and cytokine stimulation dropped across maturation stages, suggestive of a functional deficiency independent from the homeostatic effect. A role for IL-15 in maintaining NK cell function was supported by a gene signature analysis of NK cell from DC-depleted mice as well as by in vivo DC transfer experiments. We propose that DC, by means of IL-15 transpresentation, are required to maintain not only homeostasis, but also function, at steady-state. These processes appear to be regulated independently from each other.
Collapse
Affiliation(s)
- Thuy Thanh Luu
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sridharan Ganesan
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Günter Hämmerling
- German Cancer Research Center DKFZ, Division of Molecular Immunology, Heidelberg, Germany
| | - Evren Alici
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, F59, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Zhang F, Little A, Zhang H. Chronic alcohol consumption inhibits peripheral NK cell development and maturation by decreasing the availability of IL-15. J Leukoc Biol 2016; 101:1015-1027. [PMID: 27837016 DOI: 10.1189/jlb.1a0716-298rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023] Open
Abstract
NK cells are innate immune cells and have important roles in antiviral and antitumor immunity. Based on the transcriptional regulation, organ distribution, and cell function, NK cells have recently been further divided into cytotoxic conventional NK cells (cNK) and noncytotoxic helper-like group 1 innate lymphoid cells (ILC1s). It is well known that chronic alcohol consumption decreases peripheral NK cell number and cytolytic activity; however, the underlying mechanism remains to be elucidated. How chronic alcohol consumption affects ILC1s is, to our knowledge, completely unexplored. Herein, we used a well-established mouse model of chronic alcohol consumption to study the effects of alcohol on transcription factor expression, maturation, and cytokine production of cNK cells and ILC1s in various organs. We found that alcohol consumption significantly decreased Eomes-expressing cNK cells in all the examined organs, except BM, but did not significantly affect ILC1s. Alcohol consumption compromised cNK cell development and maturation. Exogenous IL-15/IL-15Rα treatment caused full recovery of Eomes-expressing cNK cell number and maturation. Taken together, our data indicated that chronic alcohol consumption decreases cNK cell number and cytolytic activity by arresting cNK cell development at the CD27+CD11b+ stage. This developmental arrest of NK cells results from a lack of IL-15 availability in the microenvironment. IL-15/IL-15Rα treatment can recover alcohol consumption-induced developmental defect in NK cells.
Collapse
Affiliation(s)
- Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Alex Little
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| |
Collapse
|
45
|
Lin CM, Plenter RJ, Coulombe M, Gill RG. Interferon Gamma and Contact-dependent Cytotoxicity Are Each Rate Limiting for Natural Killer Cell-Mediated Antibody-dependent Chronic Rejection. Am J Transplant 2016; 16:3121-3130. [PMID: 27163757 PMCID: PMC5083186 DOI: 10.1111/ajt.13865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cells are key components of the innate immune system. In murine cardiac transplant models, donor-specific antibodies (DSA), in concert with NK cells, are sufficient to inflict chronic allograft vasculopathy independently of T and B cells. In this study, we aimed to determine the effector mechanism(s) required by NK cells to trigger chronic allograft vasculopathy during antibody-mediated rejection. Specifically, we tested the relative contribution of the proinflammatory cytokine interferon gamma (IFN-γ) versus the contact-dependent cytotoxic mediators of perforin and the CD95/CD95L (Fas/Fas ligand [FasL]) pathway for triggering these lesions. C3H/HeJ cardiac allografts were transplanted into immune-deficient C57BL/6 rag-/- γc-/- recipients, who also received monoclonal anti-major histocompatibility complex (MHC) class I DSA. The combination of DSA and wild-type NK cell transfer triggered aggressive chronic allograft vasculopathy. However, transfer of IFN-γ-deficient NK cells or host IFN-γ neutralization led to amelioration of these lesions. Use of either perforin-deficient NK cells or CD95 (Fas)-deficient donors alone did not alter development of vasculopathy, but simultaneous disruption of NK cell-derived perforin and allograft Fas expression resulted in prevention of these abnormalities. Therefore, both NK cell IFN-γ production and contact-dependent cytotoxic activity are rate-limiting effector pathways that contribute to this form of antibody-induced chronic allograft vasculopathy.
Collapse
Affiliation(s)
- C M Lin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO.
| | - R J Plenter
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, CO
| | - M Coulombe
- Department of Surgery, University of Colorado, Aurora, CO
| | - R G Gill
- Department of Surgery, University of Colorado, Aurora, CO
| |
Collapse
|
46
|
O'Sullivan TE, Geary CD, Weizman OE, Geiger TL, Rapp M, Dorn GW, Overholtzer M, Sun JC. Atg5 Is Essential for the Development and Survival of Innate Lymphocytes. Cell Rep 2016; 15:1910-9. [PMID: 27210760 DOI: 10.1016/j.celrep.2016.04.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC) development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK) cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Theresa L Geiger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
47
|
Pan WJ, Li H, Xiao JJ, Horner MJ, Lebrec HN, Butz EA, Kaliyaperumal A, Cheah TC, Ortiz RC, Prokop SP, Buntich SA, Boren BM, Wolford ST, Tsuji WH, Wienkers LC, Köck K. Modeling the pharmacokinetic-pharmacodynamic relationship of the monoclonal anti-macaque-IL-15 antibody Hu714MuXHu in cynomolgus monkeys. Pharmacol Res Perspect 2016; 3:e00199. [PMID: 27022472 PMCID: PMC4777250 DOI: 10.1002/prp2.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Hu714MuXHu is a recombinant chimeric murine‐human monoclonal antibody directed against interleukin‐15 (IL‐15), a proinflammatory cytokine associated with memory CD8+ and natural killer (NK) T‐cell activation and implicated in the pathogenesis of inflammatory diseases. A pharmacokinetic‐pharmacodynamic (PK/PD) model was developed to describe the NK cell count reduction in cynomolgus monkeys after treatment with Hu714MuXHu. Cynomolgus monkeys were dosed with Hu714MuXHu in three studies: as a single dose at 0.1 or 1 mg·kg−1 i.v.; weekly for 5 weeks at 0, 30, 60, or 150 mg·kg−1 i.v. or 150 mg·kg−1 s.c.; weekly for 13 weeks at 0, 5, 30, or 150 mg·kg−1 s.c. Serum Hu714MuXHu concentration‐time data were analyzed using noncompartmental analysis and the PK/NK cell count relationship was assessed via simultaneous PK/PD modeling. Hu714MuXHu PK was approximately dose‐proportional between 0.1–150 mg·kg−1 for i.v. and 5–150 mg·kg−1 for s.c. administration with an elimination half‐life of 12.7–18 days. Hu714MuXHu administration resulted in rapid and marked reductions in NK cell counts after the first dose which recovered fully after the serum Hu714MuXHu concentrations approached 0.1 μg·mL−1 (assay limit of quantification). PK/PD modeled Hu714MuXHu effects on NK cells had an EC50 of 0.09 μg·mL−1. In summary, weekly i.v. or s.c. doses with Hu714MuXHu for up to 3 months in cynomolgus monkeys demonstrated linear PK and significant NK cell count reduction, which was described using PK/PD modeling. This approach may be used to guide investigative product dose selections for inflammatory diseases where NK cell count alterations are quantifiable.
Collapse
Affiliation(s)
- Wei J Pan
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Hong Li
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Jim J Xiao
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | - Michelle J Horner
- Comparative Biology and Safety Sciences Amgen Inc. Thousand Oaks California
| | - Herve N Lebrec
- Comparative Biology and Safety Sciences Amgen Inc. Seattle Washington
| | - Eric A Butz
- Inflammation Discovery Research Amgen Inc. Seattle Washington
| | | | - Tsui C Cheah
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | - Robert C Ortiz
- Pharmacokinetics and Drug Metabolism Amgen Inc. Thousand Oaks Washington
| | | | - Sabina A Buntich
- Comparative Biology and Safety Sciences Amgen Inc. Thousand Oaks California
| | - Babette M Boren
- Comparative Biology and Safety Sciences Amgen Inc. Seattle Washington
| | | | | | - Larry C Wienkers
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| | - Kathleen Köck
- Pharmacokinetics and Drug Metabolism Amgen Inc. Seattle Washington
| |
Collapse
|
48
|
Abstract
Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
49
|
Oh JS, Ali AK, Kim S, Corsi DJ, Cooper CL, Lee SH. NK cells lacking FcεRIγ are associated with reduced liver damage in chronic hepatitis C virus infection. Eur J Immunol 2016; 46:1020-9. [PMID: 26712042 DOI: 10.1002/eji.201546009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/09/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
A novel subset of human natural killer (NK) cells, which displays potent and broad antiviral responsiveness in concert with virus-specific antibodies, was recently uncovered in cytomegalovirus (CMV)+ individuals. This NK-cell subset (g-NK) was characterized by a deficiency in the expression of FcεRIγ adaptor protein and the long-lasting memory-like NK-cell phenotype, suggesting a role in chronic infections. This study investigates whether the g-NK-cell subset is associated with the magnitude of liver disease during chronic hepatitis C virus (HCV) infection. Analysis of g-NK-cell proportions and function in the PBMCs of healthy controls and chronic HCV subjects showed that chronic HCV subjects had slightly lower proportions of the g-NK-cell subset having similarly enhanced antibody-dependent cellular cytotoxicity responses compared to conventional NK cells. Notably, among CMV+ chronic HCV patients, lower levels of liver enzymes and fibrosis were found in those possessing g-NK cells. g-NK cells were predominant among the CD56(neg) NK cell population often found in chronic HCV patients, suggesting their involvement in immune response during HCV infection. For the first time, our findings indicate that the presence of the g-NK cells in CMV+ individuals is associated with amelioration of liver disease in chronic HCV infection, suggesting the beneficial roles of g-NK cells during a chronic infection.
Collapse
Affiliation(s)
- Jun S Oh
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Alaa K Ali
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Sungjin Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Curtis L Cooper
- Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Infectious Diseases, Ottawa Hospital-General Campus, Ottawa, Canada.,School of Epidemiology, Public Health and Preventative Medicine, University of Ottawa, Ottawa, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
50
|
Delconte RB, Shi W, Sathe P, Ushiki T, Seillet C, Minnich M, Kolesnik TB, Rankin LC, Mielke LA, Zhang JG, Busslinger M, Smyth MJ, Hutchinson DS, Nutt SL, Nicholson SE, Alexander WS, Corcoran LM, Vivier E, Belz GT, Carotta S, Huntington ND. The Helix-Loop-Helix Protein ID2 Governs NK Cell Fate by Tuning Their Sensitivity to Interleukin-15. Immunity 2016; 44:103-115. [PMID: 26795246 DOI: 10.1016/j.immuni.2015.12.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/28/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
The inhibitor of DNA binding 2 (Id2) is essential for natural killer (NK) cell development with its canonical role being to antagonize E-protein function and alternate lineage fate. Here we have identified a key role for Id2 in regulating interleukin-15 (IL-15) receptor signaling and homeostasis of NK cells by repressing multiple E-protein target genes including Socs3. Id2 deletion in mature NK cells was incompatible with their homeostasis due to impaired IL-15 receptor signaling and metabolic function and this could be rescued by strong IL-15 receptor stimulation or genetic ablation of Socs3. During NK cell maturation, we observed an inverse correlation between E-protein target genes and Id2. These results shift the current paradigm on the role of ID2, indicating that it is required not only to antagonize E-proteins during NK cell commitment, but constantly required to titrate E-protein activity to regulate NK cell fitness and responsiveness to IL-15.
Collapse
Affiliation(s)
- Rebecca B Delconte
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia; Department of Computing and Information Systems, The University of Melbourne, VIC 3010, Australia
| | - Priyanka Sathe
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Takashi Ushiki
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Martina Minnich
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lucille C Rankin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lisa A Mielke
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; School of Medicine, University of Queensland, Herston, QLD 4006, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmacological Science, Parkville, VIC 3052, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, VIC 3010 Australia
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France; Immunologie, Hôpital de la Comception, Assistance Publique des Hôpitaux de Marseille, 13385 Marseille, France
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| | - Sebastian Carotta
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas D Huntington
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|