1
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients 2024; 16:3146. [PMID: 39339747 PMCID: PMC11435339 DOI: 10.3390/nu16183146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Edible plants have been linked to the mitigation of metabolic disturbances in liver and adipose tissue, including the decrease of lipogenesis and the enhancement of lipolysis and adipocyte browning. In this context, plant microRNAs could be key bioactive molecules underlying the cross-kingdom beneficial effects of plants. This study sought to explore the impact of plant-derived microRNAs on the modulation of adipocyte and hepatocyte genes involved in metabolism and thermogenesis. METHODS Plant miR6262 was selected as a candidate from miRBase for the predicted effect on the regulation of human metabolic genes. Functional validation was conducted after transfection with plant miRNA mimics in HepG2 hepatocytes exposed to free fatty acids to mimic liver steatosis and hMADs cells differentiated into brown-like adipocytes. RESULTS miR6262 decreases the expression of the predicted target RXRA in the fatty acids-treated hepatocytes and in brown-like adipocytes and affects the expression profile of critical genes involved in metabolism and thermogenesis, including PPARA, G6PC, SREBF1 (hepatocytes) and CIDEA, CPT1M and PLIN1 (adipocytes). Nevertheless, plant miR6262 mimic transfections did not decrease hepatocyte lipid accumulation or stimulate adipocyte browning. CONCLUSIONS these findings suggest that plant miR6262 could have a cross-kingdom regulation relevance through the modulation of human genes involved in lipid and glucose metabolism and thermogenesis in adipocytes and hepatocytes.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza- Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Luca T, Pezzino S, Puleo S, Castorina S. Lesson on obesity and anatomy of adipose tissue: new models of study in the era of clinical and translational research. J Transl Med 2024; 22:764. [PMID: 39143643 PMCID: PMC11323604 DOI: 10.1186/s12967-024-05547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Obesity is a serious global illness that is frequently associated with metabolic syndrome. Adipocytes are the typical cells of adipose organ, which is composed of at least two different tissues, white and brown adipose tissue. They functionally cooperate, interconverting each other under physiological conditions, but differ in their anatomy, physiology, and endocrine functions. Different cellular models have been proposed to study adipose tissue in vitro. They are also useful for elucidating the mechanisms that are responsible for a pathological condition, such as obesity, and for testing therapeutic strategies. Each cell model has its own characteristics, culture conditions, advantages and disadvantages. The choice of one model rather than another depends on the specific study the researcher is conducting. In recent decades, three-dimensional cultures, such as adipose spheroids, have become very attractive because they more closely resemble the phenotype of freshly isolated cells. The use of such models has developed in parallel with the evolution of translational research, an interdisciplinary branch of the biomedical field, which aims to learn a scientific translational approach to improve human health and longevity. The focus of the present review is on the growing body of data linking the use of new cell models and the spread of translational research. Also, we discuss the possibility, for the future, to employ new three-dimensional adipose tissue cell models to promote the transition from benchside to bedsite and vice versa, allowing translational research to become routine, with the final goal of obtaining clinical benefits in the prevention and treatment of obesity and related disorders.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy.
| | | | - Stefano Puleo
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia, 87, Catania, 95123, Italy
- Mediterranean Foundation "GB Morgagni", Catania, Italy
| |
Collapse
|
3
|
Tan J, Virtue S, Norris DM, Conway OJ, Yang M, Bidault G, Gribben C, Lugtu F, Kamzolas I, Krycer JR, Mills RJ, Liang L, Pereira C, Dale M, Shun-Shion AS, Baird HJ, Horscroft JA, Sowton AP, Ma M, Carobbio S, Petsalaki E, Murray AJ, Gershlick DC, Nathan JA, Hudson JE, Vallier L, Fisher-Wellman KH, Frezza C, Vidal-Puig A, Fazakerley DJ. Limited oxygen in standard cell culture alters metabolism and function of differentiated cells. EMBO J 2024; 43:2127-2165. [PMID: 38580776 PMCID: PMC11148168 DOI: 10.1038/s44318-024-00084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024] Open
Abstract
The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.
Collapse
Affiliation(s)
- Joycelyn Tan
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sam Virtue
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Dougall M Norris
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Olivia J Conway
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Guillaume Bidault
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Fatima Lugtu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ioannis Kamzolas
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Lu Liang
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Conceição Pereira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Martin Dale
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amber S Shun-Shion
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Harry Jm Baird
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - James A Horscroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stefania Carobbio
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EL, UK
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
- CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Cologne, 50931, Germany
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Centro de Investigacion Principe Felipe, Valencia, 46012, Spain.
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
Hamel KM, Frazier TP, Williams C, Duplessis T, Rowan BG, Gimble JM, Sanchez CG. Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. Int J Mol Sci 2024; 25:2728. [PMID: 38473978 DOI: 10.3390/ijms25052728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.
Collapse
Affiliation(s)
| | | | - Christopher Williams
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | | | - Brian G Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
5
|
U-Din M, de Mello VD, Tuomainen M, Raiko J, Niemi T, Fromme T, Klåvus A, Gautier N, Haimilahti K, Lehtonen M, Kristiansen K, Newman JW, Pietiläinen KH, Pihlajamäki J, Amri EZ, Klingenspor M, Nuutila P, Pirinen E, Hanhineva K, Virtanen KA. Cold-stimulated brown adipose tissue activation is related to changes in serum metabolites relevant to NAD + metabolism in humans. Cell Rep 2023; 42:113131. [PMID: 37708023 DOI: 10.1016/j.celrep.2023.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
Collapse
Affiliation(s)
- Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Vanessa D de Mello
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Marjo Tuomainen
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Juho Raiko
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Tarja Niemi
- Department of Surgery, Turku University Hospital, Turku, Finland
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Anton Klåvus
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Program for Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Marko Lehtonen
- Department of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - John W Newman
- Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, Davis Genome Center, University of California, Davis, Davis, CA 95616, USA; Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jussi Pihlajamäki
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, Freising, Germany; EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland
| | - Kati Hanhineva
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku, Finland; Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
6
|
Gandolfi S, Pileyre B, Drouot L, Dubus I, Auquit-Auckbur I, Martinet J. Stromal vascular fraction in the treatment of myositis. Cell Death Discov 2023; 9:346. [PMID: 37726262 PMCID: PMC10509179 DOI: 10.1038/s41420-023-01605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Muscle regeneration is a physiological process that converts satellite cells into mature myotubes under the influence of an inflammatory environment progressively replaced by an anti-inflammatory environment, with precise crosstalk between immune and muscular cells. If the succession of these phases is disturbed, the immune system can sometimes become auto-reactive, leading to chronic muscular inflammatory diseases, such as myositis. The triggers of these autoimmune myopathies remain mostly unknown, but the main mechanisms of pathogenesis are partially understood. They involve chronic inflammation, which could be associated with an auto-reactive immune response, and gradually with a decrease in the regenerative capacities of the muscle, leading to its degeneration, fibrosis and vascular architecture deterioration. Immunosuppressive treatments can block the first part of the process, but sometimes muscle remains weakened, or even still deteriorates, due to the exhaustion of its capacities. For patients refractory to immunosuppressive therapies, mesenchymal stem cells have shown interesting effects but their use is limited by their availability. Stromal vascular fraction, which can easily be extracted from adipose tissue, has shown good tolerance and possible therapeutic benefits in several degenerative and autoimmune diseases. However, despite the increasing use of stromal vascular fraction, the therapeutically active components within this heterogeneous cellular product are ill-defined and the mechanisms by which this therapy might be active remain insufficiently understood. We review herein the current knowledge on the mechanisms of action of stromal vascular fraction and hypothesise on how it could potentially respond to some of the unmet treatment needs of refractory myositis.
Collapse
Affiliation(s)
- S Gandolfi
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
- Toulouse University Hospital, Department of Plastic and Reconstructive Surgery, F-31000, Toulouse, France
| | - B Pileyre
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- Centre Henri Becquerel, Department of Pharmacy, F-76000, Rouen, France.
| | - L Drouot
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Dubus
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - I Auquit-Auckbur
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Plastic, Reconstructive and Hand Surgery, F-76000, Rouen, France
| | - J Martinet
- Univ Rouen Normandie, INSERM U1234, FOCIS Center of Excellence PAn'THER, CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France
| |
Collapse
|
7
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Jo S, Lee J, Lee H, Ryu D, Kim G. The one-step fabrication of porous hASC-laden GelMa constructs using a handheld printing system. NPJ Regen Med 2023; 8:30. [PMID: 37301902 DOI: 10.1038/s41536-023-00307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The fabrication of highly porous cell-loaded structures in tissue engineering applications has been a challenging issue because non-porous cell-laden struts can cause severe cell necrosis in the middle region owing to poor transport of nutrients and oxygen. In this study, we propose a versatile handheld 3D printer for the effective fabrication of porous cell-laden methacrylated gelatin (GelMa) with high porosity (≈97%) by air injection and a bubble-making system using mesh filters through which a mixture of air/GelMa bioink is passed. In particular, the pore size and foamability of the cell constructs could be manipulated using various processing parameters (rheological properties of GelMa, filter size and number, and air-bioink volume ratio). To demonstrate the feasibility of the cell construct as a tissue engineering substitute for muscle regeneration, in vitro cellular activities and in vivo regeneration ability of human adipose stem cells were assessed. The in vitro results demonstrated that the human adipose stem cells (hASCs) fabricated using the handheld 3D printer were alive and well-proliferated. Furthermore, the in vivo results showed that the hASCs-constructs directly printed from the handheld 3D printer showed significant restoration of functionality and efficient muscle regeneration in the volumetric muscle loss model of mice. Based on these results, the fabrication method of the porous cell-laden construct could be a promising tool for regenerating muscle tissues.
Collapse
Affiliation(s)
- SeoYul Jo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - JiUn Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyeongjin Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
9
|
Vignais ML, Levoux J, Sicard P, Khattar K, Lozza C, Gervais M, Mezhoud S, Nakhle J, Relaix F, Agbulut O, Fauconnier J, Rodriguez AM. Transfer of Cardiac Mitochondria Improves the Therapeutic Efficacy of Mesenchymal Stem Cells in a Preclinical Model of Ischemic Heart Disease. Cells 2023; 12:cells12040582. [PMID: 36831249 PMCID: PMC9953768 DOI: 10.3390/cells12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) appears to be a promising therapeutic approach for cardiac repair after myocardial infarction. However, clinical trials have revealed the need to improve their therapeutic efficacy. Recent evidence demonstrated that mitochondria undergo spontaneous transfer from damaged cells to MSCs, resulting in the activation of the cytoprotective and pro-angiogenic functions of recipient MSCs. Based on these observations, we investigated whether the preconditioning of MSCs with mitochondria could optimize their therapeutic potential for ischemic heart disease. METHODS Human MSCs were exposed to mitochondria isolated from human fetal cardiomyocytes. After 24 h, the effects of mitochondria preconditioning on the MSCs' function were analyzed both in vitro and in vivo. RESULTS We found that cardiac mitochondria-preconditioning improved the proliferation and repair properties of MSCs in vitro. Mechanistically, cardiac mitochondria mediate their stimulatory effects through the production of reactive oxygen species, which trigger their own degradation in recipient MSCs. These effects were further confirmed in vivo, as the mitochondria preconditioning of MSCs potentiated their therapeutic efficacy on cardiac function following their engraftment into infarcted mouse hearts. CONCLUSIONS The preconditioning of MSCs with the artificial transfer of cardiac mitochondria appears to be promising strategy to improve the efficacy of MSC-based cell therapy in ischemic heart disease.
Collapse
Affiliation(s)
- Marie-Luce Vignais
- Institut de Génomique Fonctionnelle, University Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jennyfer Levoux
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM U1164, Biological Adaptation and Ageing, 75005 Paris, France
| | - Pierre Sicard
- PhyMedExp, Inserm, CNRS, University of Montpellier, 34295 Montpellier, France
| | - Khattar Khattar
- Institut de Génomique Fonctionnelle, University Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Catherine Lozza
- PhyMedExp, Inserm, CNRS, University of Montpellier, 34295 Montpellier, France
| | - Marianne Gervais
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Safia Mezhoud
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Jean Nakhle
- Institut de Génomique Fonctionnelle, University Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Frederic Relaix
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
- APHP, Hôpitaux Universitaires Henri Mondor & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM U1164, Biological Adaptation and Ageing, 75005 Paris, France
| | - Jeremy Fauconnier
- PhyMedExp, Inserm, CNRS, University of Montpellier, 34295 Montpellier, France
| | - Anne-Marie Rodriguez
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM U1164, Biological Adaptation and Ageing, 75005 Paris, France
- APHP, Hôpitaux Universitaires Henri Mondor & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence:
| |
Collapse
|
10
|
Effects of Fatty Acid Metabolites on Adipocytes Britening: Role of Thromboxane A2. Cells 2023; 12:cells12030446. [PMID: 36766790 PMCID: PMC9913700 DOI: 10.3390/cells12030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis. The purpose of this work was to analyze the role of several lipokines in the control of brown/brite adipocyte formation. We used a validated human adipocyte model, human multipotent adipose-derived stem cell model (hMADS). In the absence of rosiglitazone, hMADS cells differentiate into white adipocytes, but convert into brite adipocytes upon rosiglitazone or prostacyclin 2 (PGI2) treatment. Gene expression was quantified using RT-qPCR and protein levels were assessed by Western blotting. We show here that lipokines such as 12,13-diHOME, 12-HEPE, 15dPGJ2 and 15dPGJ3 were not able to induce browning of white hMADS adipocytes. However, both fatty acid esters of hydroxy fatty acids (FAHFAs), 9-PAHPA and 9-PAHSA potentiated brown key marker UCP1 mRNA levels. Interestingly, CTA2, the stable analog of thromboxane A2 (TXA2), but not its inactive metabolite TXB2, inhibited the rosiglitazone and PGI2-induced browning of hMADS adipocytes. These results pinpoint TXA2 as a lipokine inhibiting brown adipocyte formation that is antagonized by PGI2. Our data open new horizons in the development of potential therapies based on the control of thromboxane A2/prostacyclin balance to combat obesity and associated metabolic disorders.
Collapse
|
11
|
Sharma V, Manhas A, Gupta S, Dikshit M, Jagavelu K, Verma RS. Fabrication, characterization and in vivo assessment of cardiogel loaded chitosan patch for myocardial regeneration. Int J Biol Macromol 2022; 222:3045-3056. [DOI: 10.1016/j.ijbiomac.2022.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
12
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
13
|
Tews D, Brenner RE, Siebert R, Debatin KM, Fischer-Posovszky P, Wabitsch M. 20 Years with SGBS cells - a versatile in vitro model of human adipocyte biology. Int J Obes (Lond) 2022; 46:1939-1947. [PMID: 35986215 PMCID: PMC9584814 DOI: 10.1038/s41366-022-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called “SGBS cells”. Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.
Collapse
|
14
|
Peraldi P, Loubat A, Chignon-Sicard B, Dani C, Ladoux A. Identification of Human Breast Adipose Tissue Progenitors Displaying Distinct Differentiation Potentials and Interactions with Cancer Cells. Biomedicines 2022; 10:biomedicines10081928. [PMID: 36009475 PMCID: PMC9406003 DOI: 10.3390/biomedicines10081928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Breast adipose tissue (AT) participates in the physiological evolution and remodeling of the mammary gland due to its high plasticity. It is also a favorable microenvironment for breast cancer progression. However, information on the properties of human breast adipose progenitor cells (APCs) involved in breast physiology or pathology is scant. We performed differential enzymatic dissociation of human breast AT lobules. We isolated and characterized two populations of APCs. Here we report that these distinct breast APC populations selectively expressed markers suitable for characterization. The population preferentially expressing ALPL (MSCA1) showed higher adipogenic potential. The population expressing higher levels of INHBA and CD142 acquired myofibroblast characteristics upon TGF-β treatment and a myo-cancer-associated fibroblast profile in the presence of breast cancer cells. This population expressed the immune checkpoint CD274 (PD-L1) and facilitated the expansion of breast cancer mammospheres compared with the adipogenic population. Indeed, the breast, as with other fat depots, contains distinct types of APCs with differences in their ability to specialize. This indicates that they were differentially involved in breast remodeling. Their interactions with breast cancer cells revealed differences in the potential for tumor dissemination and estrogen receptor expression, and these differences might be relevant to improve therapies targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Pascal Peraldi
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Agnès Loubat
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Bérengère Chignon-Sicard
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, Université Côte d’Azur, 06107 Nice, France
| | - Christian Dani
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | - Annie Ladoux
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
- CNRS, Institute of Biology Valrose (iBV), University of Nice Sophia-Antipolis, 28 Avenue de Valombrose, CEDEX 2, 06107 Nice, France
- Correspondence:
| |
Collapse
|
15
|
Figiel-Dabrowska A, Krześniak NE, Noszczyk BH, Domańska-Janik K, Sarnowska A. Efficiency assessment of irrigation as an alternative method for improving the regenerative potential of nonhealing wounds. Wound Repair Regen 2022; 30:303-316. [PMID: 35384136 PMCID: PMC9321893 DOI: 10.1111/wrr.13013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine offers hope for the effective treatment of incurable or difficult‐to‐heal diseases. However, it requires the development of unified protocols for both safe and efficient cell acquisition and clinical usage. The therapeutic effect of fat grafts (containing stem cells) in non‐healing wounds has been discussed in previous studies, although the application requires local or general anaesthesia. The treatment of MSC derived from adipose tissue (ASC) could be a less invasive method, and efficient delivery could lead to more favourable outcomes, which should encourage clinicians to use such therapeutic approaches more frequently. Therefore, the aim of this study was to optimise the methods of ASC isolation, culture and administration while maintaining their high survival, proliferation and colonisation potential. The ASC were isolated by an enzymatic method and were characterised according to International Society for Cellular Therapy and International Federation for Adipose Therapeutics and Science guidelines. To assess the opportunity to obtain a sufficient number of cells for transplantation, long‐term cell cultures in two oxygen concentrations (5% vs. 21%) were conducted. For these cultures, the population doubling time, the cumulative time for cell population doublings and the rate of cell senescence were estimated. In a developed and pre‐defined protocol, ASC can be efficiently cultured at physiological oxygen concentrations (5%), which leads to faster proliferation and slower cell senescence. Subsequently, to select the optimal and minimally invasive methods of ASC transplantation, direct cell application with an irrigator or with skin dressings was analysed. Our results confirmed that both the presented methods of cell application allow for the safe delivery of isolated ASC into wounds without losing their vitality. Cells propagated in the described conditions and applied in non‐invasive cell application (with an irrigation system and dressings) to treat chronic wounds can be a potential alternative or supplement to more invasive clinical approaches.
Collapse
Affiliation(s)
| | - Natalia E Krześniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | - Bartłomiej H Noszczyk
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, Warsaw, Poland
| | | | - Anna Sarnowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
16
|
Charrier M, Lorant J, Contreras-Lopez R, Téjédor G, Blanquart C, Lieubeau B, Schleder C, Leroux I, Deshayes S, Fonteneau JF, Babarit C, Hamel A, Magot A, Péréon Y, Viau S, Delorme B, Luz-Crawford P, Lamirault G, Djouad F, Rouger K. Human MuStem cells repress T-cell proliferation and cytotoxicity through both paracrine and contact-dependent pathways. Stem Cell Res Ther 2022; 13:7. [PMID: 35012660 PMCID: PMC8751303 DOI: 10.1186/s13287-021-02681-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background Muscular dystrophies (MDs) are inherited diseases in which a dysregulation of the immune response exacerbates disease severity and are characterized by infiltration of various immune cell types leading to muscle inflammation, fiber necrosis and fibrosis. Immunosuppressive properties have been attributed to mesenchymal stem cells (MSCs) that regulate the phenotype and function of different immune cells. However, such properties were poorly considered until now for adult stem cells with myogenic potential and advanced as possible therapeutic candidates for MDs. In the present study, we investigated the immunoregulatory potential of human MuStem (hMuStem) cells, for which we previously demonstrated that they can survive in injured muscle and robustly counteract adverse tissue remodeling. Methods The impact of hMuStem cells or their secretome on the proliferative and phenotypic properties of T-cells was explored by co-culture experiments with either peripheral blood mononucleated cells or CD3-sorted T-cells. A comparative study was produced with the bone marrow (BM)-MSCs. The expression profile of immune cell-related markers on hMuStem cells was determined by flow cytometry while their secretory profile was examined by ELISA assays. Finally, the paracrine and cell contact-dependent effects of hMuStem cells on the T-cell-mediated cytotoxic response were analyzed through IFN-γ expression and lysis activity. Results Here, we show that hMuStem cells have an immunosuppressive phenotype and can inhibit the proliferation and the cytotoxic response of T-cells as well as promote the generation of regulatory T-cells through direct contact and via soluble factors. These effects are associated, in part, with the production of mediators including heme-oxygenase-1, leukemia inhibitory factor and intracellular cell adhesion molecule-1, all of which are produced at significantly higher levels by hMuStem cells than BM-MSCs. While the production of prostaglandin E2 is involved in the suppression of T-cell proliferation by both hMuStem cells and BM-MSCs, the participation of inducible nitric oxide synthase activity appears to be specific to hMuStem cell-mediated one. Conclusions Together, our findings demonstrate that hMuStem cells are potent immunoregulatory cells. Combined with their myogenic potential, the attribution of these properties reinforces the positioning of hMuStem cells as candidate therapeutic agents for the treatment of MDs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02681-3.
Collapse
Affiliation(s)
- Marine Charrier
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, 44007, Nantes, France.,Université de Nantes, Nantes, France
| | - Judith Lorant
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Rafael Contreras-Lopez
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.,Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile
| | - Gautier Téjédor
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France
| | | | | | - Cindy Schleder
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Isabelle Leroux
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Sophie Deshayes
- CNRS, INSERM, CRCINA, Université de Nantes, 44000, Nantes, France
| | | | - Candice Babarit
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France
| | - Antoine Hamel
- Service de Chirurgie Infantile, Centre Hospitalier Universitaire (CHU) de Nantes, 44093, Nantes, France
| | - Armelle Magot
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Yann Péréon
- Laboratoire d'Explorations Fonctionnelles, Centre de Référence Maladies Neuromusculaires AOC, CHU Nantes, 44093, Nantes, France
| | - Sabrina Viau
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Bruno Delorme
- Biotherapy Division, Macopharma, 59420, Mouvaux, France
| | - Patricia Luz-Crawford
- Laboratorio de Immunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Las Condes, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Farida Djouad
- INSERM U1183 IRMB, Hôpital Saint Eloi, CHRU Montpellier, Université de Montpellier, 80, Rue Augustin Fliche, 34295, Montpellier, France.
| | - Karl Rouger
- INRAE, Oniris, PAnTher, UMR 703, Oniris - Site de La Chantrerie, 101, Route de Gachet, CS. 40706, 44307, Nantes, France.
| |
Collapse
|
17
|
Levoux J, Lafuste P, Rodriguez AM. Transcriptional analysis of mouse wounds grafted with human mesenchymal stem cells and platelets. STAR Protoc 2021; 2:100650. [PMID: 34278336 PMCID: PMC8261014 DOI: 10.1016/j.xpro.2021.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Platelet preparations are commonly used in the clinic in combination with mesenchymal stem cells (MSCs) to improve their wound healing capacity and optimize their therapeutic efficacy following their delivery into diseased tissues. To investigate the mechanisms by which platelets enhance the repair properties of MSCs, we detail a protocol using a humanized mouse model for excisional wounds to study by reverse transcription real-time PCR whether human platelets alter the therapeutic efficacy of grafted human MSCs. For complete details on the use and execution of this protocol, please refer to Levoux et al. (2021).
Collapse
Affiliation(s)
| | - Peggy Lafuste
- Univ Paris Est Creteil, INSERM, IMRB, 94010 Créteil, France
| | | |
Collapse
|
18
|
Boyer O, Butler-Browne G, Chinoy H, Cossu G, Galli F, Lilleker JB, Magli A, Mouly V, Perlingeiro RCR, Previtali SC, Sampaolesi M, Smeets H, Schoewel-Wolf V, Spuler S, Torrente Y, Van Tienen F. Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Front Genet 2021; 12:702547. [PMID: 34408774 PMCID: PMC8365145 DOI: 10.3389/fgene.2021.702547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/16/2021] [Indexed: 01/04/2023] Open
Abstract
This article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies.
Collapse
Affiliation(s)
- Olivier Boyer
- Department of Immunology & Biotherapy, Rouen University Hospital, Normandy University, Inserm U1234, Rouen, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Hector Chinoy
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, United Kingdom
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Francesco Galli
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - James B. Lilleker
- Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Stefano C. Previtali
- InSpe and Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hubert Smeets
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
- School for Developmental Biology and Oncology (GROW), Maastricht University, Maastricht, Netherlands
| | - Verena Schoewel-Wolf
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a Cooperation Between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Yvan Torrente
- Unit of Neurology, Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Florence Van Tienen
- Department of Toxicogenomics, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Mental Health and Neurosciences (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
19
|
Morawin B, Zembroń-Łacny A. Role of endocrine factors and stem cells in skeletal muscle
regeneration. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The process of reconstructing damaged skeletal muscles involves degeneration, inflammatory
and immune responses, regeneration and reorganization, which are regulated by
a number of immune-endocrine factors affecting muscle cells and satellite cells (SCs). One of
these molecules is testosterone (T), which binds to the androgen receptor (AR) to initiate the
expression of the muscle isoform of insulin-like growth factor 1 (IGF-1Ec). The interaction
between T and IGF-1Ec stimulates the growth and regeneration of skeletal muscles by inhibiting
apoptosis, enhancement of SCs proliferation and myoblasts differentiation. As a result
of sarcopenia, muscle dystrophy or wasting diseases, the SCs population is significantly reduced.
Regular physical exercise attenuates a decrease in SCs count, and thus elevates the
regenerative potential of muscles in both young and elderly people. One of the challenges of
modern medicine is the application of SCs and extracellular matrix scaffolds in regenerative
and molecular medicine, especially in the treatment of degenerative diseases and post-traumatic
muscle reconstruction. The aim of the study is to present current information on the
molecular and cellular mechanisms of skeletal muscle regenera,tion, the role of testosterone
and growth factors in the activation of SCs and the possibility of their therapeutic use in
stimulating the reconstruction of damaged muscle fibers.
Collapse
Affiliation(s)
- Barbara Morawin
- Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski
| | | |
Collapse
|
20
|
Biressi S, Filareto A, Rando TA. Stem cell therapy for muscular dystrophies. J Clin Invest 2021; 130:5652-5664. [PMID: 32946430 DOI: 10.1172/jci142031] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetic diseases, characterized by progressive degeneration of skeletal and cardiac muscle. Despite the intense investigation of different therapeutic options, a definitive treatment has not been developed for this debilitating class of pathologies. Cell-based therapies in muscular dystrophies have been pursued experimentally for the last three decades. Several cell types with different characteristics and tissues of origin, including myogenic stem and progenitor cells, stromal cells, and pluripotent stem cells, have been investigated over the years and have recently entered in the clinical arena with mixed results. In this Review, we do a roundup of the past attempts and describe the updated status of cell-based therapies aimed at counteracting the skeletal and cardiac myopathy present in dystrophic patients. We present current challenges, summarize recent progress, and make recommendations for future research and clinical trials.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and.,Dulbecco Telethon Institute, University of Trento, Povo, Italy
| | - Antonio Filareto
- Department of Research Beyond Borders, Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Conneticut, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and.,Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California, USA.,Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
21
|
Levoux J, Prola A, Lafuste P, Gervais M, Chevallier N, Koumaiha Z, Kefi K, Braud L, Schmitt A, Yacia A, Schirmann A, Hersant B, Sid-Ahmed M, Ben Larbi S, Komrskova K, Rohlena J, Relaix F, Neuzil J, Rodriguez AM. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab 2021; 33:283-299.e9. [PMID: 33400911 DOI: 10.1016/j.cmet.2020.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Platelets are known to enhance the wound-healing activity of mesenchymal stem cells (MSCs). However, the mechanism by which platelets improve the therapeutic potential of MSCs has not been elucidated. Here, we provide evidence that, upon their activation, platelets transfer respiratory-competent mitochondria to MSCs primarily via dynamin-dependent clathrin-mediated endocytosis. We found that this process enhances the therapeutic efficacy of MSCs following their engraftment in several mouse models of tissue injury, including full-thickness cutaneous wound and dystrophic skeletal muscle. By combining in vitro and in vivo experiments, we demonstrate that platelet-derived mitochondria promote the pro-angiogenic activity of MSCs via their metabolic remodeling. Notably, we show that activation of the de novo fatty acid synthesis pathway is required for increased secretion of pro-angiogenic factors by platelet-preconditioned MSCs. These results reveal a new mechanism by which platelets potentiate MSC properties and underline the importance of testing platelet mitochondria quality prior to their clinical use.
Collapse
Affiliation(s)
- Jennyfer Levoux
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alexandre Prola
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France
| | - Peggy Lafuste
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Marianne Gervais
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Nathalie Chevallier
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; Etablissement Français du Sang, 94017, Créteil, France
| | - Zeynab Koumaiha
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Kaouthar Kefi
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Laura Braud
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Alain Schmitt
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Azzedine Yacia
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | | | - Barbara Hersant
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; AP-HP, Hôpital Henri Mondor, A. Chenevier, Service de chirurgie plastique et maxillo-faciale, Créteil, France
| | - Mounia Sid-Ahmed
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; AP-HP, Hôpital Henri Mondor, A. Chenevier, Service de chirurgie plastique et maxillo-faciale, Créteil, France
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard - Lyon 1, University Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Katerina Komrskova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 128 44 Prague 2, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic
| | - Frederic Relaix
- Université Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France; EnvA, IMRB, 94700 Maisons-Alfort, France; APHP, Hôpitaux Universitaires Henri Mondor & Centre de Référence des Maladies Neuromusculaires GNMH, 94000, Créteil, France
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Prague, Czech Republic; School of Medical Science, Griffith University, Southport, QLD 4222, Australia
| | | |
Collapse
|
22
|
Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L, Griseti E, Mouisel E, Amri EZ, Lauschke VM, Rydén M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol 2021; 320:C822-C841. [PMID: 33439778 DOI: 10.1152/ajpcell.00519.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology. Moreover, adipocytes release lipids and proteins with paracrine and endocrine functions. The intrinsic properties of adipocytes pose specific challenges in culture. Mature adipocytes float in suspension culture due to high triacylglycerol content and are fragile. Moreover, a fully differentiated state, notably acquirement of the unilocular lipid droplet of white adipocyte, has so far not been reached in two-dimensional culture. Cultures of mouse and human-differentiated preadipocyte cell lines and primary cells have been established to mimic white, beige, and brown adipocytes. Here, we survey various models of differentiated preadipocyte cells and primary mature adipocyte survival describing main characteristics, culture conditions, advantages, and limitations. An important development is the advent of three-dimensional culture, notably of adipose spheroids that recapitulate in vivo adipocyte function and morphology in fat depots. Challenges for the future include isolation and culture of adipose-derived stem cells from different anatomic location in animal models and humans differing in sex, age, fat mass, and pathophysiological conditions. Further understanding of fat cell physiology and dysfunction will be achieved through genetic manipulation, notably CRISPR-mediated gene editing. Capturing adipocyte heterogeneity at the single-cell level within a single fat depot will be key to understanding diversities in cardiometabolic parameters among lean and obese individuals.
Collapse
Affiliation(s)
- Jérémy Dufau
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Joanne X Shen
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Morgane Couchet
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | | | - Niklas Mejhert
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Lucas Massier
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Elena Griseti
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Etienne Mouisel
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Volker M Lauschke
- Karolinska Institutet, Department of Physiology and Pharmacology, Stockholm, Sweden
| | - Mikael Rydén
- Karolinska Institutet, Department of Medicine (H7), Stockholm, Sweden
| | - Dominique Langin
- Inserm, Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR1297, Toulouse, France.,Faculté de Médecine, I2MC, UMR1297, Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Toulouse University Hospitals, Department of Biochemistry, Toulouse, France
| |
Collapse
|
23
|
Wang L, Li H, Lin J, He R, Chen M, Zhang Y, Liao Z, Zhang C. CCR2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice. Stem Cell Res Ther 2021; 12:12. [PMID: 33413615 PMCID: PMC7791736 DOI: 10.1186/s13287-020-02065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/02/2020] [Indexed: 02/17/2023] Open
Abstract
Background Dystrophinopathy, a common neuromuscular disorder caused by the absence of dystrophin, currently lacks effective treatments. Systemic transplantation of adipose-derived stem cells (ADSCs) is a promising treatment approach, but its low efficacy remains a challenge. Chemokine system-mediated stem cell homing plays a critical role in systemic transplantation. Here, we investigated whether overexpression of a specific chemokine receptor could improve muscle homing and therapeutic effects of ADSC systemic transplantation in dystrophic mice. Methods We analysed multiple microarray datasets from the Gene Expression Omnibus to identify a candidate chemokine receptor and then evaluated the protein expression of target ligands in different tissues and organs of dystrophic mice. The candidate chemokine receptor was overexpressed using the lentiviral system in mouse ADSCs, which were used for systemic transplantation into the dystrophic mice, followed by evaluation of motor function, stem cell muscle homing, dystrophin expression, and muscle pathology. Results Chemokine-profile analysis identified C–C chemokine receptor (CCR)2 as the potential target for improving ADSC homing. We found that the levels of its ligands C–C chemokine ligand (CCL)2 and CCL7 were higher in muscles than in other tissues and organs of dystrophic mice. Additionally, CCR2 overexpression improved ADSC migration ability and maintained their multilineage-differentiation potentials. Compared with control ADSCs, transplantation of those overexpressing CCR2 displayed better muscle homing and further improved motor function, dystrophin expression, and muscle pathology in dystrophic mice. Conclusions These results demonstrated that CCR2 improved ADSC muscle homing and therapeutic effects following systemic transplantation in dystrophic mice.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Menglong Chen
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Yu Zhang
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Ziyu Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China. .,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China.
| |
Collapse
|
24
|
Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines 2021; 9:biomedicines9010040. [PMID: 33466493 PMCID: PMC7824911 DOI: 10.3390/biomedicines9010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue resides in specific depots scattered in peripheral or deeper locations all over the body and it enwraps most of the organs. This tissue is always in a dynamic evolution as it must adapt to the metabolic demand and constraints. It exhibits also endocrine functions important to regulate energy homeostasis. This complex organ is composed of depots able to produce opposite functions to monitor energy: the so called white adipose tissue acts to store energy as triglycerides preventing ectopic fat deposition while the brown adipose depots dissipate it. It is composed of many cell types. Different types of adipocytes constitute the mature cells specialized to store or burn energy. Immature adipose progenitors (AP) presenting stem cells properties contribute not only to the maintenance but also to the expansion of this tissue as observed in overweight or obese individuals. They display a high regeneration potential offering a great interest for cell therapy. In this review, we will depict the attributes of the distinct types of adipocytes and their contribution to the function and metabolic features of adipose tissue. We will examine the specific role and properties of distinct depots according to their location. We will consider their cellular heterogeneity to present an updated picture of this sophisticated tissue. We will also introduce new trends pointing out a rational targeting of adipose tissue for medical applications.
Collapse
|
25
|
Lin Y, Ding S, Chen Y, Xiang M, Xie Y. Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Rev Rep 2021; 17:1137-1153. [PMID: 33389679 DOI: 10.1007/s12015-020-10097-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Cardiac adipose tissue is a metabolically active adipose tissue in close proximity to heart. Recent studies emphasized the benefits of cardiac adipose tissue in heart remodeling, such as reducing infarction size, enhancing neovascularization and regulating immune response, through a series of cellular mechanisms. In the present manuscript, we provide a comprehensive review regarding the role of cardiac adipose tissue in cardiac repair. We focus on different cardiac adipose tissues according to their distinguished anatomical structures. This review summarizes the latest evidence on the relationship between cardiac adipose tissue and cardiac repair. Cardiac adipose tissues (CAT) were systematically reviewed in the current manuscript which focused on the components of CAT, debates about cardiac adipose stem cells and their effect on heart.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Siyin Ding
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuwen Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yao Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
26
|
Atkinson SP. A preview of selected articles. Stem Cells Transl Med 2020. [PMCID: PMC7695635 DOI: 10.1002/sctm.20-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Colson C, Batrow PL, Gautier N, Rochet N, Ailhaud G, Peiretti F, Amri EZ. The Rosmarinus Bioactive Compound Carnosic Acid Is a Novel PPAR Antagonist That Inhibits the Browning of White Adipocytes. Cells 2020; 9:cells9112433. [PMID: 33171828 PMCID: PMC7695189 DOI: 10.3390/cells9112433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.
Collapse
Affiliation(s)
- Cécilia Colson
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Pierre-Louis Batrow
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nadine Gautier
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nathalie Rochet
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Gérard Ailhaud
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Franck Peiretti
- Aix Marseille Université, INSERM, INRAE, C2VN, 13007 Marseille, France;
| | - Ez-Zoubir Amri
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
- Correspondence: ; Tel.: +33-493-37-70-82; Fax: +33-493-81-70-58
| |
Collapse
|
28
|
Mayeuf-Louchart A, Lancel S, Sebti Y, Pourcet B, Loyens A, Delhaye S, Duhem C, Beauchamp J, Ferri L, Thorel Q, Boulinguiez A, Zecchin M, Dubois-Chevalier J, Eeckhoute J, Vaughn LT, Roach PJ, Dani C, Pederson BA, Vincent SD, Staels B, Duez H. Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation. Cell Rep 2020; 29:1410-1418.e6. [PMID: 31693883 PMCID: PMC7057258 DOI: 10.1016/j.celrep.2019.09.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs. Brown adipocytes are functionally differentiated at E17.5 in the mouse embryo Lipid droplets are formed within glycogen clusters Glycogen production is crucial for lipid droplet biogenesis during BAT differentiation Glycophagy-mediated glycogen degradation drives lipid droplet formation
Collapse
Affiliation(s)
- Alicia Mayeuf-Louchart
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France.
| | - Steve Lancel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Yasmine Sebti
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Benoit Pourcet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Anne Loyens
- Univ. Lille, UMR-S 1172-JPArc Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Stéphane Delhaye
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Christian Duhem
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Justine Beauchamp
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Lise Ferri
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Quentin Thorel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Alexis Boulinguiez
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Mathilde Zecchin
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Logan T Vaughn
- Indiana University School of Medicine-Muncie and Ball State University, Muncie, IN 47306, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christian Dani
- Université Côte d'Azur, CNRS, INSERM, iBV Faculté de Médecine, Nice, France
| | - Bartholomew A Pederson
- Indiana University School of Medicine-Muncie and Ball State University, Muncie, IN 47306, USA
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Hélène Duez
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| |
Collapse
|
29
|
Akakpo W, Schirmann A, Ferretti L, Ben-Naoum K, Carnicelli D, Graziana JP, Hupertan V, Madec FX, Marcelli F, Methorst C, Morel-Journel N, Savareux L, Terrier JE, Faix A, Huyghe E, Yiou R. [Biotherapies for erectile dysfunction and Peyronie's disease: Where are we now?]. Prog Urol 2020; 30:1000-1013. [PMID: 32826194 DOI: 10.1016/j.purol.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Clinical trials of cell therapy for erectile dysfunction (ED) and Peyronie's disease (PD) were recently conducted after preclinical studies. AIMS The aims of this study are to give an update on biotherapy for ED and PD and to describe the regulatory framework for these therapies. MATERIALS AND METHODS A literature review was performed through PubMed and Clinical.trials.gov addressing cell therapy for ED and PD and using following keywords "erectile dysfunction", "Peyronie's disease", "stem cell", and "platelet-rich plasma". RESULTS Preclinical studies in rodent models have shown the potential benefit of cell therapy for ED after radical prostatectomy or caused by metabolic diseases, and PD. The tissues used to obtain the therapeutic product were bone marrow, adipose tissue and blood (PRP, platelet-rich plasma). Mechanism of action was shown to be temporary and mainly paracrine. Four clinical trials were published concerning ED after radical prostatectomy and in diabetic patients and one for PD. Eleven clinical trials including three randomized trials are currently going on. Preclinical and preliminary clinical results suggested the possibility to improve spontaneous erectile function and response to pharmaceutical treatment in initially non-responder patients. This effect is mediated by an improvement of penile vascularization. A reduction of penile curvature without side effect was noted after injections into the plaque of PD patients. Most of these therapeutic strategies using autologous cells were considered as "Advanced Therapy Medicinal Products" with strict regulatory frameworks imposing heavy constraints, in particular in case of "substantial" modification of the cells. The regulatory framework remains unclear and more permissive for PRP and cell therapy processes with extemporaneous preparation/injection and no "substantial" modifications. CONCLUSIONS First results on cell therapy for ED and PD are promising. The regulatory framework can significantly change according to cell preparations and origins leading to various constraints. This regulatory framework is crucial to consider for the choice of the procedure.
Collapse
Affiliation(s)
- W Akakpo
- Service d'urologie, université Pierre et Marie Curie, hôpital universitaire de la Pitié-Salpêtrière, 75013 Paris, France
| | - A Schirmann
- Service d'urologie, hôpitaux universitaires Henri-Mondor, CHU Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - L Ferretti
- Service d'urologie, hôpital d'instruction des armées Robert-Picqué, Villenave-d'Ornon, France
| | - K Ben-Naoum
- Service d'urologie, CHU de Nîmes, Nîmes, France
| | - D Carnicelli
- Service d'urologie, CH de Chambery, Chambery, France
| | - J-P Graziana
- Clinique mutualiste de la porte de l'Orient, Lorient, France
| | - V Hupertan
- Cabinet médical Paris Batignolles, Paris, France
| | - F X Madec
- Service d'urologie, CHU de Nantes, Nantes, France
| | - F Marcelli
- Service d'urologie, CHRU de Lille, Lille, France
| | - C Methorst
- Service d'urologie, CH des Quatre Villes, Saint-Cloud, France
| | | | - L Savareux
- Hôpital privé de La Châtaignerie, Beaumont, France
| | | | - A Faix
- Clinique mutualiste Beau-Soleil, Montpellier, France
| | - E Huyghe
- Service d'urologie, CHU de Toulouse, Toulouse, France
| | - R Yiou
- Service d'urologie, hôpitaux universitaires Henri-Mondor, CHU Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| |
Collapse
|
30
|
Paré M, Darini CY, Yao X, Chignon-Sicard B, Rekima S, Lachambre S, Virolle V, Aguilar-Mahecha A, Basik M, Dani C, Ladoux A. Breast cancer mammospheres secrete Adrenomedullin to induce lipolysis and browning of adjacent adipocytes. BMC Cancer 2020; 20:784. [PMID: 32819314 PMCID: PMC7441622 DOI: 10.1186/s12885-020-07273-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/09/2020] [Indexed: 01/16/2023] Open
Abstract
Background Cancer cells cooperate with cells that compose their environment to promote tumor growth and invasion. Among them, adipocytes provide lipids used as a source of energy by cancer cells and adipokines that contribute to tumor expansion. Mechanisms supporting the dynamic interactions between cancer cells and stromal adipocytes, however, remain unclear. Methods We set-up a co-culture model with breast cancer cells grown in 3D as mammospheres and human adipocytes to accurately recapitulate intrinsic features of tumors, such as hypoxia and cancer cell–adipocytes interactions. Results Herein, we observed that the lipid droplets’ size was reduced in adipocytes adjacent to the mammospheres, mimicking adipocyte morphology on histological sections. We showed that the uncoupling protein UCP1 was expressed in adipocytes close to tumor cells on breast cancer histological sections as well as in adipocytes in contact with the mammospheres. Mammospheres produced adrenomedullin (ADM), a multifactorial hypoxia-inducible peptide while ADM receptors were detected in adipocytes. Stimulation of adipocytes with ADM promoted UCP1 expression and increased HSL phosphorylation, which activated lipolysis. Invalidation of ADM in breast cancer cells dramatically reduced UCP1 expression in adipocytes. Conclusions Breast tumor cells secreted ADM that modified cancer–associated adipocytes through paracrine signaling, leading to metabolic changes and delipidation. Hence, ADM appears to be crucial in controlling the interactions between cancer cells and adipocytes and represents an excellent target to hinder them.
Collapse
Affiliation(s)
- Martin Paré
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Cédric Y Darini
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Xi Yao
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Bérengère Chignon-Sicard
- Université Côte d'Azur, Pasteur 2 Hospital, Department of Plastic and Reconstructive Surgery, Nice, France
| | - Samah Rekima
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | | - Adriana Aguilar-Mahecha
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Mark Basik
- Segal Cancer Center, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | | | - Annie Ladoux
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
31
|
Barilla S, Liang N, Mileti E, Ballaire R, Lhomme M, Ponnaiah M, Lemoine S, Soprani A, Gautier JF, Amri EZ, Le Goff W, Venteclef N, Treuter E. Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid remodeling by upregulating ATP binding cassette subfamily G member 1. Mol Metab 2020; 42:101066. [PMID: 32798719 PMCID: PMC7509237 DOI: 10.1016/j.molmet.2020.101066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Adipogenesis is critical for adipose tissue remodeling during the development of obesity. While the role of transcription factors in the orchestration of adipogenic pathways is already established, the involvement of coregulators that transduce regulatory signals into epigenome alterations and transcriptional responses remains poorly understood. The aim of our study was to investigate which pathways are controlled by G protein pathway suppressor 2 (GPS2) during the differentiation of human adipocytes. METHODS We generated a unique loss-of-function model by RNAi depletion of GPS2 in human multipotent adipose-derived stem (hMADS) cells. We thoroughly characterized the coregulator depletion-dependent pathway alterations during adipocyte differentiation at the level of transcriptome (RNA-seq), epigenome (ChIP-seq H3K27ac), cistrome (ChIP-seq GPS2), and lipidome. We validated the in vivo relevance of the identified pathways in non-diabetic and diabetic obese patients. RESULTS The loss of GPS2 triggers the reprogramming of cellular processes related to adipocyte differentiation by increasing the responses to the adipogenic cocktail. In particular, GPS2 depletion increases the expression of BMP4, an important trigger for the commitment of fibroblast-like progenitors toward the adipogenic lineage and increases the expression of inflammatory and metabolic genes. GPS2-depleted human adipocytes are characterized by hypertrophy, triglyceride and phospholipid accumulation, and sphingomyelin depletion. These changes are likely a consequence of the increased expression of ATP-binding cassette subfamily G member 1 (ABCG1) that mediates sphingomyelin efflux from adipocytes and modulates lipoprotein lipase (LPL) activity. We identify ABCG1 as a direct transcriptional target, as GPS2 depletion leads to coordinated changes of transcription and H3K27 acetylation at promoters and enhancers that are occupied by GPS2 in wild-type adipocytes. We find that in omental adipose tissue of obese humans, GPS2 levels correlate with ABCG1 levels, type 2 diabetic status, and lipid metabolic status, supporting the in vivo relevance of the hMADS cell-derived in vitro data. CONCLUSION Our study reveals a dual regulatory role of GPS2 in epigenetically modulating the chromatin landscape and gene expression during human adipocyte differentiation and identifies a hitherto unknown GPS2-ABCG1 pathway potentially linked to adipocyte hypertrophy in humans.
Collapse
Affiliation(s)
- Serena Barilla
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden.
| | - Ning Liang
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden
| | - Enrichetta Mileti
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden
| | - Raphaëlle Ballaire
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Inovarion, Paris, France
| | - Marie Lhomme
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Maharajah Ponnaiah
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sophie Lemoine
- École Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Antoine Soprani
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Department of Digestive Surgery, Générale de Santé (GDS), Geoffroy Saint Hilaire Clinic, 75005, Paris, France
| | - Jean-Francois Gautier
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris, Paris, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Wilfried Le Goff
- Sorbonne University, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris, F-75013, France
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, Inserm, University of Paris, IMMEDIAB Laboratory, F-75006, Paris, France; Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris, Paris, France
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institute, 14183 Huddinge, Sweden.
| |
Collapse
|
32
|
Kano K, Horiuchi K, Yoshida Y, Hayasaka T, Kabara M, Tomita Y, Tatsukawa T, Matsuo R, Sawada J, Nakagawa N, Takehara N, Hasebe N, Kawabe JI. EphA7 + perivascular cells as myogenic and angiogenic precursors improving skeletal muscle regeneration in a muscular dystrophic mouse model. Stem Cell Res 2020; 47:101914. [PMID: 32738632 DOI: 10.1016/j.scr.2020.101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has a capacity for muscular regeneration mediated by satellite cells (SCs) and non-SCs. Although it is proposed that non-SCs are attractive therapeutic targets for dystrophies, the biological properties of these cells remain unclear. We have recently identified novel multipotent pericytes (PCs), capillary stem cells (CapSCs) derived from the microvasculature. In the present study, we determined if CapSCs contributed to myogenic regeneration using muscular dystrophy mouse model. CapSCs were isolated as EphA7+NG2+PCs from the subcutaneous adipose tissues of GFP-transgenic mice. Co-culture with C2C12 myoblast cells showed that CapSCs effectively enhanced myogenesis as compared to controls including EphA7- PCs and adipose stromal cells (ASCs). CapSCs transplanted in cardiotoxin-injured gastrocnemius muscles were well differentiated into both muscle fibers and microvessels, as compared to controls. At three weeks after cell-transplantation into the limbs of the mdx/utrn-/-mouse, CapSCs increased the number of GFP+myofibers along with dystrophin expression and the area size of myofibers, and also enhanced the muscular mass and its performance, assessed by treadmill test as compared to controls. In conclusion, CapSCs have potent myogenic regeneration capacity and improved the pathological condition in a muscular dystrophy mouse. Thus, CapSCs are an attractive cellular source in regenerative therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Kohei Kano
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Kiwamu Horiuchi
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Yuri Yoshida
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Taiki Hayasaka
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Maki Kabara
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Yui Tomita
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Radiology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Takamitsu Tatsukawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Risa Matsuo
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Dermatology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Jun Sawada
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Naoki Nakagawa
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Naofumi Takehara
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Naoyuki Hasebe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Jun-Ichi Kawabe
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan; Department of Biochemistry, Asahikawa Medical University, Asahikawa, 2-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.
| |
Collapse
|
33
|
Rigon M, Hörner SJ, Straka T, Bieback K, Gretz N, Hafner M, Rudolf R. Effects of ASC Application on Endplate Regeneration Upon Glycerol-Induced Muscle Damage. Front Mol Neurosci 2020; 13:107. [PMID: 32655366 PMCID: PMC7324987 DOI: 10.3389/fnmol.2020.00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/20/2020] [Indexed: 01/06/2023] Open
Abstract
Amongst other approaches, adipose-derived stromal cells (ASCs) have recently been tested with respect to their regenerative capacity for treatment of neuromuscular disorders. While beneficial effects of ASCs on muscle recovery were observed previously, their impact on regeneration of neuromuscular junctions (NMJs) is unclear. Here, we used a murine glycerol damage model to study disruption and regeneration of NMJs and to evaluate the effects of systemic application of ASCs on muscle and NMJ recovery. In mice that were not treated with ASCs, a differential response of NMJ pre- and post-synapses to glycerol-induced damage was observed. While post-synapses were still present in regions that were necrotic and lacking actin and dystrophin, pre-synapses disappeared soon in those affected areas. Partial regeneration of NMJs occurred within 11 days after damage. ASC treatment slightly enhanced NMJ recovery and reduced the loss of presynaptic sites, but also led to a late phase of muscle necrosis and fibrosis. In summary, the results suggest a differential sensitivity of NMJ pre- and post-synapses to glycerol-induced muscle damage and that the use of ASC for the treatment of neuromuscular disorders needs further careful evaluation.
Collapse
Affiliation(s)
- Matteo Rigon
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Medical Technology, Medical Faculty Mannheim, Mannheim University of Applied Sciences, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
34
|
Gnad T, Navarro G, Lahesmaa M, Reverte-Salisa L, Copperi F, Cordomi A, Naumann J, Hochhäuser A, Haufs-Brusberg S, Wenzel D, Suhr F, Jespersen NZ, Scheele C, Tsvilovskyy V, Brinkmann C, Rittweger J, Dani C, Kranz M, Deuther-Conrad W, Eltzschig HK, Niemi T, Taittonen M, Brust P, Nuutila P, Pardo L, Fleischmann BK, Blüher M, Franco R, Bloch W, Virtanen KA, Pfeifer A. Adenosine/A2B Receptor Signaling Ameliorates the Effects of Aging and Counteracts Obesity. Cell Metab 2020; 32:56-70.e7. [PMID: 32589947 PMCID: PMC7437516 DOI: 10.1016/j.cmet.2020.06.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
The combination of aging populations with the obesity pandemic results in an alarming rise in non-communicable diseases. Here, we show that the enigmatic adenosine A2B receptor (A2B) is abundantly expressed in skeletal muscle (SKM) as well as brown adipose tissue (BAT) and might be targeted to counteract age-related muscle atrophy (sarcopenia) as well as obesity. Mice with SKM-specific deletion of A2B exhibited sarcopenia, diminished muscle strength, and reduced energy expenditure (EE), whereas pharmacological A2B activation counteracted these processes. Adipose tissue-specific ablation of A2B exacerbated age-related processes and reduced BAT EE, whereas A2B stimulation ameliorated obesity. In humans, A2B expression correlated with EE in SKM, BAT activity, and abundance of thermogenic adipocytes in white fat. Moreover, A2B agonist treatment increased EE from human adipocytes, myocytes, and muscle explants. Mechanistically, A2B forms heterodimers required for adenosine signaling. Overall, adenosine/A2B signaling links muscle and BAT and has both anti-aging and anti-obesity potential.
Collapse
Affiliation(s)
- Thorsten Gnad
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Minna Lahesmaa
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Laia Reverte-Salisa
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Francesca Copperi
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Arnau Cordomi
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jennifer Naumann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Aileen Hochhäuser
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Saskia Haufs-Brusberg
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany; Department of Systems Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Frank Suhr
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany; Exercise Physiology Research Group, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Naja Zenius Jespersen
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Joern Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Holger K Eltzschig
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Markku Taittonen
- Department of Anesthesiology, Turku University Hospital, Turku, Finland
| | - Peter Brust
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Leipzig, Germany
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
| | - Leonardo Pardo
- Laboratory of Computational Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Wilhelm Bloch
- Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
35
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Roux CH, Pisani DF, Gillet P, Fontas E, Yahia HB, Djedaini M, Ambrosetti D, Michiels JF, Panaia-Ferrari P, Breuil V, Pinzano A, Amri EZ. Oxytocin Controls Chondrogenesis and Correlates with Osteoarthritis. Int J Mol Sci 2020; 21:ijms21113966. [PMID: 32486506 PMCID: PMC7312425 DOI: 10.3390/ijms21113966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the relationship of oxytocin (OT) to chondrogenesis and osteoarthritis (OA). Human bone marrow and multipotent adipose-derived stem cells were cultured in vitro in the absence or presence of OT and assayed for mRNA transcript expression along with histological and immunohistochemical analyses. To study the effects of OT in OA in vivo, a rat model and a human cohort of 63 men and 19 women with hand OA and healthy controls, respectively, were used. The baseline circulating OT, interleukin-6, leptin, and oestradiol levels were measured, and hand X-ray examinations were performed for each subject. OT induced increased aggrecan, collagen (Col) X, and cartilage oligomeric matrix protein mRNA transcript levels in vitro, and the immunolabelling experiments revealed a normalization of Sox9 and Col II protein expression levels. No histological differences in lesion severity were observed between rat OA groups. In the clinical study, a multivariate analysis adjusted for age, body mass index, and leptin levels revealed a significant association between OA and lower levels of OT (odds ratio = 0.77; p = 0.012). Serum OT levels are reduced in patients with hand OA, and OT showed a stimulatory effect on chondrogenesis. Thus, OT may contribute to the pathophysiology of OA.
Collapse
Affiliation(s)
- Christian H. Roux
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
- Department of Rheumatology, Nice University Hospital, Pasteur Hospital, 06003 Nice, France;
- Correspondence: (C.H.R.); (E.-Z.A.); Tel.: +33-492-03-54-99 (C.H.R.); +33-493-37-7082 (E.-Z.A.)
| | | | - Pierre Gillet
- UMR 7365 French National Centre for Scientific Research (CNRS)–Université de Lorraine, ‘Ingénierie Moléculaire et Physiopathologie Articulaire’ (IMoPA), F54505 Vandoeuvre-lès-Nancy, France; (P.G.); (A.P.)
| | - Eric Fontas
- Department of Clinical Research, Nice University Hospital, Cimiez Hospital, F-06003 Nice, France;
| | - Hédi Ben Yahia
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
| | - Mansour Djedaini
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
| | - Damien Ambrosetti
- Université Côte d’Azur, UFR Médecine, F-06107 Nice, France; (D.A.); (J.-F.M.)
- Anatomopathology Service, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, F-06003 Nice, France
| | - Jean-François Michiels
- Université Côte d’Azur, UFR Médecine, F-06107 Nice, France; (D.A.); (J.-F.M.)
- Anatomopathology Service, Pasteur Hospital, Centre Hospitalier Universitaire de Nice, F-06003 Nice, France
| | | | - Véronique Breuil
- Department of Rheumatology, Nice University Hospital, Pasteur Hospital, 06003 Nice, France;
| | - Astrid Pinzano
- UMR 7365 French National Centre for Scientific Research (CNRS)–Université de Lorraine, ‘Ingénierie Moléculaire et Physiopathologie Articulaire’ (IMoPA), F54505 Vandoeuvre-lès-Nancy, France; (P.G.); (A.P.)
| | - Ez-Zoubir Amri
- Université Côte d’Azur, French National Centre for Scientific Research (CNRS), Inserm, iBV, 06107 Nice, France; (H.B.Y.); (M.D.)
- Correspondence: (C.H.R.); (E.-Z.A.); Tel.: +33-492-03-54-99 (C.H.R.); +33-493-37-7082 (E.-Z.A.)
| |
Collapse
|
37
|
Sun X, Li X, Jia H, Wang H, Shui G, Qin Y, Shu X, Wang Y, Dong J, Liu G, Li X. Nuclear Factor E2-Related Factor 2 Mediates Oxidative Stress-Induced Lipid Accumulation in Adipocytes by Increasing Adipogenesis and Decreasing Lipolysis. Antioxid Redox Signal 2020; 32:173-192. [PMID: 31691574 DOI: 10.1089/ars.2019.7769] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Nuclear factor E2-related factor 2 (Nrf2) is a regulator of cellular oxidative stress and is also involved in lipid metabolism in adipocytes. However, it remains unknown as to whether Nrf2 is the link between oxidative stress and the induction of lipid accumulation in adipocytes. Results: Here, we show that oxidative stress is markedly increased in white adipose tissue from mice with high-fat diet-induced or genetically (ob/ob)-induced obesity and from human subjects with obesity. Notably, in response to oxidative stress, Nrf2 expression and activity were induced, further promoting lipid accumulation in adipocytes and exacerbating the development of obesity. In contrast, Nrf2 ablation alleviated oxidative stress-induced lipid accumulation. Mechanistically, oxidative stress promoted Nrf2 recruitment to the sterol regulatory element binding protein 1 promoter, inducing target gene transcription and subsequent lipogenesis. In addition, Nrf2 mediated oxidative stress-inhibited lipolysis in adipocytes via the protein kinase A pathway. Innovation and Conclusion: Our data provide a novel insight that Nrf2, as a critical signaling node, links oxidative stress to the induction of fat accumulation in adipocytes.
Collapse
Affiliation(s)
- Xudong Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaobing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hongdou Jia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital, Jilin University, Changchun, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yonglei Qin
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Xin Shu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yazhe Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jihong Dong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
38
|
Sarveazad A, Babahajian A, Yari A, Rayner CK, Mokhtare M, Babaei-Ghazani A, Agah S, Mahjoubi B, Shamseddin J, Yousefifard M. Combination of laser and human adipose-derived stem cells in repair of rabbit anal sphincter injury: a new therapeutic approach. Stem Cell Res Ther 2019; 10:367. [PMID: 31791407 PMCID: PMC6889595 DOI: 10.1186/s13287-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Anal sphincter injury leads to fecal incontinence. Based on the regenerative capability of laser and human adipose-derived stem cells (hADSCs), this study was designed to assess the effects of co-application of these therapies on anal sphincter recovery after injury. Design Male rabbits were assigned to equal groups (n = 7) including control, sphincterotomy, sphincterotomy treated with laser (660 nm, 90 s, immediately after sphincterotomy, daily, 14 days), hADSCs (2 × 106 hADSCs injected into injured area of the sphincter immediately after sphincterotomy), and laser + hADSCs. Ninety days after sphincterotomy, manometry and electromyography were performed, sphincter collagen content was evaluated, and Ki67, myosin heavy chain (MHC), skeletal muscle alpha-actin (ACTA1), vascular endothelial growth factor A (VEGFA), and vimentin mRNA gene expression were assessed. Results The laser + hADSCs group had a higher resting pressure compared with the sphincterotomy (p < 0.0001), laser (p < 0.0001), and hADSCs (p = 0.04) groups. Maximum squeeze pressure was improved in all treated animals compared with the sphincterotomized animals (p < 0.0001), without a significant difference between treatments (p > 0.05). In the laser + hADSCs group, motor unit numbers were higher than those in the laser group (p < 0.0001) but did not differ from the hADSCs group (p = 0.075). Sphincterotomy increased collagen content, but the muscle content (p = 0.36) and collagen content (p = 0.37) were not significantly different between the laser + hADSCs and control groups. Laser + hADSCs increased ACTA1 (p = 0.001) and MHC (p < 0.0001) gene expression compared with laser or hADSCs alone and was associated with increased VEGFA (p = 0.009) and Ki67 mRNA expression (p = 0.01) and decreased vimentin mRNA expression (p < 0.0001) compared with laser. Conclusion The combination of laser and hADSCs appears more effective than either treatment alone for promoting myogenesis, angiogenesis, and functional recovery after anal sphincterotomy.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Babaei-Ghazani
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Mahjoubi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Conditionally immortalized brown preadipocytes can switch between proliferative and differentiated states. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158511. [DOI: 10.1016/j.bbalip.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/21/2022]
|
40
|
Platelet-Rich Plasma Improves the Wound Healing Potential of Mesenchymal Stem Cells through Paracrine and Metabolism Alterations. Stem Cells Int 2019; 2019:1234263. [PMID: 31781232 PMCID: PMC6875194 DOI: 10.1155/2019/1234263] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
Chronic and acute nonhealing wounds represent a major public health problem, and replacement of cutaneous lesions by the newly regenerated skin is challenging. Mesenchymal stem cells (MSC) and platelet-rich plasma (PRP) were separately tested in the attempt to regenerate the lost skin. However, these treatments often remained inefficient to achieve complete wound healing. Additional studies suggested that PRP could be used in combination with MSC to improve the cell therapy efficacy for tissue repair. However, systematic studies related to the effects of PRP on MSC properties and their ability to rebuild skin barrier are lacking. We evaluated in a mouse exhibiting 4 full-thickness wounds, the skin repair ability of a treatment combining human adipose-derived MSC and human PRP by comparison to treatment with saline solution, PRP alone, or MSC alone. Wound healing in these animals was measured at day 3, day 7, and day 10. In addition, we examined in vitro and in vivo whether PRP alters in MSC their proangiogenic properties, their survival, and their proliferation. We showed that PRP improved the efficacy of engrafted MSC to replace lost skin in mice by accelerating the wound healing processes and ameliorating the elasticity of the newly regenerated skin. In addition, we found that PRP treatment stimulated in vitro, in a dose-dependent manner, the proangiogenic potential of MSC through enhanced secretion of soluble factors like VEGF and SDF-1. Moreover, PRP treatment ameliorated the survival and activated the proliferation of in vitro cultured MSC and that these effects were accompanied by an alteration of the MSC energetic metabolism including oxygen consumption rate and mitochondrial ATP production. Similar observations were found in vivo following combined administration of PRP and MSC into mouse wounds. In conclusion, our study strengthens that the use of PRP in combination with MSC might be a safe alternative to aid wound healing.
Collapse
|
41
|
Chen Z, Han X, Ouyang X, Fang J, Huang X, Wei H. Transplantation of induced pluripotent stem cell-derived mesenchymal stem cells improved erectile dysfunction induced by cavernous nerve injury. Am J Cancer Res 2019; 9:6354-6368. [PMID: 31588222 PMCID: PMC6771238 DOI: 10.7150/thno.34008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
Erectile dysfunction (ED) is an important kind of postoperative complication of pelvic surgery that affects patients' quality of life. Transplantation of mesenchymal stem cells (MSC) has been found to alleviate ED caused by cavernous nerve injury (CNI) in rats. However, little is known about whether induced pluripotent stem cell-derived mesenchymal stem cells (iMSC) have a therapeutic effect on CNI ED. We established an ED model on rats and evaluated the effect of iMSC on it. Methods: Eight-week-old male Sprague-Dawley rats were assigned to four groups and received following operation: sham operation (sham group); bilateral CNI and phosphate-buffered saline (PBS) injections (PBS group); bilateral CNI and adipose-derived mesenchymal stem cells transplantation (adMSC group); or bilateral CNI and iMSC injection (iMSC group). After therapy, the cavernous nerve was stimulated by electricity and the intracavernous pressure (IAP)/mean arterial blood pressure (MAP) was measured. The endothelial and smooth muscle tissue in the penis was assessed histologically with Masson's trichrome stain. Immunofluorescence/immunohistochemical stains were applied for the detection of nNOS, vWF, eNOS, SMA, Desmin, S100β, and caspase-3. Nude rats CNI ED model was established for the evaluation of iMSC longevity and differentiation capacity. The paracrine factors were assessed by real-time PCR. Results: Transplantation of iMSC significantly restored the IAP/MAP in this CNI ED model and showed long-term effects. It could rescue the expression of vWF, eNOS, SMA, and Desmin, which indicated the alleviation of endothelial and smooth muscle tissues of the penis. iMSC therapy also could increase the expression of nNOS in the cavernosum and S100β in the major pelvic ganglia (MPG) which contributed to the erectile function. Moreover, the level of BAX and caspase-3 were reduced and Bcl-2 was increased, which indicated the anti-apoptosis effects of iMSC. The iMSC showed little transdifferentiation and exerted their function by activating the secretome of the host. Conclusion: Transplantation of iMSC significantly improved ED induced by CNI. The iMSC may exert their effects via paracrine factors and may be a promising therapeutic candidate for treating CNI ED in the future.
Collapse
|
42
|
Mueller AL, Bloch RJ. Skeletal muscle cell transplantation: models and methods. J Muscle Res Cell Motil 2019; 41:297-311. [PMID: 31392564 DOI: 10.1007/s10974-019-09550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
43
|
Moon SH, Lee CM, Park SH, Jin Nam M. Effects of hepatocyte growth factor gene-transfected mesenchymal stem cells on dimethylnitrosamine-induced liver fibrosis in rats. Growth Factors 2019; 37:105-119. [PMID: 31452434 DOI: 10.1080/08977194.2019.1652399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nowadays, transplantation of human mesenchymal stem cells (MSCs) has emerged as a potential cellular therapy for liver cirrhosis. Hepatocyte growth factor (HGF) plays an important role in the regeneration of the liver. The objective of the study was to investigate the therapeutic effect of HGF-transfected human umbilical cord blood-derived MSCs on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. HGF-transfected MSCs were transplanted into rats with DMN-induced liver fibrosis. H2O2-induced cytotoxicity, apoptosis and intracellular reactive oxygen species were reduced in HGF-transfected MSCs in HGF-transfected MSCs. Pro-apoptotic proteins, such as cleaved poly (ADP-ribose) polymerase and cleaved caspase-3, were decreased in HGF-transfected MSCs. Biochemical analysis showed that the levels of aspartate aminotransferase and alanine aminotransferase were decreased after transplantation of HGF-transfected MSCs in rat fibrosis. Trichrome staining showed that HGF-transfected MSCs reduced liver damage. Taken together, our study indicated that HGF-transfected MSCs have therapeutic effects on DMN-induced liver fibrosis in rats.
Collapse
Affiliation(s)
- Soung Hoon Moon
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - Chang Min Lee
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
- HanCell Inc, Seongnam, Republic of Korea
| |
Collapse
|
44
|
Bouglé A, Rocheteau P, Briand D, Hardy D, Verdonk F, Tremolada C, Hivelin M, Chrétien F. Beneficial role of adipose-derived mesenchymal stem cells from microfragmented fat in a murine model of duchenne muscular dystrophy. Muscle Nerve 2019; 60:328-335. [PMID: 31228273 DOI: 10.1002/mus.26614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION No etiologic therapy is available for Duchenne muscular dystrophy (DMD), but mesenchymal stem cells were shown to be effective in preclinical models of DMD. The objective of this study is to investigate the effect of microfragmented fat extracted on a murine model of DMD. METHODS Fat tissue was extracted from healthy human participants and injected IM into DMD mice. Histological analysis, cytokines, and force measurement were performed up to 4 weeks after injection. RESULTS Duchenne muscular dystrophy mice injected with microfragmented fat exhibited an improved muscle phenotype (decreased necrosis and fibrosis), a decrease of inflammatory cytokines, and increased strength. DISCUSSION Administration of microfragmented fat in key muscles may improve muscular phenotype in patients with DMD. Muscle Nerve, 2019.
Collapse
Affiliation(s)
- Adrien Bouglé
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Rocheteau
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Service Hospitalo-Universitaire, Centre Hospitalier Sainte Anne, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France
| | - David Briand
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - David Hardy
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Department of Anesthesiology and Critical Care Medicine, Pitié-Salpêtrière Hospital, Paris, France.,Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Anesthesiology and Critical Care Department, Saint-Antoine Hospital, Paris, France
| | | | - Mikael Hivelin
- Assistance Publique-Hôpitaux de Paris, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France.,Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabrice Chrétien
- Infection and Epidemiology Department, Experimental Neuropathology Unit, Institut Pasteur, Paris, France.,Laboratoire Universitaire de Neuropathologie, Centre Hospitalier Sainte Anne, Paris, France.,Descartes University, Assistance Publique - Hôpitaux de Paris, Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
45
|
Juel Mortensen L, Lorenzen M, Jørgensen N, Andersson AM, Nielsen JE, Petersen LI, Lanske B, Juul A, Hansen JB, Blomberg Jensen M. Possible link between FSH and RANKL release from adipocytes in men with impaired gonadal function including Klinefelter syndrome. Bone 2019; 123:103-114. [PMID: 30914274 DOI: 10.1016/j.bone.2019.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The FSH receptor (FSHR) has been found to be expressed in human bone cells and bone marrow-adipocytes, and highly-debated mouse studies have suggested extra-gonadal effects of gonadotropins on glucose, adipocyte and bone homeostasis. These putative effects could be direct or indirectly mediated by endocrine factors released from bone-cells or adipocytes. Here, we investigated whether gonadotropins are linked with glucose- and lipid-metabolism in hypergonadotropic men. METHODS Single centre, cross-sectional study of 307 men with idiopathic infertility and 28 men with Klinefelter syndrome (KS). OUTCOME associations between serum LH and FSH with soluble-RANKL (sRANKL), osteoprotegerin (OPG), osteocalcin, fasting glucose and insulin, sex steroids, and body composition. Expression of FSHR was studied in human-derived adipocyte-cell-models (hMADS, TERT-hWA) and FSH stimulation of RANKL expression and secretion in hMADS in vitro. RESULTS Serum FSH was not directly linked with glucose- and lipid-metabolism. However, FSH was inversely associated with sRANKL in both infertile men and KS men (p = .023 and p = .012). Infertile men with elevated FSH (>11 U/L) had significantly lower sRANKL (p = .015). sRANKL was positively associated with fat percentage, fasting insulin, and glucose (all p < .05). Men with prediabetes had higher sRANKL (p = .021), but lower testosterone (p < .0001) and Inhibin B (p = .005). The FSHR was expressed in the investigated human derived adipocytes, and 3-6 h treatment with FSH markedly increased RANKL release (p < .05). CONCLUSION KS and infertile men with prediabetes have low Inhibin B, and testosterone but elevated RANKL compared with non-prediabetic men despite comparable levels of serum gonadotropins. Serum FSH and sRANKL was inversely associated in both infertile and KS men, but the increased release of RANKL from FSH treated adipocytes suggest a direct effect of FSH on RANKL production in some tissues. Further studies are required to clarify whether FSH targets RANKL in the skeleton. ClinicalTrial_ID:NCT01304927.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Mette Lorenzen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
| | - Niels Jørgensen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Louise I Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Beate Lanske
- Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA
| | - Anders Juul
- University Department of Growth and Reproduction and International Center for Research, Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Jacob B Hansen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Martin Blomberg Jensen
- Group of skeletal, mineral and gonadal endocrinology, University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; Division of Bone and Mineral Research, HSDM/HMS, Harvard Medical School, Boston, USA.
| |
Collapse
|
46
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
47
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
48
|
Choi S, Jeon BG, Chae G, Lee SJ. The clinical efficacy of stem cell therapy for complex perianal fistulas: a meta-analysis. Tech Coloproctol 2019; 23:411-427. [PMID: 31049792 DOI: 10.1007/s10151-019-01994-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Treatment of complex anal fistulas remains difficult. However, treatment with stem cells has had an encouraging success rate when applied to complex perianal fistulas. We systematically reviewed the current evidence through meta-analysis. METHODS We performed an electronic literature search on PubMed, Embase, and the Cochrane Library and identified studies (published between January 1946 and August 2017) that used stem cells to treat patients with complex perianal fistula. Each paper was evaluated for treatment success rate, target patients, types of stem cells used, number of cells used, and criteria for complete healing. Potential publication bias was assessed via visual inspection of a funnel plot and Orwin's fail-safe N. Out of 171 papers, 16 were included in the meta-analysis. RESULTS The overall healing rate of stem cell injection therapy for patients with complex perianal fistulas was 62.8% (95% CI 53.5-71.2, I2 = 54.05%), whereas those for patients with Crohn's perianal fistulas alone and complex anal fistulas not associated with Crohn's disease were 64.1% and 61.5% (p = 0.840), respectively. Healing rates for autologous and allogenic stem cell treatment were 69.4% and 50.7% (p = 0.020), respectively. Four comparative studies out of 16 studies were analyzed separately. Stem cell therapy increased the healing rate compared to the control groups (OR 0.379, 95% CI 0.152-0.947). CONCLUSIONS Stem cell therapy is a good treatment option for complex perianal fistulas, which cannot be healed by conventional operative procedures. However, further research for additional supportive evidence, such as a large-scale randomized controlled trial, is required.
Collapse
Affiliation(s)
- S Choi
- Department of Surgery, Kangwon National University School of Medicine, Kangwon National University Hospital, Chuncheon, South Korea
| | - B G Jeon
- Department of Surgery, Daejin Medical Center, Bundang Jesaeng General Hospital, Sungnam-Si, South Korea
| | - G Chae
- Department of Surgery, Kangwon National University School of Medicine, Kangwon National University Hospital, Chuncheon, South Korea
| | - S-J Lee
- Department of Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, South Korea.
| |
Collapse
|
49
|
Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan AK, Dani C, Vidal-Puig A, Foukas LC. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun 2019; 10:1546. [PMID: 30948720 PMCID: PMC6449391 DOI: 10.1038/s41467-019-09514-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/12/2019] [Indexed: 01/28/2023] Open
Abstract
The insulin/IGF-1 signalling pathway is a key regulator of metabolism and the rate of ageing. We previously documented that systemic inactivation of phosphoinositide 3-kinase (PI3K) p110α, the principal PI3K isoform that positively regulates insulin signalling, results in a beneficial metabolic effect in aged mice. Here we demonstrate that deletion of p110α specifically in the adipose tissue leads to less fat accumulation over a significant part of adult life and allows the maintenance of normal glucose tolerance despite insulin resistance. This effect of p110α inactivation is due to a potentiating effect on β-adrenergic signalling, which leads to increased catecholamine-induced energy expenditure in the adipose tissue. Our findings provide a paradigm of how partial inactivation of an essential component of the insulin signalling pathway can have an overall beneficial metabolic effect and suggest that PI3K inhibition could potentiate the effect of β-adrenergic agonists in the treatment of obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Caroline Araiz
- Institute of Healthy Ageing & Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Anqi Yan
- Institute of Healthy Ageing & Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lucia Bettedi
- Institute of Healthy Ageing & Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- National Institutes of Child Health and Human Development (NICHD), Bethesda, MD, 20814, USA
| | - Isabella Samuelson
- Institute of Healthy Ageing & Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anne K McGavigan
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Christian Dani
- Université Côte d'Azur, CNRS, Inserm, iBV, Faculté de Médecine, 06107, Nice Cedex 2, France
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing & Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
50
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|