1
|
Guo J, Wang X, Li G, Wang Q, Wang F, Liu J, Feng X, Wang C. Reliability of Serum-Derived Connectome Indicators in Identifying Cirrhosis. J Proteome Res 2024; 23:4729-4741. [PMID: 39305261 DOI: 10.1021/acs.jproteome.4c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Patients with cirrhosis face a heightened risk of complications, underscoring the importance of identification. We have developed a Connectome strategy that combines metabolites with peptide spectral matching (PSM) in proteomics to integrate metabolomics and proteomics, identifying specific metabolites bound to blood proteins in cirrhosis using open search proteomics methods. Analysis methods including Partial Least Squares Discriminant Analysis (PLS-DA), Uniform Manifold Approximation and Projection (UMAP), and hierarchical clustering were used to distinguish significant differences among the Cirrhosis group, Chronic Hepatitis B (CHB) group, and Healthy group. In this study, we identified 81 cirrhosis-associated connectomes and established an effective model distinctly distinguishing cirrhosis from chronic hepatitis B and healthy samples, confirmed by PLS-DA, hierarchical clustering analysis, and UMAP analysis, and further validated using six new cirrhosis samples. We established a Unified Indicator for Identifying cirrhosis, including tyrosine, Unnamed_189.2, thiazolidine, etc., which not only enables accurate identification of cirrhosis groups but was also further validated using six new cirrhosis samples and extensively supported by other cirrhosis research data (PXD035024). Our study reveals that characteristic cirrhosis connectomes can reliably distinguish cirrhosis from CHB and healthy groups. The established unified cirrhotic indicator facilitates the identification of cirrhosis cases in both this study and additional research data.
Collapse
Affiliation(s)
- Jisheng Guo
- College of Basic Medicine, Yantai Campus of Binzhou Medical University, Yantai 264003, China
| | - Xiaona Wang
- Children's Hospital Affiliated of Zhengzhou University, Zhengzhou 450018, China
| | - Guangming Li
- Department of Hepatology, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Qiong Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Fengqin Wang
- College of Basic Medicine, Shandong University, Jinan 250012, China
| | - Jinjin Liu
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Xu Feng
- Medical Laboratory, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| | - Chao Wang
- Research Department, The sixth people's hospital of Zhengzhou, Zhengzhou 450000, China
| |
Collapse
|
2
|
Vecchione A, Devlin JC, Tasker C, Ramnarayan VR, Haase P, Conde E, Srivastava D, Atwal GS, Bruhns P, Murphy AJ, Sleeman MA, Limnander A, Lim WK, Asrat S, Orengo JM. IgE plasma cells are transcriptionally and functionally distinct from other isotypes. Sci Immunol 2024; 9:eadm8964. [PMID: 39241058 DOI: 10.1126/sciimmunol.adm8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 09/08/2024]
Abstract
Understanding the phenotypic and transcriptional signature of immunoglobulin E (IgE)-producing cells is fundamental to plasma cell (PC) biology and development of therapeutic interventions for allergy. Here, using a mouse model of intranasal house dust mite (HDM) exposure, we showed that short-lived IgE PCs emerge in lung draining lymph nodes (dLNs) during early exposure (<3 weeks) and long-lived IgE PCs accumulate in the bone marrow (BM) with prolonged exposure (>7 weeks). IgE PCs had distinct surface and gene expression profiles in these different tissues compared with other Ig isotypes. IgE BMPCs up-regulated genes associated with prosurvival and BM homing, whereas IgE dLN PCs expressed genes associated with recent class switching and differentiation. IgE PCs also exhibited higher expression of endoplasmic reticulum (ER) stress and protein coding genes and higher antibody secretion rate when compared with IgG1. Overall, this study highlights the unique developmental path and transcriptional signature of short-lived and long-lived IgE PCs.
Collapse
Affiliation(s)
| | | | - Carley Tasker
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | - Venkat Raman Ramnarayan
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Paul Haase
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Eva Conde
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | | | - Pierre Bruhns
- Institut Pasteur, Université Paris Cité, Inserm UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | | | | | | | - Wei Keat Lim
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| | | | - Jamie M Orengo
- Regeneron Pharmaceuticals, Tarrytown, New York, 10591, USA
| |
Collapse
|
3
|
Yamamoto T, Hirano M, Mitsunaga F, Wasaki K, Kotani A, Tajima K, Nakamura S. Molecular Events in Immune Responses to Sublingual Influenza Vaccine with Hemagglutinin Antigen and Poly(I:C) Adjuvant in Nonhuman Primates, Cynomolgus Macaques. Vaccines (Basel) 2024; 12:643. [PMID: 38932372 PMCID: PMC11209156 DOI: 10.3390/vaccines12060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Sublingual vaccines offer the benefits of inducing mucosal immunity to protect against respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and influenza, while also enabling needle-free self-administration. In a previous study, a sublingual SARS-CoV-2 vaccination was created by combining a recombinafigureCoV-2 spike protein receptor-binding domain antigen with a double strand RNA Poly(I:C) adjuvant. This vaccine was tested on nonhuman primates, Cynomolgus macaques. This study examined the immune and inflammatory responses elicited by the sublingual influenza vaccine containing hemagglutinin (HA) antigen and Poly(I:C) adjuvants, and assessed the safety of this vaccine in nonhuman primates. The Poly(I:C)-adjuvanted sublingual vaccine induced both mucosal and systemic immunities. Specifically, the sublingual vaccine produced HA-specific secretory IgA antibodies in saliva and nasal washings, and HA-specific IgA and IgG were detected in the blood. This vaccine appeared to be safe, as judged from the results of blood tests and plasma C-reactive protein levels. Notably, sublingual vaccination neither increased the production of inflammation-associated cytokines-IFN-alpha, IFN-gamma, and IL-17-in the blood, nor upregulated the gene expression of proinflammatory cytokines-IL12A, IL12B, IFNA1, IFNB1, CD69, and granzyme B-in white blood cells. Moreover, DNA microarray analyses revealed that sublingual vaccination evoked both enhancing and suppressing expression changes in genes associated with immune-related responses in cynomolgus monkeys. Therefore, the sublingual vaccine with the Poly(I:C) adjuvant is safe, and creates a balanced state of enhancing and suppressing the immune-related response.
Collapse
Affiliation(s)
- Tetsuro Yamamoto
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (K.W.); (A.K.); (K.T.)
- EP Mediate Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Makoto Hirano
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan; (M.H.); (F.M.)
| | - Fusako Mitsunaga
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan; (M.H.); (F.M.)
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| | - Kunihiko Wasaki
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (K.W.); (A.K.); (K.T.)
- EP Mediate Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Atsushi Kotani
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (K.W.); (A.K.); (K.T.)
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Kazuki Tajima
- Innovation Research Center, EPS Holdings, Inc., 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0815, Japan; (T.Y.); (K.W.); (A.K.); (K.T.)
- Research Center, EPS Innovative Medicine Co., Ltd., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Shin Nakamura
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan; (M.H.); (F.M.)
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| |
Collapse
|
4
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
5
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Ota M, Hoehn KB, Fernandes-Braga W, Ota T, Aranda CJ, Friedman S, Miranda-Waldetario MG, Redes J, Suprun M, Grishina G, Sampson HA, Malbari A, Kleinstein SH, Sicherer SH, de Lafaille MAC. CD23 +IgG1 + memory B cells are poised to switch to pathogenic IgE production in food allergy. Sci Transl Med 2024; 16:eadi0673. [PMID: 38324641 PMCID: PMC11008013 DOI: 10.1126/scitranslmed.adi0673] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/15/2023] [Indexed: 02/09/2024]
Abstract
Food allergy is caused by allergen-specific immunoglobulin E (IgE) antibodies, but little is known about the B cell memory of persistent IgE responses. Here, we describe, in human pediatric peanut allergy, a population of CD23+IgG1+ memory B cells arising in type 2 immune responses that contain high-affinity peanut-specific clones and generate IgE-producing cells upon activation. The frequency of CD23+IgG1+ memory B cells correlated with circulating concentrations of IgE in children with peanut allergy. A corresponding population of "type 2-marked" IgG1+ memory B cells was identified in single-cell RNA sequencing experiments. These cells differentially expressed interleukin-4 (IL-4)- and IL-13-regulated genes, such as FCER2/CD23+, IL4R, and germline IGHE, and carried highly mutated B cell receptors (BCRs). In children with high concentrations of serum peanut-specific IgE, high-affinity B cells that bind the main peanut allergen Ara h 2 mapped to the population of "type 2-marked" IgG1+ memory B cells and included clones with convergent BCRs across different individuals. Our findings indicate that CD23+IgG1+ memory B cells transcribing germline IGHE are a unique memory population containing precursors of high-affinity pathogenic IgE-producing cells that are likely to be involved in the long-term persistence of peanut allergy.
Collapse
Affiliation(s)
- Miyo Ota
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
| | - Weslley Fernandes-Braga
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Takayuki Ota
- Department of Dermatology, Janssen Research & Development LLC; San Diego, CA 92121, USA
| | - Carlos J. Aranda
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Sara Friedman
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Mariana G.C. Miranda-Waldetario
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| | - Jamie Redes
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
- Graduate School of Biomedical Sciences, ISMMS; New York, NY 10029, USA
| | - Maria Suprun
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Galina Grishina
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Hugh A. Sampson
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Alefiyah Malbari
- Kravis Children’s Hospital, Department of Pediatrics, ISMMS; New York, NY 10029, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine; New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine; New Haven, CT 06520, USA
- Program in Computational Biology & Bioinformatics, Yale University; New Haven, CT 06511, USA
| | - Scott H. Sicherer
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
| | - Maria A. Curotto de Lafaille
- Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai (ISMMS); New York, NY 10029, USA
- Precision Immunology Institute (PrIISM), and Department of Immunology and Immunotherapy, ISMMS; New York, NY. 10029, USA
| |
Collapse
|
7
|
McDonnell JM, Dhaliwal B, Sutton BJ, Gould HJ. IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annu Rev Immunol 2023; 41:255-275. [PMID: 36737596 DOI: 10.1146/annurev-immunol-061020-053712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.
Collapse
Affiliation(s)
- J M McDonnell
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | | | - B J Sutton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| |
Collapse
|
8
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
9
|
Ota M, Hoehn KB, Ota T, Aranda CJ, Friedman S, Braga WF, Malbari A, Kleinstein SH, Sicherer SH, Curotto de Lafaille MA. The memory of pathogenic IgE is contained within CD23 + IgG1 + memory B cells poised to switch to IgE in food allergy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525506. [PMID: 36747707 PMCID: PMC9900782 DOI: 10.1101/2023.01.25.525506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergy is caused by allergen-specific IgE antibodies but little is known about the B cell memory of persistent IgE responses. Here we describe in human pediatric peanut allergy CD23 + IgG1 + memory B cells arising in type 2 responses that contain peanut specific clones and generate IgE cells on activation. These 'type2-marked' IgG1 + memory B cells differentially express IL-4/IL-13 regulated genes FCER2 / CD23, IL4R , and germline IGHE and carry highly mutated B cell receptors (BCRs). Further, high affinity memory B cells specific for the main peanut allergen Ara h 2 mapped to the population of 'type2-marked' IgG1 + memory B cells and included convergent BCRs across different individuals. Our findings indicate that CD23 + IgG1 + memory B cells transcribing germline IGHE are a unique memory population containing precursors of pathogenic IgE. One-Sentence Summary We describe a unique population of IgG + memory B cells poised to switch to IgE that contains high affinity allergen-specific clones in peanut allergy.
Collapse
|
10
|
Olewicz-Gawlik A, Kowala-Piaskowska A. Self-reactive IgE and anti-IgE therapy in autoimmune diseases. Front Pharmacol 2023; 14:1112917. [PMID: 36755957 PMCID: PMC9899859 DOI: 10.3389/fphar.2023.1112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Growing evidence indicates the pathogenic role of autoreactive IgE in autoimmune diseases. Incidence of autoimmune and allergic diseases in the industrialized countries is consistently icreasing, thus leading to concerted efforts to comprehend the regulation of IgE-mediated mechanisms. The first reports of a presence of IgE autoantibodies in patients with autoimmune diseases have been published a long time ago, and it is now recognized that self-reactive IgE can mediate inflammatory response in bullous pemhigoid, systemic lupus erythematosus, chronic urticaria, and atopic dermatitis. The advances in understanding the pathomechanisms of these disorders brought to a successful use of anti-IgE strategies in their management. The present review discusses the current state of knowledge on the IgE-mediated autoimmunity and anti-IgE treatment, and pave the way for further exploration of the subject.
Collapse
Affiliation(s)
- Anna Olewicz-Gawlik
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland,Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland,*Correspondence: Anna Olewicz-Gawlik,
| | - Arleta Kowala-Piaskowska
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Kuo BS, Li CH, Chen JB, Shiung YY, Chu CY, Lee CH, Liu YJ, Kuo JH, Hsu C, Su HW, Li YF, Lai A, Ho YF, Cheng YN, Huang HX, Lung MC, Wu MS, Yang FH, Lin CH, Tseng W, Yang J, Lin CY, Tsai PH, Chang HK, Wang YJ, Chen T, Lynn S, Liao MJ, Wang CY. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J Clin Invest 2022; 132:157765. [PMID: 35912861 PMCID: PMC9337824 DOI: 10.1172/jci157765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 01/08/2023] Open
Abstract
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcԑRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)-knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
Collapse
Affiliation(s)
- Be-Sheng Kuo
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| | | | | | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | - Cindy Hsu
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | - Annie Lai
- United BioPharma, Inc., Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chang Yi Wang
- United BioPharma, Inc., Hsinchu, Taiwan.,UBI Asia, Hsinchu, Taiwan.,United Biomedical, Inc., Hauppauge, New York, USA
| |
Collapse
|
12
|
Alijaj N, Pavlovic B, Martel P, Rakauskas A, Cesson V, Saba K, Hermanns T, Oechslin P, Veit M, Provenzano M, Rüschoff JH, Brada MD, Rupp NJ, Poyet C, Derré L, Valerio M, Banzola I, Eberli D. Identification of Urine Biomarkers to Improve Eligibility for Prostate Biopsy and Detect High-Grade Prostate Cancer. Cancers (Basel) 2022; 14:1135. [PMID: 35267445 PMCID: PMC8909910 DOI: 10.3390/cancers14051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
PCa screening is based on the measurements of the serum prostate specific antigen (PSA) to select men with higher risks for tumors and, thus, eligible for prostate biopsy. However, PSA testing has a low specificity, leading to unnecessary biopsies in 50-75% of cases. Therefore, more specific screening opportunities are needed to reduce the number of biopsies performed on healthy men and patients with indolent tumors. Urine samples from 45 patients with elevated PSA were collected prior to prostate biopsy, a mass spectrometry (MS) screening was performed to identify novel biomarkers and the best candidates were validated by ELISA. The urine quantification of PEDF, HPX, CD99, CANX, FCER2, HRNR, and KRT13 showed superior performance compared to PSA. Additionally, the combination of two biomarkers and patient age resulted in an AUC of 0.8196 (PSA = 0.6020) and 0.7801 (PSA = 0.5690) in detecting healthy men and high-grade PCa, respectively. In this study, we identified and validated novel urine biomarkers for the screening of PCa, showing that an upfront urine test, based on quantitative biomarkers and patient age, is a feasible method to reduce the number of unnecessary prostate biopsies and detect both healthy men and clinically significant PCa.
Collapse
Affiliation(s)
- Nagjie Alijaj
- Department of Urology, University Hospital of Zürich and University of Zürich, 8006 Zürich, Switzerland; (N.A.); (B.P.)
| | - Blaz Pavlovic
- Department of Urology, University Hospital of Zürich and University of Zürich, 8006 Zürich, Switzerland; (N.A.); (B.P.)
| | - Paul Martel
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (P.M.); (A.R.); (V.C.); (L.D.); (M.V.)
| | - Arnas Rakauskas
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (P.M.); (A.R.); (V.C.); (L.D.); (M.V.)
| | - Valérie Cesson
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (P.M.); (A.R.); (V.C.); (L.D.); (M.V.)
| | - Karim Saba
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Thomas Hermanns
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Pascal Oechslin
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Markus Veit
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Maurizio Provenzano
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Jan H. Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, 8091 Zürich, Switzerland; (J.H.R.); (M.D.B.); (N.J.R.)
| | - Muriel D. Brada
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, 8091 Zürich, Switzerland; (J.H.R.); (M.D.B.); (N.J.R.)
| | - Niels J. Rupp
- Department of Pathology and Molecular Pathology, University Hospital of Zürich, 8091 Zürich, Switzerland; (J.H.R.); (M.D.B.); (N.J.R.)
- Faculty of Medicine, University of Zürich, 8032 Zürich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| | - Laurent Derré
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (P.M.); (A.R.); (V.C.); (L.D.); (M.V.)
| | - Massimo Valerio
- Department of Urology, Urology Research Unit and Urology Biobank, University Hospital of Lausanne, 1011 Lausanne, Switzerland; (P.M.); (A.R.); (V.C.); (L.D.); (M.V.)
| | - Irina Banzola
- Department of Urology, University Hospital of Zürich and University of Zürich, 8006 Zürich, Switzerland; (N.A.); (B.P.)
| | - Daniel Eberli
- Department of Urology, University Hospital of Zürich, 8091 Zürich, Switzerland; (K.S.); (T.H.); (P.O.); (M.V.); (M.P.); (C.P.); (D.E.)
| |
Collapse
|
13
|
Wigton EJ, Mikami Y, McMonigle RJ, Castellanos CA, Wade-Vallance AK, Zhou SK, Kageyama R, Litterman A, Roy S, Kitamura D, Dykhuizen EC, Allen CD, Hu H, O’Shea JJ, Ansel KM. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class switch recombination. J Exp Med 2021; 218:e20201422. [PMID: 34586363 PMCID: PMC8485858 DOI: 10.1084/jem.20201422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/12/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) regulate cell fate decisions by post-transcriptionally tuning networks of mRNA targets. We used miRNA-directed pathway discovery to reveal a regulatory circuit that influences Ig class switch recombination (CSR). We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-221/222 regulated B cell CSR to IgE and IgG1 in vitro, and miR-221/222-deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation of these putative direct targets uncovered functionally relevant downstream genes. Genetic depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key modulators of CSR to IgE and IgG1.
Collapse
Affiliation(s)
- Eric J. Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryan J. McMonigle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Carlos A. Castellanos
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Adam K. Wade-Vallance
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Simon K. Zhou
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Robin Kageyama
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Adam Litterman
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| | - Suparna Roy
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Dermatology, University of California, San Francisco, San Francisco, CA
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Christopher D.C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - John J. O’Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Rockville, MD
| | - K. Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Zhou X, Yu W, Lyu SC, Macaubas C, Bunning B, He Z, Mellins ED, Nadeau KC. A positive feedback loop reinforces the allergic immune response in human peanut allergy. J Exp Med 2021; 218:e20201793. [PMID: 33944900 PMCID: PMC8103542 DOI: 10.1084/jem.20201793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/18/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Food allergies are a leading cause of anaphylaxis, and cellular mechanisms involving antigen presentation likely play key roles in their pathogenesis. However, little is known about the response of specific antigen-presenting cell (APC) subsets to food allergens in the setting of food allergies. Here, we show that in peanut-allergic humans, peanut allergen drives the differentiation of CD209+ monocyte-derived dendritic cells (DCs) and CD23+ (FcєRII) myeloid dendritic cells through the action of allergen-specific CD4+ T cells. CD209+ DCs act reciprocally on the same peanut-specific CD4+ T cell population to reinforce Th2 cytokine expression in a positive feedback loop, which may explain the persistence of established food allergy. In support of this novel model, we show clinically that the initiation of oral immunotherapy (OIT) in peanut-allergic patients is associated with a decrease in CD209+ DCs, suggesting that breaking the cycle of positive feedback is associated with therapeutic effect.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| | - Wong Yu
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| | - Shu-Chen Lyu
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| | - Claudia Macaubas
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA
| | - Bryan Bunning
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| | - Ziyuan He
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| | - Elizabeth D. Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy & Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA
| |
Collapse
|
15
|
Ilkow VF, Davies AM, Dhaliwal B, Beavil AJ, Sutton BJ, McDonnell JM. Reviving lost binding sites: Exploring calcium-binding site transitions between human and murine CD23. FEBS Open Bio 2021; 11:1827-1840. [PMID: 34075727 PMCID: PMC8255853 DOI: 10.1002/2211-5463.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Immunoglobulin E (IgE) is a central regulatory and triggering molecule of allergic immune responses. IgE's interaction with CD23 modulates both IgE production and functional activities.CD23 is a noncanonical immunoglobulin receptor, unrelated to receptors of other antibody isotypes. Human CD23 is a calcium-dependent (C-type) lectin-like domain that has apparently lost its carbohydrate-binding capability. The calcium-binding site classically required for carbohydrate binding in C-type lectins is absent in human CD23 but is present in the murine molecule. To determine whether the absence of this calcium-binding site affects the structure and function of human CD23, CD23 mutant proteins with increasingly "murine-like" sequences were generated. Restoration of the calcium-binding site was confirmed by NMR spectroscopy, and structures of mutant human CD23 proteins were determined by X-ray crystallography, although no electron density for calcium was observed. This study offers insights into the evolutionary differences between murine and human CD23 and some of the functional differences between CD23 in different species.
Collapse
Affiliation(s)
- Veronica F. Ilkow
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Anna M. Davies
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Balvinder Dhaliwal
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Andrew J. Beavil
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - Brian J. Sutton
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| | - James M. McDonnell
- Randall Centre for Cell & Molecular BiophysicsKing’s College LondonUK
- Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUK
| |
Collapse
|
16
|
Engeroff P, Vogel M. The role of CD23 in the regulation of allergic responses. Allergy 2021; 76:1981-1989. [PMID: 33378583 PMCID: PMC8359454 DOI: 10.1111/all.14724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
IgE, the key molecule in atopy has been shown to bind two receptors, FcεRI, the high‐affinity receptor, and FcεRII (CD23), binding IgE with lower affinity. Whereas cross‐linking of IgE on FcεRI expressed by mast cells and basophils triggers the allergic reaction, binding of IgE to CD23 on B cells plays an important role in both IgE regulation and presentation. Furthermore, IgE‐immune complexes (IgE‐ICs) bound by B cells enhance antibody and T cell responses in mice and humans. However, the mechanisms that regulate the targeting of the two receptors and the respective function of the two pathways in inflammation or homeostasis are still a matter of debate. Here, we focus on CD23 and discuss several mechanisms related to IgE binding, as well as the impact of the IgE/antigen‐binding on different immune cells expressing CD23. One recent paper has shown that free IgE preferentially binds to FcεRI whereas IgE‐ICs are preferentially captured by CD23. Binding of IgE‐ICs to CD23 on B cells can, on one hand, regulate serum IgE and prevent effector cell activation and on the other hand facilitate antigen presentation by delivering the antigen to dendritic cells. These data argue for a multifunctional role of CD23 for modulating IgE serum levels and immune responses.
Collapse
Affiliation(s)
- Paul Engeroff
- INSERM UMR_S 959 Immunology‐Immunopathology‐Immunotherapy (i3) Sorbonne Université Paris France
| | - Monique Vogel
- Center for Clinical Research Region Västmanland/Uppsala University, Västmanland hospital Västerås Sweden
- Department of BioMedical Research University of Bern Bern Switzerland
| |
Collapse
|
17
|
de Oliveira Nóbrega CG, do Nascimento WRC, Santos PDA, de Lorena VMB, Medeiros D, Costa VMA, Barbosa CCGS, Solé D, Sarinho ESC, de Souza VMO. Schistosoma mansoni infection is associated with decreased risk of respiratory allergy symptoms and low production of CCL2. Trop Med Int Health 2021; 26:1098-1109. [PMID: 34107115 DOI: 10.1111/tmi.13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We measured the production of cytokines, chemokines and antibodies involved in allergic responses and sCD23 levels during Schistosoma mansoni infection. METHODS Individuals (n = 164) were selected using the ISAAC questionnaire and parasitological exams. The subjects were divided as follows: those infected individuals with allergy-related symptoms (A-I), those with allergy-related symptoms only (A-NI); those only infected (NA-I); and those non-infected individuals without allergy-related symptoms (NA-NI). We used supernatants from cell culture (mitogenic stimulation) to measure cytokine and chemokine levels using cytometric bead arrays. Serum levels of anti-Ascaris lumbricoides (Asc) and anti-Blomia tropicalis IgE were measured using ImmunoCAP, and sCD23 was measured using ELISA. RESULTS Schistosoma mansoni infection was associated with a lower risk of allergy-related symptoms. In A-I, there were higher levels of TNF-α, IL-10, IL-6, IFN-γ and CXCL8 than in NA-NI group, with TNF-α and IL-6 also at higher levels compared to A-NI group. Levels of IL-6, CXCL8, total and anti-Asc IgE, as well as the numbers of eosinophils, were higher in NA-I than in NA-NI, and the antibodies were also lower in A-NI than in NA-I group. In AI and NA-I, there was less production of CCL2 than in NA-NI. There were no differences in the levels of IL-2, IL-4, IL-17, CCL5, sCD23 and anti-Blomia IgE. CONCLUSIONS Patients with allergy-related symptoms and infected (simultaneously) had higher levels of IL-10; due to the infection, there was increased production of IL-6 and CXCL8 and less CCL2. These data may characterize deviation to Th1 or attenuation of the Th2 response in allergy sufferers in areas endemic for schistosomiasis.
Collapse
Affiliation(s)
| | | | | | | | - Décio Medeiros
- Centro de Pesquisa em Alergia e Imunologia Clínica, Hospital das Clínicas, Universidade Federal de Pernambuco, Recife, Brasil
| | - Vláudia Maria Assis Costa
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brasil.,Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brasil
| | | | - Dirceu Solé
- Divisão de Alergia, Imunologia Clínica e Reumatologia, Departamento de Pediatria da Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Valdênia Maria Oliveira de Souza
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Brasil.,Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brasil
| |
Collapse
|
18
|
Rahimi N. C-type Lectin CD209L/L-SIGN and CD209/DC-SIGN: Cell Adhesion Molecules Turned to Pathogen Recognition Receptors. BIOLOGY 2020; 10:1. [PMID: 33375175 PMCID: PMC7822156 DOI: 10.3390/biology10010001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.
Collapse
Affiliation(s)
- Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
19
|
Jégouzo SAF, Feinberg H, Morrison AG, Holder A, May A, Huang Z, Jiang L, Lasanajak Y, Smith DF, Werling D, Drickamer K, Weis WI, Taylor ME. CD23 is a glycan-binding receptor in some mammalian species. J Biol Chem 2019; 294:14845-14859. [PMID: 31488546 PMCID: PMC6791321 DOI: 10.1074/jbc.ra119.010572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Indexed: 01/25/2023] Open
Abstract
CD23, the low-affinity IgE receptor found on B lymphocytes and other cells, contains a C-terminal lectin-like domain that resembles C-type carbohydrate-recognition domains (CRDs) found in many glycan-binding receptors. In most mammalian species, the CD23 residues required to form a sugar-binding site are present, although binding of CD23 to IgE does not involve sugars. Solid-phase binding competition assays, glycoprotein blotting experiments, and glycan array analysis employing the lectin-like domains of cow and mouse CD23 demonstrate that they bind to mannose, GlcNAc, glucose, and fucose and to glycoproteins that bear these sugars in nonreducing terminal positions. Crystal structures of the cow CRD in the presence of α-methyl mannoside and GlcNAcβ1-2Man reveal that a range of oligosaccharide ligands can be accommodated in an open binding site in which most interactions are with a single terminal sugar residue. Although mouse CD23 shows a pattern of monosaccharide and glycoprotein binding similar to cow CD23, the binding is weaker. In contrast, no sugar binding was observed in similar experiments with human CD23. The absence of sugar-binding activity correlates with accumulation of mutations in the gene for CD23 in the primate lineage leading to humans, resulting in loss of key sugar-binding residues. These results are consistent with a role for CD23 in many species as a receptor for potentially pathogenic microorganisms as well as IgE. However, the ability of CD23 to bind several different ligands varies between species, suggesting that it has distinct functions in different organisms.
Collapse
Affiliation(s)
- Sabine A F Jégouzo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hadar Feinberg
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Andrew G Morrison
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angela Holder
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Alisha May
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Zhiyao Huang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Linghua Jiang
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA, United Kingdom
| | - Kurt Drickamer
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - William I Weis
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Moñino‐Romero S, Lexmond WS, Singer J, Bannert C, Amoah AS, Yazdanbakhsh M, Boakye DA, Jensen‐Jarolim E, Fiebiger E, Szépfalusi Z. Soluble FcɛRI: A biomarker for IgE-mediated diseases. Allergy 2019; 74:1381-1384. [PMID: 30725474 PMCID: PMC6766993 DOI: 10.1111/all.13734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sherezade Moñino‐Romero
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
| | - Willem S. Lexmond
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
| | - Josef Singer
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Department of Internal Medicine II University Hospital Krems Karl Landsteiner University of Health Sciences Krems an der Donau Austria
| | - Christina Bannert
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
| | - Abena S. Amoah
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology Leiden University Medical Center Leiden The Netherlands
| | - Daniel A. Boakye
- Department of Parasitology Noguchi Memorial Institute for Medical Research College of Health Sciences University of Ghana Legon‐Accra Ghana
| | - Erika Jensen‐Jarolim
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
| | - Edda Fiebiger
- Department of Pediatrics Division of Gastroenterology, Hepatology and Nutrition Boston Children's Hospital Boston Massachusetts
- Department of Medicine Harvard Medical School Boston Massachusetts
| | - Zsolt Szépfalusi
- Department of Pediatrics and Adolescent Medicine Medical University Vienna Vienna Austria
| |
Collapse
|
21
|
Membrane-bound IgE on B cells is increased during Clonorchis sinensis infection. Immunobiology 2019; 224:347-352. [PMID: 30987761 DOI: 10.1016/j.imbio.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
A high level of serum IgE is a hallmark of helminthic disease. Secretory IgE can bind FcεRI or FcεRII/CD23. The combination of IgE and FcεRI, a high-affinity interaction, has long received attention and is believed to facilitate helminth control, while the properties of CD23-bound IgE have long been unexplored. Here, we established a Clonorchis sinensis (C. sinensis) infection model with different mouse strains and investigated membrane-bound IgE on B cells during infection. We show that after infection, the increase in CD23 expression on B cells was obvious, even in relatively resistant C57BL/6 mice, as well as in susceptible BALB/c and FVB mice. Although the serum IgE amount was lower in C57BL/6 mice than in BALB/c and FVB mice, the level of IgE binding to peripheral B cells was also elevated. Additionally, the IgE on B cells was soon undetectable in vitro due to dissociable binding. The results of the present study demonstrate the dramatic increase in CD23-bound IgE on B cells after C. sinensis infection. The significance of CD23-bound IgE in Ag transport and presentation has gained consideration in allergy development for its potential ability to promote the Th2 response. Therefore, even though the association of IgE and CD23 is not as substantial as that of IgE and FcεRI, membrane-bound IgE on B cells may be worth further study regarding clonorchiasis and other parasitic infections.
Collapse
|
22
|
Shrivastava R, Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci 2019; 224:222-231. [PMID: 30928403 DOI: 10.1016/j.lfs.2019.03.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Macrophages are cells of innate immunity and are derived from circulating monocytes and embryonic yolk sac. They exhibit high plasticity and polarize functionally in response to stimulus triggering it into classically activated M1 macrophages and alternatively activated M2 macrophages. This review summarizes markers of M2 macrophages like transmembrane surface receptors and signaling cascades initiated on their activation; cytokine and chemokine repertoires along with their receptors; and genetic markers and their involvement in immunomodulation. The detailed discussion emphasizes the role of these markers in imparting functional benefits to this subset of macrophages which define their venture in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani Campus, Pilani, Rajasthan 333031, India.
| | - Nidhi Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow 226031, India
| |
Collapse
|
23
|
Clarke S, Nagan Y, Prinsloo E, Oosthuizen V. An acidic loop within the human soluble CD23 protein may direct the interaction between sCD23 and the α Xβ 2 integrin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:548-555. [PMID: 30902766 DOI: 10.1016/j.bbapap.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
Abstract
CD23 is involved in a myriad of immune reactions. It is not only a receptor for IgE, but also functions in the regulation of IgE synthesis, isotype switching in B cells, and induction of the inflammatory response. These effector functions of CD23 arise through its interaction with another leukocyte-specific cell surface receptor - the β2 integrin subfamily. It has been shown that CD23 is also capable of interacting with the β3 and β5 integrin β-subunit of integrins via a basic RKC motif in a metal cation-independent fashion. In this study the interaction was probed for whether or not the RKC motif governs the interaction between CD23 and the αXβ2 integrin as well. This was done by performing bioinformatic docking predictions between CD23 and αXβ2 integrin αI domain and SPR spectroscopy analysis of the interaction. This revealed that in the absence of cations, the RKC motif is involved in interaction with the integrin αI domain. However, in the presence of divalent metal cations the interaction showed the involvement of a novel acidic motif within the CD23 protein. This same pattern of interaction was seen in docking predictions between CD23 and the β3I-like domain. This study thus presents an alternative site as a possible contributor to the CD23-integrin interaction exhibiting cation-dependence.
Collapse
Affiliation(s)
- Stephen Clarke
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa.
| | - Yurisha Nagan
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| | - Earl Prinsloo
- Rhodes University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| | - Vaughan Oosthuizen
- Nelson Mandela University, Faculty of Science, Department of Biochemistry and Microbiology, South Africa
| |
Collapse
|
24
|
Sutton BJ, Davies AM, Bax HJ, Karagiannis SN. IgE Antibodies: From Structure to Function and Clinical Translation. Antibodies (Basel) 2019; 8:E19. [PMID: 31544825 PMCID: PMC6640697 DOI: 10.3390/antib8010019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in mediating allergic reactions, and their powerful effector functions activated through binding to Fc receptors FcεRI and FcεRII/CD23. Structural studies of IgE-Fc alone, and when bound to these receptors, surprisingly revealed not only an acutely bent Fc conformation, but also subtle allosteric communication between the two distant receptor-binding sites. The ability of IgE-Fc to undergo more extreme conformational changes emerged from structures of complexes with anti-IgE antibodies, including omalizumab, in clinical use for allergic disease; flexibility is clearly critical for IgE function, but may also be exploited by allosteric interference to inhibit IgE activity for therapeutic benefit. In contrast, the power of IgE may be harnessed to target cancer. Efforts to improve the effector functions of therapeutic antibodies for cancer have almost exclusively focussed on IgG1 and IgG4 subclasses, but IgE offers an extremely high affinity for FcεRI receptors on immune effector cells known to infiltrate solid tumours. Furthermore, while tumour-resident inhibitory Fc receptors can modulate the effector functions of IgG antibodies, no inhibitory IgE Fc receptors are known to exist. The development of tumour antigen-specific IgE antibodies may therefore provide an improved immune functional profile and enhanced anti-cancer efficacy. We describe proof-of-concept studies of IgE immunotherapies against solid tumours, including a range of in vitro and in vivo evaluations of efficacy and mechanisms of action, as well as ex vivo and in vivo safety studies. The first anti-cancer IgE antibody, MOv18, the clinical translation of which we discuss herein, has now reached clinical testing, offering great potential to direct this novel therapeutic modality against many other tumour-specific antigens. This review highlights how our understanding of IgE structure and function underpins these exciting clinical developments.
Collapse
Affiliation(s)
- Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Heather J Bax
- King's College London, St John's Institute of Dermatology, London SE1 9RT, UK.
| | | |
Collapse
|
25
|
Omalizumab lowers asthma exacerbations, oral corticosteroid intake and blood eosinophils: Results of a 5-YEAR single-centre observational study. Pulm Pharmacol Ther 2018; 54:25-30. [PMID: 30414440 DOI: 10.1016/j.pupt.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 01/18/2023]
Abstract
Omalizumab is a humanized monoclonal antibody which binds to human immunoglobulins E (IgE), thus preventing their interactions with both high affinity and low affinity IgE receptors. Therefore, omalizumab is currently recommended for add-on biological therapy of uncontrolled allergic asthma, mainly characterized by type 2 airway eosinophilic inflammation. Because omalizumab has been the first, and for a long time the only available monoclonal antibody for add-on treatment of type 2 asthma, some long-term studies have been published which provide a clear evidence of the therapeutic effectiveness of the anti-IgE pharmacological strategy. Within this context, the present single-centre observational study refers to 15 patients with severe allergic asthma, treated with omalizumab for at least 5 years at the Respiratory Unit of "Magna Græcia" University Hospital located in Catanzaro, Italy. In these asthmatic subjects we observed significant increases in asthma control test (ACT) score, with respect to baseline (14.60 ± 2.97), after 1 year (19.20 ± 2.98; p < 0.0001) and 5 years (21.67 ± 2.38; p < 0.0001) of add-on treatment with omalizumab. More importantly, omalizumab significantly lowered the number of annual asthma exacerbations (baseline: 3.66 ± 2.01) after 1 year (0.83 ± 1.14; p < 0.0001) and 5 years (0.63 ± 0.99; p < 0.0001), respectively. This excellent therapeutic outcome made it possible to drastically decrease the daily oral intake of prednisone (baseline: 22.50 ± 5.17 mg) after 1 year (1.83 ± 4.06 mg; p < 0.0001), as well as after 5 years (1.66 ± 3.61 mg; p < 0.0001). With regard to lung function, omalizumab significantly and persistently enhanced FEV1 (baseline: 1636 ± 628.4 mL) after 1 year (2000 ± 679.7 mL; p < 0.05) and 5 years (1929 ± 564.8 mL; p < 0.05), respectively. Such relevant clinical and functional improvements were associated with reductions of blood eosinophil counts (baseline: 646.0 ± 458.9 cells/μl), already detectable after 1 year (512.7 ± 327.8 cells/μl; not significant), which reached the threshold of statistical significance after 5 years (326.0 ± 171.8 cells/μl; p < 0.05). Therefore, these real-life data referring to our single-centre observational investigation further corroborate the long-term therapeutic ability of omalizumab to improve several clinical, functional and haematological signatures of severe type 2 asthma.
Collapse
|
26
|
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018; 333:65-79. [DOI: 10.1016/j.cellimm.2018.07.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
|
27
|
Chen JB, Ramadani F, Pang MOY, Beavil RL, Holdom MD, Mitropoulou AN, Beavil AJ, Gould HJ, Chang TW, Sutton BJ, McDonnell JM, Davies AM. Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody. Sci Rep 2018; 8:11548. [PMID: 30069035 PMCID: PMC6070508 DOI: 10.1038/s41598-018-29664-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 11/09/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies play a central role in the allergic response: interaction with FcεRI on mast cells and basophils leads to immediate hypersensitivity reactions upon allergen challenge, while interaction with CD23/FcεRII, expressed on a variety of cells, regulates IgE synthesis among other activities. The receptor-binding IgE-Fc region has recently been found to display remarkable flexibility, from acutely bent to extended conformations, with allosteric communication between the distant FcεRI and CD23 binding sites. We report the structure of an anti-IgE antibody Fab (8D6) bound to IgE-Fc through a mixed protein-carbohydrate epitope, revealing further flexibility and a novel extended conformation with potential relevance to that of membrane-bound IgE in the B cell receptor for antigen. Unlike the earlier, clinically approved anti-IgE antibody omalizumab, 8D6 inhibits binding to FcεRI but not CD23; the structure reveals how this discrimination is achieved through both orthosteric and allosteric mechanisms, supporting therapeutic strategies that retain the benefits of CD23 binding.
Collapse
Affiliation(s)
- Jiun-Bo Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
| | - Faruk Ramadani
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Marie O Y Pang
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma Protein Production Facility, London, United Kingdom
| | - Mary D Holdom
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Alkistis N Mitropoulou
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Tse Wen Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom.
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom.
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| | - Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, United Kingdom.
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
28
|
Gasser P, Eggel A. Targeting IgE in allergic disease. Curr Opin Immunol 2018; 54:86-92. [PMID: 29986302 DOI: 10.1016/j.coi.2018.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022]
Abstract
Immunoglobulin E (IgE) represents the least abundant antibody isotype in human serum. Nevertheless, it has the ability to induce potent allergic reactions. As a key component in the development and manifestation of hypersensitivity responses against usually non-hazardous foreign substances, IgE has become a major target of investigation and the subject of multiple therapeutic approaches for the treatment of allergies. Recent advances in the understanding of pathophysiologic mechanisms underlying IgE-associated allergic disorders have led to the generation of new drug candidates that are currently in development or under clinical evaluation. In this review, we highlight molecular and structural mechanisms underlying the different anti-IgE molecules and suggest a concept of multi-level targeting using a new class of disruptive IgE inhibitors to potentially optimize treatment efficacy.
Collapse
Affiliation(s)
- Pascal Gasser
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Alexander Eggel
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Balbino B, Conde E, Marichal T, Starkl P, Reber LL. Approaches to target IgE antibodies in allergic diseases. Pharmacol Ther 2018; 191:50-64. [PMID: 29909239 DOI: 10.1016/j.pharmthera.2018.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
IgE is the antibody isotype found at the lowest concentration in the circulation. However IgE can undeniably play an important role in mediating allergic reactions; best exemplified by the clinical benefits of anti-IgE monoclonal antibody (omalizumab) therapy for some allergic diseases. This review will describe our current understanding of the interactions between IgE and its main receptors FcεRI and CD23 (FcεRII). We will review the known and potential functions of IgE in health and disease: in particular, its detrimental roles in allergic diseases and chronic spontaneous urticaria, and its protective functions in host defense against parasites and venoms. Finally, we will present an overview of the drugs that are in clinical development or have therapeutic potential for IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Bianca Balbino
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Eva Conde
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France; Université Pierre et Marie Curie, Paris, France; Neovacs SA, Paris, France
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium; Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Philipp Starkl
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Austria; Department of Medicine I, Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Laurent L Reber
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France.
| |
Collapse
|
30
|
Pelaia C, Calabrese C, Terracciano R, de Blasio F, Vatrella A, Pelaia G. Omalizumab, the first available antibody for biological treatment of severe asthma: more than a decade of real-life effectiveness. Ther Adv Respir Dis 2018; 12:1753466618810192. [PMID: 30400762 PMCID: PMC6236630 DOI: 10.1177/1753466618810192] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
Omalizumab was the first, and for a long time the only available monoclonal antibody for the add-on treatment of severe allergic asthma. In particular, omalizumab selectively targets human immunoglobulin (Ig)E, forming small-size immune complexes that inhibit IgE binding to its high- and low-affinity receptors. Therefore, omalizumab effectively blunts the immune response in atopic asthmatic patients, thus significantly improving the control of asthma symptoms and successfully preventing disease exacerbations. These very positive effects of omalizumab make it possible to drastically decrease both referrals to the emergency room and hospitalizations for asthma exacerbations. Such important therapeutic actions of omalizumab have been documented by several randomized clinical trials, and especially by more than 10 years of real-life experience in daily clinical practice. Omalizumab can also interfere with airway remodelling by inhibiting the activation of IgE receptors located on structural cells such as bronchial epithelial cells and airway smooth muscle cells. Moreover, omalizumab is characterized by a very good safety and tolerability profile. Hence, omalizumab represents a valuable therapeutic option for the add-on biological treatment of severe allergic asthma.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences,
University ‘Magna Græcia’ of Catanzaro, Catanzaro, Italy
| | - Cecilia Calabrese
- Department of Cardio-Thoracic and Respiratory
Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Rosa Terracciano
- Department of Health Sciences, University ‘Magna
Græcia’ of Catanzaro, Catanzaro, Italy
| | - Francesco de Blasio
- Respiratory Medicine and Pulmonary
Rehabilitation Section, Clinic Center Private Hospital, Naples, Italy
- Department of Medicine and Health Sciences ‘V.
Tiberio’, University of Molise, Campobasso, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry,
University of Salerno, Salerno, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences,
University ‘Magna Græcia’ of Catanzaro, Catanzaro, Italy; Campus
Universitario ‘Salvatore Venuta’, Viale Europa – Località Germaneto,
Catanzaro, 88100, Italy
| |
Collapse
|
31
|
Laffleur B, Debeaupuis O, Dalloul Z, Cogné M. B Cell Intrinsic Mechanisms Constraining IgE Memory. Front Immunol 2017; 8:1277. [PMID: 29180995 PMCID: PMC5694035 DOI: 10.3389/fimmu.2017.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022] Open
Abstract
Memory B cells and long-lived plasma cells are key elements of adaptive humoral immunity. Regardless of the immunoglobulin class produced, these cells can ensure long-lasting protection but also long-lasting immunopathology, thus requiring tight regulation of their generation and survival. Among all antibody classes, this is especially true for IgE, which stands as the most potent, and can trigger dramatic inflammatory reactions even when present in minute amounts. IgE responses and memory crucially protect against parasites and toxic components of venoms, conferring selective advantages and explaining their conservation in all mammalian species despite a parallel broad spectrum of IgE-mediated immunopathology. Long-term memory of sensitization and anaphylactic responses to allergens constitute the dark side of IgE responses, which can trigger multiple acute or chronic pathologic manifestations, some punctuated with life-threatening events. This Janus face of the IgE response and memory, both necessary and potentially dangerous, thus obviously deserves the most elaborated self-control schemes.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | | | - Zeinab Dalloul
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France
| | - Michel Cogné
- UMR 7276 Centre National de la Recherche Scientifique: Contrôle de la Réponse Immune B et des Lymphoproliférations, Université de Limoges, Limoges, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
32
|
Engeroff P, Fellmann M, Yerly D, Bachmann MF, Vogel M. A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation. J Allergy Clin Immunol 2017; 142:557-568.e6. [PMID: 29074459 DOI: 10.1016/j.jaci.2017.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND IgE-immune complexes (IgE-ICs) have been shown to enhance antibody and T-cell responses in mice by targeting CD23 (FcεRII), the low-affinity receptor for IgE on B cells. In humans, the mechanism by which CD23-expressing cells take up IgE-ICs and process them is not well understood. OBJECTIVE To investigate this question, we compared the fate of IgE-ICs in human B cells and in CD23-expressing monocyte-derived dendritic cells (moDCs) that represent classical antigen-presenting cells and we aimed at studying IgE-dependent antigen presentation in both cell types. METHODS B cells and monocytes were isolated from peripheral blood, and monocytes were differentiated into moDCs. Both cell types were stimulated with IgE-ICs consisting of 4-hydroxy-3-iodo-5-nitrophenylacetyl (NIP)-specific IgE JW8 and NIP-BSA to assess binding, uptake, and degradation dynamics. To assess CD23-dependent T-cell proliferation, B cells and moDCs were pulsed with IgE-NIP-tetanus toxoid complexes and cocultured with autologous T cells. RESULTS IgE-IC binding was CD23-dependent in B cells, and moDCs and CD23 aggregation, as well as IgE-IC internalization, occurred in both cell types. Although IgE-ICs were degraded in moDCs, B cells did not degrade the complexes but recycled them in native form to the cell surface, enabling IgE-IC uptake by moDCs in cocultures. The resulting proliferation of specific T cells was dependent on cell-cell contact between B cells and moDCs, which was explained by increased upregulation of costimulatory molecules CD86 and MHC class II on moDCs induced by B cells. CONCLUSIONS Our findings argue for a novel model in which human B cells promote specific T-cell proliferation on IgE-IC encounter. On one hand, B cells act as carriers transferring antigen to more efficient antigen-presenting cells such as DCs. On the other hand, B cells can directly promote DC maturation and thereby enhance T-cell stimulation.
Collapse
Affiliation(s)
- Paul Engeroff
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Marc Fellmann
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Daniel Yerly
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Martin F Bachmann
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland; Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Rheumatology, Immunology, and Allergology, Inselspital, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
33
|
IgE binds asymmetrically to its B cell receptor CD23. Sci Rep 2017; 7:45533. [PMID: 28361904 PMCID: PMC5374546 DOI: 10.1038/srep45533] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
The antibody IgE plays a central role in allergic disease mechanisms. Its effector functions are controlled through interactions between the Fc region and two principal cell surface receptors FcεRI and CD23. The interaction with FcεRI is primarily responsible for allergic sensitization and the inflammatory response, while IgE binding to CD23 is involved in the regulation of IgE synthesis and allergen transcytosis. Here we present the crystal structure of a CD23/IgE-Fc complex and conduct isothermal titration calorimetric binding studies. Two lectin-like "head" domains of CD23 bind to IgE-Fc with affinities that differ by more than an order of magnitude, but the crystal structure reveals only one head bound to one of the two identical heavy-chains in the asymmetrically bent IgE-Fc. These results highlight the subtle interplay between receptor binding sites in IgE-Fc and their affinities, the understanding of which may be exploited for therapeutic intervention in allergic disease.
Collapse
|
34
|
Luu M, Bardou M, Bonniaud P, Goirand F. Pharmacokinetics, pharmacodynamics and clinical efficacy of omalizumab for the treatment of asthma. Expert Opin Drug Metab Toxicol 2016; 12:1503-1511. [PMID: 27748630 DOI: 10.1080/17425255.2016.1248403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Omalizumab is a subcutaneously administrated monoclonal anti-IgE antibody indicated in adults, adolescents and children 6 years of age and older with moderate to severe allergic asthma uncontrolled by conventional pharmacological treatments and sensitization to at least one perennial allergen. Area covered: This drug evaluation summarizes published data on pharmacokinetic and pharmacodynamic properties of omalizumab, on clinical efficacy and safety, including real-world evidence, and provides a medico-economic evaluation of the drug. Expert opinion: Omalizumab represents an efficient therapeutic option for the management of patients with uncontrolled moderate/severe allergic asthma. It provides a significant reduction in the asthma exacerbation rate with a steroid-sparing effect, an improvement in quality of life in adults and adolescents, despite a lack of evidence about its efficacy specifically in severe allergic asthma. Clinical trials have demonstrated its efficacy in the pediatric population but further real-life evidence is expected to better characterize long-term effects in this population. There is still some debate about the optimal treatment duration but, to date, it is recommended not to stop the treatment as cessation has resulted in symptom recurrence. Omalizumab is an expensive treatment, but a key therapeutic option when used for uncontrolled severe allergic asthma.
Collapse
Affiliation(s)
- Maxime Luu
- a Centre d'Investigations Cliniques 1432, module plurithématique (INSERM 1442) , CHU Dijon Bourgogne , Dijon , France.,b CRI U866, INSERM (Institut National de la Santé et de la Recherche Médicale) , Dijon , France.,c Université de Bourgogne , Dijon , France
| | - Marc Bardou
- a Centre d'Investigations Cliniques 1432, module plurithématique (INSERM 1442) , CHU Dijon Bourgogne , Dijon , France.,b CRI U866, INSERM (Institut National de la Santé et de la Recherche Médicale) , Dijon , France.,c Université de Bourgogne , Dijon , France.,d Service d'hépato-gastroentérologie , CHU Dijon Bourgogne , Dijon , France
| | - Philippe Bonniaud
- b CRI U866, INSERM (Institut National de la Santé et de la Recherche Médicale) , Dijon , France.,c Université de Bourgogne , Dijon , France.,e Service de Pneumologie , CHU Dijon Bourgogne , France
| | - Françoise Goirand
- b CRI U866, INSERM (Institut National de la Santé et de la Recherche Médicale) , Dijon , France.,c Université de Bourgogne , Dijon , France.,f Laboratoire de Pharmacologie , CHU de Dijon , Dijon , France
| |
Collapse
|
35
|
Chen J, Deng L, Dreymüller D, Jiang X, Long J, Duan Y, Wang Y, Luo M, Lin F, Mao L, Müller B, Koller G, Bartsch JW. A novel peptide ADAM8 inhibitor attenuates bronchial hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models. Sci Rep 2016; 6:30451. [PMID: 27458083 PMCID: PMC4960557 DOI: 10.1038/srep30451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
A disintegrin and metalloproteinase 8 (ADAM8) has been identified as a signature gene associated with moderate and severe asthma. Studies in mice have demonstrated that the severity of asthma can be reduced by either transgenic knock-out or by antibodies blocking ADAM8 function, highlighting ADAM8 as potential drug target for asthma therapy. Here, we examined the therapeutic effect of an ADAM8 inhibitor peptide (BK-1361) that specifically blocks cellular ADAM8 activity in ovalbumin-sensitized and challenged Balb/c mice. We found that BK-1361 (25 μg/g body weight) attenuated airway responsiveness to methacholine stimulation by up to 42%, concomitantly reduced tissue remodeling by 50%, and decreased inflammatory cells (e.g. eosinophils down by 54%)/inflammatory factors (e.g. sCD23 down by 50%)/TH2 cytokines (e.g. IL-5 down by 70%)/ADAM8-positive eosinophils (down by 60%) in the lung. We further verified that BK-1361 specifically targets ADAM8 in vivo as the peptide caused significantly reduced levels of soluble CD23 in wild-type but not in ADAM8-deficient mice. These findings suggest that BK-1361 blocks ADAM8-dependent asthma effects in vivo by inhibiting infiltration of eosinophils and TH2 lymphocytes, thus leading to reduction of TH2-mediated inflammation, tissue remodeling and bronchial hyperresponsiveness. Taken together, pharmacological ADAM8 inhibition appears as promising novel therapeutic strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Jun Chen
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.,Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China.,Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Daniela Dreymüller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Xuemei Jiang
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jiaoyue Long
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yiyuan Duan
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, China
| | - Feng Lin
- Key Lab of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Lizhen Mao
- Jiangsu Asialand Bio-med Technology Co. Ltd., Changzhou, Jiangsu, China
| | - Bernd Müller
- Laboratory of Respiratory Cell Biology, Division of Pneumology, Philipps-University Marburg, Marburg, Germany
| | - Garrit Koller
- KCLDI Biomaterials, Biomimetics and Biophotonics Group. King's College London, London SE1 9RT, United Kingdom.,Department of Neurosurgery, Philipps-University Marburg, Baldinger Str., 35033 Marburg, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Baldinger Str., 35033 Marburg, Germany
| |
Collapse
|
36
|
Selb R, Eckl-Dorna J, Twaroch TE, Lupinek C, Teufelberger A, Hofer G, Focke-Tejkl M, Gepp B, Linhart B, Breiteneder H, Ellinger A, Keller W, Roux KH, Valenta R, Niederberger V. Critical and direct involvement of the CD23 stalk region in IgE binding. J Allergy Clin Immunol 2016; 139:281-289.e5. [PMID: 27343203 PMCID: PMC5321597 DOI: 10.1016/j.jaci.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/08/2016] [Accepted: 04/27/2016] [Indexed: 10/24/2022]
Abstract
BACKGROUND The low-affinity receptor for IgE, FcεRII (CD23), contributes to allergic inflammation through allergen presentation to T cells, regulation of IgE responses, and enhancement of transepithelial allergen migration. OBJECTIVE We sought to investigate the interaction between CD23, chimeric monoclonal human IgE, and the corresponding birch pollen allergen Bet v 1 at a molecular level. METHODS We expressed 4 CD23 variants. One variant comprised the full extracellular portion of CD23, including the stalk and head domain; 1 variant was identical with the first, except for an amino acid exchange in the stalk region abolishing the N-linked glycosylation site; and 2 variants represented the head domain, 1 complete and 1 truncated. The 4 CD23 variants were purified as monomeric and structurally folded proteins, as demonstrated by gel filtration and circular dichroism. By using a human IgE mAb, the corresponding allergen Bet v 1, and a panel of antibodies specific for peptides spanning the CD23 surface, both binding and inhibition assays and negative stain electron microscopy were performed. RESULTS A hitherto unknown IgE-binding site was mapped on the stalk region of CD23, and the non-N-glycosylated monomeric version of CD23 was superior in IgE binding compared with glycosylated CD23. Furthermore, we demonstrated that a therapeutic anti-IgE antibody, omalizumab, which inhibits IgE binding to FcεRI, also inhibited IgE binding to CD23. CONCLUSION Our results provide a new model for the CD23-IgE interaction. We show that the stalk region of CD23 is crucially involved in IgE binding and that the interaction can be blocked by the therapeutic anti-IgE antibody omalizumab.
Collapse
Affiliation(s)
- Regina Selb
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Teresa E Twaroch
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Gerhard Hofer
- Institute of Molecular Biosciences, Karl Franzens University, Graz, Austria
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Gepp
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Heimo Breiteneder
- Division of Medical Biotechnology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Adolf Ellinger
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, Karl Franzens University, Graz, Austria
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, Fla
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Perez‐Witzke D, Miranda‐García MA, Suárez N, Becerra R, Duque K, Porras V, Fuenmayor J, Montano RF. CTLA4Fcε, a novel soluble fusion protein that binds B7 molecules and the IgE receptors, and reduces human in vitro soluble CD23 production and lymphocyte proliferation. Immunology 2016; 148:40-55. [PMID: 26801967 PMCID: PMC4819142 DOI: 10.1111/imm.12586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/18/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Immunoglobulin E-mediated allergy and certain autoimmune diseases are characterized by the presence of a T helper type 2 (Th2) immune response and allergen-specific or self-reactive IgE. Soluble CD23 (sCD23) is a B-cell factor that fosters IgE class-switching and synthesis, suggesting that sCD23 may be a therapeutic target for these pathologies. We produced a recombinant protein, CTLA4Fcε, by fusing the ectodomain of the immunoregulatory molecule cytotoxic T-lymphocyte antigen 4 (CTLA-4) with a fragment of the IgE H-chain constant region. In SDS-PAGE/inmunoblot analyses, CTLA4Fcε appeared as a 70,000 MW polypeptide that forms homodimers. Flow cytometry showed that CTLA4Fcε binds to IgE receptors FcεRI and FcεRII/CD23, as well as to CTLA-4 counter-receptors CD80 and CD86. Binding of CTLA4Fcε to FcεRII/CD23 appeared stronger than that of IgE. Since the cells used to study CD23 binding express CD80 and CD86, simultaneous binding of CTLA4Fcε to CD23 and CD80/CD86 seems to occur and would explain this difference. As measured by a human CD23-specific ELISA, CTLA4Fcε - but not IgE - induced a concentration-dependent reduction of sCD23 in culture supernatants of RPMI-8866 cells. Our results suggest that the simultaneous binding of CTLA4Fcɛ to CD23-CD80/CD86 may cause the formation of multi-molecular complexes that are either internalized or pose a steric hindrance to enzymatic proteolysis, so blocking sCD23 generation. CTLA4Fcε caused a concentration-dependent reduction of lymphocyte proliferation in human peripheral blood mononuclear cell samples stimulated in vitro with concanavalin A. The ability to bind IgE receptors on effector cells, to regulate the production of sCD23 and to inhibit lymphocyte proliferation suggests that CTLA4Fcɛ has immunomodulatory properties on human Th2 responses.
Collapse
Affiliation(s)
- Daniel Perez‐Witzke
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| | - María Auxiliadora Miranda‐García
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
- Present address: Department of Paediatric Rheumatology and ImmunologyUniversity Hospital MuensterMuensterGermany
| | - Nuris Suárez
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| | - Raquel Becerra
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
- Present address: Molecular Neurobiology LaboratoryBiomedicine Research Institute of Buenos AiresCONICET‐Partner Institute of Max Planck SocietyBuenos AiresArgentina
| | - Kharelys Duque
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| | - Verónica Porras
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| | - Jaheli Fuenmayor
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| | - Ramon Fernando Montano
- Laboratorio de Patología Celular y MolecularCentro de Medicina ExperimentalInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
| |
Collapse
|
38
|
Palaniyandi S, Liu X, Periasamy S, Ma A, Tang J, Jenkins M, Tuo W, Song W, Keegan AD, Conrad DH, Zhu X. Inhibition of CD23-mediated IgE transcytosis suppresses the initiation and development of allergic airway inflammation. Mucosal Immunol 2015; 8:1262-74. [PMID: 25783969 PMCID: PMC4575230 DOI: 10.1038/mi.2015.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/02/2015] [Indexed: 02/04/2023]
Abstract
The epithelial lining of the airway tract and allergen-specific IgE are considered essential controllers of inflammatory responses to allergens. The human low affinity IgE receptor, CD23 (FcɛRII), is capable of transporting IgE or IgE-allergen complexes across the polarized human airway epithelial cell (AEC) monolayer in vitro. However, it remains unknown whether the CD23-dependent IgE transfer pathway in AECs initiates and facilitates allergic inflammation in vivo, and whether inhibition of this pathway attenuates allergic inflammation. To this end, we show that in wild-type (WT) mice, epithelial CD23 transcytosed both IgE and ovalbumin (OVA)-IgE complexes across the airway epithelial barrier, whereas neither type of transcytosis was observed in CD23 knockout (KO) mice. In chimeric mice, OVA sensitization and aerosol challenge of WT/WT (bone-marrow transfer from the WT to WT) or CD23KO/WT (CD23KO to WT) chimeric mice, which express CD23 on radioresistant airway structural cells (mainly epithelial cells) resulted in airway eosinophilia, including collagen deposition and a significant increase in goblet cells, and increased airway hyperreactivity. In contrast, the absence of CD23 expression on airway structural or epithelial cells, but not on hematopoietic cells, in WT/CD23KO (the WT to CD23KO) chimeric mice significantly reduced OVA-driven allergic airway inflammation. In addition, inhalation of the CD23-blocking B3B4 antibody in sensitized WT mice before or during airway challenge suppressed the salient features of asthma, including bronchial hyperreactivity. Taken together, these results identify a previously unproven mechanism in which epithelial CD23 plays a central role in the development of allergic inflammation. Further, our study suggests that functional inhibition of CD23 in the airway is a potential therapeutic approach to inhibit the development of asthma.
Collapse
Affiliation(s)
- Senthilkumar Palaniyandi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA,Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Xiaoyang Liu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Aiying Ma
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA,Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Achsah D. Keegan
- Center for Vascular and Inflammatory Diseases and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA,Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA,To whom all correspondence should be addressed: Dr. Xiaoping Zhu, VA-MD Regional College of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA, Telephone: (301)314-6814; Fax: (301)314-6855,
| |
Collapse
|
39
|
Sutton BJ, Davies AM. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol Rev 2015; 268:222-35. [DOI: 10.1111/imr.12340] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J. Sutton
- Randall Division of Cell and Molecular Biophysics; King's College London; London UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | - Anna M. Davies
- Randall Division of Cell and Molecular Biophysics; King's College London; London UK
- Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| |
Collapse
|
40
|
Fellmann M, Buschor P, Röthlisberger S, Zellweger F, Vogel M. High affinity targeting of CD23 inhibits IgE synthesis in human B cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:339-49. [PMID: 26732048 PMCID: PMC4693728 DOI: 10.1002/iid3.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022]
Abstract
The low‐affinity IgE receptor FcϵRII (CD23) is part of the regulatory system controlling IgE synthesis in human B cells and exists in membrane and soluble forms. Binding of IgE to CD23 has been described to have stabilizing effects and to prevent cleavage of CD23. Previous experiments using anti‐CD23 antibodies reduced IgE synthesis but were difficult to interpret as the antibody Fc part might also mediate feedback mechanisms. The purpose of this study was to investigate the regulatory role of CD23, by using designed ankyrin repeat proteins (DARPins) that specifically recognize CD23. Anti‐CD23 DARPins were isolated by ribosome display and were produced as monovalent and bivalent constructs. Affinities to CD23 were measured by surface plasmon resonance. IgE synthesis and up‐regulation of CD23 in human peripheral B cells were induced by IL‐4 and anti‐CD40 antibody. We assessed CD23 expression and its stabilization by FACS and used an ELISA for detecting soluble CD23. IgE synthesis was measured by ELISA and real‐time PCR. Surface plasmon resonance revealed affinities of the DARPins to CD23 in the pico‐molar range. Anti‐CD23 DARPins strongly inhibited binding of IgE to CD23 and share thus a similar binding epitope as IgE. The DARPins stabilized membrane CD23 and reduced IgE synthesis in an isotype specific manner. Furthermore, the anti‐CD23 DARPins decreased IgE transcript through inhibition of mature Cϵ RNA synthesis suggesting a posttranscriptional control mechanism. This study demonstrates that targeting CD23 alone is sufficient to inhibit IgE synthesis and suggests that a negative signaling occurs directly through the CD23 molecule.
Collapse
Affiliation(s)
- Marc Fellmann
- Department of Immunology, University Clinic RIA University of Bern Inselspital Switzerland
| | - Patrick Buschor
- Department of Immunology, University Clinic RIA University of Bern Inselspital Switzerland
| | - Silvan Röthlisberger
- Department of Immunology, University Clinic RIA University of Bern Inselspital Switzerland
| | - Fabian Zellweger
- Department of Immunology, University Clinic RIA University of Bern Inselspital Switzerland
| | - Monique Vogel
- Department of Immunology, University Clinic RIA University of Bern Inselspital Switzerland
| |
Collapse
|
41
|
Immuno-evasive tactics by schistosomes identify an effective allergy preventative. Exp Parasitol 2015; 153:139-50. [PMID: 25819297 DOI: 10.1016/j.exppara.2015.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Many chronic inflammatory diseases can be improved by helminth infection, but the mechanisms are poorly understood. Allergy and helminthiasis are both associated with Th2-like immune responses; thus, defining how infection with parasites leads to reduced allergy has been particularly challenging. We sought to better understand this conundrum by evaluating host-parasite interactions involved in Th2 immunity in human schistosomiasis. Immune cells were cultured with schistosomes and the effect on CD23, an IgE receptor associated with resistance in schistosomiasis, was evaluated. Cells treated with schistosomes demonstrated reduced surface CD23 levels with a parallel accumulation of soluble (s) CD23 suggesting this IgE receptor is proteolytically cleaved by the parasite. Consistent with this hypothesis, a schistosome-generated (SG)-sCD23 fragment of 15 kDa was identified. SG-sCD23 inhibited IgE from binding to CD23 and FcεRI, but lacked the ability to bind CD21. These results suggested that schistosomes target IgE-mediated immunity in immuno-evasive tactics. Based on its characteristics, we predicted that SG-sCD23 would function as an efficacious allergy preventative. Treatment of human FcεRI-transgenic mice with recombinant (r) SG-sCD23 reduced the ability of human IgE to induce an acute allergic response in vivo. In addition, an optimized form of rSG-sCD23 with an introduced point mutation at Asp258 (D258E)to stabilize IgE binding had increased efficacy compared to native rSG-sCD23. Schistosome infection may thus inhibit allergic-like protective immune responses by increasing soluble IgE decoy receptors. Allergy treatments based on this naturally occurring phenomenon may be highly effective and have fewer side effects with long-term use.
Collapse
|
42
|
Abstract
The success of antibody therapy in cancer is consistent with the ability of these molecules to activate immune responses against tumors. Experience in clinical applications, antibody design, and advancement in technology have enabled antibodies to be engineered with enhanced efficacy against cancer cells. This allows re-evaluation of current antibody approaches dominated by antibodies of the IgG class with a new light. Antibodies of the IgE class play a central role in allergic reactions and have many properties that may be advantageous for cancer therapy. IgE-based active and passive immunotherapeutic approaches have been shown to be effective in both in vitro and in vivo models of cancer, suggesting the potential use of these approaches in humans. Further studies on the anticancer efficacy and safety profile of these IgE-based approaches are warranted in preparation for translation toward clinical application.
Collapse
Affiliation(s)
- Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA. Department of Microbiology, Immunology, and Molecular Genetics, University of California, 609 Charles E. Young Dr. East, 1602 Molecular Science Building, Los Angeles, CA 90095, USA. The Jonsson Comprehensive Cancer Center, University of California, 10833 Le Conte Ave, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095, USA. The Molecular Biology Institute, University of California, 611 Charles E. Young Dr., Los Angeles, CA 90095, USA
| |
Collapse
|
43
|
Berkowska MA, Heeringa JJ, Hajdarbegovic E, van der Burg M, Thio HB, van Hagen PM, Boon L, Orfao A, van Dongen JJ, van Zelm MC. Human IgE+ B cells are derived from T cell–dependent and T cell–independent pathways. J Allergy Clin Immunol 2014; 134:688-697.e6. [DOI: 10.1016/j.jaci.2014.03.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 12/11/2022]
|
44
|
Wu LC, Zarrin AA. The production and regulation of IgE by the immune system. Nat Rev Immunol 2014; 14:247-59. [PMID: 24625841 DOI: 10.1038/nri3632] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IgE not only provides protective immunity against helminth parasites but can also mediate the type I hypersensitivity reactions that contribute to the pathogenesis of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis. Despite the importance of IgE in immune biology and allergic pathogenesis, the cells and the pathways that produce and regulate IgE are poorly understood. In this Review, we summarize recent advances in our understanding of the production and the regulation of IgE in vivo, as revealed by studies in mice, and we discuss how these findings compare to what is known about human IgE biology.
Collapse
Affiliation(s)
- Lawren C Wu
- Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
45
|
Dhaliwal B, Pang MOY, Yuan D, Beavil AJ, Sutton BJ. A range of Cℇ3-Cℇ4 interdomain angles in IgE Fc accommodate binding to its receptor CD23. Acta Crystallogr F Struct Biol Commun 2014; 70:305-9. [PMID: 24598915 PMCID: PMC3944690 DOI: 10.1107/s2053230x14003355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/14/2014] [Indexed: 05/20/2024] Open
Abstract
The antibody IgE plays a central role in allergic disease, functioning principally through two cell-surface receptors: FcℇRI and CD23. FcℇRI on mast cells and basophils mediates the immediate hypersensitivity response, whilst the interaction of IgE with CD23 on B cells regulates IgE production. Crystal structures of the lectin-like `head' domain of CD23 alone and bound to a subfragment of IgE consisting of the dimer of Cℇ3 and Cℇ4 domains (Fcℇ3-4) have recently been determined, revealing flexibility in the IgE-binding site of CD23. Here, a new crystal form of the CD23-Fcℇ3-4 complex with different molecular-packing constraints is reported, which together with the earlier results demonstrates that conformational variability at the interface extends additionally to the IgE Fc and the quaternary structure of its domains.
Collapse
Affiliation(s)
- Balvinder Dhaliwal
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Marie O. Y. Pang
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Daopeng Yuan
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Andrew J. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Brian J. Sutton
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| |
Collapse
|
46
|
Chen J, Jiang X, Duan Y, Long J, Bartsch JW, Deng L. ADAM8 in asthma. Friend or foe to airway inflammation? Am J Respir Cell Mol Biol 2014; 49:875-84. [PMID: 23837412 DOI: 10.1165/rcmb.2013-0168tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation has been suggested as the pathological basis in asthma pathogenesis. Recruitment of leukocytes from the vasculature into airway sites is essential for induction of airway inflammation, a process thought to be mediated by a disintegrin and metalloprotease 8 (ADAM8). However, there is an apparent controversy about whether ADAM8 helps or hampers transmigration of leukocytes through endothelium in airway inflammation of asthma. This review outlines the current contradictory concepts concerning the role of ADAM8 in airway inflammation, particularly focusing on the recruitment of leukocytes during asthma, and attempts to bridge the existing experimental data on the basis of the functional analysis of different domains of ADAM8 and their endogenous processing in vivo. We suggest a possible hypothesis for the specific mechanism by which ADAM8 regulates the transmigration of leukocytes to explain the disparity existing in current studies, and we also raise some questions that require future investigations.
Collapse
Affiliation(s)
- Jun Chen
- 1 Key Lab of Biorheological Science and Technology, Ministry of Education, "National 985 Project" Institute of Biorheology and Gene Regulation, Bioengineering College, Chongqing University, Chongqing, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Ogata S, Shimizu C, Franco A, Touma R, Kanegaye JT, Choudhury BP, Naidu NN, Kanda Y, Hoang LT, Hibberd ML, Tremoulet AH, Varki A, Burns JC. Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G. PLoS One 2013; 8:e81448. [PMID: 24324693 PMCID: PMC3855660 DOI: 10.1371/journal.pone.0081448] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals.
Collapse
Affiliation(s)
- Shohei Ogata
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Chisato Shimizu
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Alessandra Franco
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - Ranim Touma
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
| | - John T. Kanegaye
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Biswa P. Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Natasha N. Naidu
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Yutaka Kanda
- Kyowa Hakko Kirin California, Inc., La Jolla, California, United States of America
| | - Long T. Hoang
- Division of Infectious Disease 1, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L. Hibberd
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Adriana H. Tremoulet
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
| | - Ajit Varki
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of San Diego, School of Medicine, La Jolla, California, United States of America
| | - Jane C. Burns
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, California, United States of America
- Rady Children’s Hospital San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Potaczek DP. Links between allergy and cardiovascular or hemostatic system. Int J Cardiol 2013; 170:278-85. [PMID: 24315352 DOI: 10.1016/j.ijcard.2013.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
In addition to a well-known immunologic background of atherosclerosis and influences of inflammation on arterial and venous thrombosis, there is growing evidence for the presence of links between allergy and vascular or thrombotic disorders. In this interpretative review, five pretty well-documented areas of such overlap are described and discussed, including: (1) links between atherosclerosis and immunoglobulin E or atopy, (2) mutual effects of blood lipids and allergy, (3) influence of atopy and related disorders on venous thromboembolism, (4) the role of platelets in allergic diseases, and (5) the functions of protein C system in atopic disorders.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
49
|
Padro CJ, Shawler TM, Gormley MG, Sanders VM. Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. THE JOURNAL OF IMMUNOLOGY 2013; 191:5383-97. [PMID: 24140643 DOI: 10.4049/jimmunol.1301019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Soluble CD23 plays a role in the positive regulation of an IgE response. Engagement of the β2 adrenergic receptor (β2AR) on a B cell is known to enhance the level of both soluble CD23 and IgE, although the mechanism by which this occurs is not completely understood. In this study, we report that, in comparison with a CD40 ligand/IL-4-primed murine B cell alone, β2AR engagement on a primed B cell increased gene expression of a disintegrin and metalloproteinase (ADAM)10, which is the primary sheddase of CD23, as well as protein expression of both CD23 and ADAM10, in a protein kinase A- and p38 MAPK-dependent manner, and promoted the localization of these proteins to exosomes as early as 2 d after priming, as determined by both Western blot and flow cytometry and confirmed by electron microscopy. In comparison with isolated exosomes released from primed B cells alone, the transfer of exosomes released from β2AR agonist-exposed primed B cells to cultures of recipient primed B cells resulted in an increase in the level of IgE produced per cell, without affecting the number of cells producing IgE, as determined by ELISPOT. These effects still occurred when a β2AR antagonist was added along with the transfer to block residual agonist, and they failed to occur when exosomes were isolated from β2AR-deficient B cells. These findings suggest that the mechanism responsible for mediating the β2AR-induced increase in IgE involves a shuttling of the β2AR-induced increase in CD23 and ADAM10 proteins to exosomes that subsequently mediate an increase in IgE.
Collapse
Affiliation(s)
- Caroline J Padro
- Biomedical Sciences Graduate Program, The Ohio State University Wexner College of Medicine, Columbus, OH 43210
| | | | | | | |
Collapse
|
50
|
Meulenbroek LAPM, de Jong RJ, den Hartog Jager CF, Monsuur HN, Wouters D, Nauta AJ, Knippels LMJ, van Neerven RJJ, Ruiter B, Leusen JHW, Hack CE, Bruijnzeel-Koomen CAFM, Knulst AC, Garssen J, van Hoffen E. IgG antibodies in food allergy influence allergen-antibody complex formation and binding to B cells: a role for complement receptors. THE JOURNAL OF IMMUNOLOGY 2013; 191:3526-33. [PMID: 23997216 DOI: 10.4049/jimmunol.1202398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allergen-IgE complexes are more efficiently internalized and presented by B cells than allergens alone. It has been suggested that IgG Abs induced by immunotherapy inhibit these processes. Food-allergic patients have high allergen-specific IgG levels. However, the role of these Abs in complex formation and binding to B cells is unknown. To investigate this, we incubated sera of peanut- or cow's milk-allergic patients with their major allergens to form complexes and added them to EBV-transformed or peripheral blood B cells (PBBCs). Samples of birch pollen-allergic patients were used as control. Complex binding to B cells in presence or absence of blocking Abs to CD23, CD32, complement receptor 1 (CR1, CD35), and/or CR2 (CD21) was determined by flow cytometry. Furthermore, intact and IgG-depleted sera were compared. These experiments showed that allergen-Ab complexes formed in birch pollen, as well as food allergy, contained IgE, IgG1, and IgG4 Abs and bound to B cells. Binding of these complexes to EBV-transformed B cells was completely mediated by CD23, whereas binding to PBBCs was dependent on both CD23 and CR2. This reflected differential receptor expression. Upon IgG depletion, allergen-Ab complexes bound to PBBCs exclusively via CD23. These data indicated that IgG Abs are involved in complex formation. The presence of IgG in allergen-IgE complexes results in binding to B cells via CR2 in addition to CD23. The binding to both CR2 and CD23 may affect Ag processing and presentation, and (may) thereby influence the allergic response.
Collapse
Affiliation(s)
- Laura A P M Meulenbroek
- Department of Dermatology and Allergology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|