1
|
Wang C, Liu Y, Zhang R, Gong H, Jiang X, Xia S. Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer. Int Immunopharmacol 2024; 147:113930. [PMID: 39740508 DOI: 10.1016/j.intimp.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies. GPCRs modulate immune cell recruitment, polarization, and function, thereby fostering an immunosuppressive milieu conducive to tumor progression and metastasis. The review examines how alterations in GPCR expression on immune cells influence the pathogenesis and advancement of TNBC. Further, it discusses emerging therapeutic strategies targeting GPCR signaling pathways to remodel the immunosuppressive TIME in TNBC. These insights into GPCR-mediated immune regulation not only deepen our comprehension of TNBC's pathophysiology but also offer promising avenues for developing novel immunotherapies aimed at enhancing clinical outcomes for TNBC patients.
Collapse
Affiliation(s)
- Chengyi Wang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Yanyan Liu
- Clinical Medical School, Jining Medical University, Jining, China
| | - Ru Zhang
- Clinical Medical School, Jining Medical University, Jining, China
| | - Hao Gong
- Clinical Medical School, Jining Medical University, Jining, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
4
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
6
|
Garcia C, Andersen CJ, Blesso CN. The Role of Lipids in the Regulation of Immune Responses. Nutrients 2023; 15:3899. [PMID: 37764683 PMCID: PMC10535783 DOI: 10.3390/nu15183899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Lipid metabolism plays a major role in the regulation of the immune system. Exogenous (dietary and microbial-derived) and endogenous (non-microbial-derived) lipids play a direct role in regulating immune cell activation, differentiation and expansion, and inflammatory phenotypes. Understanding the complexities of lipid-immune interactions may have important implications for human health, as certain lipids or immune pathways may be beneficial in circumstances of acute infection yet detrimental in chronic inflammatory diseases. Further, there are key differences in the lipid effects between specific immune cell types and location (e.g., gut mucosal vs. systemic immune cells), suggesting that the immunomodulatory properties of lipids may be tissue-compartment-specific, although the direct effect of dietary lipids on the mucosal immune system warrants further investigation. Importantly, there is recent evidence to suggest that lipid-immune interactions are dependent on sex, metabolic status, and the gut microbiome in preclinical models. While the lipid-immune relationship has not been adequately established in/translated to humans, research is warranted to evaluate the differences in lipid-immune interactions across individuals and whether the optimization of lipid-immune interactions requires precision nutrition approaches to mitigate or manage disease. In this review, we discuss the mechanisms by which lipids regulate immune responses and the influence of dietary lipids on these processes, highlighting compelling areas for future research.
Collapse
Affiliation(s)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (C.G.); (C.J.A.)
| |
Collapse
|
7
|
Yu T, Zou L, Wang Y, Luo C, Yu L. Primary Diffuse Large B-Cell Lymphoma of the Penis: A Case and Literature Review. Onco Targets Ther 2023; 16:631-638. [PMID: 37520144 PMCID: PMC10386859 DOI: 10.2147/ott.s408195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/12/2023] [Indexed: 08/01/2023] Open
Abstract
Primary diffuse large B-cell lymphoma (DLBCL) of the penis is an exceptionally rare malignant disorder, and less than 20 cases have been previously reported. The diagnosis can be difficult, and the standard treatment has not been established yet. We reported an 86-year-old male patient with DLBCL of the penis with an annular penile ulcer, which was not sensitive to the classic R-C(H)OP regimen for three circles; then underwent surgical resection and achieved complete remission for 73 months until now. Including our patient, we collected the clinical characteristics of 20 patients with primary DLBCL of the penis. The median age was 69 years, and most patients manifested mass, diffuse swelling, non-healing ulcer in the penis, and difficulty with urination. Chemo-immunology and radiography were used as first-line therapy, and surgery still plays an essential role in refractory or recurrence. Due to its anatomical independence and physiological particularity, there is still no standard for diagnosing and treating primary DLBCL of the penis. Systemic chemotherapy and radiography were considered first-line therapy to induce remission and preserve the structure and function of the penile; however, surgery still plays a vital role in the refractory or recurrence of single extranodal lymphoma.
Collapse
Affiliation(s)
- Tiantian Yu
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Lingyu Zou
- Department of Pathology, The Second Affiliate Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ya Wang
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Cancan Luo
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Li Yu
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Fukuda Y, Kim SH, Bustos MA, Cho SN, Roszik J, Burks JK, Kim H, Hoon DS, Grimm EA, Ekmekcioglu S. Inhibition of Microsomal Prostaglandin E2 Synthase Reduces Collagen Deposition in Melanoma Tumors and May Improve Immunotherapy Efficacy by Reducing T-cell Exhaustion. CANCER RESEARCH COMMUNICATIONS 2023; 3:1397-1408. [PMID: 37529399 PMCID: PMC10389052 DOI: 10.1158/2767-9764.crc-23-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/01/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023]
Abstract
The arachidonic acid pathway participates in immunosuppression in various types of cancer. Our previous observation detailed that microsomal prostaglandin E2 synthase 1 (mPGES-1), an enzyme downstream of cyclooxygenase 2 (COX-2), limited antitumor immunity in melanoma; in addition, genetic depletion of mPGES-1 specifically enhanced immune checkpoint blockade therapy. The current study set out to distinguish the roles of mPGES-1 from those of COX-2 in tumor immunity and determine the potential of mPGES-1 inhibitors for reinforcing immunotherapy in melanoma. Genetic deletion of mPGES-1 showed different profiles of prostaglandin metabolites from that of COX-2 deletion. In our syngeneic mouse model, mPGES-1-deficient cells exhibited similar tumorigenicity to that of COX-2-deficient cells, despite a lower ability to suppress PGE2 synthesis by mPGES-1 depletion, indicating the presence of factors other than PGE2 that are likely to regulate tumor immunity. RNA-sequencing analysis revealed that mPGES-1 depletion reduced the expressions of collagen-related genes, which have been found to be associated with immunosuppressive signatures. In our mouse model, collagen was reduced in mPGES-1-deficient tumors, and phenotypic analysis of tumor-infiltrating lymphocytes indicated that mPGES-1-deficient tumors had fewer TIM3+ exhausted CD8+ T cells compared with COX-2-deficient tumors. CAY10678, an mPGES-1 inhibitor, was equivalent to celecoxib, a selective COX-2 inhibitor, in reinforcing anti-PD-1 treatment. Our study indicates that mPGES-1 inhibitors represent a promising adjuvant for immunotherapies in melanoma by reducing collagen deposition and T-cell exhaustion. Significance Collagen is a predominant component of the extracellular matrix that may influence the tumor immune microenvironment for cancer progression. We present here that mPGES-1 has specific roles in regulating tumor immunity, associated with several collagen-related genes and propose that pharmacologic inhibition of mPGES-1 may hold therapeutic promise for improving immune checkpoint-based therapies.
Collapse
Affiliation(s)
- Yasunari Fukuda
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sun-Hee Kim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matias A. Bustos
- Department of Translational Molecular Medicine and Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California
| | - Sung-Nam Cho
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dave S.B. Hoon
- Department of Translational Molecular Medicine and Genome Sequencing, Saint John's Cancer Institute, Providence Saint John's Health Center, Santa Monica, California
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
9
|
Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Lett 2023; 556:216076. [PMID: 36724837 DOI: 10.1016/j.canlet.2023.216076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Immunometabolism, a branch of biology describing the link between immunity and metabolism, is an emerging topic in cancer immunology. It is currently well accepted that B cells and tertiary lymph structures formed by them are associated with favorable outcomes when patients undergo cancer immunotherapy. Understanding the determinants of B-cell fate and function in cancer patients is necessary for improving cancer immunotherapy. Accumulating evidence points to the tumor microenvironment being a critical metabolic hurdle to an efficient antitumor B-cell response. At the same time, several B-cell-derived metabolites have recently been reported to inhibit anticancer immunity. In this literature review, key B-cell immunometabolism studies and the metabolic life of B cells were summarized. Then, we discussed the intrinsic metabolic pathways of B cells themselves and how the tumor microenvironment and B cells in tumors metabolically influence each other. Finally, we pointed out key questions to provide some inspiration for further study of the role of B-cell immunometabolism in the antitumor immune response.
Collapse
Affiliation(s)
- Su Jiang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
The role of PGE2 and EP receptors on lung's immune and structural cells; possibilities for future asthma therapy. Pharmacol Ther 2023; 241:108313. [PMID: 36427569 DOI: 10.1016/j.pharmthera.2022.108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Asthma is the most common airway chronic disease with treatments aimed mainly to control the symptoms. Adrenergic receptor agonists, corticosteroids and anti-leukotrienes have been used for decades, and the development of more targeted asthma treatments, known as biological therapies, were only recently established. However, due to the complexity of asthma and the limited efficacy as well as the side effects of available treatments, there is an urgent need for a new generation of asthma therapies. The anti-inflammatory and bronchodilatory effects of prostaglandin E2 in asthma are promising, yet complicated by undesirable side effects, such as cough and airway irritation. In this review, we summarize the most important literature on the role of all four E prostanoid (EP) receptors on the lung's immune and structural cells to further dissect the relevance of EP2/EP4 receptors as potential targets for future asthma therapy.
Collapse
|
11
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
12
|
Henderson J, Havranek O, Ma MCJ, Herman V, Kupcova K, Chrbolkova T, Pacheco-Blanco M, Wang Z, Comer JM, Zal T, Davis RE. Detecting Förster resonance energy transfer in living cells by conventional and spectral flow cytometry. Cytometry A 2022; 101:818-834. [PMID: 34128311 DOI: 10.1002/cyto.a.24472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, dose-response, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.
Collapse
Affiliation(s)
- Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Ondrej Havranek
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Vaclav Herman
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Hematology, Charles University and General University Hospital, Prague, Czech Republic
| | - Kristyna Kupcova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Tereza Chrbolkova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | | | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin M Comer
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas-MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Pandian SRK, Vijayakumar KK, Kunjiappan S, Babkiewicz E, Maszczyk P. Emerging role of exosomes in hematological malignancies. Clin Exp Med 2022:10.1007/s10238-022-00850-z. [PMID: 35798882 DOI: 10.1007/s10238-022-00850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Hematological malignancies are a heterogeneous group of neoplasms in the blood characterized by dysregulated hematopoiesis and classified as leukemia, lymphoma, and myeloma. The occurrence and progression of hematological malignancies depend on transformed hematopoietic stem cells, which refract to chemotherapy and often cause relapse. In recent years, monoclonal antibody therapies are preferred for hematopoietic cancers, owing to their inherent mechanisms of action and improved outcomes. However, efficient drug delivery methods and the establishment of novel biomarkers are currently being investigated and warranted to improve the outcome of patients with hematological malignancies. For instance, non-viral-mediated, natural carriers have been suggested for latent intracellular drug delivery. In this purview, repurposing small vesicles (e.g., exosomes) is considered a latent approach for myeloma therapy. Exosomes (nano-vesicles) have many advantages in that they are secreted by various animals and plants and become sought after for therapeutic and diagnostic purposes. The size of the cellular membrane of exosomes (30-150 nm) facilitates ligand binding and targeted delivery of the loaded molecules. Furthermore, exosomes can be modified to express specific target moiety on their cell membrane and can also be featured with desired biological activity, thereby potentially employed for various convoluted diseases, including hematological malignancies. To advance the current knowledge, this review is focused on the source, composition, function and surface engineering of exosomes pertaining to hematological malignancies.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India.
| | - Kevin Kumar Vijayakumar
- School of Biotechnology, Department of Molecular Microbiology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| |
Collapse
|
14
|
Nogueira OC, Gandini M, Cabral N, de Figueiredo V, Rodrigues-da-Silva RN, Lima-Junior JDC, Pinheiro RO, Pereira GMB, Pessolani MCV, de Macedo CS. Changes in B Cell Pool of Patients With Multibacillary Leprosy: Diminished Memory B Cell and Enhanced Mature B in Peripheral Blood. Front Immunol 2021; 12:727580. [PMID: 34621273 PMCID: PMC8490736 DOI: 10.3389/fimmu.2021.727580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient's clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient's ability to respond to M. leprae.
Collapse
Affiliation(s)
- Otto Castro Nogueira
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natasha Cabral
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vilma de Figueiredo
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Cristiana Santos de Macedo
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Fu Z, Dean JW, Xiong L, Dougherty MW, Oliff KN, Chen ZME, Jobin C, Garrett TJ, Zhou L. Mitochondrial transcription factor A in RORγt + lymphocytes regulate small intestine homeostasis and metabolism. Nat Commun 2021; 12:4462. [PMID: 34294718 PMCID: PMC8298438 DOI: 10.1038/s41467-021-24755-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Zong-Ming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christian Jobin
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Musser ML, Viall AK, Phillips RL, Fasina O, Johannes CM. Prostaglandin EP4 receptor mRNA expression in canine lymphoma. Vet Comp Oncol 2021; 20:127-133. [PMID: 34250711 DOI: 10.1111/vco.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Canine lymphoma (LSA) is a diverse, aggressive malignancy initiated by a variety of factors. Understanding those factors could help identify potential treatment options. Chronic inflammation drives lymphoma in human medicine and is suspected to play a role in veterinary medicine. The exact mechanisms, however, have not been elucidated. Upregulation of the cyclooxygenase enzymes, and subsequently prostaglandins, potentially play a stimulatory role. Prostaglandins work through one of four EP receptors (EP1-EP4) and the effects mediated through EP4R specifically are thought to be the primary drivers of cancer development. In human T-cell LSA, overexpression of EP4R has been found and appears to protect LSA cells from apoptosis. The role of EP4R in human B-cell LSA is more nuanced. This study aims to evaluate the mRNA expression of the EP4R gene (ptger4) in canine B-cell and T-cell LSA. Archived canine lymph nodes with histologically confirmed B-cell and T-cell LSA, and reactive lymph nodes, were evaluated for EP4R mRNA expression using a novel RNA in situ hybridization technique (RNAscope). Quantification of RNAscope signals was completed with an advanced digital pathology image analysis system (HALO). Results were reported as copy number, H-score, and percent tumour cell expression of EP4R mRNA. All reactive, B-cell LSA, and T-cell LSA lymph nodes expressed EP4R mRNA. The mRNA copy number, H-score, and percent tumour cell expression of EP4R were higher in B-cell (p < .003) and T-cell (p < .001) LSA samples compared to reactive lymph node samples. There were no differences between B-cell LSA and T-cell LSA.
Collapse
Affiliation(s)
- Margaret L Musser
- Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Austin K Viall
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Rachel L Phillips
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Olufemi Fasina
- Department of Veterinary Pathology, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| | - Chad M Johannes
- Department of Veterinary Clinical Sciences, Iowa State University, College of Veterinary Medicine, Ames, Iowa, USA
| |
Collapse
|
17
|
Lone AM, Taskén K. Phosphoproteomics-Based Characterization of Prostaglandin E 2 Signaling in T Cells. Mol Pharmacol 2021; 99:370-382. [PMID: 33674363 DOI: 10.1124/molpharm.120.000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key lipid mediator in health and disease and serves as a crucial link between the immune response and cancer. With the advent of cancer therapies targeting PGE2 signaling pathways at different levels, there has been increased interest in mapping and understanding the complex and interconnected signaling pathways arising from the four distinct PGE2 receptors. Here, we review phosphoproteomics studies that have investigated different aspects of PGE2 signaling in T cells. These studies have elucidated PGE2's regulatory effect on T cell receptor signaling and T cell function, the key role of protein kinase A in many PGE2 signaling pathways, the temporal regulation of PGE2 signaling, differences in PGE2 signaling between different T cell subtypes, and finally, the crosstalk between PGE2 signaling pathways elicited by the four distinct PGE2 receptors present in T cells. SIGNIFICANCE STATEMENT: Through the reviewed studies, we now have a much better understanding of PGE2's signaling mechanisms and functional roles in T cells, as well as a solid platform for targeted and functional studies of specific PGE2-triggered pathways in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital (A.M.L., K.T.) and Institute for Clinical Medicine, University of Oslo, Oslo, Norway (K.T.)
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital (A.M.L., K.T.) and Institute for Clinical Medicine, University of Oslo, Oslo, Norway (K.T.)
| |
Collapse
|
18
|
Nabergoj S, Markovič T, Avsec D, Gobec M, Podgornik H, Jakopin Ž, Mlinarič-Raščan I. EP4 receptor agonist L-902688 augments cytotoxic activities of ibrutinib, idelalisib, and venetoclax against chronic lymphocytic leukemia cells. Biochem Pharmacol 2020; 183:114352. [PMID: 33278351 DOI: 10.1016/j.bcp.2020.114352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Treatment of patients with relapsed or refractory chronic lymphocytic leukemia (CLL) has significantly improved more recently with the approval of several new agents, including ibrutinib, idelalisib, and venetoclax. Despite the outstanding efficacies observed with these agents, these treatments are sometimes discontinued due to toxicity, unresponsiveness, transformation of the disease and/or resistance. Constitutive NF-κB activation that protects CLL cells from apoptotic stimuli represents one of molecular mechanisms that underlie the emergence of drug resistance. As prostaglandin E (EP)4 receptor agonists have been shown to successfully inhibit the NF-κB pathway in B-cell lymphoma cells, we investigated the potential of the highly specific EP4 receptor agonist L-902688 for the potential treatment of patients with CLL. We show here that low micromolar concentrations of L-902688 can indeed induce selective cytotoxicity towards several B-cell malignancies, including CLL. Moreover, L-902688-mediated activation of the EP4 receptor in patient derived CLL cells resulted in inhibition of the NF-κB pathway, cell proliferation, and induction of apoptosis. Most importantly, we show for the first time that in combination with ibrutinib, idelalisib, or venetoclax, L-902688 induces synergistic cytotoxic activity against patient derived CLL cells. To conclude, the modulation of NF-κB activity by EP4 receptor agonists represents an innovative approach to improve the treatment of patients with CLL. In particular, EP4 receptor agonists appear to represent promising adjuncts to the already existing therapies for patients with CLL due to these promising synergistic activities.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adult
- Antineoplastic Agents/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Apoptosis/drug effects
- Apoptosis/physiology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Jurkat Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Piperidines/administration & dosage
- Purines/administration & dosage
- Pyrrolidinones/administration & dosage
- Quinazolinones/administration & dosage
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Sulfonamides/administration & dosage
- Tetrazoles/administration & dosage
- U937 Cells
Collapse
Affiliation(s)
- Sanja Nabergoj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tijana Markovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Damjan Avsec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; University Medical Centre Ljubljana, Department of Haematology, Ljubljana, Slovenia
| | - Žiga Jakopin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Mlinarič-Raščan
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Sareen N, Abu-El-Rub E, Ammar HI, Yan W, Sequiera GL, ShamsEldeen AM, Moudgil M, Dhingra R, Shokry HS, Rashed LA, Kirshenbaum LA, Dhingra S. Hypoxia-induced downregulation of cyclooxygenase 2 leads to the loss of immunoprivilege of allogeneic mesenchymal stem cells. FASEB J 2020; 34:15236-15251. [PMID: 32959405 DOI: 10.1096/fj.202001478r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Allogeneic mesenchymal stem cells (MSCs) from young and healthy donors are reported to hold the potential to treat several immunological and degenerative disorders. However, recent data from animal studies and clinical trials demonstrate that immunogenicity and poor survival of transplanted MSCs impaired the efficacy of cells for regenerative applications. It is reported that initially immunoprivileged under in vitro conditions, MSCs are targeted by the host immune system after transplantation in the ischemic tissues in vivo. We performed in vitro (in MSCs) and in vivo (in the rat model of myocardial infarction [MI]) studies to elucidate the mechanisms responsible for the change in the immunophenotype of MSCs from immunoprivileged to immunogenic under ischemic conditions. We have recently reported that a soluble factor prostaglandin E2 (PGE2) preserves the immunoprivilege of allogeneic MSCs. In the current study, we found that PGE2 levels, which were elevated during normoxia, decreased in MSCs following exposure to hypoxia. Further, we found that proteasome-mediated degradation of cyclooxygenase-2 (COX2, rate-limiting enzyme in PGE2 biosynthesis) in hypoxic MSCs is responsible for PGE2 decrease and loss of immunoprivilege of MSCs. While investigating the mechanisms of COX2 degradation in hypoxic MSCs, we found that in normoxic MSCs, COP9 signalosome subunit 5 (CSN5) binds to COX2 and prevents its degradation by the proteasome. However, exposure to hypoxia leads to a decrease in CSN5 levels and its binding to COX2, rendering COX2 protein susceptible to proteasome-mediated degradation. This subsequently causes PGE2 downregulation and loss of immunoprivilege of MSCs. Maintaining COX2 levels in MSCs preserves immunoprivilege in vitro and improves the survival of transplanted MSCs in a rat model of MI. These data provide novel mechanistic evidence that PGE2 is downregulated in hypoxic MSCs which is responsible for the post-transplantation rejection of allogeneic MSCs. Therefore, our data suggest that the new strategies that target CSN5-COX2 signaling may improve survival and utility of transplanted allogeneic MSCs in the ischemic heart.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Hania I Ammar
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Weiang Yan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Glen Lester Sequiera
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Asmaa M ShamsEldeen
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Meenal Moudgil
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Rimpy Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Heba S Shokry
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Physiology and Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Lin W, Lin A, Li Z, Zhou C, Chen C, Chen B, Lyu Q, Zhang J, Luo P. Potential predictive value of SCN4A mutation status for immune checkpoint inhibitors in melanoma. Biomed Pharmacother 2020; 131:110633. [PMID: 32892029 DOI: 10.1016/j.biopha.2020.110633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma refers to a pigmented nevus with malignant changes. The preferred treatment for primary melanoma is surgical excision and postoperative radiotherapy, but the prognosis is poor. Immune checkpoint inhibitors (ICIs) have been remarkably successful in different types of cancers, but not all cancer patients can benefit from it. Therefore, it is essential to find predictable biomarkers and improve the accuracy of treatment. In this study, we used survival analysis, gene panorama analysis, immune cell enrichment analysis, TMB analysis, and GSEA to demonstrate that SCN4A gene mutations may be used as one of the indicators to predict the prognosis of melanoma patients undergoing ICI treatment. The research further indicates that SCN4A gene mutations improve the prognosis of ICI treatment. It is hoped that the effect of SCN4A on immunogenicity and tumor immunity can be demonstrated to further suggest the effect of this gene on the efficacy of ICIs.
Collapse
Affiliation(s)
- Weiyin Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhefu Li
- Central Sterile Supply Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chufeng Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Boliang Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Guangdong Fusion Application Engineering Center of Medical Big Data, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Jamshidi M, Mohammadi Pour S, Mahmoudian-Sani MR. Single Nucleotide Variants Associated with Colorectal Cancer Among Iranian Patients: A Narrative Review. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:167-180. [PMID: 32581566 PMCID: PMC7280057 DOI: 10.2147/pgpm.s248349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Colorectal cancer has been considered as one of the complicated multi-stage processes after adenoma-carcinoma sequence. Therefore, studies of the molecular dysregulation basis could present information on the recognition of the potent biomarkers and treatment targets for this disease. Even though outcomes of the patients with colorectal cancer have been improved largely with current annual screening plans, it is necessary to have reliable prognostic biomarkers because of the disease heterogeneity. There is a significant relationship between SNP in IL1RN* 2 (IL1ra), −509 C/T (TGFB1), rs11556218 T>G and rs4778889 T/C (IL16), miRNA-binding site polymorphisms in IL16, rs4464148 (SMAD7), rs6983267 (EGF), GSTT1, TACG haplotype (CTLA4), 1793G> A (MTHFR), Leu/Leu genotype of (EXO1), −137 G/C (IL18), C/T genotype (XRCC3), I3434T (XRCC7), MGMT, C3435T (MDR1), ff genotype of FokI, 677CT+TT (MTHFR), G2677T/A (MDR1) and CRC. Increased risk has been observed in VDR ApaI genotype “aa”. Finally, the protective effect has been explored in the TACA haplotype (CTLA4). According to the findings, the genetic polymorphisms in the immunity-associated genes are related to the CRC amongst the Iranian patients. Therefore, more large-scale functional investigations are necessary for confirming the results.
Collapse
Affiliation(s)
- Mohammad Jamshidi
- Department of Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Mohammadi Pour
- Department of Obstetrics and Gynecology, School of Medicine Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Extracellular Vesicles Mediate B Cell Immune Response and Are a Potential Target for Cancer Therapy. Cells 2020; 9:cells9061518. [PMID: 32580358 PMCID: PMC7349483 DOI: 10.3390/cells9061518] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly understood to participate directly in many essential aspects of host antitumor immune response. Tumor- and immune-cell-derived EVs function in local and systemic contexts with roles in immune processes including cancer antigen conveyance, immune cell priming and activation, as well as immune escape. Current practice of cancer immunotherapy has de facto focused on eliciting T-cell-mediated cytotoxic responses. Humoral immunity is also known to exert antitumor effects, and B cells have been demonstrated to have functions that extend beyond antibody production to include antigen presentation and activation and modulation of T cells and innate immune effectors. Evidence of B cell response against tumor-associated antigens (TAAs) is observed in early stages of tumorigenesis and in most solid tumor types. It is known that EVs convey diverse TAAs, express antigenic-peptide-loaded MHCs, and complex with circulating plasma antitumoral autoantibodies. In this review, we will consider the relationships between EVs, B cells, and other antigen-presenting cells, especially in relation to TAAs. Understanding the intersection of EVs and the cancer immunome will enable opportunities for developing tumor antigen targets, antitumor vaccines and harnessing the full potential of multiple immune system components for next-generation cancer immunotherapies.
Collapse
|
23
|
Wu J, Wang Y, Zhou Y, Wang Y, Sun X, Zhao Y, Guan Y, Zhang Y, Wang W. PPARγ as an E3 Ubiquitin-Ligase Impedes Phosphate-Stat6 Stability and Promotes Prostaglandins E 2-Mediated Inhibition of IgE Production in Asthma. Front Immunol 2020; 11:1224. [PMID: 32636842 PMCID: PMC7317005 DOI: 10.3389/fimmu.2020.01224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
Increased serum IgE level is one of the features of allergic asthma. It is reported that IgE production can be enhanced by E-prostanoid 2 (EP2) receptor of prostaglandin E2 (PGE2); however, whether E-prostanoid 4 (EP4) receptor (encoded by Ptger4) has a unique or redundant role is still unclear. Here, we demonstrated the mice with B cell-specific deletion of the EP4 receptor (Ptger4fl/flMb1cre+/−) showed their serum levels of IgE were markedly increased. A much more severe airway allergic inflammation was observed in the absence of EP4 signal using the OVA-induced asthma model. Mechanistic studies demonstrated that the transcription levels of AID, GLTε, and PSTε in EP4-deficient B cells were found to be significantly increased, implying an enhanced IgE class switch. In addition, we saw higher levels of phosphorylated STAT6, a vital factor for IgE class switch. Biochemical analyses indicated that inhibitory effect of EP4 signal on IgE depended on the activation of the PI3K-AKT pathway. Further downstream, PPARγ expression was up-regulated. Independent of its activity as a transcription factor, PPARγ here primarily functioned as an E3 ubiquitin-ligase, which bound the phosphorylated STAT6 to initiate its degradation. In support of PPARγ as a key mediator downstream of the EP4 signal, PPARγ agonist induced the down-regulation of phospho-STAT6, whereas its antagonist was able to rescue the EP4-mediated inhibition of STAT6 activation and IgE production. Thus, our findings highlight a role for the PGE2-EP4-AKT-PPARγ-STAT6 signaling in IgE response, highlighting the therapeutic potential of combined application of EP4 and PPARγ agonists in asthma.
Collapse
Affiliation(s)
- Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Xiaowan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| |
Collapse
|
24
|
Allain EP, Rouleau M, Le T, Vanura K, Villeneuve L, Caron P, Turcotte V, Lévesque E, Guillemette C. Inactivation of Prostaglandin E 2 as a Mechanism for UGT2B17-Mediated Adverse Effects in Chronic Lymphocytic Leukemia. Front Oncol 2019; 9:606. [PMID: 31334126 PMCID: PMC6621974 DOI: 10.3389/fonc.2019.00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
High expression of the metabolic enzyme UDP-glucuronosyltransferase UGT2B17 in chronic lymphocytic leukemia (CLL) cells was associated with poor prognosis in two independent studies. However, the underlying mechanism remains unknown. We hypothesized that UGT2B17 impacts intracellular levels of hormone-like signaling molecules involved in the regulation of gene expression in leukemic cells. We initially confirmed in a third cohort of 291 CLL patients that those with high UGT2B17 displayed poor prognosis (hazard ratio of 2.31, P = 0.015). Consistent with the unfavorable prognostic significance of elevated UGT2B17 expression in CLL patients, high UGT2B17 expression was associated with enhanced proliferation of MEC1 and JVM2 malignant B-cell models. Transcriptomic analyses revealed that high UGT2B17 was linked to a significant alteration of genes related to prostaglandin E2 (PGE2) and to its precursor arachidonic acid, both in cell models and a cohort of 448 CLL patients. In functional assays, PGE2 emerged as a negative regulator of apoptosis in CLL patients and proliferation in cells models, whereas its effect was partially abrogated by high UGT2B17 expression in MEC1 and JVM2 cells. Enzymatic assays and mass-spectrometry analyses established that the UGT2B17 enzyme inactivates PGE2 by its conjugation to glucuronic acid (GlcA) leading to the formation of two glucuronide (G) derivatives. High UGT2B17 expression was further associated with a proficient inactivation of PGE2 to PGE2-G in CLL patient cells and cell models. We conclude that UGT2B17-dependent PGE2 glucuronidation impairs anti-oncogenic PGE2 effects in leukemic cells, thereby partially contributing to disease progression in high UGT2B17 CLL patients.
Collapse
Affiliation(s)
- Eric P Allain
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada
| | - Michèle Rouleau
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada
| | - Trang Le
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Katrina Vanura
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada
| | - Patrick Caron
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada
| | - Véronique Turcotte
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada
| | - Eric Lévesque
- Division of Hemato-Oncology, Faculty of Medicine, CHU de Québec Research Centre - Université Laval, Laval University, Québec City, QC, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec (CHU de Québec) Research Center - Université Laval, Laval University, Québec City, QC, Canada.,Canada Research Chair in Pharmacogenomics, Québec City, QC, Canada
| |
Collapse
|
25
|
Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J. miR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms' tumor. BMC Cancer 2019; 19:405. [PMID: 31035970 PMCID: PMC6489324 DOI: 10.1186/s12885-019-5609-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Wilms’ tumor is also called nephroblastoma and is the most common pediatric renal cancer. Several genetic and epigenetic factors have been found to account for the development of Wilms’ tumor. MiRNAs play important roles in this tumorigenic process. In the present study, we aimed to investigate the role of miR-140-5p in nephroblastoma by identifying its targets, as well as its underlying molecular mechanism of action. Methods The miRNA expression profile of nephroblastoma samples was investigated and the targets of miR-140-5p were predicted and validated using the miRNA luciferase reporter method. Moreover, the roles of miR-140-5p in regulating nephroblastoma cell proliferation, migration and cell cycle were analyzed by the CCK8, migration and flow cytometry assays, respectively. The downstream protein of the direct target of miR-140-5p was also identified. Results miR-140-5p was downregulated in Wilms’ tumor tissues, whereas in the nephroblastoma cell lines G401 and WT-CLS1 that exhibited high levels of miRNA-140-5p, inhibition of cellular proliferation and metastasis were noted as well as cell cycle arrest at the G1/S phase. TGFBRI and IGF1R were identified as direct target genes for miRNA-140-5p. In addition, SMAD2/3 and p-AKT were regulated by TGFBRI and IGF1R separately and participated in the miRNA-140-5p regulatory network. Ectopic expression of TGFBR1 and IGF-1R could abrogate the inhibitory effect of miR-140-5p. Conclusion We demonstrated that miRNA-140-5p participates in the progression of Wilms’ tumor by targeting the TGFBRI/SMAD2/3 and the IGF-1R/AKT signaling pathways.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.,Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730, China
| | - Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Shengrong OuYang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Feifei Ma
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Huibo Chang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Dingding Cao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
26
|
Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 2019; 176:337-354. [PMID: 30381825 PMCID: PMC6329627 DOI: 10.1111/bph.14530] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation underlies various debilitating disorders including autoimmune, neurodegenerative, vascular and metabolic diseases as well as cancer, where aberrant activation of the innate and acquired immune systems is frequently seen. Since non-steroidal anti-inflammatory drugs exert their effects by inhibiting COX and suppressing PG biosynthesis, PGs have been traditionally thought to function mostly as mediators of acute inflammation. However, an inducible COX isoform, COX-2, is often highly expressed in tissues of the chronic disorders, suggesting an as yet unidentified role of PGs in chronic inflammation. Recent studies have shown that in addition to their short-lived actions in acute inflammation, PGs crosstalk with cytokines and amplify the cytokine actions on various types of inflammatory cells and drive pathogenic conversion of these cells by critically regulating their gene expression. One mode of such PG-mediated amplification is to induce the expression of relevant cytokine receptors, which is typically observed in Th1 cell differentiation and Th17 cell expansion, events leading to chronic immune inflammation. Another mode of amplification is cooperation of PGs with cytokines at the transcription level. Typically, PGs and cytokines synergistically activate NF-κB to induce the expression of inflammation-related genes, one being COX-2 itself, which makes PG-mediated positive feedback loops. This signalling consequently enhances the expression of various NF-κB-induced genes including chemokines to macrophages and neutrophils, which enables sustained infiltration of these cells and further amplifies chronic inflammation. In addition, PGs are also involved in tissue remodelling such as fibrosis and angiogenesis. In this article, we review these findings and discuss their relevance to human diseases.
Collapse
Affiliation(s)
- Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
27
|
Debeuf N, Lambrecht BN. Eicosanoid Control Over Antigen Presenting Cells in Asthma. Front Immunol 2018; 9:2006. [PMID: 30233591 PMCID: PMC6131302 DOI: 10.3389/fimmu.2018.02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Asthma is a common lung disease affecting 300 million people worldwide. Allergic asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens, that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus overproduction. Other forms of asthma are controlled by an eosinophil-rich innate ILC2 response driven by epithelial damage, whereas in some patients with more neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including the eicosanoids prostaglandins and leukotrienes influence key functions of these cells, leading to either pro- or anti-inflammatory effects on disease outcome. In this review, we will discuss how eicosanoids affect the functions of DCs and macrophages in the asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
Collapse
Affiliation(s)
- Nincy Debeuf
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
28
|
Proquin H, Jetten MJ, Jonkhout MCM, Garduño-Balderas LG, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer. Sci Rep 2018; 8:9738. [PMID: 29950665 PMCID: PMC6021444 DOI: 10.1038/s41598-018-28063-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Titanium dioxide as a food additive (E171) has been demonstrated to facilitate growth of chemically induced colorectal tumours in vivo and induce transcriptomic changes suggestive of an immune system impairment and cancer development. The present study aimed to investigate the molecular mechanisms behind the tumour stimulatory effects of E171 in combination with azoxymethane (AOM)/dextran sodium sulphate (DSS) and compare these results to a recent study performed under the same conditions with E171 only. BALB/c mice underwent exposure to 5 mg/kgbw/day of E171 by gavage for 2, 7, 14, and 21 days. Whole genome mRNA microarray analyses on the distal colon were performed. The results show that E171 induced a downregulation of genes involved in the innate and adaptive immune system, suggesting impairment of this system. In addition, over time, signalling genes involved in colorectal cancer and other types of cancers were modulated. In relation to cancer development, effects potentially associated with oxidative stress were observed through modulation of genes related to antioxidant production. E171 affected genes involved in biotransformation of xenobiotics which can form reactive intermediates resulting in toxicological effects. These transcriptomics data reflect the early biological responses induced by E171 which precede tumour formation in an AOM/DSS mouse model.
Collapse
Affiliation(s)
- Héloïse Proquin
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Marlon J Jetten
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Marloes C M Jonkhout
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | - Jacob J Briedé
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Henk van Loveren
- Department of Toxicogenomics, GROW institute of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Yolanda I Chirino
- Laboratorio de Carcinogénesis y Toxicología, Unidad de Biomedicina, FES-Iztacala, UNAM, Estado de México, Mexico.,IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, DE Düsseldorf, Germany
| |
Collapse
|
29
|
Hsu CL, Chang HY, Chang JY, Hsu WM, Huang HC, Juan HF. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2017; 7:36293-36310. [PMID: 27167114 PMCID: PMC5095001 DOI: 10.18632/oncotarget.9202] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
MYCN, an oncogenic transcription factor of the Myc family, is a major driver of neuroblastoma tumorigenesis. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets for neuroblastoma therapy. Here we perform ChIP-sequencing and small RNA-sequencing of neuroblastoma cells to determine the MYCN-binding sites and MYCN-associated microRNAs, and integrate various types of genomic data to construct MYCN regulatory networks. The overall analysis indicated that MYCN-regulated genes were involved in a wide range of biological processes and could be used as signatures to identify poor-prognosis MYCN-non-amplified patients. Analysis of the MYCN binding sites showed that MYCN principally served as an activator. Using a computational approach, we identified 32 MYCN co-regulators, and some of these findings are supported by previous studies. Moreover, we investigated the interplay between MYCN transcriptional and microRNA post-transcriptional regulations and identified several microRNAs, such as miR-124-3p and miR-93-5p, which may significantly contribute to neuroblastoma pathogenesis. We also found MYCN and its regulated microRNAs acted together to repress the tumor suppressor genes. This work provides a comprehensive view of MYCN regulations for exploring therapeutic targets in neuroblastoma, as well as insights into the mechanism of neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yi Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
30
|
Flórez‐Grau G, Cabezón R, Borgman KJE, España C, Lozano JJ, Garcia‐Parajo MF, Benítez‐Ribas D. Up‐regulation of EP
2
and EP
3
receptors in human tolerogenic dendritic cells boosts the immunosuppressive activity of PGE
2. J Leukoc Biol 2017. [DOI: 10.1189/jlb.2a1216-526r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Georgina Flórez‐Grau
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Cabezón
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kyra J. E. Borgman
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carolina España
- Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria F. Garcia‐Parajo
- ICFO‐Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Barcelona, Spain
- Insititució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Benítez‐Ribas
- Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Immunology, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Goldman N, Valiuskyte K, Londregan J, Swider A, Somerville J, Riggs JE. Macrophage regulation of B cell proliferation. Cell Immunol 2017; 314:54-62. [PMID: 28238361 DOI: 10.1016/j.cellimm.2017.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 12/11/2022]
Abstract
Unlike organized lymphoid tissue, the tumor microenvironment (TME) often includes a high proportion of immunosuppressive macrophages. We model the TME by culturing peritoneal cavity (PerC) cells that naturally have a high macrophage to lymphocyte ratio. Prior studies revealed that, following TCR ligation, PerC T cell proliferation is suppressed due to IFNγ-triggered inducible nitric oxide synthase expression. In this study we assessed the ability of PerC B cells to respond to surrogate activating signals in the presence of high numbers of macrophages. Surface IgM (BCR) ligation led to cyclooxygenase-mediated, and TLR-4 ligation to IL10-mediated, suppression of PerC B cell proliferation. In contrast, PerC B cells had a robust response to CD40 ligation, which could overcome the suppression generated by the BCR or TLR-4 response. However, the CD40 response was suppressed by concurrent TCR ligation. These results reveal the challenges of promoting B and T cell responses in macrophage-rich conditions that model the TME.
Collapse
Affiliation(s)
- Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | | | - Adam Swider
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
32
|
Yang H, Zheng W, Shuai X, Chang RM, Yu L, Fang F, Yang LY. MicroRNA-424 inhibits Akt3/E2F3 axis and tumor growth in hepatocellular carcinoma. Oncotarget 2016; 6:27736-50. [PMID: 26315541 PMCID: PMC4695022 DOI: 10.18632/oncotarget.4811] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022] Open
Abstract
By comparing the expression profiles of miRNAs in different subtypes of HCC, we identified miR-424 as a HCC related miRNA. We found that the expression of miR-424 was significantly decreased in HCC tissues and six liver cancer cell lines. Significantly, its expression levels were correlated with tumor size, multiple nodules, vein invasion, TNM stage and overall survival of HCC. We showed that up-regulated miR-424 suppressed HCC cell proliferation in vivo and in vitro. Multi-pathway reporter arrays suggested that miR-424 suppressed the pRb-E2F pathway. Consistently, Akt3 and E2F3 were identified as the targets of miR-424 as evidenced by that ectopic miR-424 expression suppressed Akt3 and E2F3 expressions. Silencing Akt3 and E2F3 by siRNA pheno-copied the effect of ectopic miR-424 on HCC growth. Whereas, overexpression of Akt3 and E2F3 attenuated the effect of miR-424 on HCC growth. Together, our data demonstrated a tumor suppressor role for miR-424 in HCC development and progression with therapeutic implications. The strong correlation of miR-424 expression with HCC patient survival suggests that miR-424 could be a valuable biomarker for HCC prognosis.
Collapse
Affiliation(s)
- Hao Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Geratic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wei Zheng
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiao Shuai
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Rui-Min Chang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lei Yu
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Feng Fang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
33
|
Structural features of subtype-selective EP receptor modulators. Drug Discov Today 2016; 22:57-71. [PMID: 27506873 DOI: 10.1016/j.drudis.2016.08.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
Prostaglandin E2 is a potent endogenous molecule that binds to four different G-protein-coupled receptors: EP1-4. Each of these receptors is a valuable drug target, with distinct tissue localisation and signalling pathways. We review the structural features of EP modulators required for subtype-selective activity, as well as the structural requirements for improved pharmacokinetic parameters. Novel EP receptor subtype selective agonists and antagonists appear to be valuable drug candidates in the therapy of many pathophysiological states, including ulcerative colitis, glaucoma, bone healing, B cell lymphoma, neurological diseases, among others, which have been studied in vitro, in vivo and in early phase clinical trials.
Collapse
|
34
|
Mo C, Zhao R, Vallejo J, Igwe O, Bonewald L, Wetmore L, Brotto M. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell Cycle 2016; 14:1507-16. [PMID: 25785867 PMCID: PMC4615122 DOI: 10.1080/15384101.2015.1026520] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.
Collapse
Key Words
- CDK, cyclin dependent kinase
- CM, conditioned media
- EP4
- Keap1/Nrf2, Kelch-like ECH-associated protein 1/NF-E2-related factor 2
- NAC, N-acetyl cysteine
- PGC-1α, proliferator-activated receptor gamma coactivator 1-α
- PGD2, prostaglandin D2
- PGE2, prostaglandin E2
- PGF2α, prostaglandin F2α; PGI2, prostaglandin I2
- Prostaglandin E2
- RB, retinoblastoma protein
- ROS, reactive oxygen species
- SA, sodium ascorbate
- SOD1, superoxide dismutase 1
- bone-muscle crosstalk
- myogenesis
- proliferation
- qPCR, quantitative real-time PCR
- reactive oxygen species
Collapse
Affiliation(s)
- Chenglin Mo
- a Muscle Biology Research Group-MUBIG ; School of Nursing and Health Studies; University of Missouri-Kansas City ; Kansas City , MO USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Upadhyay R, Hammerich L, Peng P, Brown B, Merad M, Brody JD. Lymphoma: immune evasion strategies. Cancers (Basel) 2015; 7:736-62. [PMID: 25941795 PMCID: PMC4491682 DOI: 10.3390/cancers7020736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/21/2023] Open
Abstract
While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.
Collapse
Affiliation(s)
- Ranjan Upadhyay
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Linda Hammerich
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Paul Peng
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Brian Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joshua D Brody
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
36
|
Perga S, Montarolo F, Martire S, Berchialla P, Malucchi S, Bertolotto A. Anti-inflammatory genes associated with multiple sclerosis: A gene expression study. J Neuroimmunol 2015; 279:75-8. [DOI: 10.1016/j.jneuroim.2015.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/02/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023]
|
37
|
Crook KR, Jin M, Weeks MF, Rampersad RR, Baldi RM, Glekas AS, Shen Y, Esserman DA, Little P, Schwartz TA, Liu P. Myeloid-derived suppressor cells regulate T cell and B cell responses during autoimmune disease. J Leukoc Biol 2015; 97:573-82. [PMID: 25583578 DOI: 10.1189/jlb.4a0314-139r] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MDSCs are a heterogeneous group of myeloid cells that suppress T cell activity in cancer and autoimmune disease. The effect of MDSCs on B cell function is not clear. Using the CIA model of autoimmune disease, we found an increase in M-MDSCs in the periphery of WT mice with CIA compared with naïve mice. These MDSCs were absent from the periphery of CCR2(-/-) mice that developed exacerbated disease. M-MDSCs, isolated from immunized mice, inhibited autologous CD4(+) T cell proliferation. The M-MDSC-mediated suppression of T cell proliferation was NO and IFN-γ dependent but IL-17 independent. Furthermore, we demonstrated for the first time that M-MDSCs from CIA mice also inhibited autologous B cell proliferation and antibody production. The suppression of B cells by M-MDSCs was dependent on the production of NO and PGE2 and required cell-cell contact. Administration of M-MDSCs rescued CCR2(-/-) mice from the exacerbated CIA phenotype and ameliorated disease in WT mice. Furthermore, adoptive transfer of M-MDSCs reduced autoantibody production by CCR2(-/-) and WT mice. In summary, M-MDSCs inhibit T cell and B cell function in CIA and may serve as a therapeutic approach in the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Kristen R Crook
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Mengyao Jin
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Michael F Weeks
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Rishi R Rampersad
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Robert M Baldi
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Amy S Glekas
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yajuan Shen
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Denise A Esserman
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Paul Little
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Todd A Schwartz
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Peng Liu
- *Thurston Arthritis Research Center and Departments of Biostatistics and Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
38
|
Gobec M, Prijatelj M, Delić J, Markovič T, Mlinarič-Raščan I. Chemo-sensitizing effects of EP4 receptor-induced inactivation of nuclear factor-κB. Eur J Pharmacol 2014; 742:81-8. [DOI: 10.1016/j.ejphar.2014.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
39
|
Abstract
It is widely accepted that intake of dietary fats and chronic inflammation are risk factors for developing colorectal cancer. Arachidonic acid is a major component of animal fats, and the bioactive lipids produced from this substrate play critical roles in a variety of biologic processes, including cancer. Cyclooxygenase-derived prostaglandin E2 is a known proinflammatory lipid mediator that promotes tumor progression. Metabolism of arachidonic acid by the cyclooxygenase pathway provides one mechanism for the contribution of dietary fats and chronic inflammation to carcinogenesis. In this review, we highlight recent advances in our understanding of how a proinflammatory mediator prostaglandin E2 promotes colorectal cancer immune evasion. These findings may provide a rationale for the development of new therapeutic approaches to subvert tumor-induced immunosuppression.
Collapse
|
40
|
Li Y, Tu Z, Qian S, Fung JJ, Markowitz SD, Kusner LL, Kaminski HJ, Lu L, Lin F. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2127-34. [PMID: 25057008 DOI: 10.4049/jimmunol.1400857] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Zhidan Tu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - John J Fung
- Department of Surgery, Cleveland Clinic, Cleveland, OH 44195
| | - Sanford D Markowitz
- Department of Hematology and Oncology, Case Western Reserve University, Cleveland, OH 44106
| | - Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037; and
| | - Henry J Kaminski
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037; and Department of Neurology, George Washington University, Washington, DC 20037
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Feng Lin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Department of Pathology, Case Western Reserve University, Cleveland, OH 44106;
| |
Collapse
|
41
|
Maseda D, Bonami RH, Crofford LJ. Regulation of B lymphocytes and plasma cells by innate immune mechanisms and stromal cells in rheumatoid arthritis. Expert Rev Clin Immunol 2014; 10:747-62. [PMID: 24734886 DOI: 10.1586/1744666x.2014.907744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B cells mediate multiple functions that influence immune and inflammatory responses in rheumatoid arthritis. Production of a diverse array of autoantibodies can happen at different stages of the disease, and are important markers of disease outcome. In turn, the magnitude and quality of acquired humoral immune responses is strongly dependent on signals delivered by innate immune cells. Additionally, the milieu of cells and chemokines that constitute a niche for plasma cells rely strongly on signals provided by stromal cells at different anatomical locations and times. The chronic inflammatory state therefore importantly impacts the developing humoral immune response and its intensity and specificity. We focus this review on B cell biology and the role of the innate immune system in the development of autoimmunity in patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
42
|
Gallouet AS, Travert M, Bresson-Bepoldin L, Guilloton F, Pangault C, Caulet-Maugendre S, Lamy T, Tarte K, Guillaudeux T. COX-2-independent effects of celecoxib sensitize lymphoma B cells to TRAIL-mediated apoptosis. Clin Cancer Res 2014; 20:2663-73. [PMID: 24637636 DOI: 10.1158/1078-0432.ccr-13-2305] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite therapeutic advances, non-Hodgkin lymphomas (NHL) remain incurable. They form a group of neoplasms strongly dependent on their inflammatory microenvironment, which plays an important supportive role in tumor B-cell survival and in the resistance to antitumor immune response. New therapies must consider both tumor cells and their surrounding microenvironment EXPERIMENTAL DESIGN Stromal cells, derived from bone marrow or lymph nodes, and B cells from follicular lymphoma patients were cocultured or cultured alone with celecoxib treatment, a nonsteroidal anti-inflammatory drug, and/or TRAIL, a promising cytotoxic molecule for cancer therapy. RESULTS In this study, we show that follicular lymphoma stromal cells produce large amounts of PGE2. This production is abrogated after celecoxib treatment, targeting the COX-2 isoenzyme involved in PGE2 synthesis. Furthermore, we demonstrate that celecoxib increases apoptosis in NHL B-cell lines and in primary follicular lymphoma B cells cocultured with stromal cells, but independently of the PGE2/COX-2 axis. Finally, celecoxib increases the apoptotic activity of TRAIL. We provide evidence that celecoxib affects proliferation and sensitizes NHL B-cell lines to apoptosis through COX-2-independent effects by slowing down the cell cycle and decreasing the expression of survival proteins, such as Mcl-1. CONCLUSIONS These data suggest new potent strategies for NHL therapy combining drugs targeting both tumor B cells and survival signals provided by the tumor microenvironment.
Collapse
Affiliation(s)
- Anne-Sophie Gallouet
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Marion Travert
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Laurence Bresson-Bepoldin
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Fabien Guilloton
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Céline Pangault
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Sylvie Caulet-Maugendre
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Thierry Lamy
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Karin Tarte
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| | - Thierry Guillaudeux
- Authors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, FranceAuthors' Affiliations: INSERM, UMR 917; Université Rennes 1; EFS Bretagne; Centre Hospitalier Universitaire (CHU), Service d'Hématologie; Biosit, SFR Biologie-Santé, Rennes; INSERM, U955, Créteil; and INSERM, U916, Bordeaux, France
| |
Collapse
|
43
|
Kovarik JJ, Hölzl MA, Hofer J, Waidhofer-Söllner P, Sobanov Y, Koeffel R, Saemann MD, Mechtcheriakova D, Zlabinger GJ. Eicosanoid modulation by the short-chain fatty acid n-butyrate in human monocytes. Immunology 2013; 139:395-405. [PMID: 23398566 DOI: 10.1111/imm.12089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 01/16/2023] Open
Abstract
n-Butyrate deriving from bacterial fermentation in the mammalian intestine is a key determinant in gastrointestinal homeostasis. We examined the effects of this short-chain fatty acid and Toll-like receptor 2 (TLR) and TLR4 engagement on inflammatory/immunity-associated genes, cyclo-oxygenases (COXs), prostaglandins (PGs) and leukotrienes (LTs) in human monocytes. Before RNA isolation, freshly isolated human monocytes were co-incubated for different time-points with 1 mm n-butyrate alone or in combination with bacterial stimuli. Based on a knowledge-driven approach, a signature of 180 immunity/inflammation-associated genes was picked and real-time PCR analysis was performed. Pathway analysis was carried out using a web-based database analysing program. Based on these gene expression studies the findings were evaluated at the protein/mediator level by Western blot analysis, FACS and ELISA. Following co-incubation with n-butyrate and lipopolysaccharide, key enzymes of the eicosanoid pathway, like PTGS2 (COX-2), TXS, ALOX5, LTA4H and LTC4S, were significantly up-regulated compared with stimulation with lipopolysaccharide alone. Furthermore, release of the lipid mediators PGE(2), 15d-PGJ(2), LTB(4) and thromboxane B(2) was increased by n-butyrate. Regarding signalling, n-butyrate had no additional effect on mitogen-activated protein kinase and interfered differently with early and late phases of nuclear factor-κB signalling. Our results suggest that among many other mediators of eicosanoid signalling n-butyrate massively induces PGE(2) production by increasing the expression of PTGS2 (COX-2) in monocytes following TLR4 and TLR2 activation and induces secretion of LTB(4) and thromboxane B(2). This underscores the role of n-butyrate as a crucial mediator of gut-specific immunity.
Collapse
Affiliation(s)
- Johannes J Kovarik
- Institute of Immunology, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang H, Fang F, Chang R, Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor β receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology 2013; 58:205-17. [PMID: 23401231 DOI: 10.1002/hep.26315] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED By comparing the expression profiles of microRNAs (miRNAs) in different hepatocellular carcinoma (HCC) subtypes, we identified miR-140-5p as an HCC-related miRNA. We found that miR-140-5p was significantly decreased in HCC tissues and all of six liver cancer cell lines examined and its expression levels were correlated with multiple nodules, vein invasion, capsular formation, and differentiation, as well as overall and disease-free survival of HCC. We also found that miR-140-5p suppressed HCC cell proliferation and HCC metastasis. Multipathway reporter arrays suggested that miR-140-5p inhibited transforming growth factor β (TGF-β) and mitogen-activated protein kinase / extracellular signal-regulated kinase (MAPK/ERK) signaling. TGFB receptor 1 (TGFBR1) and fibroblast growth factor 9 (FGF9) were then characterized as the direct targets for miR-140-5p after it was found that ectopic miR-140-5p expression suppressed TGFBR1 and FGF9 expression. Silencing TGFBR1 and FGF9 by small interfering RNA (siRNA) resembled the phenotype resulting from ectopic miR-140-5p expression, while overexpression of TGFBR1 and FGF9 attenuated the effect of miR-140-5p on HCC growth and metastasis. CONCLUSION These data elucidated a tumor suppressor role for miR-140-5p in HCC development and progression with therapeutic potential. Our correlation studies in clinical HCC samples further suggest that miR-140-5p could be a valuable biomarker for HCC prognosis.
Collapse
Affiliation(s)
- Hao Yang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Hunan, China
| | | | | | | |
Collapse
|
45
|
Yokoyama U, Iwatsubo K, Umemura M, Fujita T, Ishikawa Y. The Prostanoid EP4 Receptor and Its Signaling Pathway. Pharmacol Rev 2013; 65:1010-52. [DOI: 10.1124/pr.112.007195] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
46
|
Goris A, Pauwels I, Dubois B. Progress in multiple sclerosis genetics. Curr Genomics 2013; 13:646-63. [PMID: 23730204 PMCID: PMC3492804 DOI: 10.2174/138920212803759695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/06/2023] Open
Abstract
A genetic component in the susceptibility to multiple sclerosis (MS) has long been known, and the first and major genetic risk factor, the HLA region, was identified in the 1970’s. However, only with the advent of genome-wide association studies in the past five years did the list of risk factors for MS grow from 1 to over 50. In this review, we summarize the search for MS risk genes and the latest results. Comparison with data from other autoimmune and neurological diseases and from animal models indicates parallels and differences between diseases. We discuss how these translate into an improved understanding of disease mechanisms, and address current challenges such as genotype-phenotype correlations, functional mechanisms of risk variants and the missing heritability.
Collapse
Affiliation(s)
- An Goris
- Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
47
|
Konya V, Marsche G, Schuligoi R, Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther 2013; 138:485-502. [PMID: 23523686 PMCID: PMC3661976 DOI: 10.1016/j.pharmthera.2013.03.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.
Collapse
Key Words
- ampk, amp-activated protein kinase
- camp, cyclic adenylyl monophosphate
- cftr, cystic fibrosis transmembrane conductance regulator
- clc, chloride channel
- cox, cyclooxygenase
- creb, camp-response element-binding protein
- dp, d-type prostanoid receptor
- dss, dextran sodium sulfate
- egfr, epidermal growth factor receptor
- enos, endothelial nitric oxide synthase
- ep, e-type prostanoid receptor
- epac, exchange protein activated by camp
- eprap, ep4 receptor-associated protein
- erk, extracellular signal-regulated kinase
- fem1a, feminization 1 homolog a
- fp, f-type prostanoid receptor
- grk, g protein-coupled receptor kinase
- 5-hete, 5-hydroxyeicosatetraenoic acid
- icer, inducible camp early repressor
- icam-1, intercellular adhesion molecule-1
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ip, i-type prostanoid receptor
- lps, lipopolysaccharide
- map, mitogen-activated protein kinase
- mcp, monocyte chemoattractant protein
- mek, map kinase kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cells
- nsaid, non-steroidal anti-inflammatory drug
- pg, prostaglandin
- pi3k, phosphatidyl insositol 3-kinase
- pk, protein kinase
- tp, t-type prostanoid receptor
- tx, thromboxane receptor
- prostaglandins
- inflammation
- vascular disease
- cancerogenesis
- renal function
- osteoporosis
Collapse
Affiliation(s)
| | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
48
|
Foudi N, Gomez I, Benyahia C, Longrois D, Norel X. Prostaglandin E2 receptor subtypes in human blood and vascular cells. Eur J Pharmacol 2012; 695:1-6. [DOI: 10.1016/j.ejphar.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 12/31/2022]
|
49
|
Azimzadeh P, Romani S, Mohebbi SR, Mahmoudi T, Vahedi M, Fatemi SR, Zali N, Zali MR. Association of polymorphisms in microRNA-binding sites and colorectal cancer in an Iranian population. Cancer Genet 2012; 205:501-7. [PMID: 22939228 DOI: 10.1016/j.cancergen.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are agents of post-transcriptional gene expression, and they can affect many functions of an individual cell or tissue from extracellular matrix production to inflammatory processes and tumor development. We aimed to determine the possible role of miRNA-binding site polymorphisms located in five cancer-related genes: IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4 in colorectal cancer (CRC) risk modification in an Iranian population. This study was performed on 643 individuals (249 CRC cases and 394 healthy controls). We selected five cancer-related genes (IL-16, CDKN2A (p16), RAF1, PTGER4, and ITGB4) and investigated the genotypes of the 3' untranslated region miRNA-binding site polymorphisms in these genes in our study population. The restriction fragment length polymorphism results were confirmed by a direct sequencing method. We found a statistically significant difference between the rs1131445 polymorphism of the IL-16 gene and CRC. The frequencies of the genotypes TT, CT, and CC in controls were 51%, 40.4%, and 8.6%, respectively, and in cases were 41.4%, 44.1%, and 14.5%, respectively, which shows a significant association between the CC genotype of the rs1131445 polymorphism and CRC (P = 0.004). The frequency of the C allele in the CRC group was higher than in the controls, and the C allele of the rs1131445 polymorphism was found to be in association with CRC (P = 0.009). These associations remained significant after Bonferroni's correction for multiple testing. We found that the AA genotype of the rs743554 polymorphism in the ITGB4 gene and the T allele of the rs1051208 polymorphism of the RAF1 gene were associated with the risk of CRC in females; however, after Bonferroni's correction we found that they were non-significant. Finally, we can conclude that a significant relationship exists between the miRNA-binding site polymorphism of the IL-16 gene and CRC risk in the Iranian population.
Collapse
Affiliation(s)
- Pedram Azimzadeh
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gheorghe KR, Sadique S, Leclerc P, Idborg H, Wobst I, Catrina AI, Jakobsson PJ, Korotkova M. Limited effect of anti-rheumatic treatment on 15-prostaglandin dehydrogenase in rheumatoid arthritis synovial tissue. Arthritis Res Ther 2012; 14:R121. [PMID: 22616846 PMCID: PMC3446502 DOI: 10.1186/ar3851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 01/22/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic inflammatory disease in which prostaglandin E2 (PGE2) displays an important pathogenic role. The enzymes involved in its synthesis are highly expressed in the inflamed synovium, while little is known about 15- prostaglandin dehydrogenase (15-PGDH) that metabolizes PGE2. Here we aimed to evaluate the localization of 15-PGDH in the synovial tissue of healthy individuals or patients with inflammatory arthritis and determine the influence of common RA therapy on its expression. Methods Synovial tissue specimens from healthy individuals, psoriatic arthritis, ostheoarthritis and RA patients were immunohistochemically stained to describe the expression pattern of 15-PGDH. In addition, the degree of enzyme staining was evaluated by computer analysis on stained synovial biopsies from two groups of RA patients, before and after RA specific treatment with either intra-articular glucocorticoids or oral methotrexate therapy. Prostaglandins derived from the cyclooxygenase (COX) pathway were determined by liquid-chromatography mass spectrometry in supernatants from interleukin (IL) 1β-activated fibroblast-like synoviocytes (FLS) treated with methotrexate. Results 15-PGDH was present in healthy and inflamed synovial tissue, mainly in lining macrophages, fibroblasts and vessels. Intra-articular glucocorticoids showed a trend towards reduced 15-PGDH expression in RA synovium (p = 0.08) while methotrexate treatment left the PGE2 pathway unaltered both in biopsies ex vivo and in cultured FLS. Conclusions Early methotrexate therapy has little influence on the expression of 15-PGDH and on any of the PGE2 synthesizing enzymes or COX-derived metabolites. Thus therapeutic strategies involving blocking induced PGE2 synthesis may find a rationale in additionally reducing local inflammatory mediators.
Collapse
Affiliation(s)
- Karina Roxana Gheorghe
- Department of Medicine, Rheumatology Unit, Karolinska Institute/Karolinska University Hospital Solna, Stockholm, 171 76 Sweden
| | | | | | | | | | | | | | | |
Collapse
|