1
|
Qin H, Gao J, Xu W, Song Y, Zhang R, Wang H, Ye Y, Sun J, Jiang J, Liang H, Zhong N, Tian H, Chen X, Peng F, Tu Y. Dendritic cell-based microrobots for enhanced systemic antigen-specific immune tolerance. J Control Release 2025; 381:113566. [PMID: 40010412 DOI: 10.1016/j.jconrel.2025.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Current immunotherapeutic approaches for autoimmune disorders primarily rely on the use of generalized immunosuppressive medications. However, most immune drugs and tolerogenic immunomodulators are insufficient on their own to establish antigen-specific immunological tolerance (ASIT). Therefore, steering antigen-presenting cells (APCs) towards a tolerogenic state with minimal risk of broad immune suppression may be an effective approach. In pursuit of enhanced ASIT, magnetic nanoparticles cloaked with an erythrocyte membrane anchored with the model antigen ovalbumin have been successfully developed, allowing for the in vivo conversion of APCs into tolerogenic microrobots that respond to magnetic activation. Actuated by a rotating magnetic field (RMF), the in situ-formed cell-based microrobots can be guided to inflammatory sites, thereby augmenting systemic and local immune tolerance. These tolerogenic microrobots represent an innovative platform for active immunomodulation and provide precise control over the magnitude and direction of immune responses. This breakthrough offers new insights into the therapeutic management of allergies, autoimmune disorders, and the prevention of anti-drug antibodies in biologic therapies.
Collapse
Affiliation(s)
- Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanzhen Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiying Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Zhong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Wang Y, Chong MMW. Evaluating in vivo approaches for studying the roles of thymic DCs in T cell development in mice. Front Immunol 2024; 15:1451974. [PMID: 39165362 PMCID: PMC11333248 DOI: 10.3389/fimmu.2024.1451974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
T cells express an enormous repertoire of T cell receptors, enabling them to recognize any potential antigen. This large repertoire undergoes stringent selections in the thymus, where receptors that react to self- or non-danger-associated- antigens are purged. We know that thymic tolerance depends on signals and antigens presented by the thymic antigen presenting cells, but we still do not understand precisely how many of these cells actually contribute to tolerance. This is especially true for thymic dendritic cells (DC), which are composed of diverse subpopulations that are derived from different progenitors. Although the importance of thymic DCs has long been known, the functions of specific DC subsets have been difficult to untangle. There remains insufficient systematic characterization of the ontogeny and phenotype of thymic APCs in general. As a result, validated experimental models for studying thymic DCs are limited. Recent technological advancement, such as multi-omics analyses, has enabled new insights into thymic DC biology. These recent findings indicate a need to re-evaluate the current tools used to study the function of these cells within the thymus. This review will discuss how thymic DC subpopulations can be defined, the models that have been used to assess functions in the thymus, and models developed for other settings that can be potentially used for studying thymic DCs.
Collapse
Affiliation(s)
- Yi Wang
- RNA and T cell Biology, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Mark M. W. Chong
- RNA and T cell Biology, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
5
|
Afzali AM, Nirschl L, Sie C, Pfaller M, Ulianov O, Hassler T, Federle C, Petrozziello E, Kalluri SR, Chen HH, Tyystjärvi S, Muschaweckh A, Lammens K, Delbridge C, Büttner A, Steiger K, Seyhan G, Ottersen OP, Öllinger R, Rad R, Jarosch S, Straub A, Mühlbauer A, Grassmann S, Hemmer B, Böttcher JP, Wagner I, Kreutzfeldt M, Merkler D, Pardàs IB, Schmidt Supprian M, Buchholz VR, Heink S, Busch DH, Klein L, Korn T. B cells orchestrate tolerance to the neuromyelitis optica autoantigen AQP4. Nature 2024; 627:407-415. [PMID: 38383779 PMCID: PMC10937377 DOI: 10.1038/s41586-024-07079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.
Collapse
Affiliation(s)
- Ali Maisam Afzali
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Lucy Nirschl
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Christopher Sie
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Monika Pfaller
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Oleksii Ulianov
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Tobias Hassler
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christine Federle
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Elisabetta Petrozziello
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sudhakar Reddy Kalluri
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Hsin Hsiang Chen
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sofia Tyystjärvi
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Katja Lammens
- Department of Biochemistry at the Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Department of Neuropathology, Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Gönül Seyhan
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ole Petter Ottersen
- Division of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Anton Mühlbauer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernhard Hemmer
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Geneva Faculty of Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Marc Schmidt Supprian
- Institute for Experimental Hematology, TranslaTUM Cancer Center, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich School of Medicine and Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ludger Klein
- Biomedical Center (BMC), Institute for Immunology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Department of Neurology, Technical University of Munich School of Medicine and Health, Munich, Germany.
- Munich Cluster for Systems Neurology, Munich, Germany.
| |
Collapse
|
6
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
7
|
Song Y, Xing C, Lu T, Liu C, Wang W, Wang S, Feng X, Bi J, Wang Q, Lai C. Aberrant Dendritic Cell Subsets in Patients with Myasthenia Gravis and Related Clinical Features. Neuroimmunomodulation 2023; 30:69-80. [PMID: 36780882 DOI: 10.1159/000529626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/13/2022] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Dendritic cells (DCs) play critical roles in the pathogenesis of myasthenia gravis (MG), and a series of DC-based experimental strategies for MG have recently been developed. However, the definite roles of different DC subsets in the mechanism of MG have scarcely been covered by previous studies. The present study aimed to investigate the levels of three main DC subsets, plasmacytoid DCs (pDCs) (CD303 positive) and two distinct subsets of conventional DCs (cDCs), namely CD1c+ cDCs and CD141+ cDCs, in MG patients and analyze related clinical features. METHODS From January 2016 to December 2020, 160 newly diagnosed MG patients and matched healthy controls (n = 160) were included in the study, and their clinical data were collected. The blood samples from MG patients before treatment and controls were collected for flow cytometry analysis. A total of 14 MG thymoma, 24 control thymoma, and 3 thymic cysts were used to immunostain the DC subsets. RESULTS The flow cytometry analysis showed a significantly higher frequency of circulating pDCs, CD1c+ cDCs, and CD141+ cDCs in MG patients than in healthy controls (p < 0.001 for all). Patients with early-onset MG (<50 years old) had a lower frequency of circulating pDCs but a higher frequency of circulating CD1c+ cDCs than those with late-onset MG (≥50 years old) (p = 0.014 and p = 0.025, respectively). The frequency of circulating pDCs was positively associated with the clinical severity of late-onset MG patients (r = 0.613, p < 0.001). 64.3% (9/14) of MG thymoma is of type B2 under the World Health Organization classification, which is higher than that in control thymoma (33.3%, 8/24) (p = 0.019). For type B2 thymoma, there were significantly more pDCs but fewer CD1c+ cDCs in MG thymoma than in the controls. CONCLUSION The distribution of aberrant pDCs, CD1c+ cDCs, and CD141+ cDCs in MG patients displayed age- and thymoma-related differences, which may contribute to the impaired immune tolerance and lead to the onset of MG.
Collapse
Affiliation(s)
- Yan Song
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chunye Xing
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Tianyang Lu
- Department of Public Health, Monash University, Melbourne, Victoria, Australia
| | - Chen Liu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Xungang Feng
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Qian Wang
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Chao Lai
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
9
|
This S, Rogers D, Mallet Gauthier È, Mandl JN, Melichar HJ. What's self got to do with it: Sources of heterogeneity among naive T cells. Semin Immunol 2023; 65:101702. [PMID: 36463711 DOI: 10.1016/j.smim.2022.101702] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Dakota Rogers
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Ève Mallet Gauthier
- Department of Microbiology, Infectious Disease, and Immunology, Université de Montréal, Montreal, Canada; Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre on Complex Traits, McGill University, Montreal, Canada.
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
10
|
Zhang W, Wang Y, Zhong F, Wang X, Sucher R, Lin CH, Brandacher G, Solari MG, Gorantla VS, Zheng XX. Donor derived hematopoietic stem cell niche transplantation facilitates mixed chimerism mediated donor specific tolerance. Front Immunol 2023; 14:1093302. [PMID: 36875068 PMCID: PMC9978155 DOI: 10.3389/fimmu.2023.1093302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Compelling experimental evidence confirms that the robustness and longevity of mixed chimerism (MC) relies on the persistence and availability of donor-derived hematopoietic stem cell (HSC) niches in recipients. Based on our prior work in rodent vascularized composite allotransplantation (VCA) models, we hypothesize that the vascularized bone components in VCA bearing donor HSC niches, thus may provide a unique biologic opportunity to facilitate stable MC and transplant tolerance. In this study, by utilizing a series of rodent VCA models we demonstrated that donor HSC niches in the vascularized bone facilitate persistent multilineage hematopoietic chimerism in transplant recipients and promote donor-specific tolerance without harsh myeloablation. In addition, the transplanted donor HSC niches in VCA facilitated the donor HSC niches seeding to the recipient bone marrow compartment and contributed to the maintenance and homeostasis of stable MC. Moreover, this study provided evidences that chimeric thymus plays a role in MC-mediated transplant tolerance through a mechanism of thymic central deletion. Mechanistic insights from our study could lead to the use of vascularized donor bone with pre-engrafted HSC niches as a safe, complementary strategy to induce robust and stable MC-mediated tolerance in VCA or solid organ transplantation recipients.
Collapse
Affiliation(s)
- Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yong Wang
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fushun Zhong
- Transplantation Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinghuan Wang
- Transplantation Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Robert Sucher
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xin Xiao Zheng
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Transplantation Medical Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Semwal MK, Hester AK, Xiao Y, Udeaja C, Cepeda S, Verschelde JS, Jones N, Wedemeyer SA, Emtage S, Wimberly K, Griffith AV. Redox status regulates autophagy in thymic stromal cells and promotes T cell tolerance. Proc Natl Acad Sci U S A 2022; 119:e2204296119. [PMID: 36161925 PMCID: PMC9549397 DOI: 10.1073/pnas.2204296119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Thymic stromal cells (TSCs) are critical regulators of T cell tolerance, but their basic biology has remained under-characterized because they are relatively rare and difficult to isolate. Recent work has revealed that constitutive autophagy in TSCs is required for self-antigen presentation and central T cell tolerance induction; however, the mechanisms regulating constitutive autophagy in TSCs are not well understood. Hydrogen peroxide has been shown to increase autophagy flux in other tissues, and we previously identified conspicuously low expression of the hydrogen peroxide-quenching enzyme catalase in TSCs. We investigated whether the redox status of TSCs established by low catalase expression regulates their basal autophagy levels and their capacity to impose central T cell tolerance. Transgenic overexpression of catalase diminished autophagy in TSCs and impaired thymocyte clonal deletion, concomitant with increased frequencies of spontaneous lymphocytic infiltrates in lung and liver and of serum antinuclear antigen reactivity. Effects on clonal deletion and autoimmune indicators were diminished in catalase transgenic mice when autophagy was rescued by expression of the Becn1F121A/F121A knock-in allele. These results suggest a metabolic mechanism by which the redox status of TSCs may regulate central T cell tolerance.
Collapse
Affiliation(s)
- Manpreet K. Semwal
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX 78229
| | - Allison K. Hester
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
- Department of Medicine, Blood and Marrow Transplantation Division, Stanford University, Stanford, CA 94305
| | - Yangming Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Chioma Udeaja
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Sergio Cepeda
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John S. Verschelde
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Nicholas Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Sarah A. Wedemeyer
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Simon Emtage
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Kymberly Wimberly
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| | - Ann V. Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229
| |
Collapse
|
12
|
Benlaribi R, Gou Q, Takaba H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm Regen 2022; 42:28. [PMID: 36056452 PMCID: PMC9440513 DOI: 10.1186/s41232-022-00211-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.
Collapse
Affiliation(s)
- Rayene Benlaribi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qiao Gou
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
14
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Březina J, Vobořil M, Filipp D. Mechanisms of Direct and Indirect Presentation of Self-Antigens in the Thymus. Front Immunol 2022; 13:926625. [PMID: 35774801 PMCID: PMC9237256 DOI: 10.3389/fimmu.2022.926625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The inevitability of evolution of the adaptive immune system with its mechanism of randomly rearranging segments of the T cell receptor (TCR) gene is the generation of self-reactive clones. For the sake of prevention of autoimmunity, these clones must be eliminated from the pool of circulating T cells. This process occurs largely in the thymic medulla where the strength of affinity between TCR and self-peptide MHC complexes is the factor determining thymocyte fate. Thus, the display of self-antigens in the thymus by thymic antigen presenting cells, which are comprised of medullary thymic epithelial (mTECs) and dendritic cells (DCs), is fundamental for the establishment of T cell central tolerance. Whereas mTECs produce and present antigens in a direct, self-autonomous manner, thymic DCs can acquire these mTEC-derived antigens by cooperative antigen transfer (CAT), and thus present them indirectly. While the basic characteristics for both direct and indirect presentation of self-antigens are currently known, recent reports that describe the heterogeneity of mTEC and DC subsets, their presentation capacity, and the potentially non-redundant roles in T cell selection processes represents another level of complexity which we are attempting to unravel. In this review, we underscore the seminal studies relevant to these topics with an emphasis on new observations pertinent to the mechanism of CAT and its cellular trajectories underpinning the preferential distribution of thymic epithelial cell-derived self-antigens to specific subsets of DC. Identification of molecular determinants which control CAT would significantly advance our understanding of how the cellularly targeted presentation of thymic self-antigens is functionally coupled to the T cell selection process.
Collapse
Affiliation(s)
| | | | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
16
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Jing Y, Kong Y, McGinty J, Blahnik-Fagan G, Lee T, Orozco-Figueroa S, Bettini ML, James EA, Bettini M. T-Cell Receptor/HLA Humanized Mice Reveal Reduced Tolerance and Increased Immunogenicity of Posttranslationally Modified GAD65 Epitope. Diabetes 2022; 71:1012-1022. [PMID: 35179565 PMCID: PMC9044133 DOI: 10.2337/db21-0993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Accumulating evidence supports a critical role for posttranslationally modified (PTM) islet neoantigens in type 1 diabetes. However, our understanding regarding thymic development and peripheral activation of PTM autoantigen-reactive T cells is still limited. Using HLA-DR4 humanized mice, we observed that deamidation of GAD65115-127 generates a more immunogenic epitope that recruits T cells with promiscuous recognition of both the deamidated and native epitopes and reduced frequency of regulatory T cells. Using humanized HLA/T-cell receptor (TCR) mice, we observed that TCRs reactive to the native or deamidated GAD65115-127 led to efficient development of CD4+ effector T cells; however, regulatory T-cell development was reduced in mice expressing the PTM-reactive TCR, which was partially restored with exogenous PTM peptide. Upon priming, both the native-specific and the deamidated-specific T cells accumulated in pancreatic islets, suggesting that both specificities can recognize endogenous GAD65 and contribute to anti-β-cell responses. Collectively, our observations in polyclonal and single TCR systems suggest that while effector T-cell responses can exhibit cross-reactivity between native and deamidated GAD65 epitopes, regulatory T-cell development is reduced in response to the deamidated epitope, pointing to regulatory T-cell development as a key mechanism for loss of tolerance to PTM antigenic targets.
Collapse
Affiliation(s)
- Yi Jing
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Yuelin Kong
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - John McGinty
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | | | - Thomas Lee
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Stephanie Orozco-Figueroa
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L. Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
- Corresponding author: Maria Bettini,
| |
Collapse
|
18
|
Abstract
A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France;
| |
Collapse
|
19
|
Wang H, Zúñiga-Pflücker JC. Thymic Microenvironment: Interactions Between Innate Immune Cells and Developing Thymocytes. Front Immunol 2022; 13:885280. [PMID: 35464404 PMCID: PMC9024034 DOI: 10.3389/fimmu.2022.885280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
The thymus is a crucial organ for the development of T cells. T cell progenitors first migrate from the bone marrow into the thymus. During the journey to become a mature T cell, progenitors require interactions with many different cell types within the thymic microenvironment, such as stromal cells, which include epithelial, mesenchymal and other non-T-lineage immune cells. There are two crucial decision steps that are required for generating mature T cells: positive and negative selection. Each of these two processes needs to be performed efficiently to produce functional MHC-restricted T cells, while simultaneously restricting the production of auto-reactive T cells. In each step, there are various cell types that are required for the process to be carried out suitably, such as scavengers to clean up apoptotic thymocytes that fail positive or negative selection, and antigen presenting cells to display self-antigens during positive and negative selection. In this review, we will focus on thymic non-T-lineage immune cells, particularly dendritic cells and macrophages, and the role they play in positive and negative selection. We will also examine recent advances in the understanding of their participation in thymus homeostasis and T cell development. This review will provide a perspective on how the thymic microenvironment contributes to thymocyte differentiation and T cell maturation.
Collapse
Affiliation(s)
- Helen Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
20
|
Michaels Lopez V, Legrand A, Tejerina E, Megret J, Bordin C, Quellec V, Ezine S. Intrathymic SIRPa cDC subsets organization in normal and stress conditions reveal another level of cDCs heterogeneity. J Leukoc Biol 2022; 112:629-639. [DOI: 10.1002/jlb.1a0921-502rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Agnès Legrand
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Jérome Megret
- Structure Fédérative de Recherche Necker Paris France
| | - Chantal Bordin
- Institut Necker Enfants Malades, Université de Paris Paris France
| | | | - Sophie Ezine
- Institut Necker Enfants Malades, Université de Paris Paris France
| |
Collapse
|
21
|
Vobořil M, Březina J, Brabec T, Dobeš J, Ballek O, Dobešová M, Manning J, Blumberg RS, Filipp D. A model of preferential pairing between epithelial and dendritic cells in thymic antigen transfer. eLife 2022; 11:71578. [PMID: 35099391 PMCID: PMC8803313 DOI: 10.7554/elife.71578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.
Collapse
Affiliation(s)
- Matouš Vobořil
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Březina
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Charles University, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Brabec
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Dobeš
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Charles University, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Ballek
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Dobešová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
22
|
Dong M, Chang J, Lebel MÈ, Gervais N, Fournier M, Mallet Gauthier È, Suh WK, Melichar HJ. The ICOS-ICOSL pathway tunes thymic selection. Immunol Cell Biol 2021; 100:205-217. [PMID: 34962663 PMCID: PMC9304562 DOI: 10.1111/imcb.12520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Negative selection of developing T cells plays a significant role in T cell tolerance to self-antigen. This process relies on thymic antigen presenting cells which express both self-antigens as well as co-signaling molecules. Inducible T cell costimulator (ICOS) belongs to the CD28 family of co-signaling molecules and binds to ICOS ligand (ICOSL). The ICOS signaling pathway plays important roles in shaping the immune response to infections, but its role in central tolerance is less well understood. Here we show that ICOSL is expressed by subsets of thymic dendritic cells and medullary thymic epithelial cells as well as thymic B cells. ICOS expression is upregulated as T cells mature in the thymus and correlates with T cell receptor signal strength during thymic selection. We also provide evidence of a role for ICOS signaling in mediating negative selection. Our findings suggest that ICOS may fine-tune T cell receptor signals during thymic selection contributing to the generation of a tolerant T cell population.
Collapse
Affiliation(s)
- Mengqi Dong
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Jinsam Chang
- Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Noémie Gervais
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Ève Mallet Gauthier
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada
| | - Woong-Kyung Suh
- Département de microbiologie, Université de Montréal, infectiologie et immunologie, Montréal, Québec, H3T 1J4, Canada.,Institut de recherches cliniques de Montréal, Montréal, Québec, H2W 1R7, Canada.,Programme de biologie moléculaire, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, H1T 2M4, Canada.,Département de médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
23
|
Herppich S, Beckstette M, Huehn J. The thymic microenvironment gradually modulates the phenotype of thymus-homing peripheral conventional dendritic cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:175-188. [PMID: 34748687 PMCID: PMC8767516 DOI: 10.1002/iid3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Background & Aims Thymic conventional dendritic cells (t‑DCs) are crucial for the development of T cells. A substantial fraction of t‑DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self‑reactive thymocytes and the generation of regulatory T (Treg) cells. So far, it is only incompletely understood which impact the thymic microenvironment has on thymus‑homing conventional DCs (cDCs), which phenotypic changes occur after the entry of peripheral cDCs into the thymus and which functional properties these modulated cells acquire. Materials & Methods In the present study, we mimicked the thymus‑homing of peripheral cDCs by introducing ex vivo isolated splenic cDCs (sp‑DCs) into reaggregated thymic organ cultures (RTOCs). Results Already after two days of culture, the transcriptomic profile of sp‑DCs was modulated and had acquired certain key signatures of t‑DCs. The regulated genes included immunomodulatory cytokines and chemokines as well as costimulatory molecules. After four days of culture, sp‑DCs appeared to have at least partially acquired the peculiar Treg cell‐inducing capacity characteristic of t‑DCs. Discussion & Conclusion Taken together, our findings indicate that peripheral cDCs possess a high degree of plasticity enabling them to quickly adapt to the thymus‐specific microenvironment. We further provide indirect evidence that thymus‐specific properties such as the efficient induction of Treg cells under homeostatic conditions can be partially transferred to thymus‑homing peripheral cDC subsets.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
24
|
Vollmann EH, Rattay K, Barreiro O, Thiriot A, Fuhlbrigge RA, Vrbanac V, Kim KW, Jung S, Tager AM, von Andrian UH. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat Commun 2021; 12:6230. [PMID: 34711828 PMCID: PMC8553756 DOI: 10.1038/s41467-021-26446-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi. This pathway depends on a subset of thymus-resident DCs, distinct from both parenchymal and circulating migratory DCs, that are positioned in immediate proximity to thymic microvessels where they extend cellular processes across the endothelial barrier into the blood stream. Transendothelial positioning of DCs depends on DC-expressed CX3CR1 and its endothelial ligand, CX3CL1, and disrupting this chemokine pathway prevents thymic acquisition of circulating proteins and compromises negative selection of Ag-reactive thymocytes. Thus, transendothelial DCs represent a mechanism by which the thymus can actively acquire blood-borne Ags to induce and maintain central tolerance.
Collapse
Affiliation(s)
- Elisabeth H Vollmann
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Merck Research Laboratories, Boston, MA, 02115, USA
| | - Kristin Rattay
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, Marburg, Germany
| | - Olga Barreiro
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Aude Thiriot
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca A Fuhlbrigge
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Vladimir Vrbanac
- Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Humanized Immune System Mouse Program (HISMP), Boston, MA, 02114, USA
| | - Ki-Wook Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ulrich H von Andrian
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Wu H, Li X, Zhou C, Yu Q, Ge S, Pan Z, Zhao Y, Xia S, Zhou X, Liu X, Wang H, Shao Q. Circulating mature dendritic cells homing to the thymus promote thymic epithelial cells involution via the Jagged1/Notch3 axis. Cell Death Discov 2021; 7:225. [PMID: 34462426 PMCID: PMC8404188 DOI: 10.1038/s41420-021-00619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Multiple proinflammatory conditions, including chemotherapy, radiotherapy, transplant rejection, and microbial infections, have been identified to induce involution of the thymus. However, the underlying cellular and molecular mechanisms of these inflammatory conditions inducing apoptosis of thymic epithelial cells (TECs), the main components of the thymus, remain largely unknown. In the circulation, mature dendritic cells (mDCs), the predominant initiator of innate and adaptive immune response, can migrate into the thymus. Herein, we demonstrated that mDCs were able to directly inhibit TECs proliferation and induce their apoptosis by activating the Jagged1/Notch3 signaling pathway. Intrathymic injection of either mDCs or recombinant mouse Jagged1-human Fc fusion protein (rmJagged1-hFc) into mice resulted in acute atrophy of the thymus. Furthermore, DAPT, a γ-secretase inhibitor, reversed the effects induced by mDC or rmJagged1-hFc. These findings suggest that acute or aging-related thymus degeneration can be induced either by mass migration of circulating mDCs in a short period of time or by a few but constantly homing mDCs.
Collapse
Affiliation(s)
- Haojie Wu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xiaohan Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Chen Zhou
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Qihong Yu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Shiyao Ge
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zihui Pan
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Sheng Xia
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xiaoming Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xia Liu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, 223002, Jiangsu, P. R. China.
| |
Collapse
|
26
|
Corcos N, Culina S, Deligne C, Lavaud C, You S, Mallone R. Oral Fc-Coupled Preproinsulin Achieves Systemic and Thymic Delivery Through the Neonatal Fc Receptor and Partially Delays Autoimmune Diabetes. Front Immunol 2021; 12:616215. [PMID: 34447366 PMCID: PMC8382691 DOI: 10.3389/fimmu.2021.616215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Tolerogenic vaccinations using beta-cell antigens are attractive for type 1 diabetes prevention, but clinical trials have been disappointing. This is probably due to the late timing of intervention, when multiple auto-antibodies are already present. We therefore devised a strategy to introduce the initiating antigen preproinsulin (PPI) during neonatal life, when autoimmunity is still silent and central tolerance mechanisms, which remain therapeutically unexploited, are more active. This strategy employs an oral administration of PPI-Fc, i.e. PPI fused with an IgG Fc to bind the intestinal neonatal Fc receptor (FcRn) that physiologically delivers maternal antibodies to the offspring during breastfeeding. Neonatal oral PPI-Fc vaccination did not prevent diabetes development in PPI T-cell receptor-transgenic G9C8.NOD mice. However, PPI-Fc was efficiently transferred through the intestinal epithelium in an Fc- and FcRn-dependent manner, was taken up by antigen presenting cells, and reached the spleen and thymus. Although not statistically significant, neonatal oral PPI-Fc vaccination delayed diabetes onset in polyclonal Ins2-/-.NOD mice that spontaneously develop accelerated diabetes. Thus, this strategy shows promise in terms of systemic and thymic antigen delivery via the intestinal FcRn pathway, but the current PPI-Fc formulation/regimen requires further improvements to achieve diabetes prevention.
Collapse
Affiliation(s)
- Noémie Corcos
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Slobodan Culina
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Claire Deligne
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Cassandra Lavaud
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| |
Collapse
|
27
|
Lutz MB, Backer RA, Clausen BE. Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages. THE JOURNAL OF IMMUNOLOGY 2021; 206:1681-1689. [PMID: 33820829 DOI: 10.4049/jimmunol.2001315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The original concept stated that immature dendritic cells (DC) act tolerogenically whereas mature DC behave strictly immunogenically. Meanwhile, it is also accepted that phenotypically mature stages of all conventional DC subsets can promote tolerance as steady-state migratory DC by transporting self-antigens to lymph nodes to exert unique functions on regulatory T cells. We propose that in vivo 1) there is little evidence for a tolerogenic function of immature DC during steady state such as CD4 T cell anergy induction, 2) all tolerance as steady-state migratory DC undergo common as well as subset-specific molecular changes, and 3) these changes differ by quantitative and qualitative markers from immunogenic DC, which allows one to clearly distinguish tolerogenic from immunogenic migratory DC.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, 97070 Würzburg, Germany; and
| | - Ronald A Backer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| |
Collapse
|
28
|
Borelli A, Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell Death Differ 2021; 28:2305-2314. [PMID: 34290396 PMCID: PMC8329281 DOI: 10.1038/s41418-021-00834-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/31/2023] Open
Abstract
The members of the Tumor Necrosis Factor (TNF) superfamily, the ligand lymphotoxin α1β2 (LTα1β2) and its unique receptor lymphotoxin β receptor (LTβR), play a pivotal role in the establishment and regulation of the immune system by allowing a tight communication between lymphocytes and stromal cells. Recent advances using transgenic mice harboring a specific deletion of the Ltbr gene in distinct stromal cells have revealed important roles for LTβR signaling in the thymic function that ensures the generation of a diverse and self-tolerant T-cell repertoire. In this review, we summarize our current knowledge on this signaling axis in the thymic homing of lymphoid progenitors and peripheral antigen-presenting cells, the trafficking and egress of thymocytes, the differentiation of medullary thymic epithelial cells, and the establishment of central tolerance. We also highlight the importance of LTα1β2/LTβR axis in controlling the recovery of the thymic function after myeloablative conditioning regimen, opening novel perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexia Borelli
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
29
|
Lee ST, Georgiev H, Breed ER, Ruscher R, Hogquist KA. MHC Class I on murine hematopoietic APC selects Type A IEL precursors in the thymus. Eur J Immunol 2021; 51:1080-1088. [PMID: 33521937 PMCID: PMC9846822 DOI: 10.1002/eji.202048996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
TCRαβ+ CD8α+ CD8β- intestinal intraepithelial lymphocytes (CD8αα IEL) are gut T cells that maintain barrier surface homeostasis. Most CD8αα IEL are derived from thymic precursors (IELp) through a mechanism referred to as clonal diversion. In this model, self-reactive thymocytes undergo deletion in the presence of CD28 costimulation, but in its absence undergo diversion to the IEL fate. While previous reports showed that IELp were largely β2m dependent, the APC that drive the development of these cells are poorly defined. We found that both CD80 and CD86 restrain IELp development, and conventional DCs play a prominent role. We sought to define a CD80/86 negative, MHCI positive APC that supports the development to the IEL lineage. Chimera studies showed that MHCI needs to be expressed on hematopoietic APC for selection. As thymic hematopoietic APC are heterogeneous in their expression of MHCI and costimulatory molecules, we identified four thymic APC types that were CD80/86neg/low and MHCI+ . However, selective depletion of β2m in individual APC suggested functional redundancy. Thus, while hematopoietic APC play a critical role in clonal diversion, no single APC subset is specialized to promote the CD8αα IEL fate.
Collapse
Affiliation(s)
| | | | | | - Roland Ruscher
- Corresponding authors: Kristin Hogquist, , Roland Ruscher,
| | | |
Collapse
|
30
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
31
|
Abstract
T cell-mediated immune tolerance is a state of unresponsiveness of T cells towards specific self or non-self antigens. This is particularly essential during prenatal/neonatal period when T cells are exposed to dramatically changing environment and required to avoid rejection of maternal antigens, limit autoimmune responses, tolerate inert environmental and food antigens and antigens from non-harmful commensal microorganisms, promote maturation of mucosal barrier function, yet mount an appropriate response to pathogenic microorganisms. The cell-intrinsic and cell extrinsic mechanisms promote the generation of prenatal/neonatal T cells with distinct features to meet the complex and dynamic need of tolerance during this period. Reduced exposure or impaired tolerance in early life may have significant impact on allergic or autoimmune diseases in adult life. The uniqueness of conventional and regulatory T cells in human umbilical cord blood (UCB) may also provide certain advantages in UCB transplantation for hematological disorders.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
32
|
Guha I, Bhuniya A, Shukla D, Patidar A, Nandi P, Saha A, Dasgupta S, Ganguly N, Ghosh S, Nair A, Majumdar S, Saha B, Storkus WJ, Baral R, Bose A. Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Front Immunol 2020; 11:898. [PMID: 32582141 PMCID: PMC7292239 DOI: 10.3389/fimmu.2020.00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor progression in the host leads to severe impairment of intrathymic T-cell differentiation/maturation, leading to the paralysis of cellular anti-tumor immunity. Such suppression manifests the erosion of CD4+CD8+ double-positive (DP) immature thymocytes and a gradual increase in CD4-CD8- double negative (DN) early T-cell progenitors. The impact of such changes on the T-cell progenitor pool in the context of cancer remains poorly investigated. Here, we show that tumor progression blocks the transition of Lin-Thy1.2+CD25+CD44+c-KitlowDN2b to Lin-Thy1.2+CD25+CD44-c-Kit-DN3 in T-cell maturation, instead leading to DN2-T-cell differentiation into dendritic cells (DC). We observed that thymic IL-10 expression is upregulated, particularly at cortico-medullary junctions (CMJ), under conditions of progressive disease, resulting in the termination of IL-10Rhigh DN2-T-cell maturation due to dysregulated expression of Notch1 and its target, CCR7 (thus restricting these cells to the CMJ). Intrathymic differentiation of T-cell precursors in IL-10-/- mice and in vitro fetal thymic organ cultures revealed that IL-10 promotes the interaction between thymic stromal cells and Notch1low DN2-T cells, thus facilitating these DN2-T cells to differentiate toward CD45+CD11c+MHC-II+ thymic DCs as a consequence of activating the Ikaros/IRF8 signaling axis. We conclude that a novel function of thymically-expressed IL-10 in the tumor-bearing host diverts T-cell differentiation toward a DC pathway, thus limiting the protective adaptive immune repertoire.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Divanshu Shukla
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Ashok Patidar
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Arathi Nair
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Bhaskar Saha
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
33
|
Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nat Commun 2020; 11:2361. [PMID: 32398640 PMCID: PMC7217920 DOI: 10.1038/s41467-020-16081-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
The development of thymic regulatory T cells (Treg) is mediated by Aire-regulated self-antigen presentation on medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), but the cooperation between these cells is still poorly understood. Here we show that signaling through Toll-like receptors (TLR) expressed on mTECs regulates the production of specific chemokines and other genes associated with post-Aire mTEC development. Using single-cell RNA-sequencing, we identify a new thymic CD14+Sirpα+ population of monocyte-derived dendritic cells (CD14+moDC) that are enriched in the thymic medulla and effectively acquire mTEC-derived antigens in response to the above chemokines. Consistently, the cellularity of CD14+moDC is diminished in mice with MyD88-deficient TECs, in which the frequency and functionality of thymic CD25+Foxp3+ Tregs are decreased, leading to aggravated mouse experimental colitis. Thus, our findings describe a TLR-dependent function of mTECs for the recruitment of CD14+moDC, the generation of Tregs, and thereby the establishment of central tolerance. Immune tolerance is mediated by the deletion of autoreactive T cells via medullary thymic epithelial cells (mTEC) and dendritic cells (DC), and by the induction of regulatory T cells (Treg). Here the authors show that mTEC receiving toll-like receptor signaling control the recruitment of CD14+Sirpα+ DC population that is capable of inducing Treg for establishing tolerance.
Collapse
|
34
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
35
|
Intestinal microbes influence development of thymic lymphocytes in early life. Proc Natl Acad Sci U S A 2020; 117:2570-2578. [PMID: 31964813 DOI: 10.1073/pnas.1915047117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The thymus generates cells of the T cell lineage that seed the lymphatic and blood systems. Transcription factor regulatory networks control the lineage programming and maturation of thymic precursor cells. Whether extrathymic antigenic events, such as the microbial colonization of the mucosal tract also shape the thymic T cell repertoire is unclear. We show here that intestinal microbes influence the thymic homeostasis of PLZF-expressing cells in early life. Impaired thymic development of PLZF+ innate lymphocytes in germ-free (GF) neonatal mice is restored by colonization with a human commensal, Bacteroides fragilis, but not with a polysaccharide A (PSA) deficient isogenic strain. Plasmacytoid dendritic cells influenced by microbes migrate from the colon to the thymus in early life to regulate PLZF+ cell homeostasis. Importantly, perturbations in thymic PLZF+ cells brought about by alterations in early gut microbiota persist into adulthood and are associated with increased susceptibility to experimental colitis. Our studies identify a pathway of communication between intestinal microbes and thymic lymphocytes in the neonatal period that can modulate host susceptibility to immune-mediated diseases later in life.
Collapse
|
36
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
37
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
38
|
Aoki M, Wartenberg P, Grünewald R, Phillipps HR, Wyatt A, Grattan DR, Boehm U. Widespread Cell-Specific Prolactin Receptor Expression in Multiple Murine Organs. Endocrinology 2019; 160:2587-2599. [PMID: 31373638 DOI: 10.1210/en.2019-00234] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
The prolactin receptor (Prlr) mediates not only the multiple effects of prolactin, but also those of the placental lactogens and, in humans, some actions of growth hormone. Although Prlr expression has been reported to be widespread in the body, specific cellular expression patterns within tissues are undefined for many organs. One persisting problem in investigating Prlr function is that the protein is difficult to detect using conventional methods. To allow investigation of Prlr expression with a single cell resolution, we have recently developed a knock-in mouse strain in which Cre recombinase is expressed together with the long isoform of the Prlr using an internal ribosome entry site. When crossed to a Cre-dependent reporter mouse strain, Cre-mediated recombination will genetically label cells that acutely express the Prlr as well as cells that have transiently expressed the Prlr during development. We report here the anatomical distribution of cells which express the fluorescent reporter τ green fluorescent protein in a total of 38 organs prepared from young adult male and female Prlr reporter mice. Our results establish a resource for dissecting the functional role of Prlr in multiple murine tissues.
Collapse
Affiliation(s)
- Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
39
|
Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2031-2041. [PMID: 31591259 PMCID: PMC6910132 DOI: 10.4049/jimmunol.1900662] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Development of a comprehensive regulatory T (Treg) cell compartment in the thymus is required to maintain immune homeostasis and prevent autoimmunity. In this study, we review cellular and molecular determinants of Treg cell development in the thymus. We focus on the evidence for a self-antigen-focused Treg cell repertoire as well as the APCs responsible for presenting self-antigens to developing thymocytes. We also cover the contribution of different cytokines to thymic Treg development and the cellular populations that produce these cytokines. Finally, we update the originally proposed "two-step" model of thymic Treg differentiation by incorporating new evidence demonstrating that Treg cells develop from two Treg progenitor populations and discuss the functional importance of Treg cells generated via either progenitor pathway.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Louisa E Sjaastad
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
40
|
Andreas N, Potthast M, Geiselhöringer AL, Garg G, de Jong R, Riewaldt J, Russkamp D, Riemann M, Girard JP, Blank S, Kretschmer K, Schmidt-Weber C, Korn T, Weih F, Ohnmacht C. RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2602-2613. [PMID: 31578269 DOI: 10.4049/jimmunol.1801530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Maria Potthast
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna-Lena Geiselhöringer
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Garima Garg
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Renske de Jong
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Dennis Russkamp
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structural, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Blank
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Carsten Schmidt-Weber
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany.,German Center for Lung Disease, 35392 Giessen, Germany; and
| | - Thomas Korn
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Caspar Ohnmacht
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| |
Collapse
|
41
|
Gabrielsen ISM, Helgeland H, Akselsen H, D. Aass HC, Sundaram AYM, Snowhite IV, Pugliese A, Flåm ST, Lie BA. Transcriptomes of antigen presenting cells in human thymus. PLoS One 2019; 14:e0218858. [PMID: 31261375 PMCID: PMC6602790 DOI: 10.1371/journal.pone.0218858] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Antigen presenting cells (APCs) in the thymus play an essential role in the establishment of central tolerance, i.e. the generation of a repertoire of functional and self-tolerant T cells to prevent autoimmunity. In this study, we have compared the transcriptomes of four primary APCs from human thymus (mTECs, CD19+ B cells, CD141+ and CD123+ DCs). We investigated a set of genes including the HLA genes, genes encoding transcriptional regulators and finally, tissue-enriched genes, i.e, genes with a five-fold higher expression in a particular human tissue. We show that thymic CD141+ DCs express the highest levels of all classical HLA genes and 67% (14/21) of the HLA class I and II pathway genes investigated in this study. CD141+ DCs also expressed the highest levels of the transcriptional regulator DEAF1, whereas AIRE and FEZF2 expression were mainly found in primary human mTECs. We found expression of "tissue enriched genes" from the Human Protein Atlas (HPA) in all four APC types, but the mTECs were clearly dominating in the number of uniquely expressed tissue enriched genes (20% in mTECs, 7% in CD19+ B cells, 4% in CD123+ DCs and 2% in CD141+ DCs). The tissue enriched genes also overlapped with reported human autoantigens. This is, to our knowledge, the first study that performs RNA sequencing of mTECs, CD19+ B cells, CD141+ and CD123+ DCs isolated from the same individuals and provides insight into the transcriptomes of these human thymic APCs.
Collapse
Affiliation(s)
- Ingvild S. M. Gabrielsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Hanna Helgeland
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Helle Akselsen
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hans Christian D. Aass
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Isaac V. Snowhite
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Siri T. Flåm
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Benedicte A. Lie
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
42
|
A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3 + T reg cell development. Nat Immunol 2019; 20:1046-1058. [PMID: 31209405 DOI: 10.1038/s41590-019-0414-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The neonatal thymus generates Foxp3+ regulatory T (tTreg) cells that are critical in controlling immune homeostasis and preventing multiorgan autoimmunity. The role of antigen specificity on neonatal tTreg cell selection is unresolved. Here we identify 17 self-peptides recognized by neonatal tTreg cells, and reveal ligand specificity patterns that include self-antigens presented in an age- and inflammation-dependent manner. Fate-mapping studies of neonatal peptidyl arginine deiminase type IV (Padi4)-specific thymocytes reveal disparate fate choices. Neonatal thymocytes expressing T cell receptors that engage IAb-Padi4 with moderate dwell times within a conventional docking orientation are exported as tTreg cells. In contrast, Padi4-specific T cell receptors with short dwell times are expressed on CD4+ T cells, while long dwell times induce negative selection. Temporally, Padi4-specific thymocytes are subject to a developmental stage-specific change in negative selection, which precludes tTreg cell development. Thus, a temporal switch in negative selection and ligand binding kinetics constrains the neonatal tTreg selection window.
Collapse
|
43
|
Lancaster JN, Thyagarajan HM, Srinivasan J, Li Y, Hu Z, Ehrlich LIR. Live-cell imaging reveals the relative contributions of antigen-presenting cell subsets to thymic central tolerance. Nat Commun 2019; 10:2220. [PMID: 31101805 PMCID: PMC6525199 DOI: 10.1038/s41467-019-09727-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Both medullary thymic epithelial cells (mTEC) and dendritic cells (DC) present tissue-restricted antigens (TRA) to thymocytes to induce central tolerance, but the relative contributions of these antigen-presenting cell (APC) subsets remain unresolved. Here we developed a two-photon microscopy approach to observe thymocytes interacting with intact APCs presenting TRAs. We find that mTECs and DCs cooperate extensively to induce tolerance, with their relative contributions regulated by the cellular form of the TRA and the class of major histocompatibility complex (MHC) on which antigen is presented. Even when TRA expression is restricted to mTECs, DCs still present self-antigens at least as frequently as mTECs. Notably, the DC subset cDC2 efficiently acquires secreted mTEC-derived TRAs for cross-presentation on MHC-I. By directly imaging interactions between thymocytes and APCs, while monitoring intracellular signaling, this study reveals that distinct DC subsets and AIRE+ mTECs contribute substantially to presentation of diverse self-antigens for establishing central tolerance.
Collapse
Affiliation(s)
- J N Lancaster
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - H M Thyagarajan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - J Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - Y Li
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - Z Hu
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA
| | - L I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, 100 E. 24th Street A5000, Austin, TX, 78712, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
44
|
LKB1 expressed in dendritic cells governs the development and expansion of thymus-derived regulatory T cells. Cell Res 2019; 29:406-419. [PMID: 30940876 DOI: 10.1038/s41422-019-0161-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/08/2019] [Indexed: 01/06/2023] Open
Abstract
Liver Kinase B1 (LKB1) plays a key role in cellular metabolism by controlling AMPK activation. However, its function in dendritic cell (DC) biology has not been addressed. Here, we find that LKB1 functions as a critical brake on DC immunogenicity, and when lost, leads to reduced mitochondrial fitness and increased maturation, migration, and T cell priming of peripheral DCs. Concurrently, loss of LKB1 in DCs enhances their capacity to promote output of regulatory T cells (Tregs) from the thymus, which dominates the outcome of peripheral immune responses, as suggested by increased resistance to asthma and higher susceptibility to cancer in CD11cΔLKB1 mice. Mechanistically, we find that loss of LKB1 specifically primes thymic CD11b+ DCs to facilitate thymic Treg development and expansion, which is independent from AMPK signalling, but dependent on mTOR and enhanced phospholipase C β1-driven CD86 expression. Together, our results identify LKB1 as a critical regulator of DC-driven effector T cell and Treg responses both in the periphery and the thymus.
Collapse
|
45
|
Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019; 40:279-291. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
In the thymus, distinct cortex and medulla areas emphasize the division of labor in selection events shaping the αβT cell receptor repertoire. For example, MHC restriction via positive selection is a unique property of epithelial cells in the thymic cortex. Far less clear are the events controlling tolerance induction in the medulla. By acting in concert through multiple roles, including antigen production/presentation and chemokine-mediated control of migration, we propose that medullary epithelium and dendritic cells collectively enable the medulla to balance T cell production with negative selection and Foxp3+ regulatory T cell (Treg) development. We examine here the features of these medullary resident cells and their roles in T cell tolerance, and discuss how imbalance in the thymus can result in loss of T cell tolerance.
Collapse
Affiliation(s)
- Sarah Inglesfield
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK.
| |
Collapse
|
46
|
Santamaria J, Darrigues J, van Meerwijk JP, Romagnoli P. Antigen-presenting cells and T-lymphocytes homing to the thymus shape T cell development. Immunol Lett 2018; 204:9-15. [DOI: 10.1016/j.imlet.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 11/28/2022]
|
47
|
Barik S, Cattin-Roy AN, Miller MM, Ukah TK, Zaghouani H. IL-4 and IL-13 Guide Early Thymic Progenitors To Mature toward Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:2947-2958. [PMID: 30291166 DOI: 10.4049/jimmunol.1701186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Recently we reported that IL-4 and IL-13 signaling in murine early thymic progenitors (ETPs) expressing the heteroreceptor (HR) comprising IL-4 receptor α (IL-4Rα) and IL-13 receptor α 1 (IL-13Rα1) activate STAT6 and inhibit ETP maturation potential toward T cells. In this study, we asked whether IL-4 and IL-13 signaling through the HR mobilizes other STAT molecules to shape ETP fate decision. The findings indicate that HR+ ETPs undergoing cytokine signaling display increased STAT1, but not STAT3, phosphorylation in addition to STAT6 activation. In parallel, the ETPs had a STAT1-dependent heightened expression of IRF-8, a transcription factor essential for development of CD8α+ dendritic cells (DCs). Interestingly, STAT1 phosphorylation and IRF-8 upregulation, which are independent of STAT6 activation, guided ETP maturation toward myeloid cells with a CD8α+ DC phenotype. Furthermore, these CD8α+ DCs display a thymic resident phenotype, as they did not express SIRPα, a molecule presumed to be involved in cell migration. These findings suggest that IL-4 and IL-13 cytokine-induced HR signaling provides a double-edged sword that simultaneously blocks T cell lineage potential but advances myeloid maturation that could impact T cell selection and central tolerance.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
48
|
Barik S, Miller M, Cattin-Roy A, Ukah T, Zaghouani H. A distinct dendritic cell population arises in the thymus of IL-13Rα1-sufficient but not IL-13Rα1-deficient mice. Cell Immunol 2018; 331:130-136. [PMID: 29929727 PMCID: PMC6092245 DOI: 10.1016/j.cellimm.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
Abstract
IL-13 receptor alpha 1 (IL-13Rα1) associates with IL-4Rα to form a functional IL-4Rα/IL-13Rα1 heteroreceptor (HR) through which both IL-4 and IL-13 signal. Recently, HR expression was associated with the development of M2 type macrophages which function as antigen presenting cells (APCs). Herein, we show that a subset of thymic resident dendritic cells (DCs) expressing high CD11b (CD11bhi) and intermediate CD11c (CD11cint) arise in HR-sufficient but not HR-deficient mice. These DCs, which originate from the bone marrow are able to take up Ag from the peritoneum, traffic through the spleen and the lymph nodes and carry it to the thymus. In addition, since the DCs are able to present Ag to T cells, express high levels of the costimulatory molecule CD24, and comprise a CD8α+ subset, it is likely that the cells contribute to T cell development and perhaps negative selection of self-reactive lymphocytes.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| | - Mindy Miller
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| | - Alexis Cattin-Roy
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| | - Tobechukwu Ukah
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA
| | - Habib Zaghouani
- Department of Molecular Microbiology & Immunology, University of Missouri, MO, USA; Department of Child Heath, University of Missouri, MO, USA; Department of Neurology, University of Missouri, MO, USA.
| |
Collapse
|
49
|
Pohar J, Simon Q, Fillatreau S. Antigen-Specificity in the Thymic Development and Peripheral Activity of CD4 +FOXP3 + T Regulatory Cells. Front Immunol 2018; 9:1701. [PMID: 30083162 PMCID: PMC6064734 DOI: 10.3389/fimmu.2018.01701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
CD4+Foxp3+ T regulatory cells (Treg) are essential for the life of the organism, in particular because they protect the host against its own autoaggressive CD4+Foxp3- T lymphocytes (Tconv). Treg distinctively suppress autoaggressive immunity while permitting efficient defense against infectious diseases. This split effect indicates that Treg activity is controlled in an antigen-specific manner. This specificity is achieved first by the formation of the Treg repertoire during their development, and second by their activation in the periphery. This review presents novel information on the antigen-specificity of Treg development in the thymus, and Treg function in the periphery. These aspects have so far remained imprecisely understood due to the lack of knowledge of the actual antigens recognized by Treg during the different steps of their life, so that most previous studies have been performed using artificial antigens. However, recent studies identified some antigens mediating the positive selection of autoreactive Treg in the thymus, and the function of Treg in the periphery in autoimmune and allergic disorders. These investigations emphasized the remarkable specificity of Treg development and function. Indeed, the development of autoreactive Treg in the thymus was found to be mediated by single autoantigens, so that the absence of one antigen led to a dramatic loss of Treg reacting toward that antigen. The specificity of Treg development is important because the constitution of the Treg repertoire, and especially the presence of holes in this repertoire, was found to crucially influence human immunopathology. Indeed, it was found that the development of human immunopathology was permitted by the lack of Treg against the antigens driving the autoimmune or allergic T cell responses rather than by the impairment of Treg activation or function. The specificity of Treg suppression in the periphery is therefore intimately associated with the mechanisms shaping the formation of the Treg repertoire during their development. This novel information refines significantly our understanding of the antigen-specificity of Treg protective function, which is required to envision how these cells distinctively regulate unwanted immune responses as well as for the development of appropriate approaches to optimally harness them therapeutically in autoimmune, malignant, and infectious diseases.
Collapse
Affiliation(s)
- Jelka Pohar
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Quentin Simon
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Simon Fillatreau
- Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
50
|
Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front Immunol 2018; 9:1237. [PMID: 29967605 PMCID: PMC6015883 DOI: 10.3389/fimmu.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is the unique therapeutic modality that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic-SCT, acute graft-versus-host disease (aGVHD) and infectious complications remain the second and third cause of death after disease recurrence. Clinical options to restore immunocompetence after allogeneic-SCT are very limited as studies have raised awareness about the safety with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing on strategies to improve thymic functions and to restore the peripheral niche that have been damaged by alloreactive T cells. In this mini review, we will provide a brief overview about the adverse effects of GVHD on the thymus and the peripheral niche and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will discuss the potential relevance of coordinating our studies on thymic rejuvenation and improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in GVHD patients.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Gabriel Pagé
- Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Intesar Zaid
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Martin Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| |
Collapse
|