1
|
Ke S, Kil H, Roggy C, Shields T, Quinn Z, Quinn AP, Small JM, Towne FD, Brooks AE, Brooks BD. Potential Therapeutic Targets for Combination Antibody Therapy Against Staphylococcus aureus Infections. Antibiotics (Basel) 2024; 13:1046. [PMID: 39596740 PMCID: PMC11591076 DOI: 10.3390/antibiotics13111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Despite the significant advances in antibiotic treatments and therapeutics, Staphylococcus aureus (S. aureus) remains a formidable pathogen, primarily due to its rapid acquisition of antibiotic resistance. Known for its array of virulence factors, including surface proteins that promote adhesion to host tissues, enzymes that break down host barriers, and toxins that contribute to immune evasion and tissue destruction, S. aureus poses a serious health threat. Both the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) classify S. aureus as an ESKAPE pathogen, recognizing it as a critical threat to global health. The increasing prevalence of drug-resistant S. aureus underscores the need for new therapeutic strategies. This review discusses a promising approach that combines monoclonal antibodies targeting multiple S. aureus epitopes, offering synergistic efficacy in treating infections. Such strategies aim to reduce the capacity of the pathogen to develop resistance, presenting a potent adjunct or alternative to conventional antibiotic treatments.
Collapse
Affiliation(s)
- Sharon Ke
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Hyein Kil
- Department of Surgery, Virtua Health, Camden, NJ 08103, USA
| | - Conner Roggy
- Department of Orthopaedic Surgery, Community Memorial Healthcare, Ventura, CA 93003, USA
| | - Ty Shields
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Zachary Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Alyssa P. Quinn
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - James M. Small
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Francina D. Towne
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Amanda E. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| | - Benjamin D. Brooks
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80134, USA
| |
Collapse
|
2
|
Chen X, Missiakas D. Novel Antibody-Based Protection/Therapeutics in Staphylococcus aureus. Annu Rev Microbiol 2024; 78:425-446. [PMID: 39146354 DOI: 10.1146/annurev-micro-041222-024605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Staphylococcus aureus is a commensal of the skin and nares of humans as well as the causative agent of infections associated with significant mortality. The acquisition of antibiotic resistance traits complicates the treatment of such infections and has prompted the development of monoclonal antibodies. The selection of protective antigens is typically guided by studying the natural antibody responses to a pathogen. What happens when the pathogen masks these antigens and subverts adaptive responses, or when the pathogen inhibits or alters the effector functions of antibodies? S. aureus is constantly exposed to its human host and has evolved all these strategies. Here, we review how anti-S. aureus targets have been selected and how antibodies have been engineered to overcome the formidable immune evasive activities of this pathogen. We discuss the prospects of antibody-based therapeutics in the context of disease severity, immune competence, and history of past infections.
Collapse
Affiliation(s)
- Xinhai Chen
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
| | - Dominique Missiakas
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
3
|
Wang Z, Du H, Wan H, Yang J, Wan H. Amygdalin prevents multidrug-resistant Staphylococcus aureus-induced lung epithelial cell injury by regulating inflammation and oxidative stress. PLoS One 2024; 19:e0310253. [PMID: 39283878 PMCID: PMC11404817 DOI: 10.1371/journal.pone.0310253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen that can cause severe bacterial pneumonia. Amygdalin is the main active pharmaceutical ingredient of bitter almond, which has broad-spectrum antibacterial, anti-inflammatory, anti-oxidation and immunomodulatory effects. It is also the main ingredient of Yinhua Pinggan granule, which is commonly used to moisten the lung and relieve cough. However, little is known about the effects of amygdalin on MRSA. In this study, we found that amygdalin exhibited good antimicrobial activity in vitro against MRSA. Amygdalin has a protective effect on MRSA infected cells, and the effect is better when combined with levofloxacin. It also can reduce the adhesion and invasion of MRSA to cells. Amygdalin has anti-inflammatory and antioxidant effects, which can significantly reduce the increase of inflammatory factors and the production of ROS caused by infection. The protective mechanism of amygdalin on cells may be related to inhibiting the expression of NLRP3, ASC and IL-1β pyroptosis pathways. Taken together, our study suggests that amygdalin exerts antibacterial effects by affecting biofilm formation, the expression of virulence factors, and drug resistance genes. Amygdalin combined with levofloxacin has a protective effect on A549 cells infected with MRSA, and the mechanism may be related to the inhibition of inflammatory response, oxidative damage and pyroptosis.
Collapse
Affiliation(s)
- Zhaolei Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haixia Du
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Hangzhou, Zhejiang, PR China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Haitong Wan
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
4
|
Zhang R, Jia Y, Scaffidi SJ, Madsen JJ, Yu W. Signal peptidase SpsB coordinates staphylococcal cell cycle, surface protein septal trafficking and LTA synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608893. [PMID: 39229149 PMCID: PMC11370438 DOI: 10.1101/2024.08.20.608893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Many cell wall anchored surface proteins of Gram-positive bacteria harbor a highly conserved YSIRK/G-S signal peptide (SPYSIRK+), which deposits surface protein precursors at the cell division septum where they are subsequently anchored to septal peptidoglycan. Previously we identified that LtaS-mediated lipoteichoic acid (LTA) synthesis regulates septal trafficking of YSIRK+ proteins in S. aureus. Interestingly, both LtaS and SPYSIRK+ are cleaved by the signal peptidase SpsB, but the biological implications remain unclear. Here we show that SpsB is required for cleaving SPSpA(YSIRK+) of staphylococcal surface protein A (SpA). Depletion of spsB not only diminished SPSpA processing but also abolished SpA septal localization. The mis-localization is attributed to the cleavage activity of SpsB, as an A37P mutation of SPSpA that disrupted SpsB cleavage also abrogated SpA septal localization. Strikingly, depletion of spsB led to aberrant cell morphology, cell cycle arrest and daughter cell separation defects. Localization studies showed that SpsB predominantly localized at the septum of dividing staphylococcal cells. Finally, we show that SpsB spatially regulates LtaS as spsB depletion enriched LtaS at the septum. Collectively, the data suggest a new dual-mechanism model mediated by SpsB: the abundant YSIRK+ proteins are efficiently processed by septal localized SpsB; SpsB cleaves LtaS at the septum, which spatially regulates LtaS activity contributing to YSIRK+ proteins septal trafficking. The study identifies SpsB as a novel and key regulator orchestrating protein secretion, cell cycle and cell envelope biogenesis.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States of America
| | - Yaosheng Jia
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States of America
| | - Salvatore J. Scaffidi
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States of America
| | - Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine; Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33620, United States of America
| | - Wenqi Yu
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33620, United States of America
| |
Collapse
|
5
|
La Guidara C, Adamo R, Sala C, Micoli F. Vaccines and Monoclonal Antibodies as Alternative Strategies to Antibiotics to Fight Antimicrobial Resistance. Int J Mol Sci 2024; 25:5487. [PMID: 38791526 PMCID: PMC11122364 DOI: 10.3390/ijms25105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the most critical threats to global public health in the 21st century, causing a large number of deaths every year in both high-income and low- and middle-income countries. Vaccines and monoclonal antibodies can be exploited to prevent and treat diseases caused by AMR pathogens, thereby reducing antibiotic use and decreasing selective pressure that favors the emergence of resistant strains. Here, differences in the mechanism of action and resistance of vaccines and monoclonal antibodies compared to antibiotics are discussed. The state of the art for vaccine technologies and monoclonal antibodies are reviewed, with a particular focus on approaches validated in clinical studies. By underscoring the scope and limitations of the different emerging technologies, this review points out the complementary of vaccines and monoclonal antibodies in fighting AMR. Gaps in antigen discovery for some pathogens, as well as challenges associated with the clinical development of these therapies against AMR pathogens, are highlighted.
Collapse
Affiliation(s)
- Chiara La Guidara
- Magnetic Resonance Center CERM, University of Florence, 50019 Florence, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Florence, Italy
| | | | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health S.R.L. (GVGH), 53100 Siena, Italy
| |
Collapse
|
6
|
Hajam IA, Liu GY. Linking S. aureus Immune Evasion Mechanisms to Staphylococcal Vaccine Failures. Antibiotics (Basel) 2024; 13:410. [PMID: 38786139 PMCID: PMC11117348 DOI: 10.3390/antibiotics13050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Vaccination arguably remains the only long-term strategy to limit the spread of S. aureus infections and its related antibiotic resistance. To date, however, all staphylococcal vaccines tested in clinical trials have failed. In this review, we propose that the failure of S. aureus vaccines is intricately linked to prior host exposure to S. aureus and the pathogen's capacity to evade adaptive immune defenses. We suggest that non-protective immune imprints created by previous exposure to S. aureus are preferentially recalled by SA vaccines, and IL-10 induced by S. aureus plays a unique role in shaping these non-protective anti-staphylococcal immune responses. We discuss how S. aureus modifies the host immune landscape, which thereby necessitates alternative approaches to develop successful staphylococcal vaccines.
Collapse
Affiliation(s)
- Irshad Ahmed Hajam
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
| | - George Y. Liu
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA;
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
7
|
Mandelli AP, Magri G, Tortoli M, Torricelli S, Laera D, Bagnoli F, Finco O, Bensi G, Brazzoli M, Chiarot E. Vaccination with staphylococcal protein A protects mice against systemic complications of skin infection recurrences. Front Immunol 2024; 15:1355764. [PMID: 38529283 PMCID: PMC10961379 DOI: 10.3389/fimmu.2024.1355764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.
Collapse
Affiliation(s)
| | - Greta Magri
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | - Marco Tortoli
- Animal Resource Center, GlaxoSmithKline, Siena, Italy
| | | | | | - Fabio Bagnoli
- Infectious Disease Research Unit, GlaxoSmithKline, Upper Providence, PA, United States
| | - Oretta Finco
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | | | | | | |
Collapse
|
8
|
Caldera JR, Tsai CM, Trieu D, Gonzalez C, Hajam IA, Du X, Lin B, Liu GY. The characteristics of pre-existing humoral imprint determine efficacy of S. aureus vaccines and support alternative vaccine approaches. Cell Rep Med 2024; 5:101360. [PMID: 38232694 PMCID: PMC10829788 DOI: 10.1016/j.xcrm.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/15/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024]
Abstract
The failure of the Staphylococcus aureus (SA) IsdB vaccine trial can be explained by the recall of non-protective immune imprints from prior SA exposure. Here, we investigate natural human SA humoral imprints to understand their broader impact on SA immunizations. We show that antibody responses against SA cell-wall-associated antigens (CWAs) are non-opsonic, while antibodies against SA toxins are neutralizing. Importantly, the protective characteristics of the antibody imprints accurately predict the failure of corresponding vaccines against CWAs and support vaccination against toxins. In passive immunization platforms, natural anti-SA human antibodies reduce the efficacy of the human monoclonal antibodies suvratoxumab and tefibazumab, consistent with the results of their respective clinical trials. Strikingly, in the absence of specific humoral memory responses, active immunizations are efficacious in both naive and SA-experienced mice. Overall, our study points to a practical and predictive approach to evaluate and develop SA vaccines based on pre-existing humoral imprint characteristics.
Collapse
Affiliation(s)
- J R Caldera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Desmond Trieu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cesia Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Du
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
9
|
Scaffidi SJ, Yu W. Tracking Cell Wall-Anchored Proteins in Gram-Positive Bacteria. Methods Mol Biol 2024; 2727:193-204. [PMID: 37815718 DOI: 10.1007/978-1-0716-3491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cell wall-anchored surface proteins are integral components of Gram-positive bacterial cell envelope and vital for bacterial survival in different environmental niches. To fulfill their functions, surface protein precursors translocate from cytoplasm to bacterial cell surface in three sequential steps: secretion across the cytoplasmic membrane, covalently anchoring to the cell wall precursor lipid II by sortase A, and incorporation of the lipid II-linked precursors into mature cell wall peptidoglycan. Here, we describe a series of immunofluorescence microscopy methods to track the subcellular localization of cell wall-anchored proteins along the sorting pathway. While the protocols are tailored to Staphylococcus aureus, they can be readily adapted to localize cell wall-anchored proteins as well as membrane proteins in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
10
|
Bear A, Locke T, Rowland-Jones S, Pecetta S, Bagnoli F, Darton TC. The immune evasion roles of Staphylococcus aureus protein A and impact on vaccine development. Front Cell Infect Microbiol 2023; 13:1242702. [PMID: 37829608 PMCID: PMC10565657 DOI: 10.3389/fcimb.2023.1242702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
While Staphylococcus aureus (S. aureus) bacteria are part of the human commensal flora, opportunistic invasion following breach of the epithelial layers can lead to a wide array of infection syndromes at both local and distant sites. Despite ubiquitous exposure from early infancy, the life-long risk of opportunistic infection is facilitated by a broad repertoire of S. aureus virulence proteins. These proteins play a key role in inhibiting development of a long-term protective immune response by mechanisms ranging from dysregulation of the complement cascade to the disruption of leukocyte migration. In this review we describe the recent progress made in dissecting S. aureus immune evasion, focusing on the role of the superantigen, staphylococcal protein A (SpA). Evasion of the normal human immune response drives the ability of S. aureus to cause infection, often recurrently, and is also thought to be a major hindrance in the development of effective vaccination strategies. Understanding the role of S. aureus virulence protein and determining methods overcoming or subverting these mechanisms could lead to much-needed breakthroughs in vaccine and monoclonal antibody development.
Collapse
Affiliation(s)
- Alex Bear
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Thomas Locke
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Jiang XY, Gong MQ, Zhang HJ, Peng AQ, Xie Z, Sun D, Liu L, Zhou SQ, Chen H, Yang XF, Song JF, Yu B, Jiang Q, Ma X, Gu J, Yang F, Zeng H, Zou QM. The safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine among patients undergoing elective surgery for closed fractures: A randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial. Vaccine 2023; 41:5562-5571. [PMID: 37516573 DOI: 10.1016/j.vaccine.2023.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Vaccines are urgently required to control Staphylococcus aureus hospital and community infections and reduce the use of antibiotics. Here, we report the safety and immunogenicity of a recombinant five-antigen Staphylococcus aureus vaccine (rFSAV) in patients undergoing elective surgery for closed fractures. METHODS A randomized, double-blind, placebo-controlled, multicenter phase 2 clinical trial was carried out in 10 clinical research centers in China. Patients undergoing elective surgery for closed fractures, aged 18-70 years, were randomly allocated at a ratio of 1:1 to receive the rFSAV or placebo at a regimen of two doses on day 0 and another dose on day 7. All participants and investigators remained blinded during the study period. The safety endpoint was the incidence of adverse events within 180 days. The immunogenicity endpoints included the level of specific antibodies to five antigens after vaccination, as well as opsonophagocytic antibodies. RESULTS A total of 348 eligible participants were randomized to the rFSAV (n = 174) and placebo (n = 174) groups. No grade 3 local adverse events occurred. There was no significant difference in the incidence of overall systemic adverse events between the experimental (40.24 %) and control groups (33.72 %) within 180 days after the first immunization. The antigen-specific binding antibodies started to increase at days 7 and reached their peaks at 10-14 days after the first immunization. The rapid and potent opsonophagocytic antibodies were also substantially above the background levels. CONCLUSIONS rFSAV is safe and well-tolerated in patients undergoing elective surgery for closed fractures. It elicited rapid and robust specific humoral immune responses using the perioperative immunization procedure. These results provide evidence for further clinical trials to confirm the vaccine efficacy. China's Drug Clinical Trials Registration and Information Publicity Platform registration number: CTR20181788. WHO International Clinical Trial Registry Platform identifier: ChiCTR2200066259.
Collapse
Affiliation(s)
- Xie-Yuan Jiang
- Department of Trauma and Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Mao-Qi Gong
- Department of Trauma and Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Hua-Jie Zhang
- DTaP and Toxins Division, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - A-Qin Peng
- Trauma Emergency Center of Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhao Xie
- Orthopedic Department of Southwest Hospital, Army Medical University, Chongqing, China
| | - Dong Sun
- Orthopedic Department of Southwest Hospital, Army Medical University, Chongqing, China
| | - Lie Liu
- Orthopedic Department of the Eighth Affiliated Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China; Orthopedic Department of West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuang-Quan Zhou
- Chinese Osteo-traumatology Department of Shenyang Orthopedic Hospital, Shenyang, Liaoning, China
| | - Hua Chen
- Department of Trauma and Orthopedics of the 2nd School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Fei Yang
- Orthopedic Department of Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jie-Fu Song
- Orthopedic Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, Jiangsu, China
| | - Xiao Ma
- DTaP and Toxins Division, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Jiang Gu
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Feng Yang
- Chengdu Olymvax Biopharmaceuticals Inc., Chengdu, Sichuan, China.
| | - Hao Zeng
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China.
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Bernardino PN, Bhattacharya M, Chen X, Jenkins J, Missiakas D, Thammavongsa V. A humanized monoclonal antibody targeting protein a promotes opsonophagocytosis of Staphylococcus aureus in human umbilical cord blood. Vaccine 2023; 41:5079-5084. [PMID: 37455161 PMCID: PMC10412981 DOI: 10.1016/j.vaccine.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/03/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Low and very-low-birth-weight (V/LBW) neonates are highly susceptible to bacterial sepsis and meningitis. Bacterial infections caused by Staphylococcus aureus can be particularly dangerous for neonates and can result in high mortality and long-term disabilities.Antibody-based strategies have been attempted to protect V/LBW neonates against staphylococcal disease. However, these efforts have so far been unsuccessful. Failures were attributed to the immaturity of the neonatal immune system but did not account for the anti-opsonic activity of Staphylococcal protein A (SpA). Here we show that monoclonal antibody 3F6, which blocks SpA activity, promotes complement-dependent cell-mediated phagocytosis of S. aureus in human umbilical cord blood. A substitution in the crystallizable fragment (Fc) region of 3F6 that enhances recruitment of complement component C1q further increases the phagocytic activity of cord blood. Our data demonstrate that the neonatal immune system possesses bactericidal activity that can be harnessed by antibodies that circumvent a key innate immune strategy of S. aureus.
Collapse
Affiliation(s)
- Paola Nol Bernardino
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL 60439, USA
| | - Mohini Bhattacharya
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL 60439, USA
| | - Xinhai Chen
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL 60439, USA
| | - Julia Jenkins
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL 60439, USA
| | - Dominique Missiakas
- The University of Chicago, Department of Microbiology, Howard Taylor Ricketts Laboratory, Lemont, IL 60439, USA
| | | |
Collapse
|
13
|
Bai X, Wang D, Wang B, Zhang X, Bai Y, Zhang X, Tian R, Li C, Yi Q, Cheng Y, He S. Staphylococcal protein A-modified hydrogel facilitates in situ immunomodulation by capturing anti-HMGB1 for islet grafts. Acta Biomater 2023; 166:95-108. [PMID: 37150280 DOI: 10.1016/j.actbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Islet transplantation is regarded as the most promising therapy for type 1 diabetes. However, both hypoxia and immune attack impair the grafted islets after transplantation, eventually failing the islet graft. Although many studies showed that biomaterials with nanoscale pores, like hydrogels, could protect islets from immune cells, the pores on biomaterials inhibited vascular endothelial cells (VECs) to creep in, which resulted in poor revascularization. Thus, a hydrogel device that can facilitate in situ immune modulations without the cost of poor revascularization should be put forward. Accordingly, we designed a spA-modified hydrogel capturing anti-HMGB1 mAB (mAB-spA Gel): the Staphylococcus aureus protein A (spA) was conjugated on the network of hydrogel to capture anti-HMGB1mAB which can inactivate immune cells, while the pore sizes of the hydrogel were more than 100μm which allows vascular endothelial cells (VECs) to creep in. In this study, we screened the optimal spA concentration in mAB-spA Gel according to the physical properties and antibody binding capability, then demonstrated that it could facilitate in situ immunomodulation without decreasing the vessel reconstruction in vitro. Further, we transplanted islet graft in vivo and showed that the survival of islets was elongated. In conclusion, mAB-spA Gel provided an alternative islet encapsulation strategy for type 1 diabetes. STATEMENT OF SIGNIFICANCE: Although various studies have shown that the backbone of the hydrogels can isolate islets grafts from immune cells and the survival of the islets can be prolonged by this way, it is also reported that when the pore size of the backbone is too small the revascularization will be adversely affected. According to this point, it is hard to adjust hydrogel's pore size to protect the islets from the immune attack while allowing endothelial vascular cells to creep in. To solve this dilemma, we designed an immunomodulatory hydrogel inhibiting the activation of T cells by immunosuppressive IgGs instead of the backbone network, so the hydrogel can prolong the survival of islets without the sacrifice of revascularization.
Collapse
Affiliation(s)
- Xue Bai
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiao Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yan Bai
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiying Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China.
| |
Collapse
|
14
|
Nappi F, Avtaar Singh SS. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int J Mol Sci 2023; 24:11068. [PMID: 37446247 DOI: 10.3390/ijms241311068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococci sp. are the most commonly associated pathogens in infective endocarditis, especially within high-income nations. This along with the increasing burden of healthcare, aging populations, and the protracted infection courses, contribute to a significant challenge for healthcare systems. A systematic review was conducted using relevant search criteria from PubMed, Ovid's version of MEDLINE, and EMBASE, and data were tabulated from randomized controlled trials (RCT), observational cohort studies, meta-analysis, and basic research articles. The review was registered with the OSF register of systematic reviews and followed the PRISMA reporting guidelines. Thirty-five studies met the inclusion criteria and were included in the final systematic review. The role of Staphylococcus aureus and its interaction with the protective shield and host protection functions was identified and highlighted in several studies. The interaction between infective endocarditis pathogens, vascular endothelium, and blood constituents was also explored, giving rise to the potential use of antiplatelets as preventative and/or curative agents. Several factors allow Staphylococcus aureus infections to proliferate within the host with numerous promoting and perpetuating agents. The complex interaction with the hosts' innate immunity also potentiates its virulence. The goal of this study is to attain a better understanding on the molecular pathways involved in infective endocarditis supported by S. aureus and whether therapeutic avenues for the prevention and treatment of IE can be obtained. The use of antibiotic-treated allogeneic tissues have marked antibacterial action, thereby becoming the ideal substitute in native and prosthetic valvular infections. However, the development of effective vaccines against S. aureus still requires in-depth studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | | |
Collapse
|
15
|
Chand U, Priyambada P, Kushawaha PK. Staphylococcus aureus vaccine strategy: Promise and challenges. Microbiol Res 2023; 271:127362. [PMID: 36958134 DOI: 10.1016/j.micres.2023.127362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/21/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading and crucial infectious threat to global public health due to the widespread emergence of antibiotic-resistant strains such as Methicillin-Resistant S. aureus (MRSA). MRSA infects immunocompromised patients and healthy individuals and has rapidly spread from the healthcare setting to the outside community. The development of flawless vaccines become a medical need worldwide against multi-drug resistant S. aureus. Therefore, protection by an immune-based strategy may provide valuable measures to contain the spread of invasive S. aureus infections. Several vaccine candidates have been prepared which are either in the preclinical phase or in the early clinical phase, whereas several candidates have failed to show a protective efficacy in human subjects. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Several approaches have also been made to the development of monoclonal or polyclonal antibodies for passive immunization to protect against S. aureus infections. In recent years, a multi-epitope vaccine has emerged as a novel platform for subunit vaccine design by using computational approaches. Therefore, in this review, we have summarized and discussed the mechanistic overview of different strategies used to develop potential vaccine candidates and passive interventions which are in different stages of clinical trials to fight multi-drug resistant S. aureus infections.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pragnya Priyambada
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
16
|
Schwermann N, Winstel V. Functional diversity of staphylococcal surface proteins at the host-microbe interface. Front Microbiol 2023; 14:1196957. [PMID: 37275142 PMCID: PMC10232760 DOI: 10.3389/fmicb.2023.1196957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
Surface proteins of Gram-positive pathogens are key determinants of virulence that substantially shape host-microbe interactions. Specifically, these proteins mediate host invasion and pathogen transmission, drive the acquisition of heme-iron from hemoproteins, and subvert innate and adaptive immune cell responses to push bacterial survival and pathogenesis in a hostile environment. Herein, we briefly review and highlight the multi-facetted roles of cell wall-anchored proteins of multidrug-resistant Staphylococcus aureus, a common etiological agent of purulent skin and soft tissue infections as well as severe systemic diseases in humans. In particular, we focus on the functional diversity of staphylococcal surface proteins and discuss their impact on the variety of clinical manifestations of S. aureus infections. We also describe mechanistic and underlying principles of staphylococcal surface protein-mediated immune evasion and coupled strategies S. aureus utilizes to paralyze patrolling neutrophils, macrophages, and other immune cells. Ultimately, we provide a systematic overview of novel therapeutic concepts and anti-infective strategies that aim at neutralizing S. aureus surface proteins or sortases, the molecular catalysts of protein anchoring in Gram-positive bacteria.
Collapse
Affiliation(s)
- Nicoletta Schwermann
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Chen X, Gula H, Pius T, Ou C, Gomozkova M, Wang LX, Schneewind O, Missiakas D. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. Proc Natl Acad Sci U S A 2023; 120:e2220765120. [PMID: 36972444 PMCID: PMC10083571 DOI: 10.1073/pnas.2220765120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.
Collapse
Affiliation(s)
- Xinhai Chen
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Haley Gula
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Tonu Pius
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Margaryta Gomozkova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| |
Collapse
|
18
|
Bhoyar S, Foster M, Oh YH, Xu X, Traylor SJ, Guo J, Ghose S, Lenhoff AM. Engineering protein A ligands to mitigate antibody loss during high-pH washes in protein A chromatography. J Chromatogr A 2023; 1696:463962. [PMID: 37043977 DOI: 10.1016/j.chroma.2023.463962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Protein A chromatography is a workhorse in monoclonal antibody (mAb) manufacture since it provides effective separation of mAbs from impurities such as host-cell proteins (HCPs) in a single capture step. HCP clearance can be aided by the inclusion of a wash step prior to low-pH elution. Although high-pH washes can be effective in removing additional HCPs from the loaded column, they may also contribute to a reduced mAb yield. In this work we show that this yield loss is reflected in a pH-dependent variation of the equilibrium binding capacity of the protein A resin, which is also observed for the capacity of the Fc fragments alone and therefore not a result of steric interactions involving the Fab fragments in the intact mAbs. We therefore hypothesized that the high-pH wash loss was due to protonation or deprotonation of ionizable residues on the protein A ligand. To evaluate this, we applied a rational protein engineering approach to the Z domain (the Fc-binding component of most commercial protein A ligands) and expressed engineered mutants in E. coli. Biolayer interferometry and affinity chromatography experiments showed that some of the Z domain mutants were able to mitigate wash loss at high pH while maintaining similar binding characteristics at neutral pH. These experiments enabled elucidation of the roles of specific interactions in the Z domain - Fc complex, but more importantly offer a route to ameliorating the disadvantages of high-pH washes in protein A chromatography.
Collapse
|
19
|
Zhu Z, Goel PN, Zheng C, Nagai Y, Lam L, Samanta A, Ji M, Zhang H, Greene MI. HED, a Human-Engineered Domain, Confers a Unique Fc-Binding Activity to Produce a New Class of Humanized Antibody-like Molecules. Int J Mol Sci 2023; 24:ijms24076477. [PMID: 37047449 PMCID: PMC10094569 DOI: 10.3390/ijms24076477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Our laboratory has identified and developed a unique human-engineered domain (HED) structure that was obtained from the human Alpha-2-macroglobulin receptor-associated protein based on the three-dimensional structure of the Z-domain derived from Staphylococcal protein A. This HED retains µM binding activity to the human IgG1CH2-CH3 elbow region. We determined the crystal structure of HED in association with IgG1’s Fc. This demonstrated that HED preserves the same three-bundle helix structure and Fc-interacting residues as the Z domain. HED was fused to the single chain variable fragment (scFv) of mAb 4D5 to produce an antibody-like protein capable of interacting with the p185Her2/neu ectodomain and the Fc of IgG. When further fused with murine IFN-γ (mIFN-γ) at the carboxy terminus, the novel species exhibited antitumor efficacy in vivo in a mouse model of human breast cancer. The HED is a novel platform for the therapeutic utilization of engineered proteins to alleviate human disease.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peeyush N. Goel
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Cai Zheng
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasuhiro Nagai
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lian Lam
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arabinda Samanta
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meiqing Ji
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongtao Zhang
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: or (H.Z.); or (M.I.G.)
| | - Mark I. Greene
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: or (H.Z.); or (M.I.G.)
| |
Collapse
|
20
|
Neutralization of Staphylococcus aureus Protein A Prevents Exacerbated Osteoclast Activity and Bone Loss during Osteomyelitis. Antimicrob Agents Chemother 2023; 67:e0114022. [PMID: 36533935 PMCID: PMC9872667 DOI: 10.1128/aac.01140-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Osteomyelitis caused by Staphylococcus aureus is an important and current health care problem worldwide. Treatment of this infection frequently fails not only due to the increasing incidence of antimicrobial-resistant isolates but also because of the ability of S. aureus to evade the immune system, adapt to the bone microenvironment, and persist within this tissue for decades. We have previously demonstrated the role of staphylococcal protein A (SpA) in the induction of exacerbated osteoclastogenesis and increased bone matrix degradation during osteomyelitis. The aim of this study was to evaluate the potential of using anti-SpA antibodies as an adjunctive therapy to control inflammation and bone damage. By using an experimental in vivo model of osteomyelitis, we demonstrated that the administration of an anti-SpA antibody by the intraperitoneal route prevented excessive inflammatory responses in the bone upon challenge with S. aureus. Ex vivo assays indicated that blocking SpA reduced the priming of osteoclast precursors and their response to RANKL. Moreover, the neutralization of SpA was able to prevent the differentiation and activation of osteoclasts in vivo, leading to reduced expression levels of cathepsin K, reduced expression of markers associated with abnormal bone formation, and decreased trabecular bone loss during osteomyelitis. Taken together, these results demonstrate the feasibility of using anti-SpA antibodies as an antivirulence adjunctive therapy that may prevent the development of pathological conditions that not only damage the bone but also favor bacterial escape from antimicrobials and the immune system.
Collapse
|
21
|
Sun J, Lin X, He Y, Zhang B, Zhou N, Huang JD. A bacterial outer membrane vesicle-based click vaccine elicits potent immune response against Staphylococcus aureus in mice. Front Immunol 2023; 14:1088501. [PMID: 36742310 PMCID: PMC9892643 DOI: 10.3389/fimmu.2023.1088501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus infection is a severe public health concern with the growing number of multidrug-resistant strains. S. aureus can circumvent the defense mechanisms of host immunity with the aid of multiple virulence factors. An efficacious multicomponent vaccine targeting diverse immune evasion strategies developed by S. aureus is thus crucial for its infection control. In this study, we exploited the SpyCatcher-SpyTag system to engineer bacterial outer membrane vesicles (OMVs) for the development of a multitargeting S. aureus click vaccine. We decorated OMVs with surface exposed SpyCatcher via a truncated OmpA(a.a 1-155)-SpyCatcher fusion. The engineered OMVs can flexibly bind with various SpyTag-fused S. aureus antigens to generate an OMV-based click vaccine. Compared with antigens mixed with alum adjuvant, the click vaccine simultaneously induced more potent antigen-specific humoral and Th1-based cellular immune response, which afforded protection against S. aureus Newman lethal challenge in a mouse model. Our study provided a flexible and versatile click vaccine strategy with the potential for fighting against emerging S. aureus clinical isolates.
Collapse
Affiliation(s)
- Jingjing Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xuansheng Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yige He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Baozhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Nan Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jian-Dong Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Tsai CM, Caldera J, Hajam IA, Liu GY. Toward an effective Staphylococcus vaccine: why have candidates failed and what is the next step? Expert Rev Vaccines 2023; 22:207-209. [PMID: 36765453 PMCID: PMC9972957 DOI: 10.1080/14760584.2023.2179486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Affiliation(s)
- Chih-Ming Tsai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jr Caldera
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Irshad A Hajam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA, USA
| |
Collapse
|
23
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
24
|
Infective Endocarditis in High-Income Countries. Metabolites 2022; 12:metabo12080682. [PMID: 35893249 PMCID: PMC9329978 DOI: 10.3390/metabo12080682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Infective endocarditis remains an illness that carries a significant burden to healthcare resources. In recent times, there has been a shift from Streptococcus sp. to Staphylococcus sp. as the primary organism of interest. This has significant consequences, given the virulence of Staphylococcus and its propensity to form a biofilm, rendering non-surgical therapy ineffective. In addition, antibiotic resistance has affected treatment of this organism. The cohorts at most risk for Staphylococcal endocarditis are elderly patients with multiple comorbidities. The innovation of transcatheter technologies alongside other cardiac interventions such as implantable devices has contributed to the increased risk attributable to this cohort. We examined the pathophysiology of infective endocarditis carefully. Inter alia, the determinants of Staphylococcus aureus virulence, interaction with host immunity, as well as the discovery and emergence of a potential vaccine, were investigated. Furthermore, the potential role of prophylactic antibiotics during dental procedures was also evaluated. As rates of transcatheter device implantation increase, endocarditis is expected to increase, especially in this high-risk group. A high level of suspicion is needed alongside early initiation of therapy and referral to the heart team to improve outcomes.
Collapse
|
25
|
Tsai CM, Hajam IA, Caldera JR, Liu GY. Integrating complex host-pathogen immune environments into S. aureus vaccine studies. Cell Chem Biol 2022; 29:730-740. [PMID: 35594849 DOI: 10.1016/j.chembiol.2022.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Staphylococcus aureus (SA) is a leading cause of bacterial infection and antibiotic resistance globally. Therefore, development of an effective vaccine has been a major goal of the SA field for the past decades. With the wealth of understanding of pathogenesis, the failure of all SA vaccine trials has been a surprise. We argue that experimental SA vaccines have not worked because vaccines have been studied in naive laboratory animals, whereas clinical vaccine efficacy is tested in immune environments reprogrammed by SA. Here, we review the failed SA vaccines that have seemingly defied all principles of vaccinology. We describe major SA evasion strategies and suggest that they reshape the immune environment in a way that makes vaccines prone to failures. We propose that appropriate integration of concepts of host-pathogen interaction into vaccine study designs could lead to insight critical for the development of an effective SA vaccine.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Irshad A Hajam
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - J R Caldera
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - George Y Liu
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Division of Infectious Diseases, Rady Children's Hospital, San Diego, CA 92123, USA.
| |
Collapse
|
26
|
Zhu FC, Zeng H, Li JX, Wang B, Meng FY, Yang F, Gu J, Liang HY, Hu YM, Liu P, Peng LS, Hu XK, Zhuang Y, Fan M, Li HB, Tan ZM, Luo P, Zhang P, Chu K, Zhang JY, Zeng M, Zou QM. Evaluation of a recombinant five-antigen Staphylococcus aureus vaccine: The randomized, single-centre phase 1a/1b clinical trials. Vaccine 2022; 40:3216-3227. [DOI: 10.1016/j.vaccine.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
|
27
|
Boero E, Cruz AR, Pansegrau W, Giovani C, Rooijakkers SHM, van Kessel KPM, van Strijp JAG, Bagnoli F, Manetti AGO. Natural Human Immunity Against Staphylococcal Protein A Relies on Effector Functions Triggered by IgG3. Front Immunol 2022; 13:834711. [PMID: 35359919 PMCID: PMC8963248 DOI: 10.3389/fimmu.2022.834711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcal protein A (SpA) is a multifunctional, highly conserved virulence factor of Staphylococcus aureus. By binding the Fc portion of all human IgG subclasses apart from IgG3, SpA interferes with antibody and complement deposition on the bacterial surface, impairing staphylococcal clearance by phagocytosis. Because of its anti-opsonic properties, SpA is not investigated as a surface antigen to mediate bacterial phagocytosis. Herein we investigate human sera for the presence of SpA-opsonizing antibodies. The screening revealed that sera containing IgG3 against SpA were able to correctly opsonize the target and drive Fcγ receptor-mediated interactions and phagocytosis. We demonstrated that IgG3 Fc is significantly more efficient in inducing phagocytosis of SpA-expressing S. aureus as compared to IgG1 Fc in an assay resembling physiological conditions. Furthermore, we show that the capacity of SpA antibodies to induce phagocytosis depends on the specific epitope recognized by the IgGs on SpA molecules. Overall, our results suggest that anti-SpA IgG3 antibodies could favor the anti-staphylococcal response in humans, paving the way towards the identification of a correlate of protection against staphylococcal infections.
Collapse
Affiliation(s)
- Elena Boero
- GSK, Siena, Italy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ana Rita Cruz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
28
|
Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proc Natl Acad Sci U S A 2022; 119:2114478119. [PMID: 35058363 PMCID: PMC8795526 DOI: 10.1073/pnas.2114478119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus invariably acquires resistance mechanisms against new antibiotics. The persistent colonization with S. aureus is the key risk factor for invasive disease and a driver for the evolution of antibiotic resistant isolates. Anti-S. aureus antibodies that could promote decolonization, prevent infection, or treat disease would alleviate the selection for drug resistance. The successful development of such antibodies is complicated by Staphylococcal protein A (SpA) in the envelope of S. aureus. SpA captures immunoglobulins via their constant region, preventing antibodies from initiating anti-staphylococcal activities. Here, we demonstrate that therapeutic anti-S. aureus antibodies can be engineered to avoid sequestration by SpA. Such antibodies display extended half-lives and improve bacterial uptake and killing by immune cells. Gram-positive organisms with their thick envelope cannot be lysed by complement alone. Nonetheless, antibody-binding on the surface can recruit complement and mark these invaders for uptake and killing by phagocytes, a process known as opsonophagocytosis. The crystallizable fragment of immunoglobulins (Fcγ) is key for complement recruitment. The cell surface of S. aureus is coated with Staphylococcal protein A (SpA). SpA captures the Fcγ domain of IgG and interferes with opsonization by anti-S. aureus antibodies. In principle, the Fcγ domain of therapeutic antibodies could be engineered to avoid the inhibitory activity of SpA. However, the SpA-binding site on Fcγ overlaps with that of the neonatal Fc receptor (FcRn), an interaction that is critical for prolonging the half-life of serum IgG. This evolutionary adaptation poses a challenge for the exploration of Fcγ mutants that can both weaken SpA–IgG interactions and retain stability. Here, we use both wild-type and transgenic human FcRn mice to identify antibodies with enhanced half-life and increased opsonophagocytic killing in models of S. aureus infection and demonstrate that antibody-based immunotherapy can be improved by modifying Fcγ. Our experiments also show that by competing for FcRn-binding, staphylococci effectively reduce the half-life of antibodies during infection. These observations may have profound impact in treating cancer, autoimmune, and asthma patients colonized or infected with S. aureus and undergoing monoclonal antibody treatment.
Collapse
|
29
|
König E, Gagliardi A, Riedmiller I, Andretta C, Tomasi M, Irene C, Frattini L, Zanella I, Berti F, Grandi A, Caproni E, Fantappiè L, Grandi G. Multi-Antigen Outer Membrane Vesicle Engineering to Develop Polyvalent Vaccines: The Staphylococcus aureus Case. Front Immunol 2021; 12:752168. [PMID: 34819933 PMCID: PMC8606680 DOI: 10.3389/fimmu.2021.752168] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Modification of surface antigens and differential expression of virulence factors are frequent strategies pathogens adopt to escape the host immune system. These escape mechanisms make pathogens a "moving target" for our immune system and represent a challenge for the development of vaccines, which require more than one antigen to be efficacious. Therefore, the availability of strategies, which simplify vaccine design, is highly desirable. Bacterial Outer Membrane Vesicles (OMVs) are a promising vaccine platform for their built-in adjuvanticity, ease of purification and flexibility to be engineered with foreign proteins. However, data on if and how OMVs can be engineered with multiple antigens is limited. In this work, we report a multi-antigen expression strategy based on the co-expression of two chimeras, each constituted by head-to-tail fusions of immunogenic proteins, in the same OMV-producing strain. We tested the strategy to develop a vaccine against Staphylococcus aureus, a Gram-positive human pathogen responsible for a large number of community and hospital-acquired diseases. Here we describe an OMV-based vaccine in which four S. aureus virulent factors, ClfAY338A, LukE, SpAKKAA and HlaH35L have been co-expressed in the same OMVs (CLSH-OMVsΔ60). The vaccine elicited antigen-specific antibodies with functional activity, as judged by their capacity to promote opsonophagocytosis and to inhibit Hla-mediated hemolysis, LukED-mediated leukocyte killing, and ClfA-mediated S. aureus binding to fibrinogen. Mice vaccinated with CLSH-OMVsΔ60 were robustly protected from S. aureus challenge in the skin, sepsis and kidney abscess models. This study not only describes a generalized approach to develop easy-to-produce and inexpensive multi-component vaccines, but also proposes a new tetravalent vaccine candidate ready to move to development.
Collapse
Affiliation(s)
- Enrico König
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Ilary Riedmiller
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Chiara Andretta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Tomasi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Carmela Irene
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Luca Frattini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Ilaria Zanella
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Francesco Berti
- Technical Research and Development, GlaxoSmithKline Vaccines, Siena, Italy
| | - Alberto Grandi
- ERC Vaccibiome Unit, Toscana Life Sciences Foundation, Siena, Italy.,Infectious Diseases and Cancer Immunotherapy Unit, BiOMViS Srl, Siena, Italy
| | - Elena Caproni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Laura Fantappiè
- ERC Vaccibiome Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Guido Grandi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
30
|
Deacy AM, Gan SKE, Derrick JP. Superantigen Recognition and Interactions: Functions, Mechanisms and Applications. Front Immunol 2021; 12:731845. [PMID: 34616400 PMCID: PMC8488440 DOI: 10.3389/fimmu.2021.731845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Superantigens are unconventional antigens which recognise immune receptors outside their usual recognition sites e.g. complementary determining regions (CDRs), to elicit a response within the target cell. T-cell superantigens crosslink T-cell receptors and MHC Class II molecules on antigen-presenting cells, leading to lymphocyte recruitment, induction of cytokine storms and T-cell anergy or apoptosis among many other effects. B-cell superantigens, on the other hand, bind immunoglobulins on B-cells, affecting opsonisation, IgG-mediated phagocytosis, and driving apoptosis. Here, through a review of the structural basis for recognition of immune receptors by superantigens, we show that their binding interfaces share specific physicochemical characteristics when compared with other protein-protein interaction complexes. Given that antibody-binding superantigens have been exploited extensively in industrial antibody purification, these observations could facilitate further protein engineering to optimize the use of superantigens in this and other areas of biotechnology.
Collapse
Affiliation(s)
- Anthony M. Deacy
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre – Bioinformatics Institute (EDDC-BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
- James Cook University, Singapore, Singapore
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Campos RMS, Jannuzzi GP, Ikeda MAK, de Almeida SR, Ferreira KS. Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages. Mycopathologia 2021; 186:807-818. [PMID: 34498138 DOI: 10.1007/s11046-021-00585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/10/2021] [Indexed: 12/30/2022]
Abstract
Sporotrichosis is a subcutaneous mycosis and is distributed throughout the world, although most cases belong to endemic regions with a warmer climate such as tropical and subtropical areas. The infection occurs mainly by traumatic inoculation of propagules. Similarly, to other organisms, Sporothrix brasiliensis display many biological features that aid in its ability to infect the host, such as extracellular vesicles, bilayered biological structures that provides communication between host cells and between fungi cells themselves. Recently, research on Sporothrix complex have been focused on finding new molecules and components with potential for therapeutic approaches. Here, we study the relationship among EVs and the host's macrophages as well as their role during infection to assess whether these vesicles are helping the fungi or inducing a protective effect on mice during the infection. We found that after cocultivation with different concentrations of purified yeasts EVs from Sb, J774 macrophages displayed an increased fungicidal activity (Phagocytic Index) resulting in lower colony-forming units the more EVs were added, without jeopardizing the viability of the macrophages. Interleukins IL-6, IL-10, and IL-12 were measured during the infection period, showing elevated levels of IL-12 and IL-6 in a dose-dependent manner, but no significant change for IL-10. We also assessed the expression of important molecules in the immune response, such as MHC class II and the immunoglobulin CD86. Both these molecules were overexpressed in Sb yeasts infected mice. Our results indicate that EVs play a protective role during Sporothrix brasiliensis infections.
Collapse
Affiliation(s)
| | | | | | | | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.
| |
Collapse
|
32
|
Suresh MK, Vasudevan AK, Biswas L, Biswas R. Protective efficacy of Alum adjuvanted Amidase protein vaccine against Staphylococcus aureus infection in multiple mouse models. J Appl Microbiol 2021; 132:1422-1434. [PMID: 34487603 DOI: 10.1111/jam.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.
Collapse
Affiliation(s)
- Maneesha K Suresh
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
33
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Abstract
One of the defining features of Staphylococcus aureus is its ability to evade and impair the human immune response through expression of staphylococcal protein A (SpA). Herein, we describe a previously unknown mechanism by which SpA can form toxic immune complexes when in the presence of human serum, which leads to the loss of human leukocytes. Further, we demonstrate that these toxic complexes are formed specifically through SpA's interaction with intact human IgG and that, in the presence of purified IgG Fab and Fc fragments, SpA shows no such toxicity. The mechanism of action of this toxicity appears to be one mediated by necrosis and not by apoptosis, as previously hypothesized, with up to 90% of human B cells rapidly becoming necrotic following stimulation with SpA-IgG complexes. This phenomenon depends on the immunoglobulin binding capacity of SpA, as a nonbinding mutant of SpA did not induce necrosis. Importantly, immune sera raised against SpA had the capacity to significantly reduce the observed toxicity. An unprecedented toxic effect of SpA-IgG complexes on monocytes was also observed, suggesting the existence of a novel mechanism independent from the interaction of SpA with the B cell receptor. Together, these data implicate SpA in inducing indiscriminate leukocyte toxicity upon formation of complexes with IgG and highlight the requirement for vaccination strategies to inhibit this mechanism. IMPORTANCE Staphylococcus aureus is one of the largest health care threats faced by humankind, with a reported mortality rate within the United States greater than that of HIV/AIDS, tuberculosis, and viral hepatitis combined. One of the defining features of S. aureus as a human pathogen is its ability to evade and impair the human immune response through expression of staphylococcal protein A. Herein, we show that SpA induces necrosis in various immune cells by complexing with human immunoglobulins. Vaccination of mice with a nontoxigenic SpA mutant induced sera capable of inhibiting this mechanism. These observations shed new light on the toxic mechanisms of this key staphylococcal virulence factor and on protective modalities of SpA-based vaccination.
Collapse
|
35
|
Shi M, Chen X, Sun Y, Kim HK, Schneewind O, Missiakas D. A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine 2021; 39:3907-3915. [PMID: 34088508 DOI: 10.1016/j.vaccine.2021.05.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/29/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Exposure to Staphylococcus aureus does not lead to immunity as evidenced by the persistent colonization of one third of the human population. S. aureus immune escape is mediated by factors that preempt complement activation, destroy phagocytes, and modify B and T cell responses. One such factor, Staphylococcal protein A (SpA) encompasses five Immunoglobulin binding domains (IgBDs) that associate with the Fcγ domain to block phagocytosis. IgBDs also associate with Fab encoded by VH3 clan related genes. SpA binding to VH3-IgM that serves as a B cell receptor results in B cell expansion and secretion of antibodies with no specificity for S. aureus. SpA crosslinking of VH3-IgG and VH3-IgE bound to cognate receptors of mast cells and basophils promotes histamine release and anaphylaxis. Earlier work developed a prototype variant SpAKKAA with four amino acid substitutions in each IgBD. When tested in animal models, SpAKKAA elicited neutralizing antibodies and protection against infection. We show here that SpAKKAA retains crosslinking activity for VH3-IgG and VH3-IgE. We use a rational approach to design and test 67 new SpA variants for loss of VH3 binding and anaphylactic activities. We identify two detoxified candidates that elicit SpA-neutralizing antibodies and protect animals from S. aureus colonization and bloodstream infection. The new detoxified SpA candidates bear three instead of four amino acid substitutions thus increasing the development of SpA-specific antibodies. We propose that detoxified SpA variants unable to crosslink VH3-idiotypic immunoglobulin may be suitably developed as clinical-grade vaccines for safety and efficacy testing in humans.
Collapse
Affiliation(s)
- Miaomiao Shi
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Xinhai Chen
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Yan Sun
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Hwan Keun Kim
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, United States.
| |
Collapse
|
36
|
Scaffidi SJ, Shebes MA, Yu W. Tracking the Subcellular Localization of Surface Proteins in Staphylococcus aureus by Immunofluorescence Microscopy. Bio Protoc 2021; 11:e4038. [PMID: 34150940 DOI: 10.21769/bioprotoc.4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/02/2022] Open
Abstract
Surface proteins of Staphylococcus aureus and other Gram-positive bacteria play essential roles in bacterial colonization and host-microbe interactions. Surface protein precursors containing a YSIRK/GXXS signal peptide are translocated across the septal membrane at mid-cell, anchored to the cell wall peptidoglycan at the cross-wall compartment, and presented on the new hemispheres of the daughter cells following cell division. After several generations of cell division, these surface proteins will eventually cover the entire cell surface. To understand how these proteins travel from the bacterial cytoplasm to the cell surface, we describe a series of immunofluorescence microscopy protocols designed to detect the stepwise subcellular localization of the surface protein precursors: surface display (protocol A), cross-wall localization (protocol B), and cytoplasmic/septal membrane localization (protocol C). Staphylococcal protein A (SpA) is the model protein used in this work. The protocols described here are readily adapted to study the localization of other surface proteins as well as other cytoplasmic or membrane proteins in S. aureus in general. Furthermore, the protocols can be modified and adapted for use in other Gram-positive bacteria. Graphic abstract: Tracking the subcellular localization of surface proteins in S. aureus.
Collapse
Affiliation(s)
- Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
37
|
Monoclonal Antibodies Targeting Surface-Exposed and Secreted Proteins from Staphylococci. Vaccines (Basel) 2021; 9:vaccines9050459. [PMID: 34064471 PMCID: PMC8147999 DOI: 10.3390/vaccines9050459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Staphylococci (specifically Staphylococcus aureus and Staphylococcus epidermidis) are the causative agents of diseases ranging from superficial skin and soft tissue infections to severe conditions such as fatal pneumonia, bacteremia, sepsis and endocarditis. The widespread and indiscriminate use of antibiotics has led to serious problems of resistance to staphylococcal disease and has generated a renewed interest in alternative therapeutic agents such as vaccines and antibodies. Staphylococci express a large repertoire of surface and secreted virulence factors, which provide mechanisms (adhesion, invasion and biofilm development among others) for both bacterial survival in the host and evasion from innate and adaptive immunity. Consequently, the development of antibodies that target specific antigens would provide an effective protective strategy against staphylococcal infections. In this review, we report an update on efforts to develop anti-staphylococci monoclonal antibodies (and their derivatives: minibodies, antibody–antibiotic conjugates) and the mechanism by which such antibodies can help fight infections. We also provide an overview of mAbs used in clinical trials and highlight their therapeutic potential in various infectious contexts.
Collapse
|
38
|
Zhang R, Shebes MA, Kho K, Scaffidi SJ, Meredith TC, Yu W. Spatial regulation of protein A in Staphylococcus aureus. Mol Microbiol 2021; 116:589-605. [PMID: 33949015 DOI: 10.1111/mmi.14734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Mac A Shebes
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Kelvin Kho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Salvatore J Scaffidi
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| | - Timothy C Meredith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Wenqi Yu
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL, USA
| |
Collapse
|
39
|
Radke EE, Li Z, Hernandez DN, El Bannoudi H, Kosakovsky Pond SL, Shopsin B, Lopez P, Fenyö D, Silverman GJ. Diversity of Functionally Distinct Clonal Sets of Human Conventional Memory B Cells That Bind Staphylococcal Protein A. Front Immunol 2021; 12:662782. [PMID: 33995388 PMCID: PMC8113617 DOI: 10.3389/fimmu.2021.662782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.
Collapse
Affiliation(s)
- Emily E Radke
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States.,Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhi Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - David N Hernandez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Sergei L Kosakovsky Pond
- Institute of Genomic and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Bo Shopsin
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Peter Lopez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States.,Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, United States
| | - Gregg J Silverman
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
40
|
Shi M, Willing SE, Kim HK, Schneewind O, Missiakas D. Peptidoglycan Contribution to the B Cell Superantigen Activity of Staphylococcal Protein A. mBio 2021; 12:e00039-21. [PMID: 33879590 PMCID: PMC8092194 DOI: 10.1128/mbio.00039-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus causes reiterative and chronic persistent infections. This can be explained by the formidable ability of this pathogen to escape immune surveillance mechanisms. Cells of S. aureus display the abundant staphylococcal protein A (SpA). SpA binds to immunoglobulin (Ig) molecules and coats the bacterial surface to prevent phagocytic uptake. SpA also binds and cross-links variable heavy 3 (VH3) idiotype (IgM) B cell receptors, promoting B cell expansion and the secretion of nonspecific VH3-IgM via a mechanism requiring CD4+ T cell help. SpA binding to antibodies is mediated by the N-terminal Ig-binding domains (IgBDs). The so-called region X, uncharacterized LysM domain, and C-terminal LPXTG sorting signal for peptidoglycan attachment complete the linear structure of the protein. Here, we report that both the LysM domain and the LPXTG motif sorting signal are required for the B cell superantigen activity of SpA in a mouse model of infection. SpA molecules purified from staphylococcal cultures are sufficient to exert B cell superantigen activity and promote immunoglobulin secretion as long as they carry intact LysM and LPXTG motif domains with bound peptidoglycan fragments. The LysM domain binds the glycan chains of peptidoglycan fragments, whereas the LPXTG motif is covalently linked to wall peptides lacking glycan. These findings emphasize the complexity of SpA interactions with B cell receptors.IMPORTANCE The LysM domain is found in all kingdoms of life. While their function in mammals is not known, LysM domains of bacteria and their phage parasites are associated with enzymes that cleave or remodel peptidoglycan. Plants recognize microbe-associated molecular patterns such as chitin via receptors endowed with LysM-containing ectodomains. In plants, such receptors play equally important roles in defense and symbiosis signaling. SpA of S. aureus carries a LysM domain that binds glycan strands of peptidoglycan to influence defined B cell responses that divert pathogen-specific adaptive immune responses.
Collapse
Affiliation(s)
- Miaomiao Shi
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
| | | | - Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, Chan R, O'Malley A, Koralov SB, Loke P, Torres VJ. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 2021; 217:151907. [PMID: 32602902 PMCID: PMC7478724 DOI: 10.1084/jem.20190541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is responsible for various diseases in humans, and recurrent infections are commonly observed. S. aureus produces an array of bicomponent pore-forming toxins that target and kill leukocytes, known collectively as the leukocidins. The contribution of these leukocidins to impair the development of anti–S. aureus adaptive immunity and facilitate reinfection is unclear. Using a murine model of recurrent bacteremia, we demonstrate that infection with a leukocidin mutant results in increased levels of anti–S. aureus antibodies compared with mice infected with the WT parental strain, indicating that leukocidins negatively impact the generation of anti–S. aureus antibodies in vivo. We hypothesized that neutralizing leukocidin-mediated immune subversion by vaccination may shift this host-pathogen interaction in favor of the host. Leukocidin-immunized mice produce potent leukocidin-neutralizing antibodies and robust Th1 and Th17 responses, which collectively protect against bloodstream infections. Altogether, these results demonstrate that blocking leukocidin-mediated immune evasion can promote host protection against S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Joseph C Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maryaline Coffre
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alexis Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
42
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
43
|
Lynch SA, Helbig KJ. The Complex Diseases of Staphylococcus pseudintermedius in Canines: Where to Next? Vet Sci 2021; 8:11. [PMID: 33477504 PMCID: PMC7831068 DOI: 10.3390/vetsci8010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus pseudintermedius is a pathogenic bacterium of concern within the veterinary sector and is involved in numerous infections in canines, including topical infections such as canine pyoderma and otitis externa, as well as systemic infections within the urinary, respiratory and reproductive tract. The high prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) within such infections is a growing concern. Therefore, it is crucial to understand the involvement of S. pseudintermedius in canine disease pathology to gain better insight into novel treatment avenues. Here, we review the literature focused on S. pseudintermedius infection in multiple anatomic locations in dogs and the role of MRSP in treatment outcomes at these niches. Multiple novel treatment avenues for MRSP have been pioneered in recent years and these are discussed with a specific focus on vaccines and phage therapy as potential therapeutic options. Whilst both undertakings are in their infancy, phage therapy is versatile and has shown high success in both animal and human medical use. It is clear that further research is required to combat the growing problems associated with MRSP in canines.
Collapse
Affiliation(s)
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
44
|
Ford CA, Hurford IM, Cassat JE. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A Mini Review. Front Microbiol 2021; 11:632706. [PMID: 33519793 PMCID: PMC7840885 DOI: 10.3389/fmicb.2020.632706] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium capable of infecting nearly all host tissues, causing severe morbidity and mortality. Widespread antimicrobial resistance has emerged among S. aureus clinical isolates, which are now the most frequent causes of nosocomial infection among drug-resistant pathogens. S. aureus produces an array of virulence factors that enhance in vivo fitness by liberating nutrients from the host or evading host immune responses. Staphylococcal virulence factors have been identified as viable therapeutic targets for treatment, as they contribute to disease pathogenesis, tissue injury, and treatment failure. Antivirulence strategies, or treatments targeting virulence without direct toxicity to the inciting pathogen, show promise as an adjunctive therapy to traditional antimicrobials. This Mini Review examines recent research on S. aureus antivirulence strategies, with an emphasis on translational studies. While many different virulence factors have been investigated as therapeutic targets, this review focuses on strategies targeting three virulence categories: pore-forming toxins, immune evasion mechanisms, and the S. aureus quorum sensing system. These major areas of S. aureus antivirulence research demonstrate broad principles that may apply to other human pathogens. Finally, challenges of antivirulence research are outlined including the potential for resistance, the need to investigate multiple infection models, and the importance of studying antivirulence in conjunction with traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Ian M. Hurford
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Cassat
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
45
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
46
|
Staphylococcal Protein A ( spa) Locus Is a Hot Spot for Recombination and Horizontal Gene Transfer in Staphylococcus pseudintermedius. mSphere 2020; 5:5/5/e00666-20. [PMID: 33115833 PMCID: PMC7593597 DOI: 10.1128/msphere.00666-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus pseudintermedius is a major canine pathogen but can also occasionally infect humans. Identification of genetic factors contributing to the virulence and clonal success of multidrug-resistant S. pseudintermedius clones is critical for the development of therapeutics against this pathogen. Here, we characterized the genome sequences of a global collection of 622 S. pseudintermedius isolates. We show that all major clones, besides carrying core virulence genes, which are present in all strains, carry one or more lineage-specific genes. Many of these genes have been acquired from other bacterial species through a horizontal gene transfer mechanism. Importantly, we have discovered that the staphylococcal protein A gene (spa), a widely used marker for molecular typing of S. pseudintermedius strains and a potential vaccine candidate antigen, is deleted in 62% of strains. Furthermore, the spa locus in S. pseudintermedius acts as a reservoir to accumulate lineage-associated genes with adaptive functions. Staphylococcus pseudintermedius is a major canine pathogen but also occasionally colonizes and infects humans. Multidrug-resistant methicillin-resistant S. pseudintermedius (MDR MRSP) strains have emerged globally, making treatment and control of this pathogen challenging. Sequence type 71 (ST71), ST68, and ST45 are the most widespread and successful MDR MRSP clones. The potential genetic factors underlying the clonal success of these and other predominant clones remain unknown. Characterization of the pangenome, lineage-associated accessory genes, and genes acquired through horizontal gene transfer from other bacteria is important for identifying such factors. Here, we analyzed genome sequence data from 622 S. pseudintermedius isolates to investigate the evolution of pathogenicity across lineages. We show that the predominant clones carry one or more lineage-associated virulence genes. The gene encoding staphylococcal protein A (SpA), a key virulence factor involved in immune evasion and a potential vaccine antigen, is deleted in 62% of isolates. Most importantly, we have discovered that the spa locus is a hot spot for recombination and horizontal gene transfer in S. pseudintermedius, where genes related to restriction modification, prophage immunity, mercury resistance, and nucleotide and carbohydrate metabolism have been acquired in different lineages. Our study also establishes that ST45 is composed of two distinct sublineages that differ in their accessory gene content and virulence potential. Collectively, this study reports several previously undetected lineage-associated genetic factors that may have a role in the clonal success of the major MDR MRSP clones. These data provide a framework for future experimental studies on S. pseudintermedius pathogenesis and for developing novel therapeutics against this pathogen. IMPORTANCEStaphylococcus pseudintermedius is a major canine pathogen but can also occasionally infect humans. Identification of genetic factors contributing to the virulence and clonal success of multidrug-resistant S. pseudintermedius clones is critical for the development of therapeutics against this pathogen. Here, we characterized the genome sequences of a global collection of 622 S. pseudintermedius isolates. We show that all major clones, besides carrying core virulence genes, which are present in all strains, carry one or more lineage-specific genes. Many of these genes have been acquired from other bacterial species through a horizontal gene transfer mechanism. Importantly, we have discovered that the staphylococcal protein A gene (spa), a widely used marker for molecular typing of S. pseudintermedius strains and a potential vaccine candidate antigen, is deleted in 62% of strains. Furthermore, the spa locus in S. pseudintermedius acts as a reservoir to accumulate lineage-associated genes with adaptive functions.
Collapse
|
47
|
Vahed M, Ramezani F, Tafakori V, Mirbagheri VS, Najafi A, Ahmadian G. Molecular dynamics simulation and experimental study of the surface-display of SPA protein via Lpp-OmpA system for screening of IgG. AMB Express 2020; 10:161. [PMID: 32880759 PMCID: PMC7471224 DOI: 10.1186/s13568-020-01097-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
Staphylococcal protein A (SpA) is a major virulence factor of Staphylococcus aureus. S. aureus is able to escape detection by the immune system by the surface display of protein A. The SpA protein is broadly used to purify immunoglobulin G (IgG) antibodies. This study investigates the fusion ability of Lpp'-OmpA (46-159) to anchor and display five replicate domains of protein A with 295 residues length (SpA295) of S. aureus on the surface of Escherichia coli to develop a novel bioadsorbent. First, the binding between Lpp'-OmpA-SPA295 and IgGFc and the three-dimensional structure was investigated using molecular dynamics simulation. Then high IgG recovery from human serum by the surface-displayed system of Lpp'-OmpA-SPA295 performed experimentally. In silico analysis was demonstrated the binding potential of SPA295 to IgG after expression on LPP-OmpA surface. Surface-engineered E. coli displaying SpA protein and IgG-binding assay with SDS-PAGE analysis exhibited high potential of the expressed complex on the E. coli surface for IgG capture from human serum which is applicable to conventional immune precipitation.
Collapse
Affiliation(s)
- M. Vahed
- Department of Toxico/Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, 6153-14155 Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, 14155-1817 Iran
| | - F. Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - V. Tafakori
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - V. S. Mirbagheri
- PhD Student in Fisheries Products Processing Group, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - A. Najafi
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14965/161, Tehran, 1497716316 Iran
- Present Address: Department of Cell and Molecular Biology, Uppsala University, P.O. Box 256, 751 05 Uppsala, Sweden
| | - G. Ahmadian
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14965/161, Tehran, 1497716316 Iran
| |
Collapse
|
48
|
Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. Proc Natl Acad Sci U S A 2020; 117:22992-23000. [PMID: 32855300 PMCID: PMC7502815 DOI: 10.1073/pnas.2003621117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
All currently licensed antibodies against bacteria target exotoxins. For most pathogens, neutralization of toxin(s) is not sufficient to prevent bacterial replication. Antibodies against surface determinants represent better candidates to enhance opsonophagocytic killing, but the mechanisms of action of such antibodies have not been systematically studied. Staphylococcal protein A is a conserved surface protein of Staphylococcus aureus and a crucial virulence determinant that manipulates B-cell responses and blocks deposition of opsonin. Monoclonal antibodies directed against SpA represent potential therapeutic agents as well as a formidable tool to identify and optimize effector functions of antibodies that can promote bacterial clearance. Antibodies may bind to bacterial pathogens or their toxins to control infections, and their effector activity is mediated through the recruitment of complement component C1q or the engagement with Fcγ receptors (FcγRs). For bacterial pathogens that rely on a single toxin to cause disease, immunity correlates with toxin neutralization. Most other bacterial pathogens, including Staphylococcus aureus, secrete numerous toxins and evolved multiple mechanisms to escape opsonization and complement killing. Several vaccine candidates targeting defined surface antigens of S. aureus have failed to meet clinical endpoints. It is unclear that such failures can be solely attributed to the poor selection of antibody targets. Thus far, studies to delineate antibody-mediated uptake and killing of Gram-positive pathogens remain extremely limited. Here, we exploit 3F6-hIgG1, a human monoclonal antibody that binds and neutralizes the abundant surface-exposed Staphylococcal protein A (SpA). We find that galactosylation of 3F6-hIgG1 that favors C1q recruitment is indispensable for opsonophagocytic killing of staphylococci and for protection against bloodstream infection in animals. However, the simple removal of fucosyl residues, which results in reduced C1q binding and increased engagement with FcγR, maintains the opsonophagocytic killing and protective attributes of the antibody. We confirm these results by engineering 3F6-hIgG1 variants with biased binding toward C1q or FcγRs. While the therapeutic benefit of monoclonal antibodies against infectious disease agents may be debatable, the functional characterization of such antibodies represents a powerful tool for the development of correlates of protection that may guide future vaccine trials.
Collapse
|
49
|
Bunker JJ, Drees C, Watson AR, Plunkett CH, Nagler CR, Schneewind O, Eren AM, Bendelac A. B cell superantigens in the human intestinal microbiota. Sci Transl Med 2020; 11:11/507/eaau9356. [PMID: 31462512 DOI: 10.1126/scitranslmed.aau9356] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/19/2018] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
IgA is prominently secreted at mucosal surfaces and coats a fraction of the commensal microbiota, a process that is critical for intestinal homeostasis. However, the mechanisms of IgA induction and the molecular targets of these antibodies remain poorly understood, particularly in humans. Here, we demonstrate that microbiota from a subset of human individuals encode two protein "superantigens" expressed on the surface of commensal bacteria of the family Lachnospiraceae such as Ruminococcus gnavus that bind IgA variable regions and stimulate potent IgA responses in mice. These superantigens stimulate B cells expressing human VH3 or murine VH5/6/7 variable regions and subsequently bind their antibodies, allowing these microbial organisms to become highly coated with IgA in vivo. These findings demonstrate a previously unappreciated role for commensal superantigens in host-microbiota interactions. Furthermore, as superantigen-expressing strains show an uneven distribution across human populations, they should be systematically considered in studies evaluating human B cell responses and microbiota during homeostasis and disease.
Collapse
Affiliation(s)
- Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Christoph Drees
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Andrea R Watson
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Catherine H Plunkett
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Olaf Schneewind
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA. .,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Rapid and Broad Immune Efficacy of a Recombinant Five-Antigen Vaccine against Staphylococcus Aureus Infection in Animal Models. Vaccines (Basel) 2020; 8:vaccines8010134. [PMID: 32197534 PMCID: PMC7157245 DOI: 10.3390/vaccines8010134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of both healthcare-and community-associated infections globally, which result in severe disease and readily developing antibiotic resistance. Developing an efficacious vaccine against S. aureus is urgently required. In the present study, we selected five conserved antigens, including the secreted factors α-hemolysin (Hla), staphylococcal enterotoxin B (SEB) and the three surface proteins staphylococcal protein A (SpA), iron surface determinant B N2 domain (IsdB-N2) and manganese transport protein C (MntC). They were all well-characterized virulence factor of S. aureus and developed a recombinant five-antigen S. aureus vaccine (rFSAV), rFSAV provided consistent protection in S. aureus lethal sepsis and pneumonia mouse models, and it showed broad immune protection when challenged with a panel of epidemiologically relevant S. aureus strains. Meanwhile, rFSAV immunized mice were able to induce comprehensive cellular and humoral immune responses to reduce bacterial loads, inflammatory cytokine expression, inflammatory cell infiltration and decrease pathology after challenge with a sub-lethal dose of S. aureus. Moreover, the importance of specific antibodies in protection was demonstrated by antibody function tests in vitro and in vivo. Altogether, our data demonstrate that rFSAV is a potentially promising vaccine candidate for defensing against S. aureus infection.
Collapse
|