1
|
Amaador K, Thieblemont C, Trotman J, Minnema MC. Recent updates in the indolent lymphomas: Update on marginal zone lymphoma and Waldenström's macroglobulinemia. Hematol Oncol 2024; 42:e3210. [PMID: 37458281 DOI: 10.1002/hon.3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2024]
Abstract
Marginal Zone Lymphoma (MZL) and Waldenström's Macroglobulinemia (WM) are indolent lymphomas that both arise from post germinal center lymphocytes. Both can secrete a monoclonal protein but high levels are mostly only seen in WM. The MYD88 L256P somatic mutation that is present in an estimated 95% of patients with WM has helped greatly in differentiating the two lymphomas. Several large clinical studies with new drugs have been performed that have provided new treatment options for both MZL and WM patients. In this short review we will discuss the recent literature published and provide some recommendations.
Collapse
Affiliation(s)
- Karima Amaador
- Department of Internal Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | | - Judith Trotman
- Department of Haematology, Concord Repatriation General Hospital and Faculty of Medicine and Health, University of Sydney, Concord, New South Wales, Australia
| | - Monique C Minnema
- Department of Hematology, UMC Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Cerapio JP, Gravelle P, Quillet-Mary A, Valle C, Martins F, Franchini DM, Syrykh C, Brousset P, Traverse-Glehen A, Ysebaert L, Fournie JJ, Laurent C. Integrated spatial and multimodal single-cell transcriptomics reveal patient-dependent cell heterogeneity in splenic marginal zone lymphoma. J Pathol 2024; 263:442-453. [PMID: 38828498 DOI: 10.1002/path.6296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
Biological hallmarks of splenic marginal zone lymphoma (SMZL) remain poorly described. Herein, we performed in-depth SMZL characterization through multimodal single-cell analyses of paired blood/spleen samples. The 3'-single-cell RNA-sequencing, Cellular Indexing of Transcriptomes and Epitopes by sequencing, and 5'-V(D)J single-cell RNA-sequencing datasets were integrated to characterize SMZL transcriptome profiles, including B-cell receptor and T-cell receptor repertoires. Hyperexpanded B-cell clones in the spleen were at a memory-like stage, whereas recirculating tumor B-cells in blood encompassed multiple differentiation stages, indicating an unexpected desynchronization of the B-cell maturation program in SMZL cells. Spatial transcriptomics showed the enrichment of T-effector and T-follicular helper (TFH) signatures in the nodular subtype of SMZL. This latter also exhibited gene-based cell-cell interactions suggestive of dynamic crosstalk between TFH and cancer cells in transcriptomics, further substantiated by using imaging mass cytometry. Our findings provide a comprehensive high-resolution description of SMZL biological hallmarks and characterize, for the first time in situ, inter- and intra-patient heterogeneity at both transcriptomic and protein levels. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Juan Pablo Cerapio
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| | - Pauline Gravelle
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Anne Quillet-Mary
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
| | - Carine Valle
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| | - Frederic Martins
- Institut Maladies Metaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, France
| | - Don-Marc Franchini
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Charlotte Syrykh
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Pierre Brousset
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | | | - Loic Ysebaert
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| | - Jean-Jacques Fournie
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
| | - Camille Laurent
- Université de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut Universitaire du Cancer-Oncopole de Toulouse, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Institut Carnot Lymphome - ADREP CALYM, Paris, France
- Centre Hospitalier Universitaire, Toulouse, France
| |
Collapse
|
3
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
4
|
Paillassa J, Maitre E, Belarbi Boudjerra N, Madani A, Benlakhal R, Matthes T, Van Den Neste E, Cailly L, Inchiappa L, Bekadja MA, Tomowiak C, Troussard X. Recommendations for the Management of Patients with Hairy-Cell Leukemia and Hairy-Cell Leukemia-like Disorders: A Work by French-Speaking Experts and French Innovative Leukemia Organization (FILO) Group. Cancers (Basel) 2024; 16:2185. [PMID: 38927891 PMCID: PMC11201647 DOI: 10.3390/cancers16122185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Hairy-cell leukemia (HCL) is a rare B-cell chronic lymphoproliferative disorder (B-CLPD), whose favorable prognosis has changed with the use of purine nucleoside analogs (PNAs), such as cladribine (CDA) or pentostatin (P). However, some patients eventually relapse and over time HCL becomes resistant to chemotherapy. Many discoveries have been made in the pathophysiology of HCL during the last decade, especially in genomics, with the identification of the BRAFV600E mutation and cellular biology, including the importance of signaling pathways as well as tumor microenvironment. All of these new developments led to targeted treatments, especially BRAF inhibitors (BRAFis), MEK inhibitors (MEKis), Bruton's tyrosine kinase (BTK) inhibitors (BTKis) and recombinant anti-CD22 immunoconjugates. RESULTS The following major changes or additions were introduced in these updated guidelines: the clinical relevance of the changes in the classification of splenic B-cell lymphomas and leukemias; the increasingly important diagnostic role of BRAFV600E mutation; and the prognostic role of the immunoglobulin (IG) variable (V) heavy chain (H) (IGHV) mutational status and repertory. We also wish to insist on the specific involvement of bones, skin, brain and/or cerebrospinal fluid (CSF) of the disease at diagnosis or during the follow-up, the novel targeted drugs (BRAFi and MEKi) used for HCL treatment, and the increasing role of minimal residual disease (MRD) assessment. CONCLUSION Here we present recommendations for the diagnosis of HCL, treatment in first line and in relapsed/refractory patients as well as for HCL-like disorders including HCL variant (HCL-V)/splenic B-cell lymphomas/leukemias with prominent nucleoli (SBLPN) and splenic diffuse red pulp lymphoma (SDRPL).
Collapse
Affiliation(s)
- Jérôme Paillassa
- Service des Maladies du Sang, CHU d’Angers, 49000 Angers, France;
| | - Elsa Maitre
- Hématologie Biologique, Structure Fédérative D’oncogénétique Cyto-Moléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, 14000 Caen, France;
- Unité MICAH, INSERM1245, Université Caen-Normandie, 14000 Caen, France
| | | | - Abdallah Madani
- Service d’Hématologie, CHU de Casablanca, Casablanca 20000, Morocco;
| | | | - Thomas Matthes
- Service d’Hématologie, Département d’Oncologie et Service de Pathologie Clinique, Département de Diagnostic, Hôpital Universitaire de Genève, 1205 Genève, Switzerland;
| | - Eric Van Den Neste
- Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1000 Brussels, Belgium;
| | - Laura Cailly
- Service d’Onco-Hématologie et de Thérapie Cellulaire, CHU de Poitiers, 86000 Poitiers, France; (L.C.)
| | - Luca Inchiappa
- Service d’Hématologie, Institut Paoli-Calmette, 13397 Marseille, France
| | | | - Cécile Tomowiak
- Service d’Onco-Hématologie et de Thérapie Cellulaire, CHU de Poitiers, 86000 Poitiers, France; (L.C.)
| | - Xavier Troussard
- Hématologie Biologique, Structure Fédérative D’oncogénétique Cyto-Moléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, 14000 Caen, France;
- Hematologie CHU Caen Normandie, 14000 Caen, France
| |
Collapse
|
5
|
Troussard X, Maître E, Paillassa J. Hairy cell leukemia 2024: Update on diagnosis, risk-stratification, and treatment-Annual updates in hematological malignancies. Am J Hematol 2024; 99:679-696. [PMID: 38440808 DOI: 10.1002/ajh.27240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 03/06/2024]
Abstract
DISEASE OVERVIEW Hairy cell leukemia (HCL) and HCL-like disorders, including HCL variant (HCL-V) and splenic diffuse red pulp lymphoma (SDRPL), are a very heterogenous group of mature lymphoid B-cell disorders characterized by the identification of hairy cells, a specific genetic profile, a different clinical course and the need for appropriate treatment. DIAGNOSIS Diagnosis of HCL is based on morphological evidence of hairy cells, an HCL immunologic score of 3 or 4 based on the CD11c, CD103, CD123, and CD25 expression, the trephine biopsy which makes it possible to specify the degree of tumoral bone marrow infiltration and the presence of BRAFV600E somatic mutation. RISK STRATIFICATION Progression of patients with HCL is based on a large splenomegaly, leukocytosis, a high number of hairy cells in the peripheral blood, and the immunoglobulin heavy chain variable region gene mutational status. VH4-34 positive HCL cases are associated with a poor prognosis, as well as HCL with TP53 mutations and HCL-V. TREATMENT Patients should be treated only if HCL is symptomatic. Chemotherapy with risk-adapted therapy purine analogs (PNAs) are indicated in first-line HCL patients. The use of chemo-immunotherapy combining cladribine (CDA) and rituximab (R) represents an increasingly used therapeutic approach. Management of relapsed/refractory disease is based on the use of BRAF inhibitors (BRAFi) plus R, MEK inhibitors (MEKi), recombinant immunoconjugates targeting CD22, Bruton tyrosine kinase inhibitors (BTKi), and Bcl-2 inhibitors (Bcl-2i). However, the optimal sequence of the different treatments remains to be determined.
Collapse
Affiliation(s)
| | - Elsa Maître
- Laboratoire Hématologie, CHU Côte de Nacre, Caen Cedex, France
| | | |
Collapse
|
6
|
Okatani T, Nishimura MF, Egusa Y, Yoshida S, Nishimura Y, Nishikori A, Yoshino T, Yamamoto H, Sato Y. Analysis of Notch1 protein expression in methotrexate-associated lymphoproliferative disorders. J Clin Exp Hematop 2024; 64:1-9. [PMID: 38281745 PMCID: PMC11079991 DOI: 10.3960/jslrt.23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024] Open
Abstract
Methotrexate (MTX)-associated lymphoproliferative disorder (MTX-LPD) is a lymphoproliferative disorder in patients treated with MTX. The mechanism of pathogenesis is still elusive, but it is thought to be a complex interplay of factors, such as underlying autoimmune disease activity, MTX use, Epstein-Barr virus infection, and aging. The NOTCH genes encode receptors for a signaling pathway that regulates various fundamental cellular processes, such as proliferation and differentiation during embryonic development. Mutations of NOTCH1 have been reported in B-cell tumors, including chronic lymphocytic leukemia/lymphoma, mantle cell lymphoma, and diffuse large B-cell lymphoma (DLBCL). Recently, it has also been reported that NOTCH1 mutations are found in post-transplant lymphoproliferative disorders, and in CD20-positive cells in angioimmunoblastic T-cell lymphoma, which might be associated with lymphomagenesis in immunodeficiency. In this study, to investigate the association of NOTCH1 in the pathogenesis of MTX-LPD, we evaluated protein expression of Notch1 in nuclei immunohistochemically in MTX-LPD cases [histologically DLBCL-type (n = 24) and classical Hodgkin lymphoma (CHL)-type (n = 24)] and de novo lymphoma cases [DLBCL (n = 19) and CHL (n = 15)]. The results showed that among MTX-LPD cases, the expression of Notch1 protein was significantly higher in the DLBCL type than in the CHL type (P < 0.001). In addition, among DLBCL morphology cases, expression of Notch1 tended to be higher in MTX-LPD than in the de novo group; however this difference was not significant (P = 0.0605). The results showed that NOTCH1 may be involved in the proliferation and tumorigenesis of B cells under the use of MTX. Further research, including genetic studies, is necessary.
Collapse
|
7
|
Walewska R, Eyre TA, Barrington S, Brady J, Fields P, Iyengar S, Joshi A, Menne T, Parry-Jones N, Walter H, Wotherspoon A, Linton K. Guideline for the diagnosis and management of marginal zone lymphomas: A British Society of Haematology Guideline. Br J Haematol 2024; 204:86-107. [PMID: 37957111 DOI: 10.1111/bjh.19064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 11/15/2023]
Affiliation(s)
- Renata Walewska
- Cancer Care, University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | - Toby A Eyre
- Department of Haematology, Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sally Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's Health Partners, Kings College London, London, UK
| | - Jessica Brady
- Guy's Cancer Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Paul Fields
- Guy's and St Thomas' Hospital, Kings Health Partners, London, UK
| | - Sunil Iyengar
- Department of Haematology, Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Anurag Joshi
- All Wales Lymphoma Panel, Department of Cellular Pathology, University Hospital of Wales, Cardiff, UK
| | - Tobias Menne
- Department of Haematology, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nilima Parry-Jones
- Department of Haematology, Aneurin Bevan University Health Board, Newport, Wales, UK
| | - Harriet Walter
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Andrew Wotherspoon
- Department of Histopathology, Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Kim Linton
- Division of Cancer Sciences, The Christie NHS Foundation Trust and The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Tanaka A, Nishimura K, Saika W, Kon A, Koike Y, Tatsumi H, Takeda J, Nomura M, Zang W, Nakayama M, Matsuda M, Yamazaki H, Fukumoto M, Ito H, Hayashi Y, Kitamura T, Kawamoto H, Takaori-Kondo A, Koseki H, Ogawa S, Inoue D. SETBP1 is dispensable for normal and malignant hematopoiesis. Leukemia 2023; 37:1802-1811. [PMID: 37464069 DOI: 10.1038/s41375-023-01970-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
SETBP1 is a potential epigenetic regulator whose hotspot mutations preventing proteasomal degradation are recurrently detected in myeloid malignancies with poor prognosis. It is believed that the mutant SETBP1 exerts amplified effects of wild-type SETBP1 rather than neomorphic functions. This indicates that dysregulated quantitative control of SETBP1 would result in the transformation of hematopoietic cells. However, little is known about the roles of endogenous SETBP1 in malignant and normal hematopoiesis. Thus, we integrated the analyses of primary AML and healthy samples, cancer cell lines, and a newly generated murine model, Vav1-iCre;Setbp1fl/fl. Despite the expression in long-term hematopoietic stem cells, SETBP1 depletion in normal hematopoiesis minimally alters self-renewal, differentiation, or reconstitution in vivo. Indeed, its loss does not profoundly alter transcription or chromatin accessibilities. Furthermore, although AML with high SETBP1 mRNA is associated with genetic and clinical characteristics for dismal outcomes, SETBP1 is dispensable for the development or maintenance of AML. Contrary to the evidence that SETBP1 mutations are restricted to myeloid malignancies, dependency on SETBP1 mRNA expression is not observed in AML. These unexpected results shed light on the unrecognized idea that a physiologically nonessential gene can act as an oncogene when the machinery of protein degradation is damaged.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Wataru Saika
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology, Shiga University of Medical Science, Shiga, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yui Koike
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Hiromi Tatsumi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - June Takeda
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Nomura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Masashi Matsuda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Hiromi Ito
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Toshio Kitamura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
9
|
Zamò A, van den Brand M, Climent F, de Leval L, Dirnhofer S, Leoncini L, Ng SB, Ondrejka SL, Quintanilla-Martinez L, Soma L, Wotherspoon A. The many faces of nodal and splenic marginal zone lymphomas. A report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 2023; 483:317-331. [PMID: 37656249 PMCID: PMC10542713 DOI: 10.1007/s00428-023-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Session 3 of the lymphoma workshop of the XXI joint meeting of the European Association for Haematopathology and the Society for Hematopathology took place in Florence, Italy, on September 22, 2022. The topics of this session were splenic and nodal marginal zone lymphomas, transformation in marginal zone lymphomas, and pediatric nodal marginal zone lymphomas and their differential diagnosis as well as related entities. Forty-two cases in these categories were submitted to the workshop, including splenic lymphomas (marginal zone and diffuse red pulp lymphomas), transformed marginal zone lymphomas (splenic and nodal), nodal marginal zone lymphomas with increased TFH-cells, and pediatric nodal marginal zone lymphomas. The case review highlighted some of the principal problems in the diagnosis of marginal zone lymphomas, including the difficulties in the distinction between splenic marginal zone lymphoma, splenic diffuse red pulp lymphoma, and hairy cell leukemia variant/splenic B-cell lymphoma with prominent nucleoli which requires integration of clinical features, immunophenotype, and morphology in blood, bone marrow, and spleen; cases of marginal zone lymphoma with markedly increased TFH-cells, simulating a T-cell lymphoma, where molecular studies (clonality and mutation detection) can help to establish the final diagnosis; the criteria for transformation of marginal zone lymphomas, which are still unclear and might require the integration of morphological and molecular data; the concept of an overlapping spectrum between pediatric nodal marginal zone lymphoma and pediatric-type follicular lymphoma; and the distinction between pediatric nodal marginal zone lymphoma and "atypical" marginal zone hyperplasia, where molecular studies are mandatory to correctly classify cases.
Collapse
Affiliation(s)
- Alberto Zamò
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Wagnerlaan 55, 6815AD, Arnhem, The Netherlands.
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sarah L Ondrejka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Lorinda Soma
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | | |
Collapse
|
10
|
Alam J, Huda MN, Tackett AJ, Miah S. Oncogenic signaling-mediated regulation of chromatin during tumorigenesis. Cancer Metastasis Rev 2023; 42:409-425. [PMID: 37147457 PMCID: PMC10348982 DOI: 10.1007/s10555-023-10104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Signaling pathways play critical roles in executing and controlling important biological processes within cells. Cells/organisms trigger appropriate signal transduction pathways in order to turn on or off intracellular gene expression in response to environmental stimuli. An orchestrated regulation of different signaling pathways across different organs and tissues is the basis of many important biological functions. Presumably, any malfunctions or dysregulation of these signaling pathways contribute to the pathogenesis of disease, particularly cancer. In this review, we discuss how the dysregulation of signaling pathways (TGF-β signaling, Hippo signaling, Wnt signaling, Notch signaling, and PI3K-AKT signaling) modulates chromatin modifications to regulate the epigenome, thereby contributing to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jahangir Alam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Nazmul Huda
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
11
|
Guo M, Niu Y, Xie M, Liu X, Li X. Notch signaling, hypoxia, and cancer. Front Oncol 2023; 13:1078768. [PMID: 36798826 PMCID: PMC9927648 DOI: 10.3389/fonc.2023.1078768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Notch signaling is involved in cell fate determination and deregulated in human solid tumors. Hypoxia is an important feature in many solid tumors, which activates hypoxia-induced factors (HIFs) and their downstream targets to promote tumorigenesis and cancer development. Recently, HIFs have been shown to trigger the Notch signaling pathway in a variety of organisms and tissues. In this review, we focus on the pro- and anti-tumorigenic functions of Notch signaling and discuss the crosstalk between Notch signaling and cellular hypoxic response in cancer pathogenesis, including epithelia-mesenchymal transition, angiogenesis, and the maintenance of cancer stem cells. The pharmacological strategies targeting Notch signaling and hypoxia in cancer are also discussed in this review.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yang Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China,*Correspondence: Xiaochen Li,
| |
Collapse
|
12
|
Mesini N, Fiorcari S, Atene CG, Maffei R, Potenza L, Luppi M, Marasca R. Role of Notch2 pathway in mature B cell malignancies. Front Oncol 2023; 12:1073672. [PMID: 36686759 PMCID: PMC9846264 DOI: 10.3389/fonc.2022.1073672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
In recent decades, the Notch pathway has been characterized as a key regulatory signaling of cell-fate decisions evolutionarily conserved in many organisms and different tissues during lifespan. At the same time, many studies suggest a link between alterations of this signaling and tumor genesis or progression. In lymphopoiesis, the Notch pathway plays a fundamental role in the correct differentiation of T and B cells, but its deregulated activity leads to leukemic onset and evolution. Notch and its ligands Delta/Jagged exhibit a pivotal role in the crosstalk between leukemic cells and their environment. This review is focused in particular on Notch2 receptor activity. Members of Notch2 pathway have been reported to be mutated in Chronic Lymphocytic Leukemia (CLL), Splenic Marginal Zone Lymphoma (SMZL) and Nodal Marginal Zone Lymphoma (NMZL). CLL is a B cell malignancy in which leukemic clones establish supportive crosstalk with non-malignant cells of the tumor microenvironment to grow, survive, and resist even the new generation of drugs. SMZL and NMZL are indolent B cell neoplasms distinguished by a distinct pattern of dissemination. In SMZL leukemic cells affect mainly the spleen, bone marrow, and peripheral blood, while NMZL has a leading nodal distribution. Since Notch2 is involved in the commitment of leukemic cells to the marginal zone as a major regulator of B cell physiological differentiation, it is predominantly affected by the molecular lesions found in both SMZL and NMZL. In light of these findings, a better understanding of the Notch receptor family pathogenic role, in particular Notch2, is desirable because it is still incomplete, not only in the physiological development of B lymphocytes but also in leukemia progression and resistance. Several therapeutic strategies capable of interfering with Notch signaling, such as monoclonal antibodies, enzyme or complex inhibitors, are being analyzed. To avoid the unwanted multiple "on target" toxicity encountered during the systemic inhibition of Notch signaling, the study of an appropriate pharmaceutical formulation is a pressing need. This is why, to date, there are still no Notch-targeted therapies approved. An accurate analysis of the Notch pathway could be useful to drive the discovery of new therapeutic targets and the development of more effective therapies.
Collapse
Affiliation(s)
- Nicolò Mesini
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Modena, Italy,Hematology Unit, Department of Oncology and Hematology, Azienda-Ospedaliero Universitaria (AOU) of Modena, Modena, Italy,*Correspondence: Roberto Marasca,
| |
Collapse
|
13
|
First description of the t(3;17)(q27;q21)/IGF2BP2::LSM12 translocation in marginal zone lymphoma. Blood Adv 2022; 7:162-166. [PMID: 36095303 PMCID: PMC9811198 DOI: 10.1182/bloodadvances.2022008393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 01/17/2023] Open
|
14
|
Gómez Atria D, Gaudette BT, Londregan J, Kelly S, Perkey E, Allman A, Srivastava B, Koch U, Radtke F, Ludewig B, Siebel CW, Ryan RJ, Robertson TF, Burkhardt JK, Pear WS, Allman D, Maillard I. Stromal Notch ligands foster lymphopenia-driven functional plasticity and homeostatic proliferation of naïve B cells. J Clin Invest 2022; 132:158885. [PMID: 35579963 PMCID: PMC9246379 DOI: 10.1172/jci158885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In lymphopenic environments, secondary lymphoid organs regulate the size of B and T-cell compartments by supporting homeostatic proliferation of mature lymphocytes. The molecular mechanisms underlying these responses and their functional consequences remain incompletely understood. To evaluate homeostasis of the mature B-cell pool during lymphopenia, we turned to an adoptive transfer model of purified follicular B-cells into Rag2-/- mouse recipients. Highly purified follicular B-cells transdifferentiated into marginal zone-like B-cells when transferred into Rag2-/- lymphopenic hosts, but not into wild-type hosts. In lymphopenic spleens, transferred B-cells gradually lost their follicular phenotype and acquired characteristics of marginal zone B-cells, as judged by cell surface phenotype, expression of integrins and chemokine receptors, positioning close to the marginal sinus, and an ability to rapidly generate functional plasma cells. Initiation of follicular to marginal zone B-cell transdifferentiation preceded proliferation. Furthermore, the transdifferentiation process was dependent on Notch2 receptors in B-cells and expression of Delta-like1 Notch ligands by splenic Ccl19-Cre+ fibroblastic stromal cells. Gene expression analysis showed rapid induction of Notch-regulated transcripts followed by upregulated Myc expression and acquisition of broad transcriptional features of marginal zone B-cells. Thus, naïve mature B-cells are endowed with plastic transdifferentiation potential in response to increased stromal Notch ligand availability during lymphopenia.
Collapse
Affiliation(s)
- Daniela Gómez Atria
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Jennifer Londregan
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Samantha Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States of America
| | - Anneka Allman
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Bhaskar Srivastava
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ute Koch
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, United States of America
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ivan Maillard
- University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
15
|
Broit N, Johansson PA, Rodgers CB, Walpole S, Hayward NK, Pritchard AL. Systematic review and meta-analysis of genomic alterations in acral melanoma. Pigment Cell Melanoma Res 2022; 35:369-386. [PMID: 35229492 PMCID: PMC9540316 DOI: 10.1111/pcmr.13034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Acral melanoma (AM) tumors arise on the palms, soles, fingers, toes, and nailbeds. A comprehensive systematic meta-analysis of AM genomic aberrations has not been conducted to date. A literature review was carried out to identify studies sequencing AM. Whole-genome/exome data from 181 samples were identified. Targeted panel sequencing data from MSK-IMPACT were included as a validation cohort (n = 92), and studies using targeted hot spot sequencing were also collated for BRAF (n = 26 studies), NRAS (n = 21), and KIT (n = 32). Statistical analysis indicated BRAF, NRAS, PTEN, TYRP1, and KIT as significantly mutated genes. Frequent copy-number aberrations were also found for important cancer genes, such as CDKN2A, KIT, MDM2, CCND1, CDK4, and PAK1, among others. Mapping genomic alterations within the context of the hallmarks of cancer identified four components frequently altered, including (i) sustained proliferative signaling and (ii) evading growth suppression, (iii) genome instability and mutation, and (iv) enabling replicative immortality. This analysis provides the largest analysis of genomic aberrations in AM in the literature to date and highlights pathways that may be therapeutically targetable.
Collapse
Affiliation(s)
- Natasa Broit
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Faculty of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Peter A. Johansson
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Chloe B. Rodgers
- Genetics and Immunology GroupUniversity of the Highlands and IslandsInvernessUK
| | - Sebastian T. Walpole
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Nicholas K. Hayward
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Antonia L. Pritchard
- Oncogenomics GroupQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Genetics and Immunology GroupUniversity of the Highlands and IslandsInvernessUK
| |
Collapse
|
16
|
Tan EC, Lai AHM, Brett MSY. Novel phenotypic feature in a patient with a recurrent NOTCH2 nonsense mutation. Am J Med Genet A 2022; 188:2135-2138. [PMID: 35289498 DOI: 10.1002/ajmg.a.62724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Pathogenic variants in NOTCH2 which encodes a single-pass transmembrane protein have been identified as a cause of several autosomal dominant congenital disorders. In particular, truncating mutations in exon 34 have been found in patients with skeletal abnormalities and dysmorphic features. We describe a patient with a de novo variant in NOTCH2 who displayed features of both Hajdu-Cheney syndrome (HJCYS) and serpentine fibula-polycystic kidney syndrome (SFPKS). The recurrent nonsense variant in exon 34 has been reported in seven other patients with syndromic presentations, making it the most common pathogenic variant for NOTCH2 in congenital disorders. In addition to the core features of HJCYS and SFPKS, there was a gastrointestinal tract malformation of an imperforate anus which has not been reported in patients with pathogenic variants in NOTCH2.
Collapse
Affiliation(s)
- Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital, Singapore.,SingHealth Duke-NUS Academic Clinical Programme, Singapore
| | - Angeline H M Lai
- SingHealth Duke-NUS Academic Clinical Programme, Singapore.,Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Maggie S Y Brett
- Research Laboratory, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
17
|
Minson A, Tam C, Dickinson M, Seymour JF. Targeted Agents in the Treatment of Indolent B-Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:1276. [PMID: 35267584 PMCID: PMC8908980 DOI: 10.3390/cancers14051276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
Targeted therapies continue to change the landscape of lymphoma treatment, resulting in improved therapy options and patient outcomes. Numerous agents are now approved for use in the indolent lymphomas and many others under development demonstrate significant promise. In this article, we review the landscape of targeted agents that apply to the indolent lymphomas, predominantly follicular lymphoma, lymphoplasmacytic lymphoma/Waldenstrom macroglobulinaemia and marginal zone lymphoma. The review covers small molecule inhibitors, immunomodulators and targeted immunotherapies, as well as presenting emerging and promising combination therapies.
Collapse
Affiliation(s)
- Adrian Minson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Constantine Tam
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Dickinson
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F. Seymour
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, VIC 3000, Australia; (C.T.); (M.D.); (J.F.S.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Johansson P, Eckstein A, Küppers R. The Biology of Ocular Adnexal Marginal Zone Lymphomas. Cancers (Basel) 2022; 14:1264. [PMID: 35267569 PMCID: PMC8908984 DOI: 10.3390/cancers14051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the biology of ocular adnexal marginal zone B-cell lymphomas of the mucosa-associated lymphatic tissue (MALT) (OAMZL) subtype. The ocular adnexa includes all structures and tissues within the orbit except for the eye bulb. In the region of the ocular adnexa, MALT lymphomas represent the most common subtype of lymphoma, accounting for around 8% of all non-Hodgkin lymphomas. These lymphomas are often preceded by inflammatory precursor lesions. Either autoantigens or infectious antigens may lead to disease development by functioning as continuous antigenic triggers. This triggering leads to a constitutive activation of the NF-κB signaling pathway. The role of antigenic stimulation in the pathogenesis of OAMZL is supported by the detection of somatic mutations (partially with further intraclonal diversity) in their rearranged immunoglobulin V genes; hence, their derivation from germinal-center-experienced B cells, by a restricted IGHV gene usage, and the validation of autoreactivity of the antibodies in selected cases. In the established lymphomas, NF-κB activity is further enforced by mutations in various genes regulating NF-κB activity (e.g., TNFAIP3, MYD88), as well as recurrent chromosomal translocations affecting NF-κB pathway components in a subset of cases. Further pathogenetic mechanisms include mutations in genes of the NOTCH pathway, and of epigenetic regulators. While gene expression and sequencing studies are available, the role of differential methylation of lymphoma cells, the role of micro-RNAs, and the contribution of the microenvironment remain largely unexplored.
Collapse
Affiliation(s)
- Patricia Johansson
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Anja Eckstein
- Molecular Ophthalmology Group, Department of Ophthalmology, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
19
|
A new taxonomy for splenic marginal zone lymphoma. Blood 2022; 139:644-645. [PMID: 35113148 DOI: 10.1182/blood.2021014198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
|
20
|
Bonfiglio F, Bruscaggin A, Guidetti F, Terzi di Bergamo L, Faderl M, Spina V, Condoluci A, Bonomini L, Forestieri G, Koch R, Piffaretti D, Pini K, Pirosa MC, Cittone MG, Arribas A, Lucioni M, Ghilardi G, Wu W, Arcaini L, Baptista MJ, Bastidas G, Bea S, Boldorini R, Broccoli A, Buehler MM, Canzonieri V, Cascione L, Ceriani L, Cogliatti S, Corradini P, Derenzini E, Devizzi L, Dietrich S, Elia AR, Facchetti F, Gaidano G, Garcia JF, Gerber B, Ghia P, Gomes da Silva M, Gritti G, Guidetti A, Hitz F, Inghirami G, Ladetto M, Lopez-Guillermo A, Lucchini E, Maiorana A, Marasca R, Matutes E, Meignin V, Merli M, Moccia A, Mollejo M, Montalban C, Novak U, Oscier DG, Passamonti F, Piazza F, Pizzolitto S, Rambaldi A, Sabattini E, Salles G, Santambrogio E, Scarfò L, Stathis A, Stüssi G, Geyer JT, Tapia G, Tarella C, Thieblemont C, Tousseyn T, Tucci A, Vanini G, Visco C, Vitolo U, Walewska R, Zaja F, Zenz T, Zinzani PL, Khiabanian H, Calcinotto A, Bertoni F, Bhagat G, Campo E, De Leval L, Dirnhofer S, Pileri SA, Piris MA, Traverse-Glehen A, Tzankov A, Paulli M, Ponzoni M, Mazzucchelli L, Cavalli F, Zucca E, Rossi D. Genetic and phenotypic attributes of splenic marginal zone lymphoma. Blood 2022; 139:732-747. [PMID: 34653238 DOI: 10.1182/blood.2021012386] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Splenic marginal zone B-cell lymphoma (SMZL) is a heterogeneous clinico-biological entity. The clinical course is variable, multiple genes are mutated with no unifying mechanism, and essential regulatory pathways and surrounding microenvironments are diverse. We sought to clarify the heterogeneity of SMZL by resolving different subgroups and their underlying genomic abnormalities, pathway signatures, and microenvironment compositions to uncover biomarkers and therapeutic vulnerabilities. We studied 303 SMZL spleen samples collected through the IELSG46 multicenter international study (NCT02945319) by using a multiplatform approach. We carried out genetic and phenotypic analyses, defined self-organized signatures, validated the findings in independent primary tumor metadata and in genetically modified mouse models, and determined correlations with outcome data. We identified 2 prominent genetic clusters in SMZL, termed NNK (58% of cases, harboring NF-κB, NOTCH, and KLF2 modules) and DMT (32% of cases, with DNA-damage response, MAPK, and TLR modules). Genetic aberrations in multiple genes as well as cytogenetic and immunogenetic features distinguished NNK- from DMT-SMZLs. These genetic clusters not only have distinct underpinning biology, as judged by differences in gene-expression signatures, but also different outcomes, with inferior survival in NNK-SMZLs. Digital cytometry and in situ profiling segregated 2 basic types of SMZL immune microenvironments termed immune-suppressive SMZL (50% of cases, associated with inflammatory cells and immune checkpoint activation) and immune-silent SMZL (50% of cases, associated with an immune-excluded phenotype) with distinct mutational and clinical connotations. In summary, we propose a nosology of SMZL that can implement its classification and also aid in the development of rationally targeted treatments.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Francesca Guidetti
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Martin Faderl
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Valeria Spina
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Luisella Bonomini
- International Extranodal Lymphoma Study Group, Bellinzona, Switzerland
| | - Gabriela Forestieri
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ricardo Koch
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Deborah Piffaretti
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Katia Pini
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Maria Cristina Pirosa
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Micol Giulia Cittone
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Alberto Arribas
- Lymphoma Genomics, Institute of Oncology Research, Bellinzona, Switzerland
| | - Marco Lucioni
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and Università degli Studi di Pavia, Pavia, Italy
| | - Guido Ghilardi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Wei Wu
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Joao Baptista
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Gabriela Bastidas
- Division of Hematology, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) 28029, Madrid, Spain
- Pathology Department, Hospital Clínic, Barcelona University, Barcelona, Spain
| | - Renzo Boldorini
- Division of Pathology, University of Eastern Piedmont, Novara, Italy
| | - Alessandro Broccoli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seràgnoli, Bologna, Italy
| | - Marco Matteo Buehler
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Vincenzo Canzonieri
- Pathology Unit, CRO Aviano National Cancer Institute, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Luciano Cascione
- Lymphoma Genomics, Institute of Oncology Research, Bellinzona, Switzerland
| | - Luca Ceriani
- Clinic of Nuclear Medicine and PET-CT Centre, Imaging Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Sergio Cogliatti
- Institute of Pathology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Paolo Corradini
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Enrico Derenzini
- Onco-hematology Division, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Liliana Devizzi
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sascha Dietrich
- Division of Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angela Rita Elia
- Cancer Immunotherapy, Institute of Oncology Research, Bellinzona, Switzerland
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Pathology Unit, Spedali Civili, Brescia, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Bernhard Gerber
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Department of Hematology and Oncology, University of Zurich, Zurich, Switzerland
| | - Paolo Ghia
- Strategic Research Program on Chronic Lymphocytic Leukemia (CLL), IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Gomes da Silva
- Division of Hematology, Instituto Português de Oncologia de Lisboa, Lisbon, Portugal
| | - Giuseppe Gritti
- Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Guidetti
- Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Felicitas Hitz
- Division of Hematology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Marco Ladetto
- Division of Hematology, Azienda Ospedaliera SS Antonio e Biagio, Alessandria, Italy
- Dipartimento di Medicina Traslazionale, University of Eastern Piedmont, Alessandria, Italy
| | | | - Elisa Lucchini
- Division of Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Antonino Maiorana
- Division of Pathology, Universitá degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Estella Matutes
- Haematopathology Unit, Hospital Clínic i Provincial de Barcelona, Barcelona, Spain
| | | | - Michele Merli
- Division of Hematology, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Alden Moccia
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Manuela Mollejo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) 28029, Madrid, Spain
- Division of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | - Carlos Montalban
- Division of Hematology, MD Anderson Cancer Center, Madrid, Spain
| | - Urban Novak
- Department of Medical Oncology and University Cancer Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Graham Oscier
- Division of Hematology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - Francesco Passamonti
- Department of Medicine and Surgery, University of Insubria and ASST Sette Laghi, Ospedale di Circolo of Varese, Varese, Italy
| | - Francesco Piazza
- Division of Hematology, Ospedale Universitario di Padova, Padova, Italy
| | - Stefano Pizzolitto
- Division of Pathology, General Hospital S Maria della Misericordia, Udine, Italy
| | - Alessandro Rambaldi
- Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gilles Salles
- Faculté de Médecine et de Maïeutique Lyon Sud, Université de Lyon, Lyon, France
| | | | - Lydia Scarfò
- Strategic Research Program on Chronic Lymphocytic Leukemia (CLL), IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Anastasios Stathis
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Georg Stüssi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Julia T Geyer
- Division of Anatomic Pathology and Clinical Pathology, Weill Cornell Medical College, New York, NY
| | - Gustavo Tapia
- Division of Pathology, Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Corrado Tarella
- Onco-hematology Division, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Catherine Thieblemont
- Assistance Publique-Hôpitaux de Paris, Hopital Saint-Louis, Hemato-Oncology Unit; Université de Paris, Paris, France
| | - Thomas Tousseyn
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | | | - Giorgio Vanini
- Department of Medical Oncology and University Cancer Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Italy
| | - Umberto Vitolo
- Candiolo Cancer Institute (FPO-IRCCS), Candiolo, Turin, Italy
| | - Renata Walewska
- Division of Hematology, University Hospitals Dorset, Bournemouth, United Kingdom
| | - Francesco Zaja
- Division of Hematology, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seràgnoli, Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers University, New Brunswick, NJ
| | - Arianna Calcinotto
- Cancer Immunotherapy, Institute of Oncology Research, Bellinzona, Switzerland
| | - Francesco Bertoni
- Lymphoma Genomics, Institute of Oncology Research, Bellinzona, Switzerland
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS)
- Pathology Department, Hospital Clínic, Barcelona University, Barcelona, Spain
| | - Laurence De Leval
- Division of Pathology, Institut Universitaire de Pathologie, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Stefano A Pileri
- Haematopathology Division, European Institute of Oncology IRCCS, Milan, Italy
| | - Miguel A Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) 28029, Madrid, Spain
- Pathology Service, Fundación Jiménez Díaz, Madrid, Spain
| | | | - Alexander Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and Università degli Studi di Pavia, Pavia, Italy
| | - Maurilio Ponzoni
- Ateneo Vita-Salute San Raffaele University and Pathology Unit San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mazzucchelli
- Division of Pathology, Cantonal Institute of Pathology, Locarno, Switzerland
| | - Franco Cavalli
- Institute of Oncology Research, Bellinzona, Switzerland; and
| | - Emanuele Zucca
- International Extranodal Lymphoma Study Group, Bellinzona, Switzerland
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Department of Medical Oncology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Davide Rossi
- Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
21
|
Vela V, Juskevicius D, Dirnhofer S, Menter T, Tzankov A. Mutational landscape of marginal zone B-cell lymphomas of various origin: organotypic alterations and diagnostic potential for assignment of organ origin. Virchows Arch 2022; 480:403-413. [PMID: 34494161 PMCID: PMC8986713 DOI: 10.1007/s00428-021-03186-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
This meta-analysis aims to concisely summarize the genetic landscape of splenic, nodal and extranodal marginal zone lymphomas (MZL) in the dura mater, salivary glands, thyroid, ocular adnexa, lung, stomach and skin with respect to somatic variants. A systematic PubMed search for sequencing studies of MZL was executed. All somatic mutations of the organs mentioned above were combined, uniformly annotated, and a dataset containing 25 publications comprising 6016 variants from 1663 patients was created. In splenic MZL, KLF2 (18%, 103/567) and NOTCH2 (16%, 118/725) were the most frequently mutated genes. Pulmonary and nodal MZL displayed recurrent mutations in chromatin-modifier-encoding genes, especially KMT2D (25%, 13/51, and 20%, 20/98, respectively). In contrast, ocular adnexal, gastric, and dura mater MZL had mutations in genes encoding for NF-κB pathway compounds, in particular TNFAIP3, with 39% (113/293), 15% (8/55), and 45% (5/11), respectively. Cutaneous MZL frequently had FAS mutations (63%, 24/38), while MZL of the thyroid had a higher prevalence for TET2 variants (61%, 11/18). Finally, TBL1XR1 (24%, 14/58) was the most commonly mutated gene in MZL of the salivary glands. Mutations of distinct genes show origin-preferential distribution among nodal and splenic MZL as well as extranodal MZL at/from different anatomic locations. Recognition of such mutational distribution patterns may help assigning MZL origin in difficult cases and possibly pave the way for novel more tailored treatment concepts.
Collapse
Affiliation(s)
- Visar Vela
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Darius Juskevicius
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Schönbeinstrasse 40, 4031, Basel, Switzerland.
| |
Collapse
|
22
|
Tsygankova S, Komova D, Boulygina E, Slobodova N, Sharko F, Rastorguev S, Gladysheva-Azgari M, Koroleva D, Smol’yaninova A, Tatarnikova S, Obuchova T, Nedoluzhko A, Gabeeva N, Zvonkov E. Non-GCB Diffuse Large B-Cell Lymphoma With an Atypical Disease Course: A Case Report and Clinical Exome Analysis. World J Oncol 2022; 13:38-47. [PMID: 35317330 PMCID: PMC8913013 DOI: 10.14740/wjon1436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid tumor among other non-Hodgkin lymphomas (30-40% of all cases). This type of lymphoma is characterized by significant differences in treatment response and the heterogeneity of clinical traits. Approximately 60% of patients are cured using standard chemotherapy (CT), while in 10-15% of cases, the tumor is characterized by an extremely aggressive course and resistance to even the most high-dose programs with autologous stem cell transplantation (auto-SCT). The activated B-cell (ABC) subtype of DLBCL is characterized by poor prognosis. Here, we describe a clinical case of diffuse ABC-DLBCL with an atypical disease course. Complete remission was achieved after four courses of CT, followed by autologous hematopoietic stem cell transplantation (auto-HSCT). However, early relapse occurred 2 months after the completion of treatment. According to the results of cytogenetic studies, significant chromosome breakdowns were observed. Exome sequencing allowed for the detection of several novel mutations that affect components of the NOTCH2 and NF-κB signaling pathways, a number of epigenetic regulators (KMT2D, CREBBP, EP300, ARID1A, MEF2B), as well as members of the immunoglobulin superfamily (CD58 and CD70). Whether these mutations were the result of therapy or were originally present in the lymphoid tumor remains unclear. Nevertheless, the introduction of genomic technologies into clinical practice is important for making a diagnosis and developing a DLBCL treatment regimen with the use of targeted drugs.
Collapse
Affiliation(s)
- Svetlana Tsygankova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- These authors contributed equally
| | - Daria Komova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
- These authors contributed equally
| | - Eugenia Boulygina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Natalia Slobodova
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Fedor Sharko
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Sergey Rastorguev
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | | | - Daria Koroleva
- National Medical Hematology Research Center, 125167 Moscow, Russia
| | | | | | - Tatiana Obuchova
- National Medical Hematology Research Center, 125167 Moscow, Russia
| | - Artem Nedoluzhko
- Moscow Healthcare Department, Mental-Health Clinic No. 1 Named After N.A. Alexeev, 115191 Moscow, Russia
| | - Nelli Gabeeva
- National Medical Hematology Research Center, 125167 Moscow, Russia
| | - Eugene Zvonkov
- National Medical Hematology Research Center, 125167 Moscow, Russia
| |
Collapse
|
23
|
Recent Advances in the Genetic of MALT Lymphomas. Cancers (Basel) 2021; 14:cancers14010176. [PMID: 35008340 PMCID: PMC8750177 DOI: 10.3390/cancers14010176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Mucosa-associated lymphoid tissue (MALT) lymphoma is the most common subtype of marginal zone lymphomas. These B-cell neoplasms may arise from many organs and usually have an indolent behavior. Recurrent chromosomal translocations and cytogenetic alterations are well characterized, some of them being associated to specific sites. Through next-generation sequencing technologies, the mutational landscape of MALT lymphomas has been explored and available data to date show that there are considerable variations in the incidence and spectrum of mutations among MALT lymphoma of different sites. Interestingly, most of these mutations affect several common pathways and some of them are potentially targetable. Gene expression profile and epigenetic studies have also added new information, potentially useful for diagnosis and treatment. This article provides a comprehensive review of the genetic landscape in MALT lymphomas. Abstract Mucosa-associated lymphoid tissue (MALT) lymphomas are a diverse group of lymphoid neoplasms with B-cell origin, occurring in adult patients and usually having an indolent clinical behavior. These lymphomas may arise in different anatomic locations, sharing many clinicopathological characteristics, but also having substantial variances in the aetiology and genetic alterations. Chromosomal translocations are recurrent in MALT lymphomas with different prevalence among different sites, being the 4 most common: t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21), and t(3;14)(p14.1;q32). Several chromosomal numerical abnormalities have also been described, but probably represent secondary genetic events. The mutational landscape of MALT lymphomas is wide, and the most frequent mutations are: TNFAIP3, CREBBP, KMT2C, TET2, SPEN, KMT2D, LRP1B, PRDM1, EP300, TNFRSF14, NOTCH1/NOTCH2, and B2M, but many other genes may be involved. Similar to chromosomal translocations, certain mutations are enriched in specific lymphoma types. In the same line, variation in immunoglobulin gene usage is recognized among MALT lymphoma of different anatomic locations. In the last decade, several studies have analyzed the role of microRNA, transcriptomics and epigenetic alterations, further improving our knowledge about the pathogenic mechanisms in MALT lymphoma development. All these advances open the possibility of targeted directed treatment and push forward the concept of precision medicine in MALT lymphomas.
Collapse
|
24
|
Schmieg JJ, Muir JM, Aguilera NS, Auerbach A. CD5-Negative, CD10-Negative Low-Grade B-Cell Lymphoproliferative Disorders of the Spleen. Curr Oncol 2021; 28:5124-5147. [PMID: 34940069 PMCID: PMC8700451 DOI: 10.3390/curroncol28060430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 01/20/2023] Open
Abstract
CD5-negative, CD10-negative low-grade B-cell lymphoproliferative disorders (CD5-CD10-LPD) of the spleen comprise a fascinating group of indolent, neoplastic, mature B-cell proliferations that are essential to accurately identify but can be difficult to diagnose. They comprise the majority of B-cell LPDs primary to the spleen, commonly presenting with splenomegaly and co-involvement of peripheral blood and bone marrow, but with little to no involvement of lymph nodes. Splenic marginal zone lymphoma is one of the prototypical, best studied, and most frequently encountered CD5-CD10-LPD of the spleen and typically involves white pulp. In contrast, hairy cell leukemia, another well-studied CD5-CD10-LPD of the spleen, involves red pulp, as do the two less common entities comprising so-called splenic B-cell lymphoma/leukemia unclassifiable: splenic diffuse red pulp small B-cell lymphoma and hairy cell leukemia variant. Although not always encountered in the spleen, lymphoplasmacytic lymphoma, a B-cell lymphoproliferative disorder consisting of a dual population of both clonal B-cells and plasma cells and the frequent presence of the MYD88 L265P mutation, is another CD5-CD10-LPD that can be seen in the spleen. Distinction of these different entities is possible through careful evaluation of morphologic, immunophenotypic, cytogenetic, and molecular features, as well as peripheral blood and bone marrow specimens. A firm understanding of this group of low-grade B-cell lymphoproliferative disorders is necessary for accurate diagnosis leading to optimal patient management.
Collapse
Affiliation(s)
- John J. Schmieg
- The Joint Pathology Center, Silver Spring, MD 20910, USA; (J.J.S.); (J.M.M.)
| | - Jeannie M. Muir
- The Joint Pathology Center, Silver Spring, MD 20910, USA; (J.J.S.); (J.M.M.)
| | - Nadine S. Aguilera
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22904, USA;
| | - Aaron Auerbach
- The Joint Pathology Center, Silver Spring, MD 20910, USA; (J.J.S.); (J.M.M.)
- Correspondence: ; Tel.: +1-301-295-5636
| |
Collapse
|
25
|
Kurosawa S, Toya T, Sadato D, Hishima T, Hirama C, Najima Y, Kobayashi T, Haraguchi K, Okuyama Y, Oboki K, Harada H, Sakamaki H, Ohashi K, Harada Y, Doki N. Mutation profiles of diffuse large B-cell lymphoma transformation of splenic B-cell lymphoma/leukemia, unclassifiable on whole-exome sequencing. EJHAEM 2021; 2:854-860. [PMID: 35845190 PMCID: PMC9175768 DOI: 10.1002/jha2.315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
A 58-year-old male was diagnosed with splenic B-cell lymphoma/leukemia, unclassifiable (SPLL-U). The lymphoma transformed into diffuse large B-cell lymphoma (DLBCL), and multidrug chemotherapy and autologous stem cell transplantation achieved complete remission. Two years later, the lymphoma relapsed as SPLL-U. Serial whole-exome sequencing indicated that the mutation profiles were similar between the onset and relapsed samples while those in DLBCL were partially distinctive, which was in line with the clinical course. Hierarchical clustering revealed that an IGLL5 mutation was the founder mutation proceeding the development of the diseases and suggested that KRAS and other mutations might contribute to the transformation.
Collapse
Affiliation(s)
- Shuhei Kurosawa
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Takashi Toya
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Daichi Sadato
- Clinical Research Support CenterTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
- Research Center for Genome & Medical SciencesTokyo Metropolitan Institute of Medical ScienceSetagaya CityJapan
| | - Tsunekazu Hishima
- Department of PathologyTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Chizuko Hirama
- Clinical Research Support CenterTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
- Research Center for Genome & Medical SciencesTokyo Metropolitan Institute of Medical ScienceSetagaya CityJapan
| | - Yuho Najima
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Takeshi Kobayashi
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell TherapyTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell TherapyTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Keisuke Oboki
- Research Center for Genome & Medical SciencesTokyo Metropolitan Institute of Medical ScienceSetagaya CityJapan
| | - Hironori Harada
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
- Laboratory of OncologySchool of Life SciencesTokyo University of Pharmacy and Life SciencesHachiojiJapan
| | - Hisashi Sakamaki
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Kazuteru Ohashi
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Yuka Harada
- Clinical Research Support CenterTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| | - Noriko Doki
- Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalBunkyo CityJapan
| |
Collapse
|
26
|
Gaudette BT, Roman CJ, Ochoa TA, Gómez Atria D, Jones DD, Siebel CW, Maillard I, Allman D. Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation. J Clin Invest 2021; 131:e151975. [PMID: 34473651 DOI: 10.1172/jci151975] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about how cells regulate and integrate distinct biosynthetic pathways governing differentiation and cell division. For B lineage cells it is widely accepted that activated cells must complete several rounds of mitosis before yielding antibody-secreting plasma cells. However, we report that marginal zone (MZ) B cells, innate-like naive B cells known to generate plasma cells rapidly in response to blood-borne bacteria, generate functional plasma cells despite cell-cycle arrest. Further, short-term Notch2 blockade in vivo reversed division-independent differentiation potential and decreased transcript abundance for numerous mTORC1- and Myc-regulated genes. Myc loss compromised plasma cell differentiation for MZ B cells, and reciprocally induced ectopic mTORC1 signaling in follicular B cells enabled division-independent differentiation and plasma cell-affiliated gene expression. We conclude that ongoing in situ Notch2/mTORC1 signaling in MZ B cells establishes a unique cellular state that enables rapid division-independent plasma cell differentiation.
Collapse
Affiliation(s)
| | - Carly J Roman
- The Department of Pathology and Laboratory Medicine and
| | - Trini A Ochoa
- The Department of Pathology and Laboratory Medicine and
| | - Daniela Gómez Atria
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Derek D Jones
- The Department of Pathology and Laboratory Medicine and
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, California, USA
| | - Ivan Maillard
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Allman
- The Department of Pathology and Laboratory Medicine and
| |
Collapse
|
27
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
28
|
Magistri M, Happ LE, Ramdial J, Lu X, Stathias V, Kunkalla K, Agarwal N, Jiang X, Schürer SC, Dubovy SR, Chapman JR, Vega F, Dave S, Lossos IS. The Genetic Landscape of Ocular Adnexa MALT Lymphoma Reveals Frequent Aberrations in NFAT and MEF2B Signaling Pathways. CANCER RESEARCH COMMUNICATIONS 2021; 1:1-16. [PMID: 35528192 PMCID: PMC9075502 DOI: 10.1158/2767-9764.crc-21-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
A comprehensive constellation of somatic non-silent mutations and copy number (CN) variations in ocular adnexa marginal zone lymphoma (OAMZL) is unknown. By utilizing whole-exome sequencing in 69 tumors we define the genetic landscape of OAMZL. Mutations and CN changes in CABIN1 (30%), RHOA (26%), TBL1XR1 (22%), and CREBBP (17%) and inactivation of TNFAIP3 (26%) were among the most common aberrations. Candidate cancer driver genes cluster in the B-cell receptor (BCR), NFkB, NOTCH and NFAT signaling pathways. One of the most commonly altered genes is CABIN1, a calcineurin inhibitor acting as a negative regulator of the NFAT and MEF2B transcriptional activity. CABIN1 deletions enhance BCR-stimulated NFAT and MEF2B transcriptional activity, while CABIN1 mutations enhance only MEF2B transcriptional activity by impairing binding of mSin3a to CABIN1. Our data provide an unbiased identification of genetically altered genes that may play a role in the molecular pathogenesis of OAMZL and serve as therapeutic targets.
Collapse
Affiliation(s)
- Marco Magistri
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Lanie E. Happ
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Jeremy Ramdial
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - XiaoQing Lu
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Vasileios Stathias
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kranthi Kunkalla
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Nitin Agarwal
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Xiaoyu Jiang
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
- Center for Computational Science, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Sander R. Dubovy
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer R. Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Francisco Vega
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, Florida
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, North Carolina
| | - Izidore S. Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
29
|
Alderuccio JP, Lossos IS. NOTCH signaling in the pathogenesis of splenic marginal zone lymphoma-opportunities for therapy. Leuk Lymphoma 2021; 63:279-290. [PMID: 34586000 DOI: 10.1080/10428194.2021.1984452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
NOTCH signaling is a highly conserved pathway mediated by four receptors (NOTCH 1-4) playing critical functions in proliferation, differentiation, and cell death. Under physiologic circumstances, NOTCH2 is a key regulator in marginal zone differentiation and development. Over the last decade, growing data demonstrated frequent NOTCH2 mutations in splenic marginal zone lymphoma (SMZL) underscoring its critical role in the pathogenesis of this disease. Moreover, NOTCH2 specificity across studies supports the rationale to assess its value as a diagnosis biomarker in a disease without pathognomonic features. These data make NOTCH signaling an appealing target for drug discovery in SMZL; however, prior efforts attempting to manipulate this pathway failed to demonstrate meaningful clinical benefit, or their safety profile prevented further development. In this review, we discuss the current knowledge of NOTCH implications in the pathogenesis and as a potential druggable target in SMZL.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Izidore S Lossos
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Molecular and Cellular Pharmacology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, Verney A, Traverse-Glehen A. New Insights into the Biology and Diagnosis of Splenic Marginal Zone Lymphomas. ACTA ACUST UNITED AC 2021; 28:3430-3447. [PMID: 34590593 PMCID: PMC8482189 DOI: 10.3390/curroncol28050297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a small B-cell lymphoma, which has been recognized as a distinct pathological entity since the WHO 2008 classification. It classically presents an indolent evolution, but a third of patients progress rapidly and require aggressive treatments, such as immuno-chemotherapy or splenectomy, with all associated side effects. In recent years, advances in the comprehension of SMZL physiopathology have multiplied, thanks to the arrival of new devices in the panel of available molecular biology techniques, allowing the discovery of new molecular findings. In the era of targeted therapies, an update of current knowledge is needed to guide future researches, such as those on epigenetic modifications or the microenvironment of these lymphomas.
Collapse
Affiliation(s)
- Marie Donzel
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Lucile Baseggio
- Laboratoire d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France;
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Juliette Fontaine
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Florian Pesce
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
| | - Hervé Ghesquières
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Emmanuel Bachy
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Service d’hématologie, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France
| | - Aurélie Verney
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
| | - Alexandra Traverse-Glehen
- Institut de pathologie multi-sites, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (M.D.); (J.F.); (F.P.)
- INSERM-Unité Mixte de Recherche 1052 CNRS 5286, Team “Clinical and Experimental Models of Lymphomagenesis”, UCBL, Cancer Research Center of Lyon, Université Lyon, 69001 Lyon, France; (H.G.); (E.B.); (A.V.)
- Correspondence: ; Tel.: +33-4-7876-1186
| |
Collapse
|
31
|
Jajosky AN, Havens NP, Sadri N, Oduro KA, Moore EM, Beck RC, Meyerson HJ. Clinical Utility of Targeted Next-Generation Sequencing in the Evaluation of Low-Grade Lymphoproliferative Disorders. Am J Clin Pathol 2021; 156:433-444. [PMID: 33712839 DOI: 10.1093/ajcp/aqaa255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES We investigated the usefulness of a custom-designed 31-gene next-generation sequencing (NGS) panel implemented on a routine basis for the evaluation of low-grade lymphoproliferative disorders (LPDs). METHODS In total, 147 blood, bone marrow, and tissue specimens were sequenced, including 81% B-cell, 15% T-cell, and 3% natural killer (NK)-cell neoplasms. RESULTS Of the cases, 92 (63%) of 147 displayed at least one pathogenic variant while 41 (28%) of 147 had two or more. Low mutation rates were noted in monoclonal B-cell lymphocytoses and samples with small T- and NK-cell clones of uncertain significance. Pathogenic molecular variants were described in specific disorders and classified according to their diagnostic, prognostic, and potential therapeutic value. Diagnostically, in addition to confirming the diagnosis of 15 of 15 lymphoplasmacytic lymphomas, 10 of 12 T large granular lymphocytic leukemias, and 2 of 2 hairy cell leukemias (HCLs), the panel helped resolve the diagnosis of 10 (62.5%) of 16 challenging cases lacking a specified diagnosis based on standard morphology, phenotype, and genetic analysis. CONCLUSIONS Overall, implementation of this targeted lymphoid NGS panel as part of regular hematopathology practice was found to be a beneficial adjunct in the evaluation of low-grade LPDs.
Collapse
Affiliation(s)
- Audrey N Jajosky
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nathaniel P Havens
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Navid Sadri
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kwadwo A Oduro
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erika M Moore
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rose C Beck
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Howard J Meyerson
- Department of Pathology, University Hospitals Cleveland Medical Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
32
|
Grant AH, Ayala-Marin YM, Mohl JE, Robles-Escajeda E, Rodriguez G, Dutil J, Kirken RA. The Genomic Landscape of a Restricted ALL Cohort from Patients Residing on the U.S./Mexico Border. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147345. [PMID: 34299796 PMCID: PMC8307122 DOI: 10.3390/ijerph18147345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has identified unique biomarkers yielding new strategies in precision medicine for the treatment of Acute lymphoblastic leukemia (ALL). Hispanics show marked health disparities in ALL, often absent in clinical trials or cancer research. Thus, it is unknown whether Hispanics would benefit equally from curated data currently guiding precision oncology. Using whole-exome sequencing, nine ALL patients were screened for mutations within genes known to possess diagnostic, prognostic and therapeutic value. Genes mutated in Hispanic ALL patients from the borderland were mined for potentially pathogenic variants within clinically relevant genes. KRAS G12A was detected in this unique cohort and its frequency in Hispanics from the TARGET-ALL Phase II database was three-fold greater than that of non-Hispanics. STAT5B N642H was also detected with low frequency in Hispanic and non-Hispanic individuals within TARGET. Its detection within this small cohort may reflect a common event in this demographic. Such variants occurring in the MAPK and JAK/STAT pathways may be contributing to Hispanic health disparities in ALL. Notable variants in ROS1, WT1, and NOTCH2 were observed in the ALL borderland cohort, with NOTCH2 C19W occurring most frequently. Further investigations on the pathogenicity of these variants are needed to assess their relevance in ALL.
Collapse
Affiliation(s)
- Alice Hernandez Grant
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Yoshira Marie Ayala-Marin
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Jonathon Edward Mohl
- Department of Mathematical Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Elisa Robles-Escajeda
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Georgialina Rodriguez
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
| | - Julie Dutil
- Department of Biochemistry, Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR 00716, USA;
| | - Robert Arthur Kirken
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.H.G.); (Y.M.A.-M.); (E.R.-E.); (G.R.)
- Correspondence: ; Tel.: +1-(915)-747-5536
| |
Collapse
|
33
|
Nandi A, Chakrabarti R. The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes Dev 2021; 34:1422-1438. [PMID: 33872192 PMCID: PMC7608750 DOI: 10.1101/gad.342287.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, Nandi et al. revisit the mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. The authors also discuss combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may improve prognosis in breast cancer patients. Breast cancer is the second leading cause of cancer-related death in women and is a complex disease with high intratumoral and intertumoral heterogeneity. Such heterogeneity is a major driving force behind failure of current therapies and development of resistance. Due to the limitations of conventional therapies and inevitable emergence of acquired drug resistance (chemo and endocrine) as well as radio resistance, it is essential to design novel therapeutic strategies to improve the prognosis for breast cancer patients. Deregulated Notch signaling within the breast tumor and its tumor microenvironment (TME) is linked to poor clinical outcomes in treatment of resistant breast cancer. Notch receptors and ligands are also important for normal mammary development, suggesting the potential for conserved signaling pathways between normal mammary gland development and breast cancer. In this review, we focus on mechanisms by which Notch receptors and ligands contribute to normal mammary gland development and breast tumor progression. We also discuss how complex interactions between cancer cells and the TME may reduce treatment efficacy and ultimately lead to acquired drug or radio resistance. Potential combinatorial approaches aimed at disrupting Notch- and TME-mediated resistance that may aid in achieving in an improved patient prognosis are also highlighted.
Collapse
Affiliation(s)
- Ajeya Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
34
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
35
|
Notch signaling promotes disease initiation and progression in murine chronic lymphocytic leukemia. Blood 2021; 137:3079-3092. [PMID: 33512383 DOI: 10.1182/blood.2020006701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
NOTCH1 gain-of-function mutations are recurrent in B-cell chronic lymphocytic leukemia (B-CLL), where they are associated with accelerated disease progression and refractoriness to chemotherapy. The specific role of NOTCH1 in the development and progression of this malignancy is unclear. Here, we assess the impact of loss of Notch signaling and pathway hyperactivation in an in vivo mouse model of CLL (IgH.TEμ) that faithfully replicates many features of the human pathology. Ablation of canonical Notch signaling using conditional gene inactivation of RBP-J in immature hematopoietic or B-cell progenitors delayed CLL induction and reduced incidence of mice developing disease. In contrast, forced expression of a dominant active form of Notch resulted in more animals developing CLL with early disease onset. Comparative analysis of gene expression and epigenetic features of Notch gain-of-function and control CLL cells revealed direct and indirect regulation of cell cycle-associated genes, which led to increased proliferation of Notch gain-of-function CLL cells in vivo. These results demonstrate that Notch signaling facilitates disease initiation and promotes CLL cell proliferation and disease progression.
Collapse
|
36
|
Notch activation is pervasive in SMZL and uncommon in DLBCL: implications for Notch signaling in B-cell tumors. Blood Adv 2021; 5:71-83. [PMID: 33570635 DOI: 10.1182/bloodadvances.2020002995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Notch receptors participate in a signaling pathway in which ligand-induced proteolysis frees the Notch intracellular domain (NICD), allowing it to translocate to the nucleus, form a transcription complex, and induce target gene expression. Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), splenic marginal zone B-cell lymphoma (SMZL), and distinct subsets of diffuse large B-cell lymphoma (DLBCL) are strongly associated with mutations in the 3' end of NOTCH1 or NOTCH2 that disrupt a proline, glutamic acid, serine, and threonine (PEST) degron domain and stabilize NICD1 and NICD2. By contrast, mutations leading to constitutive Notch activation are rare in primary B-cell neoplasms, suggesting that Notch activation is confined to ligand-rich tumor microenvironments, or that cryptic strong gain-of-function mutations have been missed in prior analyses. To test these ideas, we used immunohistochemical stains to screen a broad range of B-cell tumors for Notch activation. Our analyses reveal that among small B-cell neoplasms, NICD2 is primarily detected in SMZL and is a common feature of both NOTCH2 wild-type and NOTCH2-mutated SMZLs, similar to prior findings with NOTCH1 in CLL/SLL. The greatest NOTCH2 activation was observed in NOTCH2-mutated SMZLs, particularly within splenic marginal zones. By contrast, little evidence of NOTCH2 activation was observed in DLBCL, even in NOTCH2-mutated tumors, suggesting that selective pressure for NOTCH2 activation is mainly confined to low-grade B-cell neoplasms, whereas DLBCLs with NOTCH1 mutations frequently showed evidence of ongoing NOTCH1 activation. These observations have important implications for the pathogenic role of Notch and its therapeutic targeting in B-cell lymphomas.
Collapse
|
37
|
Davis AR, Stone SL, Oran AR, Sussman RT, Bhattacharyya S, Morrissette JJD, Bagg A. Targeted massively parallel sequencing of mature lymphoid neoplasms: assessment of empirical application and diagnostic utility in routine clinical practice. Mod Pathol 2021; 34:904-921. [PMID: 33311649 DOI: 10.1038/s41379-020-00720-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Massively parallel sequencing (MPS) has become a viable diagnostic tool to interrogate genetic profiles of numerous tumors but has yet to be routinely adopted in the setting of lymphoma. Here, we report the empirical application of a targeted 40-gene panel developed for use in mature lymphoid neoplasms (MLNs) and report our experience on over 500 cases submitted for MPS during the first year of its clinical use. MPS was applied to both fresh and fixed specimens. The most frequent diagnoses were diffuse large B-cell lymphoma (116), chronic lymphocytic leukemia/small lymphocytic lymphoma (60), marginal zone lymphoma (52), and follicular lymphoma (43), followed by a spectrum of mature T-cell neoplasms (40). Of 534 cases submitted, 471 generated reportable results in MLNs, with disease-associated variants (DAVs) detected in 241 cases (51.2%). The most frequent DAVs affected TP53 (30%), CREBBP (14%), MYD88 (14%), TNFRSF14 (10%), TNFAIP3 (10%), B2M (7%), and NOTCH2 (7%). The bulk of our findings confirm what is reported in the scientific literature. While a substantial majority of mutations did not directly impact diagnosis, MPS results were utilized to either change, refine, or facilitate the final diagnosis in ~10.8% of cases with DAVs and 5.5% of cases overall. In addition, we identified preanalytic variables that significantly affect assay performance highlighting items for specimen triage. We demonstrate the technical viability and utility of the judicious use of a targeted MPS panel that may help to establish general guidelines for specimen selection and diagnostic application in MLNs in routine clinical practice.
Collapse
Affiliation(s)
- Adam R Davis
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sara L Stone
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda R Oran
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn T Sussman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
39
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
40
|
Mutational Analysis Reinforces the Diagnosis of Nodal Marginal Zone Lymphoma With Robust PD1-positive T-Cell Hyperplasia. Am J Surg Pathol 2021; 45:143-145. [PMID: 32520760 DOI: 10.1097/pas.0000000000001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Lv X, Wang Q, Ge X, Xue C, Liu X. Application of high-throughput gene sequencing in lymphoma. Exp Mol Pathol 2021; 119:104606. [PMID: 33493455 DOI: 10.1016/j.yexmp.2021.104606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
As a malignant tumor originating from the lymphoid hematopoietic tissues, lymphoma has an increased incidence in recent years and has ranked among the top ten malignant tumors in the world. But until now, due to the multiple pathological subtypes and the unclear molecular mechanism, it's still difficult to make rapid diagnosis and accurate prognosis assessment for lymphoma patients. Recently, the development of high-throughput gene sequencing technology has provided the possibility to solve these clinical problems. This technology has realized large-scale screening of specific markers for lymphoma at the molecular biology level, followed by discovery of prognostic indicators and biological targets for new drug research. In this paper, we summarize the results of large-scale high-throughput gene sequencing research, and introduce the genetic changes associated with occurrence and prognosis of lymphomas with different pathological subtypes, hoping to further promote the application of this technology in clinical research of lymphoma.
Collapse
Affiliation(s)
- Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Qian Wang
- State Grid Electronic Commerce CO.,LTD, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Chao Xue
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China.
| |
Collapse
|
42
|
Role of Notch Receptors in Hematologic Malignancies. Cells 2020; 10:cells10010016. [PMID: 33374160 PMCID: PMC7823720 DOI: 10.3390/cells10010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Notch receptors are single-pass transmembrane proteins that play a critical role in cell fate decisions and have been implicated in the regulation of many developmental processes. The human Notch family comprises of four receptors (Notch 1 to 4) and five ligands. Their signaling can regulate extremely basic cellular processes such as differentiation, proliferation and death. Notch is also involved in hematopoiesis and angiogenesis, and increasing evidence suggests that these genes are involved and frequently deregulated in several human malignancies, contributing to cell autonomous activities that may be either oncogenic or tumor suppressive. It was recently proposed that Notch signaling could play an active role in promoting and sustaining a broad spectrum of lymphoid malignancies as well as mutations in Notch family members that are present in several disorders of T- and B-cells, which could be responsible for altering the related signaling. Therefore, different Notch pathway molecules could be considered as potential therapeutic targets for hematological cancers. In this review, we will summarize and discuss compelling evidence pointing to Notch receptors as pleiotropic regulators of hematologic malignancies biology, first describing the physiological role of their signaling in T- and B-cell development and homeostasis, in order to fully understand the pathological alterations reported.
Collapse
|
43
|
Gailllard B, Cornillet-Lefebvre P, Le QH, Maloum K, Pannetier M, Lecoq-Lafon C, Grange B, Jondreville L, Michaux L, Nadal N, Ittel A, Luquet I, Struski S, Lefebvre C, Gaillard JB, Lafage-Pochitaloff M, Balducci E, Penther D, Barin C, Collonge-Rame MA, Jimenez-Poquet M, Richebourg S, Lemaire P, Defasque S, Radford-Weiss I, Bidet A, Susin SA, Nguyen-Khac F, Chapiro E. Clinical and biological features of B-cell neoplasms with CDK6 translocations: an association with a subgroup of splenic marginal zone lymphomas displaying frequent CD5 expression, prolymphocytic cells, and TP53 abnormalities. Br J Haematol 2020; 193:72-82. [PMID: 33314017 DOI: 10.1111/bjh.17141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
A translocation involving the cyclin-dependent kinase 6 (CDK6) gene [t(CDK6)] is a rare but recurrent abnormality in B-cell neoplasms. To further characterise this aberration, we studied 57 cases; the largest series reported to date. Fluorescence in situ hybridisation analysis confirmed the involvement of CDK6 in all cases, including t(2;7)(p11;q21) immunoglobulin kappa locus (IGK)/CDK6 (n = 51), t(7;14)(q21;q32) CDK6/immunoglobulin heavy locus (IGH) (n = 2) and the previously undescribed t(7;14)(q21;q11) CDK6/T-cell receptor alpha locus (TRA)/T-cell receptor delta locus (TRD) (n = 4). In total, 10 patients were diagnosed with chronic lymphocytic leukaemia, monoclonal B-cell lymphocytosis or small lymphocytic lymphoma, and 47 had small B-cell lymphoma (SmBL) including 36 cases of marginal zone lymphoma (MZL; 34 splenic MZLs, one nodal MZL and one bronchus-associated lymphoid tissue lymphoma). In all, 18 of the 26 cytologically reviewed cases of MZL (69%) had an atypical aspect with prolymphocytic cells. Among the 47 patients with MZL/SmBL, CD5 expression was found in 26 (55%) and the tumour protein p53 (TP53) deletion in 22 (47%). The TP53 gene was mutated in 10/30 (33%); the 7q deletion was detected in only one case, and no Notch receptor 2 (NOTCH2) mutations were found. Immunoglobulin heavy-chain variable-region (IGHV) locus sequencing revealed that none harboured an IGHV1-02*04 gene. Overall survival was 82% at 10 years and not influenced by TP53 aberration. Our present findings suggest that most t(CDK6)+ neoplasms correspond to a particular subgroup of indolent marginal zone B-cell lymphomas with distinctive features.
Collapse
Affiliation(s)
| | | | - Quoc-Hung Le
- Service d'Hématologie Clinique, Hôpital Robert Debré, Reims, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Pannetier
- Laboratoire d'Hématologie, Centre Hospitalo-Universitaire, Rennes, France
| | | | - Béatrice Grange
- Service d'Hématologie Biologique, Hospices Civils de Lyon, Lyon, France
| | - Ludovic Jondreville
- Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, France
| | - Antoine Ittel
- Laboratoire de Cytogénétique Hématologique, CHU de Strasbourg, Strasbourg, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Stéphanie Struski
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | | | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Onco-Hématologique, Hôpital de la Timone, AP-HM, Aix-Marseille Université, Marseille, France
| | - Estelle Balducci
- Laboratoire d'Hématologie, Hôpital Paul Brousse, APHP, Villejuif, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, CLCC Henri Becquerel and INSERM U1245, Rouen, France
| | - Carole Barin
- Laboratoire de Cytogénétique hématologique, Service de Génétique, CHRU Bretonneau, Tours, France
| | | | | | - Steven Richebourg
- Laboratoire de Cytogénétique Onco-Hématologique, CHU de Québec - Université Laval, Québec, Canada
| | - Pierre Lemaire
- Laboratoire d'Hématologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Sabine Defasque
- Secteur cytogénétique hématologique, Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | | | - Audrey Bidet
- Laboratoire d'Hématologie, CHU Bordeaux-Haut Lévêque, Bordeaux, France
| | - Santos A Susin
- Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | - Elise Chapiro
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | | |
Collapse
|
44
|
Arasu A, Balakrishnan P, Velusamy T. RNA sequencing analyses reveal differentially expressed genes and pathways as Notch2 targets in B-cell lymphoma. Oncotarget 2020; 11:4527-4540. [PMID: 33400727 PMCID: PMC7721612 DOI: 10.18632/oncotarget.27805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a low grade, indolent B-cell neoplasm that comprises approximately 10% of all lymphoma. Notch2, a pivotal gene for marginal zone differentiation is found to be mutated in SMZL. Deregulated Notch2 signaling has been involved in tumorigenesis and also in B-cell malignancies. However the role of Notch2 and the downstream pathways that it influences for development of B-cell lymphoma remains unclear. In recent years, RNA sequencing (RNA-Seq) has become a functional and convincing technology for profiling gene expression and to discover new genes and transcripts that are involved in disease development in a single experiment. In the present study, using transcriptome sequencing approach, we have identified key genes and pathways that are probably the underlying cause in the development of B-cell lymphoma. We have identified a total of 15,083 differentially expressed genes (DEGs) and 1067 differentially expressed transcripts (DETs) between control and Notch2 knockdown B cells. Gene Ontology (GO) term enrichment and pathway analysis were applied for the identification of key genes and pathways involved in development of B-cell lymphoma. In addition, intermediate genes of top canonical pathways such as PI3K/AKT and NF-kB were found to be downregulated with Notch2 knockdown, indicating that these pathways could be the putative downstream effectors through which Notch2 mediates its oncogenic effects. Taken collectively, the identified crop of genes and pathways may be considered as targets for the treatment of B-cell lymphoma.
Collapse
Affiliation(s)
- Ashok Arasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Pavithra Balakrishnan
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, India
| |
Collapse
|
45
|
Bailey NG, Elenitoba-Johnson KSJ. Impact of Genetics on Mature Lymphoid Leukemias and Lymphomas. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035444. [PMID: 31932467 DOI: 10.1101/cshperspect.a035444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recurrent genetic aberrations have long been recognized in mature lymphoid leukemias and lymphomas. As conventional karyotypic and molecular cloning techniques evolved in the 1970s and 1980s, multiple cytogenetic aberrations were identified in lymphomas, often balanced translocations that juxtaposed oncogenes to the immunoglobulin (IG) or T-cell receptor (TR) loci, leading to dysregulation. However, genetic characterization and classification of lymphoma by conventional cytogenetic methods is limited by the infrequent occurrence of recurrent karyotypic abnormalities in many lymphoma subtypes and by the frequent difficulty in growing clinical lymphoma specimens in culture to obtain informative karyotypes. As higher-resolution genomic techniques developed, such as array comparative genomic hybridization and fluorescence in situ hybridization, many recurrent copy number changes were identified in lymphomas, and copy number assessment of interphase cells became part of routine clinical practice for a subset of diseases. Platforms to globally examine mRNA expression led to major insights into the biology of several lymphomas, although these techniques have not gained widespread application in routine clinical settings. With the advent of next-generation sequencing (NGS) techniques in the early 2000s, numerous insights into the genetic landscape of lymphomas were obtained. In contrast to the myeloid malignancies, most common lymphomas exhibit an at least somewhat mutationally complex genome, with few single driver mutations in the majority of patients. However, many recurrently mutated pathways have been identified across lymphoma subtypes, informing targeted therapeutic approaches that are beginning to make meaningful changes in the treatment of lymphoma. In addition to the ability to identify possible therapeutic targets, NGS techniques are highly amenable to the tracking of residual lymphoma following therapy, because of the presence of unique genetic "fingerprints" in lymphoma cells due to V(D)-J recombination at the antigen receptor loci. This review will provide an overview of the impact of novel genetic technologies on lymphoma classification, biology, and therapy.
Collapse
Affiliation(s)
- Nathanael G Bailey
- Division of Hematopathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19102, USA
| |
Collapse
|
46
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
47
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
48
|
Huh SJ, Oh SY, Lee S, Lee JH, Kim SH, Pak MK, Kim HJ. Mutational analysis of extranodal marginal zone lymphoma using next generation sequencing. Oncol Lett 2020; 20:205. [PMID: 32963611 PMCID: PMC7491050 DOI: 10.3892/ol.2020.12068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Extranodal marginal zone lymphoma is a type of low-grade B-cell lymphoma that can be classified as a mucosal-associated lymphoid tissue (MALT) lymphoma. Recently, second-generation or next-generation sequencing (NGS), which allows simultaneous sequencing of hundreds to billions of DNA strands, has been a focus of attention and is rapidly being adopted in various fields. In the present study, paraffin-embedded tissue samples of gastric MALT lymphoma (n=1) and small intestine MALT lymphoma (n=4) were selected, and DNA was extracted from the tissue samples. After performing quality control, NGS was performed using HemaSCAN™, a custom panel of 426 genes, including essential blood cancer genes. NGS revealed single nucleotide variations (SNVs), short insertions and deletions (InDels) and copy number variations (CNVs). These genomic variants were reported as annotated, known or novel variants. An annotated variant, an erb-b2 receptor tyrosine kinase 2 gene amplification, was observed in one patient. Known and novel variants, including SNVs of SET binding protein 6 (SETBP6), Runt-related transcription factor 1 and Kelch-like ECH-associated protein 1 genes, InDel of the marker of proliferation Ki-67 gene, and CNVs of the zinc finger protein 703 and NOTCH1 genes, were observed in ≥2 patients. Additionally, InDels with frameshift mutations were identified in the B-cell lymphoma/leukemia 10, DEAD-box helicase 3 X-linked, forkhead box O3 and mucin 2, oligomeric mucus/gel-forming genes in one patient. Since few NGS studies have been performed on MALT lymphoma, the current results were unable to determine if the different mutations that were identified are ‘actionable’ (that is, potentially responsive to a targeted therapy) Further studies are required to determine the associations between genetic mutations and the development of MALT lymphoma.
Collapse
Affiliation(s)
- Seok Jae Huh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Suee Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Ji Hyun Lee
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Sung Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Min Kyung Pak
- Department of Pathology, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| | - Hyo-Jin Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Seo-gu, Busan 49201, Republic of Korea
| |
Collapse
|
49
|
Crotty R, Dias-Santagata D, Aster JC, Nardi V. A Novel SEC22B-NOTCH2 Fusion in Chronic Lymphocytic Leukemia. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Lue JK, O’Connor OA, Bertoni F. Targeting pathogenic mechanisms in marginal zone lymphoma: from concepts and beyond. ANNALS OF LYMPHOMA 2020; 4:7. [PMID: 34667996 PMCID: PMC7611845 DOI: 10.21037/aol-20-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Marginal zone lymphoma (MZL) represents a group of three distinct though overlapping lymphoid malignancies that includes extranodal, nodal and splenic marginal lymphoma. MZL patients usually present an indolent clinical course, although the disease remains largely incurable, save early stage disease that might be irradiated. Therapeutic advances have been limited due to the small patient population, and have largely been adapted from other indolent lymphomas. Here, we discuss the numerous targets and pathways which may offer the prospect of directly inhibiting the mechanisms identified promoting and sustaining marginal zone lymphomagenesis. In particular, we focus on the agents that may have at least a theoretical application in the disease. Various dysregulated pathways converge to produce an overarching stimulation of nuclear factor κB (NF-κB) and the MYD88-IRAK4 axis, which can be thus leveraged or targeting B-cell receptor signaling through BTK inhibitors (such as ibrutinib, zanubrutinib, acalabrutinib) and PI3K inhibitors (such as idelalisib, copanlisib, duvelisib umbralisib) or via more novel agents in development such as MALT1 inhibitors, SMAC mimetics, NIK inhibitors, IRAK4 or MYD88 inhibitors. NOTCH signaling is also crucial for marginal zone cells, but no clinical data are available with NOTCH inhibitors such as the γ-secretase inhibitor PF-03084014 or the NICD inhibitor CB-103. The hypermethylation phenotype, the overexpression of the PRC2-complex or the presence of TET2 mutations reported in MZL subsets make epigenetic agents (demethylating agents, EZH2 inhibitors, HDAC inhibitors) also potential therapeutic tools for MZL patients.
Collapse
Affiliation(s)
- Jennifer K. Lue
- Division of Hematology-Oncology, Department of Medicine, Columbia University Medical Center, Center for Lymphoid Malignancies, New York, NY, USA
| | - Owen A. O’Connor
- Division of Hematology and Oncology, Program for T-Cell Lymphoma Research, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Francesco Bertoni
- institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|