1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Qin T, He Z, Hassan HM, Wang Q, Shi L, Yu Y, Zhou Y, Zhang W, Yuan Z. Taohe Chengqi decoction improves diabetic cognitive dysfunction by alleviating neural stem cell senescence through HIF1α-driven metabolic signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156219. [PMID: 39520950 DOI: 10.1016/j.phymed.2024.156219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is characterized by numerous long-term complications, in which progressive cognitive decline represents a significant risk factor for dementia and other neurodegenerative disorders. Taohe Chengqi decoction (THCQ) is a common traditional Chinese formula for treating T2DM; however, the neuroprotective effect of THCQ on diabetes-associated cognitive dysfunction remains unclear. Hence, the present study investigated the therapeutic effects of THCQ on cognitive impairment associated with T2DM and elucidated the underlying mechanisms. METHODS A stable high-fat diet (HFD) and streptozotocin (STZ)-induced T2DM mouse model was established and received intragastrical THCQ administration. Blood and tissue samples were investigated for biochemical parameters and neuropathology, whereas hippocampal tissue underwent transcriptome analyses and the role of neural stem cell (NSC) senescence was detected both in vivo and in vitro. Network pharmacology analysis and subsequent primary NSC experiments were conducted to explore the involvement of the HIF1α signaling pathway in THCQ-mediated hippocampal NSC senescence. Furthermore, a lentivirus vector overexpressing HIF1α was used to verify the THCQ potential therapeutic effects on HIF1α/PDKs metabolic signaling that influenced NSC senescence. RESULTS THCQ alleviated cognitive dysfunction and metabolic abnormalities in HFD/STZ mice, and relieved hippocampal neurodegeneration. Transcriptome analyses and validation experiments revealed THCQ-induced neuroprotective effects by targeting high glucose-mediated hippocampal neuropathy and NSC senescence. Bioinformatic analysis indicated that HIF1α signaling played a significant role in THCQ therapeutic outcomes; while HIF1α overexpression impaired the effects of THCQ on high glucose-induced metabolic disorders and NSC senescence. CONCLUSION The present study demonstrated that THCQ improved diabetic cognitive dysfunction and hippocampal neurogenesis, the effects of which were mainly attributed to the restoration of metabolic homeostasis and inhibition of NSC senescence through HIF1α signaling. Our results provide novel insights into the therapeutic framework for diabetic neuropathy and indicate that THCQ might be a promising candidate for the management of T2DM-related cognitive disorders.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Qiqi Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
3
|
Parra Bravo C, Naguib SA, Gan L. Cellular and pathological functions of tau. Nat Rev Mol Cell Biol 2024; 25:845-864. [PMID: 39014245 DOI: 10.1038/s41580-024-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Tau protein is involved in various cellular processes, including having a canonical role in binding and stabilization of microtubules in neurons. Tauopathies are neurodegenerative diseases marked by the abnormal accumulation of tau protein aggregates in neurons, as seen, for example, in conditions such as frontotemporal dementia and Alzheimer disease. Mutations in tau coding regions or that disrupt tau mRNA splicing, tau post-translational modifications and cellular stress factors (such as oxidative stress and inflammation) increase the tendency of tau to aggregate and interfere with its clearance. Pathological tau is strongly implicated in the progression of neurodegenerative diseases, and the propagation of tau aggregates is associated with disease severity. Recent technological advancements, including cryo-electron microscopy and disease models derived from human induced pluripotent stem cells, have increased our understanding of tau-related pathology in neurodegenerative conditions. Substantial progress has been made in deciphering tau aggregate structures and the molecular mechanisms that underlie protein aggregation and toxicity. In this Review, we discuss recent insights into the diverse cellular functions of tau and the pathology of tau inclusions and explore the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sarah A Naguib
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
5
|
Sattarov R, Havers M, Orbjörn C, Stomrud E, Janelidze S, Laurell T, Mattsson-Carlgren N. Phosphorylated tau in cerebrospinal fluid-derived extracellular vesicles in Alzheimer's disease: a pilot study. Sci Rep 2024; 14:25419. [PMID: 39455624 PMCID: PMC11511998 DOI: 10.1038/s41598-024-75406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by brain aggregation of β-amyloid (Aβ) peptides and phosphorylated tau (P-tau) proteins. Extracellular vesicles (EVs) can be isolated and studied for potential roles in disease. While several studies have tested plasma-derived EVs in AD, few have analyzed EVs from cerebrospinal fluid (CSF), which are potentially more closely related to brain changes. This study included 20 AD patients and 20 cognitively unimpaired (CU) participants. Using a novel EV isolation method based on acoustic trapping, we isolated and purified EVs from minimal CSF volumes. EVs were lysed and analyzed by immunoassays for P-tau217 and P-tau181. Isolation was confirmed through transmission electron microscopy and the presence of EV-specific markers (CD9, CD63, CD81, ATP1A3). Nanoparticle tracking analysis revealed a high variance in EV distribution. AD patients exhibited increased P-tau181 and decreased P-tau217 in EVs, leading to a higher EV P-tau181/P-tau217 ratio compared to CU. No significant differences in EV counts or sizes were observed between AD and CU groups. This study is the first to use acoustic trapping to isolate EVs from CSF and demonstrates differential P-tau content in AD-derived EVs, warranting further research to understand the relationship between these EV changes and brain pathology.
Collapse
Affiliation(s)
- Roman Sattarov
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
| | - Megan Havers
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Camilla Orbjörn
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Neurology, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
6
|
Tyagi M, Chadha R, de Hoog E, Sullivan KR, Walker AC, Northrop A, Fabian B, Fuxreiter M, Hyman BT, Shepherd JD. Arc mediates intercellular tau transmission via extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619703. [PMID: 39484489 PMCID: PMC11526995 DOI: 10.1101/2024.10.22.619703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular neurofibrillary tangles that consist of misfolded tau protein1 cause neurodegeneration in Alzheimer's disease (AD) and frontotemporal dementia (FTD). Tau pathology spreads cell-to-cell2 but the exact mechanisms of tau release and intercellular transmission remain poorly defined. Tau is released from neurons as free protein or in extracellular vesicles (EVs)3-5 but the role of these different release mechanisms in intercellular tau transmission is unclear. Here, we show that the neuronal gene Arc is critical for packaging tau into EVs. Brain EVs purified from human tau (hTau) transgenic rTg4510 mice (rTgWT) contain high levels of hTau that are capable of seeding tau pathology. In contrast, EVs purified from rTgWT crossed with Arc knock-out mice (rTgArc KO) have significantly less hTau and cannot seed tau aggregation. Arc facilitates the release of hTau in EVs produced via the I-BAR protein IRSp53, but not free tau. Arc protein directly binds hTau to form a fuzzy complex that we identified in both mouse and human brain tissue. We find that pathological intracellular hTau accumulates in neurons in rTgArc KO mice, which correlates with accelerated neuron loss in the hippocampus. Finally, we find that intercellular tau transmission is significantly abrogated in Arc KO mice. We conclude that Arc-dependent release of tau in EVs plays a significant role in intracellular tau elimination and intercellular tau transmission.
Collapse
Affiliation(s)
- Mitali Tyagi
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Radhika Chadha
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Eric de Hoog
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | | | - Alicia C. Walker
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Ava Northrop
- Department of Neurobiology, University of Utah, Salt Lake City, USA
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Germany
| | - Monika Fuxreiter
- Department of Biomedical Sciences University of Padova, Padova, Italy
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
7
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024:S0166-2236(24)00178-4. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
8
|
Solar KG, Ventresca M, Zamyadi R, Zhang J, Jetly R, Vartanian O, Rhind SG, Dunkley BT. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun 2024; 6:fcae348. [PMID: 39440300 PMCID: PMC11495223 DOI: 10.1093/braincomms/fcae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
Concussion is a public health crisis that results in a complex cascade of neurochemical changes that can have life-changing consequences. Subconcussions are generally considered less serious, but we now realize repetitive subconcussions can lead to serious neurological deficits. Subconcussions are common in contact sports and the military where certain personnel are exposed to repetitive occupational blast overpressure. Post-mortem studies show subconcussion is a better predictor than concussion for chronic traumatic encephalopathy-a progressive and fatal neurodegenerative tauopathy, only diagnosable post-mortem-thus, an in vivo biomarker would be transformative. Magnetoencephalography captures the dynamics of neuronal electrochemical action, and functional MRI shows that functional connectivity is associated with tauopathy patterns. Therefore, both imaging modalities could provide surrogate markers of tauopathy. In this cross-sectional study, we examined the effects of repetitive subconcussion on neuronal activity and functional connectivity using magnetoencephalography and functional MRI, and on neurological symptoms and mental health in a military sample. For magnetoencephalography and outcome analyses, 81 participants were split into 'high' and 'low' blast exposure groups using the generalized blast exposure value: n = 41 high blast (26.4-65.7 years; 4 females) and n = 40 low blast (28.0-63.3 years; 8 females). For functional MRI, two high blast male participants without data were excluded: n = 39 (29.6-65.7 years). Magnetoencephalography revealed disrupted neuronal activity in participants with a greater history of repetitive subconcussions, including neural slowing (higher delta activity) in right fronto-temporal lobes and subcortical regions (hippocampus, amygdala, caudate, pallidum and thalamus), and functional dysconnectivity in the posterior default mode network (lower connectivity at low and high gamma). These abnormalities were independent of concussion or traumatic stress history, and magnetoencephalography showed functional dysconnectivity not detected in functional MRI. Besides magnetoencephalography changes, those with higher blast exposure had poorer somatic and cognitive outcomes, with no blast-related differences in mental health or associations between neurological symptoms and neuronal activity. This study suggests that repetitive subconcussions have deleterious effects on brain function and that magnetoencephalography provides an avenue for both treatment targets by identifying affected brain regions and in prevention by identifying those at risk of cumulative subconcussive neurotrauma.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Matthew Ventresca
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Rouzbeh Zamyadi
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Rakesh Jetly
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1A 0K6
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada M5S 2W6
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5G 1X8
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
9
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
10
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
11
|
Scheiblich H, Eikens F, Wischhof L, Opitz S, Jüngling K, Cserép C, Schmidt SV, Lambertz J, Bellande T, Pósfai B, Geck C, Spitzer J, Odainic A, Castro-Gomez S, Schwartz S, Boussaad I, Krüger R, Glaab E, Di Monte DA, Bano D, Dénes Á, Latz E, Melki R, Pape HC, Heneka MT. Microglia rescue neurons from aggregate-induced neuronal dysfunction and death through tunneling nanotubes. Neuron 2024; 112:3106-3125.e8. [PMID: 39059388 DOI: 10.1016/j.neuron.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Microglia are crucial for maintaining brain health and neuron function. Here, we report that microglia establish connections with neurons using tunneling nanotubes (TNTs) in both physiological and pathological conditions. These TNTs facilitate the rapid exchange of organelles, vesicles, and proteins. In neurodegenerative diseases like Parkinson's and Alzheimer's disease, toxic aggregates of alpha-synuclein (α-syn) and tau accumulate within neurons. Our research demonstrates that microglia use TNTs to extract neurons from these aggregates, restoring neuronal health. Additionally, microglia share their healthy mitochondria with burdened neurons, reducing oxidative stress and normalizing gene expression. Disrupting mitochondrial function with antimycin A before TNT formation eliminates this neuroprotection. Moreover, co-culturing neurons with microglia and promoting TNT formation rescues suppressed neuronal activity caused by α-syn or tau aggregates. Notably, TNT-mediated aggregate transfer is compromised in microglia carrying Lrrk22(Gly2019Ser) or Trem2(T66M) and (R47H) mutations, suggesting a role in the pathology of these gene variants in neurodegenerative diseases.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Frederik Eikens
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases, Bonn, Germany; Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Sabine Opitz
- Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kay Jüngling
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Csaba Cserép
- Institute of Experimental Medicine, Budapest, Hungary
| | - Susanne V Schmidt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Tracy Bellande
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Balázs Pósfai
- Institute of Experimental Medicine, Budapest, Hungary
| | - Charlotte Geck
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Alexandru Odainic
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Daniele Bano
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Ádám Dénes
- Institute of Experimental Medicine, Budapest, Hungary
| | - Eike Latz
- German Center for Neurodegenerative Diseases, Bonn, Germany; Institute of innate immunity, University Hospital Bonn, Bonn, Germany
| | - Ronald Melki
- Institut François Jacob, CEA and Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg; Institute of innate immunity, University Hospital Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts, Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJM. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. Nat Commun 2024; 15:7918. [PMID: 39256379 PMCID: PMC11387477 DOI: 10.1038/s41467-024-52297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Preventative treatment for Alzheimer's Disease (AD) is dire, yet mechanisms underlying early regional vulnerability remain unknown. In AD, one of the earliest pathophysiological correlates to cognitive decline is hyperexcitability, which is observed first in the entorhinal cortex. Why hyperexcitability preferentially emerges in specific regions in AD is unclear. Using regional, cell-type-specific proteomics and electrophysiology in wild-type mice, we uncovered a unique susceptibility of the entorhinal cortex to human amyloid precursor protein (hAPP). Entorhinal hyperexcitability resulted from selective vulnerability of parvalbumin (PV) interneurons, with respect to surrounding excitatory neurons. This effect was partially replicated with an APP chimera containing a humanized amyloid-beta sequence. EC hyperexcitability could be ameliorated by co-expression of human Tau with hAPP at the expense of increased pathological tau species, or by enhancing PV interneuron excitability in vivo. This study suggests early interventions targeting inhibitory neurons may protect vulnerable regions from the effects of APP/amyloid and tau pathology.
Collapse
Affiliation(s)
- Annie M Goettemoeller
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Prateek Kumar
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Viktor J Olah
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly South
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Christina C Ramelow
- GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Nabizadeh F. Aβ remotely and locally facilitates Alzheimer's disease tau spreading. Cereb Cortex 2024; 34:bhae386. [PMID: 39329358 DOI: 10.1093/cercor/bhae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran 14496-14535, Iran
| |
Collapse
|
14
|
Cranston AL, Kraev I, Stewart MG, Horsley D, Santos RX, Robinson L, Dreesen E, Armstrong P, Palliyil S, Harrington CR, Wischik CM, Riedel G. Rescue of synaptosomal glutamate release defects in tau transgenic mice by the tau aggregation inhibitor hydromethylthionine. Cell Signal 2024; 121:111269. [PMID: 38909930 DOI: 10.1016/j.cellsig.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D. We have used synaptosomes isolated from these mice to investigate K+-evoked glutamate release and, if abnormal, to determine responsiveness to hydromethylthionine, a tau aggregation inhibitor previously shown to reduce tau pathology in these models. We report that the transgenes in these two mouse lines cause opposite abnormalities in glutamate release. Over-expression of the core tau unit in L1 produces a significant reduction in glutamate release and a loss of Ca2+-dependency compared with wild-type control mice. Full-length mutant tau produces an increase in glutamate release that retains normal Ca2+-dependency. Chronic pre-treatment with hydromethylthionine normalises both reduced (L1) and excessive glutamate (L66) and restores normal Ca2+-dependency in L1 mice. This implies that both patterns of impairment are the result of tau aggregation, but that the direction and Ca2+-dependency of the abnormality is determined by expression of the disease-specific transgene. Our results lead to the conclusion that the tauopathies need not be considered a single entity in terms of the downstream effects of pathological aggregation of tau protein. In this case, directionally opposite abnormalities in glutamate release resulting from different types of tau aggregation in the two mouse models can be corrected by hydromethylthionine. This may help to explain the activity of hydromethylthionine on cognitive decline and brain atrophy in both AD and behavioural-variant FTD.
Collapse
Affiliation(s)
- Anna L Cranston
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Mike G Stewart
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - David Horsley
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Renato X Santos
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Lianne Robinson
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Eline Dreesen
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Paul Armstrong
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK
| | - Soumya Palliyil
- Scottish Biologics Facility, University of Aberdeen, Foresterhill AB25 2ZP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK; TauRx Therapeutics Ltd, 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill AB25 2ZD, UK.
| |
Collapse
|
15
|
Alsén K, Patzi Churqui M, Norder H, Rembeck K, Zetterberg H, Blennow K, Sahlgren F, Grahn A. Biomarkers and genotypes in patients with Central nervous system infection caused by enterovirus. Infect Dis (Lond) 2024; 56:722-731. [PMID: 38756101 PMCID: PMC11371261 DOI: 10.1080/23744235.2024.2345712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Enteroviruses (EV) comprises many different types and are the most common cause of aseptic meningitis. How the virus affects the brain including potential differences between types are largely unknown. Measuring biomarkers in CSF is a tool to estimate brain damage caused by CNS infections. METHODS A retrospective study was performed in samples from 38 patients with acute neurological manifestations and positive CSF-EV RNA (n = 37) or serum-IgM (n = 1). The EV in 17 samples were typed by sequencing. The biomarkers neurofilament light (NFL), glial fibrillary acidic protein (GFAP), S-100B protein, amyloid-β (Aβ) 40 and Aβ42, total-tau (T-tau) and phosphorylated tau (P-tau) were measured and compared with data derived from a control group (n = 19). RESULTS There were no increased levels of GFAP (p ≤ 0.1) nor NFL (p ≤ 0.1) in the CSF of patients with EV meningitis (n = 38) compared with controls. However, we found decreased levels of Aβ42 (p < 0.001), Aβ40 (p < 0.001), T-tau (p ≥ 0.01), P-tau (p ≤ 0.001) and S-100B (p ≤ 0.001). E30 (n = 9) and CVB5 (n = 6) were the most frequent EV-types identified, but no differences in biomarker levels or other clinical parameters were found between the infecting virus type. Seven patients who were followed for longer than one month reported remaining cognitive impairment, although no correlations with biomarker concentrations were observed. CONCLUSION There are no indication of neuronal or astrocyte damage in patients with EV meningitis. Yet, decreased concentrations of Aβ40, Aβ42, P-tau and T-tau were shown, a finding of unknown importance. Cognitive impairment after acute disease occurs, but with only a limited number of patients analysed, no conclusion can be drawn concerning any association with biomarker levels or EV types.
Collapse
Affiliation(s)
- Karolina Alsén
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helene Norder
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karolina Rembeck
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaj Blennow
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, P.R. China
| | | | - Anna Grahn
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Västra Götaland Region, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Pfitzer J, Pinky PD, Perman S, Redmon E, Cmelak L, Suppiramaniam V, Coric V, Qureshi IA, Gramlich MW, Reed MN. Troriluzole rescues glutamatergic deficits, amyloid and tau pathology, and synaptic and memory impairments in 3xTg-AD mice. J Neurochem 2024. [PMID: 39214859 DOI: 10.1111/jnc.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition in which clinical symptoms are highly correlated with the loss of glutamatergic synapses. While later stages of AD are associated with markedly decreased glutamate levels due to neuronal loss, in the early stages, pathological accumulation of glutamate and hyperactivity contribute to AD pathology and cognitive dysfunction. There is increasing awareness that presynaptic dysfunction, particularly synaptic vesicle (SV) alterations, play a key role in mediating this early-stage hyperactivity. In the current study, we sought to determine whether the 3xTg mouse model of AD that exhibits both beta-amyloid (Aβ) and tau-related pathology would exhibit similar presynaptic changes as previously observed in amyloid or tau models separately. Hippocampal cultures from 3xTg mice were used to determine whether presynaptic vesicular glutamate transporters (VGlut) and glutamate are increased at the synaptic level while controlling for postsynaptic activity. We observed that 3xTg hippocampal cultures exhibited increased VGlut1 associated with an increase in glutamate release, similar to prior observations in cultures from tau mouse models. However, the SV pool size was also increased in 3xTg cultures, an effect not previously observed in tau mouse models but observed in Aβ models, suggesting the changes in pool size may be due to Aβ and not tau. Second, we sought to determine whether treatment with troriluzole, a novel 3rd generation tripeptide prodrug of the glutamate modulator riluzole, could reduce VGlut1 and glutamate release to restore cognitive deficits in 8-month-old 3xTg mice. Treatment with troriluzole reduced VGlut1 expression, decreased basal and evoked glutamate release, and restored cognitive deficits in 3xTg mice. Together, these findings suggest presynaptic alterations are early events in AD that represent potential targets for therapeutic intervention, and these results support the promise of glutamate-modulating drugs such as troriluzole in Alzheimer's disease.
Collapse
Affiliation(s)
- Jeremiah Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Savannah Perman
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Emma Redmon
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Luca Cmelak
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, Georgia, USA
| | - Vladimir Coric
- Biohaven Pharmaceuticals Inc., New Haven, Connecticut, USA
| | | | - Michael W Gramlich
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
- Department of Physics, Auburn University, Auburn, Alabama, USA
| | - Miranda N Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
17
|
Ishiguro T, Kasuga K. Alzheimer's Disease-Related Cerebrospinal Fluid Biomarkers in Progressive Supranuclear Palsy. Brain Sci 2024; 14:859. [PMID: 39335355 PMCID: PMC11430815 DOI: 10.3390/brainsci14090859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Progressive Supranuclear Palsy (PSP) is the most common four-repeat tauopathy. PSP cases are typically characterized by vertical gaze palsy and postural instability; however, various phenotypes have been reported, making antemortem diagnosis based on clinical symptoms challenging. The development of biomarkers reflecting brain pathology and the ability to diagnose patients based on these biomarkers are essential for developing future intervention strategies, including disease-modifying therapies. However, despite many dedicated efforts, no highly specific fluid biomarker for PSP has yet been established. Conversely, several cerebrospinal fluid (CSF) biomarkers of Alzheimer's Disease (AD) have been established, and an AT(N) classification system has been proposed. Typically, among patients with AD, CSF amyloid β42 (Aβ42), but not Aβ40, is decreased, resulting in a reduction in the Aβ42/Aβ40 ratio, while tau phosphorylated at threonine 181 (p-tau181) and total tau (t-tau) are increased. Interestingly, the core CSF AD biomarkers show unique patterns in patients with PSP. Furthermore, reports have indicated that the CSF levels of both Aβ42 and Aβ40 are decreased independently of Aβ accumulation in PSP. Therefore, the Aβ42/Aβ40 ratio could potentially be used to differentiate PSP from AD. Additionally, studies have reported that CSF p-tau and t-tau are reduced in PSP, and that the neurofilament light chain is remarkably increased compared to healthy controls and patients with AD, even though PSP is a neurodegenerative disease associated with tau accumulation. These PSP-specific changes in AD-related core biomarkers may reflect the pathology of PSP and contribute to its diagnosis. As such, elucidating the mechanisms underlying the observed decreases in Aβ and tau levels could facilitate a better understanding of the pathogenesis of PSP.
Collapse
Affiliation(s)
- Takanobu Ishiguro
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan
| |
Collapse
|
18
|
Johnson LA, Macauley SL. Alzheimer's and metabolism wed with IDO1. Science 2024; 385:826-827. [PMID: 39172856 DOI: 10.1126/science.adr5836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Kynurenine pathway inhibition reverses deficits in Alzheimer's mouse models.
Collapse
Affiliation(s)
- Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40508 USA
- Sanders Brown Center on Aging,University of Kentucky, Lexington, KY 40508 USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508 USA
- Sanders Brown Center on Aging,University of Kentucky, Lexington, KY 40508 USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40508 USA
| |
Collapse
|
19
|
Nishida I, Yamada K, Sakamoto A, Wakabayashi T, Iwatsubo T. Chronic Neuronal Hyperexcitation Exacerbates Tau Propagation in a Mouse Model of Tauopathy. Int J Mol Sci 2024; 25:9004. [PMID: 39201689 PMCID: PMC11354494 DOI: 10.3390/ijms25169004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The intracerebral spread of tau is a critical mechanism associated with functional decline in Alzheimer's disease (AD) and other tauopathies. Recently, a hypothesis has emerged suggesting that tau propagation is linked to functional neuronal connections, specifically driven by neuronal hyperactivity. However, experimental validation of this hypothesis remains limited. In this study, we investigated how tau propagation from the entorhinal cortex to the hippocampus, the neuronal circuit most susceptible to tau pathology in AD, is affected by the selective stimulation of neuronal activity along this circuit. Using a mouse model of seed-induced propagation combined with optogenetics, we found that the chronic stimulation of this neuronal connection over a 4-week period resulted in a significant increase in insoluble tau accumulation in both the entorhinal cortex and hippocampus. Importantly, the ratio of tau accumulation in the hippocampus relative to that in the entorhinal cortex, serving as an indicator of transcellular spreading, was significantly higher in mice subjected to chronic stimulation. These results support the notion that abnormal neuronal activity promotes tau propagation, thereby implicating it in the progression of tauopathy.
Collapse
Affiliation(s)
- Itaru Nishida
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Asami Sakamoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
| | - Tomoko Wakabayashi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan; (I.N.); (A.S.); (T.W.)
- Department of Pathophysiology, Meiji Pharmaceutical University, Tokyo 2040004, Japan
| | - Takeshi Iwatsubo
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 1878551, Japan;
| |
Collapse
|
20
|
Yoo CJ, Choi Y, Bok E, Lin Y, Cheon M, Lee YH, Kim J. Complement receptor 4 mediates the clearance of extracellular tau fibrils by microglia. FEBS J 2024; 291:3499-3520. [PMID: 38715400 DOI: 10.1111/febs.17150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 08/03/2024]
Abstract
Tauopathies exhibit a characteristic accumulation of misfolded tau aggregates in the brain. Tau pathology shows disease-specific spatiotemporal propagation through intercellular transmission, which is closely correlated with the progression of clinical manifestations. Therefore, identifying molecular mechanisms that prevent tau propagation is critical for developing therapeutic strategies for tauopathies. The various innate immune receptors, such as complement receptor 3 (CR3) and complement receptor 4 (CR4), have been reported to play a critical role in the clearance of various extracellular toxic molecules by microglia. However, their role in tau clearance has not been studied yet. In the present study, we investigated the role of CR3 and CR4 in regulating extracellular tau clearance. We found that CR4 selectively binds to tau fibrils but not to tau monomers, whereas CR3 does not bind to either of them. Inhibiting CR4, but not CR3, significantly reduces the uptake of tau fibrils by BV2 cells and primary microglia. By contrast, inhibiting CR4 has no effect on the uptake of tau monomers by BV2 cells. Furthermore, inhibiting CR4 suppresses the clearance of extracellular tau fibrils, leading to more seed-competent tau fibrils remaining in the extracellular space relative to control samples. We also provide evidence that the expression of CR4 is upregulated in the brains of human Alzheimer's disease patients and the PS19 mouse model of tauopathy. Taken together, our data strongly support that CR4 is a previously undescribed receptor for the clearance of tau fibrils in microglia and may represent a novel therapeutic target for tauopathy.
Collapse
Affiliation(s)
- Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), South Korea
| | - Youngtae Choi
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Eugene Bok
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang, South Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, South Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| |
Collapse
|
21
|
Nagayama T, Yagishita S, Shibata M, Furuno A, Saito T, Saido TC, Wakatsuki S, Araki T. Transient sleep apnea results in long-lasting increase in β-amyloid generation and tau hyperphosphorylation. Neurosci Res 2024; 205:40-46. [PMID: 38508957 DOI: 10.1016/j.neures.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Sleep apnea is regarded as an important risk factor in the pathogenesis of Alzheimer disease (AD). Chronic intermittent hypoxia treatment (IHT) given during the sleep period of the circadian cycle in experimental animals is a well-established sleep apnea model. Here we report that transient IHT for 4 days on AD model mice causes Aβ overproduction 2 months after IHT presumably via upregulation of synaptic BACE1, side-by-side with tau hyperphosphorylation. These results suggest that even transient IHT may be sufficient to cause long-lasting changes in the molecules measured as AD biomarkers in the brain.
Collapse
Affiliation(s)
- Takeru Nagayama
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Sosuke Yagishita
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Megumi Shibata
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Akiko Furuno
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi 467-8601, Japan; Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory of Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
22
|
Terada M, Mitsukawa K, Nakakariya M, Koike T, Kimura H. Effects of an OX2R agonist on migration and removal of tau from mouse brain. Sci Rep 2024; 14:15964. [PMID: 38987562 PMCID: PMC11237063 DOI: 10.1038/s41598-024-64817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Pathological proteins including tau are produced in neurons and released into interstitial fluid (ISF) in a neural activity-dependent manner during wakefulness. Pathological proteins in ISF can be removed from the brain via the glymphatic pathway during nighttime. Thus, in individuals with Alzheimer's disease (AD) that have dysregulated sleep/wake rhythm, application of orexin receptor 2 (OX2R) agonists during daytime could recover the efflux of pathological proteins to ISF and indirectly promote the glymphatic pathway by improving the quality of nighttime sleep after proper daytime arousal, resulting in increased removal of these proteins from the brain. We investigated this hypothesis using OX-201, a novel OX2R-selective agonist with a 50% effective concentration of 8.0 nM. Diurnal rhythm of tau release into hippocampal ISF correlated well with neuronal activity and wakefulness in wild-type mice. In both wild-type and human P301S tau transgenic mice, OX-201 induced wakefulness and promoted tau release into hippocampal ISF. Human P301S tau transgenic mice, tested under our conditions, showed longer wakefulness time, which differs from individuals with AD. OX-201 treatment over 2 months did not alter hippocampal tau levels. Although further studies are required, at a minimum OX2R agonists may not exacerbate tau accumulation in individuals with tauopathy, including AD.
Collapse
Affiliation(s)
- Michiko Terada
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kayo Mitsukawa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Masanori Nakakariya
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Haruhide Kimura
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
23
|
Goettemoeller AM, Banks E, Kumar P, Olah VJ, McCann KE, South K, Ramelow CC, Eaton A, Duong DM, Seyfried NT, Weinshenker D, Rangaraju S, Rowan MJ. Entorhinal cortex vulnerability to human APP expression promotes hyperexcitability and tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565629. [PMID: 39005389 PMCID: PMC11244896 DOI: 10.1101/2023.11.06.565629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Preventative treatment for Alzheimer's Disease is of dire importance, and yet, cellular mechanisms underlying early regional vulnerability in Alzheimer's Disease remain unknown. In human patients with Alzheimer's Disease, one of the earliest observed pathophysiological correlates to cognitive decline is hyperexcitability. In mouse models, early hyperexcitability has been shown in the entorhinal cortex, the first cortical region impacted by Alzheimer's Disease. The origin of hyperexcitability in early-stage disease and why it preferentially emerges in specific regions is unclear. Using cortical-region and cell-type-specific proteomics coupled with ex vivo and in vivo electrophysiology, we uncovered differential susceptibility to human-specific amyloid precursor protein (hAPP) in a model of sporadic Alzheimer's. Unexpectedly, our findings reveal that early entorhinal hyperexcitability may result from intrinsic vulnerability of parvalbumin (PV) interneurons, rather than the suspected layer II excitatory neurons. This vulnerability of entorhinal PV interneurons is specific to hAPP, as it could not be recapitulated with increased murine APP expression. However, partial replication of the findings could be seen after introduction of a murine APP chimera containing a humanized amyloid-beta sequence. Surprisingly, neurons in the Somatosensory Cortex showed no such vulnerability to adult-onset hAPP expression. hAPP-induced hyperexcitability in entorhinal cortex could be ameliorated by enhancing PV interneuron excitability in vivo. Co-expression of human Tau with hAPP decreased circuit hyperexcitability, but at the expense of increased pathological tau species. This study suggests early disease interventions targeting non-excitatory cell types may protect regions with early vulnerability to pathological symptoms of Alzheimer's Disease and downstream cognitive decline.
Collapse
|
24
|
Rodriguez-Rodriguez P, Arroyo-Garcia LE, Tsagkogianni C, Li L, Wang W, Végvári Á, Salas-Allende I, Plautz Z, Cedazo-Minguez A, Sinha SC, Troyanskaya O, Flajolet M, Yao V, Roussarie JP. A cell autonomous regulator of neuronal excitability modulates tau in Alzheimer's disease vulnerable neurons. Brain 2024; 147:2384-2399. [PMID: 38462574 PMCID: PMC11224620 DOI: 10.1093/brain/awae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024] Open
Abstract
Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Lechuan Li
- Department of Computer Science, Rice University, Houston, TX 77004, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Isabella Salas-Allende
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Zakary Plautz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Karolinska Institutet, 17 164, Solna, Sweden
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olga Troyanskaya
- Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Vicky Yao
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17 164, Solna, Sweden
| | - Jean-Pierre Roussarie
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
25
|
Ikegaya N, Nakamura H, Takayama Y, Miyake Y, Hayashi T, Sonoda M, Sato M, Tateishi K, Suenaga J, Takaishi M, Kitazawa Y, Kunii M, Abe H, Miyazaki T, Arai T, Iwasaki M, Abe T, Yamamoto T. Anti-epileptic drug use and subsequent degenerative dementia occurrence. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70001. [PMID: 39257557 PMCID: PMC11386337 DOI: 10.1002/trc2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION The use of anti-epileptic drugs (AEDs) in degenerative dementia (DD) remains uncertain. We aimed to evaluate the association of early AED administration with subsequent DD occurrence. METHODS Using a large nationwide database, we enrolled patients newly diagnosed with epilepsy from 2014 to 2019 (n = 104,225), and using propensity score matching, we divided them into treatment (those prescribed AEDs in 2014) and control groups. The primary outcome was subsequent DD occurrence in 2019. RESULTS Overall, 4489 pairs of patients (2156 women) were matched. The odds ratio (treatment/control) for DD occurrence was 0.533 (95% confidence interval: 0.459-0.617). The DD proportions significantly differed between the treatment (340/4489 = 0.076) and control (577/4489 = 0.129) groups. DISCUSSION Among patients newly diagnosed with epilepsy, compared to non-use, early AED use was associated with a lower occurrence of subsequent DD. Further investigations into and optimization of early intervention for epilepsy in DD are warranted. Highlights Anti-epileptic drug (AED) use before epilepsy diagnosis was linked with a lower subsequent degenerative dementia (DD) occurrence.Identifying the epileptic phenotype was crucial for justifying early AED use in DD.AED use with an epilepsy diagnosis did not pose an additional risk of DD.The potential contribution of combination drug therapy to the strategy was noted.
Collapse
Affiliation(s)
- Naoki Ikegaya
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Yutaro Takayama
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yohei Miyake
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Takahiro Hayashi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masaki Sonoda
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuru Sato
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kensuke Tateishi
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Jun Suenaga
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masao Takaishi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of PsychiatryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yu Kitazawa
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Misako Kunii
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hiroki Abe
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Tomoyuki Miyazaki
- Department of Core Project Promotion, Center for Promotion of Research and Industry‐Academic CollaborationYokohama City UniversityYokohamaJapan
| | - Tetsuaki Arai
- Department of PsychiatryDivision of Clinical MedicineInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Manabu Iwasaki
- School of Data ScienceYokohama City UniversityYokohamaJapan
- The Institute of Statistical Mathematics, Center for Training Professors in StatisticsTachikawaJapan
| | - Takayuki Abe
- School of Data ScienceYokohama City UniversityYokohamaJapan
- Faculty of Data ScienceKyoto Women's UniversityKyotoJapan
| | - Tetsuya Yamamoto
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
26
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
27
|
Hoglund Z, Ruiz-Uribe N, Del Sastre E, Woost B, Bader E, Bailey J, Hyman BT, Zwang T, Bennett RE. Brain vasculature accumulates tau and is spatially related to tau tangle pathology in Alzheimer's disease. Acta Neuropathol 2024; 147:101. [PMID: 38884806 PMCID: PMC11182845 DOI: 10.1007/s00401-024-02751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.
Collapse
Affiliation(s)
- Zachary Hoglund
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Nancy Ruiz-Uribe
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Eric Del Sastre
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Benjamin Woost
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Elizabeth Bader
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Joshua Bailey
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Theodore Zwang
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, 114 16Th Street, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Murakami R, Watanabe H, Hashimoto H, Kashiwagi-Hakozaki M, Hashimoto T, Karch CM, Iwatsubo T, Okano H. Inhibitory Roles of Apolipoprotein E Christchurch Astrocytes in Curbing Tau Propagation Using Human Pluripotent Stem Cell-Derived Models. J Neurosci 2024; 44:e1709232024. [PMID: 38649269 PMCID: PMC11170944 DOI: 10.1523/jneurosci.1709-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.
Collapse
Affiliation(s)
- Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Research fellow of Japan Society of the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideko Hashimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayu Kashiwagi-Hakozaki
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan
| | - Celeste M Karch
- Department of Psychiatry and Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
29
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
30
|
Park Y, KC N, Paneque A, Cole PD. Tau, Glial Fibrillary Acidic Protein, and Neurofilament Light Chain as Brain Protein Biomarkers in Cerebrospinal Fluid and Blood for Diagnosis of Neurobiological Diseases. Int J Mol Sci 2024; 25:6295. [PMID: 38928000 PMCID: PMC11204270 DOI: 10.3390/ijms25126295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Neurological damage is the pathological substrate of permanent disability in various neurodegenerative disorders. Early detection of this damage, including its identification and quantification, is critical to preventing the disease's progression in the brain. Tau, glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), as brain protein biomarkers, have the potential to improve diagnostic accuracy, disease monitoring, prognostic assessment, and treatment efficacy. These biomarkers are released into the cerebrospinal fluid (CSF) and blood proportionally to the degree of neuron and astrocyte damage in different neurological disorders, including stroke, traumatic brain injury, multiple sclerosis, neurodegenerative dementia, and Parkinson's disease. Here, we review how Tau, GFAP, and NfL biomarkers are detected in CSF and blood as crucial diagnostic tools, as well as the levels of these biomarkers used for differentiating a range of neurological diseases and monitoring disease progression. We also discuss a biosensor approach that allows for the real-time detection of multiple biomarkers in various neurodegenerative diseases. This combined detection system of brain protein biomarkers holds significant promise for developing more specific and accurate clinical tools that can identify the type and stage of human neurological diseases with greater precision.
Collapse
Affiliation(s)
- Yongkyu Park
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Nirajan KC
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
| | - Alysta Paneque
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Peter D. Cole
- Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ 08901, USA; (N.K.); (A.P.)
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
31
|
Sindi G, Ismael S, Uddin R, Slepchenko KG, Colvin RA, Lee D. Endogenous tau released from human ReNCell VM cultures by neuronal activity is phosphorylated at multiple sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597022. [PMID: 38854111 PMCID: PMC11160771 DOI: 10.1101/2024.06.02.597022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.
Collapse
Affiliation(s)
| | - Sazan Ismael
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Reaz Uddin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Kira G. Slepchenko
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Robert A. Colvin
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
32
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
33
|
Singh AK, Asif S, Pandey DK, Chaudhary A, Kapoor V, Verma PK. Biomarkers in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e63020. [PMID: 39050316 PMCID: PMC11268976 DOI: 10.7759/cureus.63020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Traumatic brain injury (TBI) stands as a significant contributor to traumatic death and disability worldwide. In recent years, researchers have identified biomarkers to gauge useful outcomes in TBI patients. However, the enigma of timely sample collection to measure the biomarkers remains a controversial point in the case of TBI, unlike other degenerative diseases like Alzheimer's disease and Parkinson's disease, where we can collect the sample at any point in time. The purpose of this study is to evaluate the sensitivity of biomarkers in TBI concerning time of injury by analyzing recent available data on biomarkers in the medical literature. A total of 2,256 studies were initially retrieved from the search engine. After an initial screening, only 1,750 unique articles remained. After excluding review articles, animal studies, meta-analysis, and studies with children (screened by title and abstract), 30 kinds of literature were found relevant to search the required variables. Further 16 studies were excluded due to the nonavailability of complete variables or data. Finally, 14 studies remained and were included in the analysis. This study has analyzed the four most commonly described biomarkers for TBI in the literature: glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B, ubiquitin carboxy-terminal hydrolase L1, and Tau. According to this statistical analysis, all biomarkers included in the study have shown their serum levels after trauma. So, all these biomarkers can be used for further study in the outcome prediction and diagnosis of TBI patients. The meta-analysis suggests that the best biomarker for TBI is Tau in cases where sample collection is done within 24 hours, while GFAP is the best biomarker to be studied for TBI if sample collection is done 24 hours after trauma.
Collapse
Affiliation(s)
- Adarsh Kumar Singh
- Department of Biotechnology, Centre of BioMedical Research (CBMR) Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Shafaque Asif
- Department of Molecular Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Deepika Kumari Pandey
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Akash Chaudhary
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Vishwas Kapoor
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | - Pawan Kumar Verma
- Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| |
Collapse
|
34
|
Karimani F, Asgari Taei A, Abolghasemi-Dehaghani MR, Safari MS, Dargahi L. Impairment of entorhinal cortex network activity in Alzheimer's disease. Front Aging Neurosci 2024; 16:1402573. [PMID: 38882526 PMCID: PMC11176617 DOI: 10.3389/fnagi.2024.1402573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The entorhinal cortex (EC) stands out as a critical brain region affected in the early phases of Alzheimer's disease (AD), with some of the disease's pathological processes originating from this area, making it one of the most crucial brain regions in AD. Recent research highlights disruptions in the brain's network activity, characterized by heightened excitability and irregular oscillations, may contribute to cognitive impairment. These disruptions are proposed not only as potential therapeutic targets but also as early biomarkers for AD. In this paper, we will begin with a review of the anatomy and function of EC, highlighting its selective vulnerability in AD. Subsequently, we will discuss the disruption of EC network activity, exploring changes in excitability and neuronal oscillations in this region during AD and hypothesize that, considering the advancements in neuromodulation techniques, addressing the disturbances in the network activity of the EC could offer fresh insights for both the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Farnaz Karimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Valdez-Gaxiola CA, Rosales-Leycegui F, Gaxiola-Rubio A, Moreno-Ortiz JM, Figuera LE. Early- and Late-Onset Alzheimer's Disease: Two Sides of the Same Coin? Diseases 2024; 12:110. [PMID: 38920542 PMCID: PMC11202866 DOI: 10.3390/diseases12060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease onset before 65 years of age, has been significantly less studied than the "classic" late-onset form (LOAD), although EOAD often presents with a more aggressive disease course, caused by variants in the APP, PSEN1, and PSEN2 genes. EOAD has significant differences from LOAD, including encompassing diverse phenotypic manifestations, increased genetic predisposition, and variations in neuropathological burden and distribution. Phenotypically, EOAD can be manifested with non-amnestic variants, sparing the hippocampi with increased tau burden. The aim of this article is to review the different genetic bases, risk factors, pathological mechanisms, and diagnostic approaches between EOAD and LOAD and to suggest steps to further our understanding. The comprehension of the monogenic form of the disease can provide valuable insights that may serve as a roadmap for understanding the common form of the disease.
Collapse
Affiliation(s)
- César A. Valdez-Gaxiola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Frida Rosales-Leycegui
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Maestría en Ciencias del Comportamiento, Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
36
|
Canet G, Monteiro FDG, Rocaboy E, Diego-Diaz S, Khelaifia B, Kim J, Valencia D, Yin A, Wu HT, Howell J, Blank E, Laliberté F, Fortin N, Boscher E, Fereydouni-Forouzandeh P, Champagne S, Guisle I, Hébert S, Pernet V, Liu H, Lu W, Debure L, Rapoport D, Ayappa I, Varga A, Parekh A, Osorio R, Lacroix S, Lucey B, Blessing E, Planel E. Sleep-wake body temperature regulates tau secretion in mice and correlates with CSF and plasma tau in humans. RESEARCH SQUARE 2024:rs.3.rs-4384494. [PMID: 38798432 PMCID: PMC11118695 DOI: 10.21203/rs.3.rs-4384494/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The sleep-wake cycle regulates interstitial fluid and cerebrospinal fluid (CSF) tau levels in both mouse and human by mechanisms that remain unestablished. Here, we reveal a novel pathway by which wakefulness increases extracellular tau levels in mouse and humans. In mice, higher body temperature (BT) associated with wakefulness and sleep deprivation increased CSF tau. In vitro, wakefulness temperatures upregulated tau secretion via a temperature-dependent increase in activity and expression of unconventional protein secretion pathway-1 components, namely caspase-3-mediated C-terminal cleavage of tau (TauC3), and membrane expression of PIP2 and syndecan-3. In humans, the increase in both CSF and plasma tau levels observed post-wakefulness correlated with BT increase during wakefulness. Our findings suggest sleep-wake variation in BT may contribute to regulating extracellular tau levels, highlighting the importance of thermoregulation in pathways linking sleep disturbance to neurodegeneration, and the potential for thermal intervention to prevent or delay tau-mediated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Emma Rocaboy
- Research Center of CHU de Quebec - Laval University
| | | | | | - Jessica Kim
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Daphne Valencia
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Audrey Yin
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Hau-Tieng Wu
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Jordan Howell
- Department of Psychiatry, NYU Grossman School of Medicine
| | - Emily Blank
- Department of Psychiatry, NYU Grossman School of Medicine
| | | | - Nadia Fortin
- Research Center of CHU de Quebec - Laval University
| | - Emmanuelle Boscher
- Centre de recherche du CHU de Québec-Université Laval, CHUL, Axe Neurosciences, Faculté de médecine, Département de psychiatrie et de neurosciences, Québec, C
| | | | | | | | - Sébastien Hébert
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, Québec
| | | | | | - William Lu
- Department of Neurology, Washington University School of Medicine
| | | | - David Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Andrew Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai
| | | | | | - Brendan Lucey
- Department of Neurology, Washington University School of Medicine
| | | | - Emmanuel Planel
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, Québec
| |
Collapse
|
37
|
Parra Bravo C, Giani AM, Madero-Perez J, Zhao Z, Wan Y, Samelson AJ, Wong MY, Evangelisti A, Cordes E, Fan L, Ye P, Zhu D, Pozner T, Mercedes M, Patel T, Yarahmady A, Carling GK, Sterky FH, Lee VMY, Lee EB, DeTure M, Dickson DW, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 2024; 187:2446-2464.e22. [PMID: 38582079 PMCID: PMC11365117 DOI: 10.1016/j.cell.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alice Maria Giani
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jesus Madero-Perez
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zeping Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yuansong Wan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alessandro Evangelisti
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ethan Cordes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tatyana Pozner
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fredrik H Sterky
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Institute of Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mingrui Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
38
|
Doering S, McCullough A, Gordon BA, Chen CD, McKay N, Hobbs D, Keefe S, Flores S, Scott J, Smith H, Jarman S, Jackson K, Hornbeck RC, Ances BM, Xiong C, Aschenbrenner AJ, Hassenstab J, Cruchaga C, Daniels A, Bateman RJ, Morris JC, Benzinger TLS. Deconstructing pathological tau by biological process in early stages of Alzheimer disease: a method for quantifying tau spatial spread in neuroimaging. EBioMedicine 2024; 103:105080. [PMID: 38552342 PMCID: PMC10995809 DOI: 10.1016/j.ebiom.2024.105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Neuroimaging studies often quantify tau burden in standardized brain regions to assess Alzheimer disease (AD) progression. However, this method ignores another key biological process in which tau spreads to additional brain regions. We have developed a metric for calculating the extent tau pathology has spread throughout the brain and evaluate the relationship between this metric and tau burden across early stages of AD. METHODS 445 cross-sectional participants (aged ≥ 50) who had MRI, amyloid PET, tau PET, and clinical testing were separated into disease-stage groups based on amyloid positivity and cognitive status (older cognitively normal control, preclinical AD, and symptomatic AD). Tau burden and tau spatial spread were calculated for all participants. FINDINGS We found both tau metrics significantly elevated across increasing disease stages (p < 0.0001) and as a function of increasing amyloid burden for participants with preclinical (p < 0.0001, p = 0.0056) and symptomatic (p = 0.010, p = 0.0021) AD. An interaction was found between tau burden and tau spatial spread when predicting amyloid burden (p = 0.00013). Analyses of slope between tau metrics demonstrated more spread than burden in preclinical AD (β = 0.59), but then tau burden elevated relative to spread (β = 0.42) once participants had symptomatic AD, when the tau metrics became highly correlated (R = 0.83). INTERPRETATION Tau burden and tau spatial spread are both strong biomarkers for early AD but provide unique information, particularly at the preclinical stage. Tau spatial spread may demonstrate earlier changes than tau burden which could have broad impact in clinical trial design. FUNDING This research was supported by the Knight Alzheimer Disease Research Center (Knight ADRC, NIH grants P30AG066444, P01AG026276, P01AG003991), Dominantly Inherited Alzheimer Network (DIAN, NIH grants U01AG042791, U19AG03243808, R01AG052550-01A1, R01AG05255003), and the Barnes-Jewish Hospital Foundation Willman Scholar Fund.
Collapse
Affiliation(s)
- Stephanie Doering
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Austin McCullough
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Brian A Gordon
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Charles D Chen
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Nicole McKay
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Diana Hobbs
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Sarah Keefe
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Shaney Flores
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jalen Scott
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Hunter Smith
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Stephen Jarman
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Kelley Jackson
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Russ C Hornbeck
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Beau M Ances
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Chengjie Xiong
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | | | - Jason Hassenstab
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Alisha Daniels
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Randall J Bateman
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - John C Morris
- Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
39
|
Yamada K, Iwatsubo T. Involvement of the glymphatic/meningeal lymphatic system in Alzheimer's disease: insights into proteostasis and future directions. Cell Mol Life Sci 2024; 81:192. [PMID: 38652179 PMCID: PMC11039514 DOI: 10.1007/s00018-024-05225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is pathologically characterized by the abnormal accumulation of Aβ and tau proteins. There has long been a keen interest among researchers in understanding how Aβ and tau are ultimately cleared in the brain. The discovery of this glymphatic system introduced a novel perspective on protein clearance and it gained recognition as one of the major brain clearance pathways for clearing these pathogenic proteins in AD. This finding has sparked interest in exploring the potential contribution of the glymphatic/meningeal lymphatic system in AD. Furthermore, there is a growing emphasis and discussion regarding the possibility that activating the glymphatic/meningeal lymphatic system could serve as a novel therapeutic strategy against AD. OBJECTIVES Given this current research trend, the primary focus of this comprehensive review is to highlight the role of the glymphatic/meningeal lymphatic system in the pathogenesis of AD. The discussion will encompass future research directions and prospects for treatment in relation to the glymphatic/meningeal lymphatic system.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
40
|
Golmohammadi M, Mahmoudian M, Hasan EK, Alshahrani SH, Romero-Parra RM, Malviya J, Hjazi A, Najm MAA, Almulla AF, Zamanian MY, Kadkhodaei M, Mousavi N. Neuroprotective effects of riluzole in Alzheimer's disease: A comprehensive review. Fundam Clin Pharmacol 2024; 38:225-237. [PMID: 37753585 DOI: 10.1111/fcp.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases. OBJECTIVE The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms. METHODS The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles. RESULTS Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2. CONCLUSION In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mazin A A Najm
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mona Kadkhodaei
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nazanin Mousavi
- Department of Psychology, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
41
|
Lei HY, Pi GL, He T, Xiong R, Lv JR, Liu JL, Wu DQ, Li MZ, Shi K, Li SH, Yu NN, Gao Y, Yu HL, Wei LY, Wang X, Zhou QZ, Zou PL, Zhou JY, Liu YZ, Shen NT, Yang J, Ke D, Wang Q, Liu GP, Yang XF, Wang JZ, Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil Med Res 2024; 11:16. [PMID: 38462603 PMCID: PMC10926584 DOI: 10.1186/s40779-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Collapse
Affiliation(s)
- Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Lin Pi
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Ru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Le Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na-Na Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Lin Zou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Zhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nai-Ting Shen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
42
|
Xiao X, Rui Y, Jin Y, Chen M. Relationship of Sleep Disorder with Neurodegenerative and Psychiatric Diseases: An Updated Review. Neurochem Res 2024; 49:568-582. [PMID: 38108952 DOI: 10.1007/s11064-023-04086-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sleep disorders affect many people worldwide and can accompany neurodegenerative and psychiatric diseases. Sleep may be altered before the clinical manifestations of some of these diseases appear. Moreover, some sleep disorders affect the physiological organization and function of the brain by influencing gene expression, accelerating the accumulation of abnormal proteins, interfering with the clearance of abnormal proteins, or altering the levels of related hormones and neurotransmitters, which can cause or may be associated with the development of neurodegenerative and psychiatric diseases. However, the detailed mechanisms of these effects are unclear. This review mainly focuses on the relationship between and mechanisms of action of sleep in Alzheimer's disease, depression, and anxiety, as well as the relationships between sleep and Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. This summary of current research hotspots may provide researchers with better clues and ideas to develop treatment solutions for neurodegenerative and psychiatric diseases associated with sleep disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Rui
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Jin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
43
|
Maruoka H, Hattori T, Hase T, Takahashi K, Ohara M, Orimo S, Yokota T. Aberrant morphometric networks in Alzheimer's disease have hemispheric asymmetry and age dependence. Eur J Neurosci 2024; 59:1332-1347. [PMID: 38105486 DOI: 10.1111/ejn.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) is associated with abnormal accumulations of hyperphosphorylated tau and amyloid-β proteins, resulting in unique patterns of atrophy in the brain. We aimed to elucidate some characteristics of the AD's morphometric networks constructed by associating different morphometric features among brain areas and evaluating their relationship to Mini-Mental State Examination total score and age. Three-dimensional T1-weighted (3DT1) image data scanned by the same 1.5T magnetic resonance imaging (MRI) were obtained from 62 AD patients and 41 healthy controls (HCs) and were analysed by using FreeSurfer. The associations of the extracted six morphometric features between regions were estimated by correlation coefficients. The global and local graph theoretical measures for this network were evaluated. Associations between graph theoretical measures and age, sex and cognition were evaluated by multiple regression analysis in each group. Global measures of integration: global efficiency and mean information centrality were significantly higher in AD patients. Local measures of integration: node global efficiency and information centrality were significantly higher in the entorhinal cortex, fusiform gyrus and posterior cingulate cortex of AD patients but only in the left hemisphere. All global measures were correlated with age in AD patients but not in HCs. The information centrality was associated with age in AD's broad brain regions. Our results showed that altered morphometric networks due to AD are left-hemisphere dominant, suggesting that AD pathogenesis has a left-right asymmetry. Ageing has a unique impact on the morphometric networks in AD patients. The information centrality is a sensitive graph theoretical measure to detect this association.
Collapse
Affiliation(s)
- Hiroyuki Maruoka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Takaaki Hattori
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Hase
- Innovative Human Resource Development Division, Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
- Faculty of Pharmacy, Keio University, Tokyo, Japan
- Research, The Systems Biology Institute, Tokyo, Japan
- Research, SBX BioSciences, Vancouver, British Columbia, Canada
| | - Kunihiko Takahashi
- Department of Biostatistics, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Orimo
- Department of Neurology, Kanto Central Hospital, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Giorgio J, Adams JN, Maass A, Jagust WJ, Breakspear M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 2024; 112:676-686.e4. [PMID: 38096815 PMCID: PMC10922797 DOI: 10.1016/j.neuron.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 02/24/2024]
Abstract
In early Alzheimer's disease (AD) β-amyloid (Aβ) deposits throughout association cortex and tau appears in the entorhinal cortex (EC). Why these initially appear in disparate locations is not understood. Using task-based fMRI and multimodal PET imaging, we assess the impact of local AD pathology on network-to-network interactions. We show that AD pathologies flip interactions between the default mode network (DMN) and the medial temporal lobe (MTL) from inhibitory to excitatory. The DMN is hyperexcited with increasing levels of Aβ, which drives hyperexcitability within the MTL and this directed hyperexcitation of the MTL by the DMN predicts the rate of tau accumulation within the EC. Our results support a model whereby Aβ induces disruptions to local excitatory-inhibitory balance in the DMN, driving hyperexcitability in the MTL, leading to tau accumulation. We propose that Aβ-induced disruptions to excitatory-inhibitory balance is a candidate causal route between Aβ and remote EC-tau accumulation.
Collapse
Affiliation(s)
- Joseph Giorgio
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia.
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, NSW 2305, Australia; Discipline of Psychiatry, College of Health, Medicine, and Wellbeing, The University of Newcastle, Newcastle, NSW 2305, Australia
| |
Collapse
|
45
|
do Nascimento Amorim MDS, Silva França ÁR, Santos-Oliveira R, Rodrigues Sanches J, Marinho Melo T, Araújo Serra Pinto B, Barbosa LRS, Alencar LMR. Atomic Force Microscopy Applied to the Study of Tauopathies. ACS Chem Neurosci 2024; 15:699-715. [PMID: 38305187 DOI: 10.1021/acschemneuro.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do Nascimento Amorim
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Álefe Roger Silva França
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Jonas Rodrigues Sanches
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Leandro R S Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| |
Collapse
|
46
|
Astara K, Tsimpolis A, Kalafatakis K, Vavougios GD, Xiromerisiou G, Dardiotis E, Christodoulou NG, Samara MT, Lappas AS. Sleep disorders and Alzheimer's disease pathophysiology: The role of the Glymphatic System. A scoping review. Mech Ageing Dev 2024; 217:111899. [PMID: 38163471 DOI: 10.1016/j.mad.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is highly intertwined with sleep disturbances throughout its whole natural history. Sleep consists of a major compound of the functionality of the glymphatic system, as the synchronized slow-wave activity during NREM facilitates cerebrospinal and interstitial long-distance mixing. OBJECTIVE The present study undertakes a scoping review of research on the involvement of the glymphatic system in AD-related sleep disturbances. DESIGN we searched Medline, Embase, PsychInfo and HEAL-link databases, without limitations on date and language, along with reference lists of relevant reviews and all included studies. We included in vivo, in vitro and post-mortem studies examining glymphatic implications of sleep disturbances in human populations with AD spectrum pathology. A thematic synthesis of evidence based on the extracted content was applied and presented in a narrative way. RESULTS In total, 70 original research articles were included and were grouped as following: a) Protein aggregation and toxicity, after sleep deprivation, along with its effects on sleep architecture, b) Glymphatic Sequalae in SDB, yielding potential glymphatic markers c) Circadian Dysregulation, d) Possible Interventions. CONCLUSIONS this review sought to provide insight into the role of sleep disturbances in AD pathogenesis, in the context of the glymphatic disruption.
Collapse
Affiliation(s)
- Kyriaki Astara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, 417 Army Equity Fund Hospital (NIMTS), Athens, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| | - Konstantinos Kalafatakis
- Faculty of Medicine & Dentistry (Malta campus), Queen Mary University of London, VCT 2520, Victoria, Gozo, Malta.
| | - George D Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia, Cyprus; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Neurology, Athens Naval Hospital, Athens, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Medical School, University of Nottingham, Lenton, Nottingham, UK
| | - Myrto T Samara
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, University of Thessaly, Larissa, Greece; Aneurin Bevan University Health Board, Wales, UK
| |
Collapse
|
47
|
Abdullahi A, Wong TW, Ng SS. Understanding the mechanisms of disease modifying effects of aerobic exercise in people with Alzheimer's disease. Ageing Res Rev 2024; 94:102202. [PMID: 38272266 DOI: 10.1016/j.arr.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Alzheimer's disease (AD) is a very disabling disease. Pathologically, it is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain that results in neurodegeneration. Its clinical manifestations include progressive memory impairment, language decline and difficulty in carrying out activities of daily living (ADL). The disease is managed using interventions such as pharmacological interventions and aerobic exercise. Use of aerobic exercise has shown some promises in reducing the risk of developing AD, and improving cognitive function and the ability to carry out both basic and instrumental ADL. Although, the mechanisms through which aerobic exercise improves AD are poorly understood, improvement in vascular function, brain glucose metabolism and cardiorespiratory fitness, increase in antioxidant capacity and haemoglobin level, amelioration of immune-related and inflammatory responses, modulation of concentration of circulating Neurotrophins and peptides and decrease in concentration of tau protein and cortisol level among others seem to be the possible mechanisms. Therefore, understanding these mechanisms is important to help characterize the dose and the nature of the aerobic exercise to be given. In addition, they may also help in finding ways to optimize other interventions such as the pharmacological interventions. However, more quality studies are needed to verify the mechanisms.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
48
|
Sanford SAI, Miller LVC, Vaysburd M, Keeling S, Tuck BJ, Clark J, Neumann M, Syanda V, James LC, McEwan WA. The type-I interferon response potentiates seeded tau aggregation and exacerbates tau pathology. Alzheimers Dement 2024; 20:1013-1025. [PMID: 37849026 PMCID: PMC10916982 DOI: 10.1002/alz.13493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Signatures of a type-I interferon (IFN-I) response are observed in the post mortem brain in Alzheimer's disease (AD) and other tauopathies. However, the effect of the IFN-I response on pathological tau accumulation remains unclear. METHODS We examined the effects of IFN-I signaling in primary neural culture models of seeded tau aggregation and P301S-tau transgenic mouse models in the context of genetic deletion of the IFN-I receptor (IFNAR). RESULTS Polyinosinic:polycytidylic acid (PolyI:C), a synthetic analog of viral nucleic acids, evoked a potent cytokine response that enhanced seeded aggregation of tau in an IFN-I-dependent manner. IFN-I-induced vulnerability could be pharmacologically prevented and was intrinsic to neurons. Aged P301S-tau mice lacking Ifnar1 had significantly reduced tau pathology compared to mice with intact IFN signaling. DISCUSSION We identify a critical role for IFN-I in potentiating tau aggregation. IFN-I is therefore identified as a potential therapeutic target in AD and other tauopathies. HIGHLIGHTS Type-I IFN (IFN-I) promotes seeded tau aggregation in neural cultures. IFNAR inhibition prevents IFN-I driven sensitivity to tau aggregation. IFN-I driven vulnerability is intrinsic to neurons. Tau pathology is significantly reduced in aged P301S-tau mice lacking IFNAR.
Collapse
Affiliation(s)
- Sophie A. I. Sanford
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Lauren V. C. Miller
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Marina Vaysburd
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Benjamin J. Tuck
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Jessica Clark
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Michal Neumann
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Victoria Syanda
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Leo C. James
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - William A. McEwan
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
49
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
50
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|