1
|
Tran NT, Graf R, Acevedo-Ochoa E, Trombke J, Weber T, Sommermann T, Salomon C, Kühn R, Rajewsky K, Chu VT. In vivo CRISPR/Cas9-mediated screen reveals a critical function of TFDP1 and E2F4 transcription factors in hematopoiesis. Leukemia 2024; 38:2003-2015. [PMID: 39043964 PMCID: PMC11347378 DOI: 10.1038/s41375-024-02357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Hematopoiesis is a continuous process of blood cell production driven by hematopoietic stem and progenitor cells (HSPCs) in the bone marrow. Proliferation and differentiation of HSPCs are regulated by complex transcriptional networks. In order to identify transcription factors with key roles in HSPC-mediated hematopoietic reconstitution, we developed an efficient and robust CRISPR/Cas9-based in vivo genetic screen. Using this experimental system, we identified the TFDP1 transcription factor to be essential for HSPC proliferation and post-transplant hematopoiesis. We further discovered that E2F4, an E2F transcription factor, serves as a binding partner of TFDP1 and is required for HSPC proliferation. Deletion of TFDP1 caused downregulation of genes associated with the cell cycle, with around 50% of these genes being identified as direct targets of TFDP1 and E2F4. Thus, our study expands the transcriptional network governing hematopoietic development through an in vivo CRISPR/Cas9-based genetic screen and identifies TFDP1/E2F4 as positive regulators of cell cycle genes in HSPCs.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Robin Graf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, 13125, Germany
- Muscle Research Unit, Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin, Berlin, Germany
| | - Ernesto Acevedo-Ochoa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Janine Trombke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Timm Weber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Biobank OWL (BOWL), Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Thomas Sommermann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Dynamic42 GmbH, Jena, Germany
| | - Claudia Salomon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
| | - Van Trung Chu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany.
| |
Collapse
|
2
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
3
|
Ganuza M, Morales-Hernández A, Van Huizen A, Chabot A, Hall T, Caprio C, Finkelstein D, Kilimann MW, McKinney-Freeman S. Neurobeachin regulates hematopoietic progenitor differentiation and survival by modulating Notch activity. Blood Adv 2024; 8:4129-4143. [PMID: 38905595 PMCID: PMC11345395 DOI: 10.1182/bloodadvances.2023012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) can generate all blood cells. This ability is exploited in HSC transplantation (HSCT) to treat hematologic disease. A clear understanding of the molecular mechanisms that regulate HSCT is necessary to continue improving transplant protocols. We identified the Beige and Chediak-Higashi domain-containing protein (BDCP), Neurobeachin (NBEA), as a putative regulator of HSCT. Here, we demonstrated that NBEA and related BDCPs, including LPS Responsive Beige-Like Anchor Protein (LRBA), Neurobeachin Like 1 (NBEAL1) and Lysosomal Trafficking Regulator (LYST), are required during HSCT to efficiently reconstitute the hematopoietic system of lethally irradiated mice. Nbea knockdown in mouse HSCs induced apoptosis and a differentiation block after transplantation. Nbea deficiency in hematopoietic progenitor cells perturbed the expression of genes implicated in vesicle trafficking and led to changes in NOTCH receptor localization. This resulted in perturbation of the NOTCH transcriptional program, which is required for efficient HSC engraftment. In summary, our findings reveal a novel role for NBEA in the control of NOTCH receptor turnover in hematopoietic cells and supports a model in which BDCP-regulated vesicle trafficking is required for efficient HSCT.
Collapse
Affiliation(s)
- Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Morales-Hernández
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI
| | - Alanna Van Huizen
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ashley Chabot
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | |
Collapse
|
4
|
Aguadé-Gorgorió J, Jami-Alahmadi Y, Calvanese V, Kardouh M, Fares I, Johnson H, Rezek V, Ma F, Magnusson M, Wang Y, Shin JE, Nance KJ, Goodridge HS, Liebscher S, Schenke-Layland K, Crooks GM, Wohlschlegel JA, Mikkola HKA. MYCT1 controls environmental sensing in human haematopoietic stem cells. Nature 2024; 630:412-420. [PMID: 38839950 PMCID: PMC11168926 DOI: 10.1038/s41586-024-07478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
- Pfizer, Cambridge, MA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Maya Kardouh
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Iman Fares
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Kite Pharma, Santa Monica, CA, USA
| | - Haley Johnson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Valerie Rezek
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Juliana E Shin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Karina J Nance
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simone Liebscher
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Pilcher L, Solomon L, Dragon JA, Gupta D, Spees JL. The Neural Progenitor Cell-Associated Transcription Factor FoxG1 Regulates Cardiac Epicardial Cell Proliferation. Stem Cells Int 2024; 2024:8601360. [PMID: 38239823 PMCID: PMC10796189 DOI: 10.1155/2024/8601360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The epicardium is a layer of mesothelial cells that covers the surface of the heart. During development, epicardial cells undergo epithelial-to-mesenchymal transition (EMT) to form multipotent precursors that migrate into the heart and contribute to the coronary vasculature by differentiating into adventitial fibroblasts, smooth muscle cells, and endothelial cells. Epicardial cells also provide paracrine signals to cardiac myocytes that are required for appropriate heart growth. In adult hearts, a similar process of epicardial cell EMT, migration, and differentiation occurs after myocardial infarction (MI, heart attack). Pathological cardiac hypertrophy is associated with fibrosis, negative remodeling, and reduced cardiac function. In contrast, aerobic exercises such as swimming and running promote physiological (i.e., beneficial) hypertrophy, which is associated with angiogenesis and improved cardiac function. As epicardial cell function(s) during physiological hypertrophy are poorly understood, we analyzed and compared the native epicardial cells isolated directly from the hearts of running-exercised mice and age-matched, nonrunning littermates. To obtain epicardial cells, we enzymatically digested the surfaces of whole hearts and performed magnetic-activated cell sorting (MACS) with antibodies against CD104 (integrin β4). By cDNA microarray assays, we identified genes with increased transcription in epicardial cells after running exercise; these included FoxG1, a transcription factor that controls neural progenitor cell proliferation during brain development and Snord116, a small noncoding RNA that coordinates expression of genes with epigenetic, circadian, and metabolic functions. In cultured epicardial cells, shRNA-mediated FoxG1 knockdown significantly decreased cell proliferation, as well as Snord116 expression. Our results demonstrate that FoxG1 regulates epicardial proliferation, and suggest it may affect cardiac remodeling.
Collapse
Affiliation(s)
- Lucy Pilcher
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Lara Solomon
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Julie A. Dragon
- Vermont Integrative Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05446, USA
| | - Jeffrey L. Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
6
|
Flynn J, Ahmadi MM, McFarland CT, Kubal MD, Taylor MA, Cheng Z, Torchia EC, Edwards MG. Crowdsourcing temporal transcriptomic coronavirus host infection data: Resources, guide, and novel insights. Biol Methods Protoc 2023; 8:bpad033. [PMID: 38107402 PMCID: PMC10723038 DOI: 10.1093/biomethods/bpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
The emergence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) reawakened the need to rapidly understand the molecular etiologies, pandemic potential, and prospective treatments of infectious agents. The lack of existing data on SARS-CoV-2 hampered early attempts to treat severe forms of coronavirus disease-2019 (COVID-19) during the pandemic. This study coupled existing transcriptomic data from severe acute respiratory syndrome-related coronavirus 1 (SARS-CoV-1) lung infection animal studies with crowdsourcing statistical approaches to derive temporal meta-signatures of host responses during early viral accumulation and subsequent clearance stages. Unsupervised and supervised machine learning approaches identified top dysregulated genes and potential biomarkers (e.g. CXCL10, BEX2, and ADM). Temporal meta-signatures revealed distinct gene expression programs with biological implications to a series of host responses underlying sustained Cxcl10 expression and Stat signaling. Cell cycle switched from G1/G0 phase genes, early in infection, to a G2/M gene signature during late infection that correlated with the enrichment of DNA damage response and repair genes. The SARS-CoV-1 meta-signatures were shown to closely emulate human SARS-CoV-2 host responses from emerging RNAseq, single cell, and proteomics data with early monocyte-macrophage activation followed by lymphocyte proliferation. The circulatory hormone adrenomedullin was observed as maximally elevated in elderly patients who died from COVID-19. Stage-specific correlations to compounds with potential to treat COVID-19 and future coronavirus infections were in part validated by a subset of twenty-four that are in clinical trials to treat COVID-19. This study represents a roadmap to leverage existing data in the public domain to derive novel molecular and biological insights and potential treatments to emerging human pathogens.
Collapse
Affiliation(s)
- James Flynn
- Illumina Corporation, San Diego, CA 92122, United States
| | - Mehdi M Ahmadi
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | | | | - Mark A Taylor
- Bioinfo Solutions LLC, Parker, CO 80134, United States
| | - Zhang Cheng
- Illumina Corporation, San Diego, CA 92122, United States
| | - Enrique C Torchia
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | | |
Collapse
|
7
|
Walker M, Li Y, Morales-Hernandez A, Qi Q, Parupalli C, Brown S, Christian C, Clements WK, Cheng Y, McKinney-Freeman S. An NFIX-mediated regulatory network governs the balance of hematopoietic stem and progenitor cells during hematopoiesis. Blood Adv 2023; 7:4677-4689. [PMID: 36478187 PMCID: PMC10468369 DOI: 10.1182/bloodadvances.2022007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.
Collapse
Affiliation(s)
- Megan Walker
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yichao Li
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Qian Qi
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Scott Brown
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Claiborne Christian
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wilson K. Clements
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yong Cheng
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|
8
|
Xu J, Sun Y, Fu W, Fu S. MYCT1 in cancer development: Gene structure, regulation, and biological implications for diagnosis and treatment. Biomed Pharmacother 2023; 165:115208. [PMID: 37499454 DOI: 10.1016/j.biopha.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jianan Xu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Yuanyuan Sun
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Weineng Fu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, PR China; Department of Medical genetics, China Medical University, Shenyang 110022, PR China.
| |
Collapse
|
9
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
10
|
Lu Y, Yang L, Shen M, Zhang Z, Wang S, Chen F, Chen N, Xu Y, Zeng H, Chen M, Chen S, Wang F, Hu M, Wang J. Tespa1 facilitates hematopoietic and leukemic stem cell maintenance by restricting c-Myc degradation. Leukemia 2023; 37:1039-1047. [PMID: 36997676 PMCID: PMC10169665 DOI: 10.1038/s41375-023-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/11/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have robust self-renewal potential, which is responsible for sustaining normal and malignant hematopoiesis, respectively. Although considerable efforts have been made to explore the regulation of HSC and LSC maintenance, the underlying molecular mechanism remains obscure. Here, we observe that the expression of thymocyte-expressed, positive selection-associated 1 (Tespa1) is markedly increased in HSCs after stresses exposure. Of note, deletion of Tespa1 results in short-term expansion but long-term exhaustion of HSCs in mice under stress conditions due to impaired quiescence. Mechanistically, Tespa1 can interact with CSN subunit 6 (CSN6), a subunit of COP9 signalosome, to prevent ubiquitination-mediated degradation of c-Myc protein in HSCs. As a consequence, forcing c-Myc expression improves the functional defect of Tespa1-null HSCs. On the other hand, Tespa1 is identified to be highly enriched in human acute myeloid leukemia (AML) cells and is essential for AML cell growth. Furthermore, using MLL-AF9-induced AML model, we find that Tespa1 deficiency suppresses leukemogenesis and LSC maintenance. In summary, our findings reveal the important role of Tespa1 in promoting HSC and LSC maintenance and therefore provide new insights on the feasibility of hematopoietic regeneration and AML treatment.
Collapse
Affiliation(s)
- Yukai Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
- Frontier Medical Training Brigade, Third Military Medical University, Xinjiang, 831200, China
| | - Lijing Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mingqiang Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Zihao Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Naicheng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hao Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Shilei Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Mengjia Hu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Aid Z, Robert E, Lopez CK, Bourgoin M, Boudia F, Le Mene M, Riviere J, Baille M, Benbarche S, Renou L, Fagnan A, Thirant C, Federici L, Touchard L, Lecluse Y, Jetten A, Geoerger B, Lapillonne H, Solary E, Gaudry M, Meshinchi S, Pflumio F, Auberger P, Lobry C, Petit A, Jacquel A, Mercher T. High caspase 3 and vulnerability to dual BCL2 family inhibition define ETO2::GLIS2 pediatric leukemia. Leukemia 2023; 37:571-579. [PMID: 36585521 PMCID: PMC10583253 DOI: 10.1038/s41375-022-01800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.
Collapse
Affiliation(s)
- Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile K Lopez
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Maxence Bourgoin
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Melchior Le Mene
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Julie Riviere
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Marie Baille
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
| | - Laurent Renou
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laetitia Federici
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laure Touchard
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Yann Lecluse
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
| | - Hélène Lapillonne
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, UMRS_938, CONECT-AML, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Françoise Pflumio
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Patrick Auberger
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, 75010, Paris, France
| | - Arnaud Petit
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arnaud Jacquel
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France.
| |
Collapse
|
12
|
Caiado F, Kovtonyuk LV, Gonullu NG, Fullin J, Boettcher S, Manz MG. Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling. Blood 2023; 141:886-903. [PMID: 36379023 PMCID: PMC10651783 DOI: 10.1182/blood.2022016835] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), also referred to as aging-related clonal hematopoiesis, is defined as an asymptomatic clonal expansion of mutant mature hematopoietic cells in ≥4% of blood leukocytes. CHIP associates with advanced age and increased risk for hematological malignancy, cardiovascular disease, and all-cause mortality. Loss-of-function somatic mutations in TET2 are frequent drivers of CHIP. However, the contribution of aging-associated cooperating cell-extrinsic drivers, like inflammation, remains underexplored. Using bone marrow (BM) transplantation and newly developed genetic mosaicism (HSC-SCL-Cre-ERT; Tet2+/flox; R26+/tm6[CAG-ZsGreen1]Hze) mouse models of Tet2+/-driven CHIP, we observed an association between increased Tet2+/- clonal expansion and higher BM levels of the inflammatory cytokine interleukin-1 (IL-1) upon aging. Administration of IL-1 to mice carrying CHIP led to an IL-1 receptor 1 (IL-1R1)-dependent expansion of Tet2+/- hematopoietic stem and progenitor cells (HSPCs) and mature blood cells. This expansion was caused by increased Tet2+/- HSPC cell cycle progression, increased multilineage differentiation, and higher repopulation capacity compared with their wild-type counterparts. In agreement, IL-1α-treated Tet2+/- hematopoietic stem cells showed increased DNA replication and repair transcriptomic signatures and reduced susceptibility to IL-1α-mediated downregulation of self-renewal genes. More important, genetic deletion of IL-1R1 in Tet2+/- HPSCs or pharmacologic inhibition of IL-1 signaling impaired Tet2+/- clonal expansion, establishing the IL-1 pathway as a relevant and therapeutically targetable driver of Tet2+/- CHIP progression during aging.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Larisa V. Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Nagihan G. Gonullu
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Jonas Fullin
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
14
|
Sabotta CM, Kwan SY, Petty LE, Below JE, Joon A, Wei P, Fisher-Hoch SP, McCormick JB, Beretta L. Genetic variants associated with circulating liver injury markers in Mexican Americans, a population at risk for non-alcoholic fatty liver disease. Front Genet 2022; 13:995488. [PMID: 36386790 PMCID: PMC9644071 DOI: 10.3389/fgene.2022.995488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 02/03/2023] Open
Abstract
Objective: Mexican Americans are disproportionally affected by non-alcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma. Noninvasive means to identify those in this population at high risk for these diseases are urgently needed. Approach: The Cameron County Hispanic Cohort (CCHC) is a population-based cohort with high rates of obesity (51%), type 2 diabetes (28%) and NAFLD (49%). In a subgroup of 564 CCHC subjects, we evaluated 339 genetic variants previously reported to be associated with liver injury markers aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in United Kingdom and Japanese cohorts. Results: Association was confirmed for 86 variants. Among them, 27 had higher effect allele frequency in the CCHC than in the United Kingdom and Japanese cohorts, and 16 had stronger associations with AST and ALT than rs738409 (PNPLA3). These included rs17710008 (MYCT1), rs2519093 (ABO), rs1801690 (APOH), rs10409243 (S1PR2), rs1800759 (LOC100507053) and rs2491441 (RGL1), which were also associated with steatosis and/or liver fibrosis measured by vibration-controlled transient elastography. Main contributors to advanced fibrosis risk were rs11240351 (CNTN2), rs1800759 (LOC100507053), rs738409 (PNPLA3) and rs1801690 (APOH), with advanced fibrosis detected in 37.5% of subjects with 3 of these 4 variants [AOR = 11.6 (95% CI) = 3.8-35.3]. AST- and ALT-associated variants implicated distinct pathways (ethanol and galactose degradation versus antigen presentation and B cell development). Finally, 8 variants, including rs62292950 (DNAJC13), were associated with gut microbiome changes. Conclusion: These genotype-phenotype findings may have utility in risk modeling and disease prevention in this high-risk population.
Collapse
Affiliation(s)
- Caroline M. Sabotta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Suet-Ying Kwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Petty
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer E. Below
- Vanderbilt Genetics Institute and Department of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Aron Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Joseph B. McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, TX, United States
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
15
|
Che JLC, Bode D, Kucinski I, Cull AH, Bain F, Becker HJ, Jassinskaja M, Barile M, Boyd G, Belmonte M, Zeng AGX, Igarashi KJ, Rubio‐Lara J, Shepherd MS, Clay A, Dick JE, Wilkinson AC, Nakauchi H, Yamazaki S, Göttgens B, Kent DG. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep 2022; 23:e55502. [PMID: 35971894 PMCID: PMC9535767 DOI: 10.15252/embr.202255502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200-fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non-HSCs and single cell-initiated cultures have substantial clone-to-clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non-HSCs in expansion cultures. By directly linking single-clone functional transplantation data with single-clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This "repopulation signature" (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.
Collapse
Affiliation(s)
- James L C Che
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Daniel Bode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Iwo Kucinski
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Alyssa H Cull
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Fiona Bain
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Hans J Becker
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
| | - Maria Jassinskaja
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Melania Barile
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Grace Boyd
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Andy G X Zeng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyomi J Igarashi
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Juan Rubio‐Lara
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - John E Dick
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Hiromitsu Nakauchi
- Division of Stem Cell Biology, Distinguished Professor Unit, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordCAUSA
- Department of GeneticsStanford University School of MedicineStanfordCAUSA
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan
- Laboratory of Stem Cell Therapy, Faculty of MedicineUniversity of TsukubaIbarakiJapan
| | - Berthold Göttgens
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridgeUK
- Department of Biology, York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
16
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
17
|
An Q, Dong Y, Cao Y, Pan X, Xue Y, Zhou Y, Zhang Y, Ma F. Myh9 Plays an Essential Role in the Survival and Maintenance of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11121865. [PMID: 35740994 PMCID: PMC9221478 DOI: 10.3390/cells11121865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Myosin heavy chain 9 (MYH9) gene encodes a protein named non-muscle heavy chain IIA (NMHC IIA), interacting with actin and participating in various biological processes. Mutations in MYH9 cause an array of autosomal dominant disorders, known as MYH9-related diseases (MYH9-RD). However, the role of MYH9 in normal hematopoiesis remains largely unexplored. By using Mx1-cre Myh9 conditional knockout mice, we established an inducible system to precisely inactivate Myh9 function in hematopoietic cells in vivo. The results showed that deletion of Myh9 led to severe defects in hematopoiesis, characterized by pancytopenia, drastic decreases of hematopoietic stem/progenitor cells (HSPC), and bone marrow failure, causing early lethality in mice. The defect in hematopoiesis caused by Myh9 ablation is cell autonomous. In addition, Myh9 deletion impairs HSPC repopulation capacity and increases apoptosis. RNA sequencing results revealed significant alterations in the expression of genes related to HSC self-renewal and maintenance, while multiple signal pathways were also involved, including genes for HSC and myeloid cell development, intrinsic apoptosis, targets of mTOR signaling, and maturity of hematopoietic cells. Our present study suggests an essential role for Myh9 in the survival and maintenance of HSPC in normal hematopoiesis.
Collapse
Affiliation(s)
- Quanming An
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yang Cao
- Institute of Molecular Medicine, School of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China;
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yuan Xue
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| |
Collapse
|
18
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
19
|
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC Subfamily: Structures, Functions, Evolutions, Interactions, and Diseases. Front Mol Biosci 2021; 8:791597. [PMID: 34912852 PMCID: PMC8666550 DOI: 10.3389/fmolb.2021.791597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Armadillo repeat-containing proteins (ARMCs) are widely distributed in eukaryotes and have important influences on cell adhesion, signal transduction, mitochondrial function regulation, tumorigenesis, and other processes. These proteins share a similar domain consisting of tandem repeats approximately 42 amino acids in length, and this domain constitutes a substantial platform for the binding between ARMCs and other proteins. An ARMC subfamily, including ARMC1∼10, ARMC12, and ARMCX1∼6, has received increasing attention. These proteins may have many terminal regions and play a critical role in various diseases. On the one hand, based on their similar central domain of tandem repeats, this ARMC subfamily may function similarly to other ARMCs. On the other hand, the unique domains on their terminals may cause these proteins to have different functions. Here, we focus on the ARMC subfamily (ARMC1∼10, ARMC12, and ARMCX1∼6), which is relatively conserved in vertebrates and highly conserved in mammals, particularly primates. We review the structures, biological functions, evolutions, interactions, and related diseases of the ARMC subfamily, which involve more than 30 diseases and 40 bypasses, including interactions and relationships between more than 100 proteins and signaling molecules. We look forward to obtaining a clearer understanding of the ARMC subfamily to facilitate further in-depth research and treatment of related diseases.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zijian Jiang
- Department of Hepato-biliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Institue of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
LNK (SH2B3) Inhibition Expands Healthy and Fanconi Anemia Human Hematopoietic Stem and Progenitor Cells. Blood Adv 2021; 6:731-745. [PMID: 34844262 PMCID: PMC8945310 DOI: 10.1182/bloodadvances.2021004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for a variety of hematological diseases. Allogenic HSCT requires hematopoietic stem cells (HSCs) from matched donors and comes with cytotoxicity and mortality. Recent advances in genome modification of HSCs have demonstrated the possibility of using autologous HSCT-based gene therapy to cure monogenic diseases, such as the inherited bone marrow failure (BMF) syndrome Fanconi Anemia (FA). However, for FA and other BMF syndromes insufficient HSC numbers with functional defects results in delayed hematopoietic recovery and increased risk of graft failure. We and others previously identified the adaptor protein Lnk (Sh2b3) as a critical negative regulator of murine HSC homeostasis. However, whether LNK (SH2B3) controls human HSCs has not been studied. Here, we demonstrate that depletion of LNK via lentiviral expression of miR30-based short hairpin RNAs (shRNAs) resulted in robust expansion of transplantable human HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Importantly, LNK depletion enhanced cytokine mediated JAK/STAT activation in CD34+ hematopoietic stem and progenitor cells (HSPCs). Moreover, we demonstrate that LNK depletion expands primary HSPCs associated with FA. In xenotransplant, engraftment defects of FANCD2-depleted FA-like HSCs were markedly improved by LNK inhibition. Finally, targeting LNK in primary bone marrow HSPCs from FA patients enhanced their colony forming potential in vitro. Together, these results demonstrate the potential of targeting LNK to expand HSCs to improve HSCT and HSCT-based gene therapy.
Collapse
|
21
|
Lawson H, van de Lagemaat LN, Barile M, Tavosanis A, Durko J, Villacreces A, Bellani A, Mapperley C, Georges E, Martins-Costa C, Sepulveda C, Allen L, Campos J, Campbell KJ, O'Carroll D, Göttgens B, Cory S, Rodrigues NP, Guitart AV, Kranc KR. CITED2 coordinates key hematopoietic regulatory pathways to maintain the HSC pool in both steady-state hematopoiesis and transplantation. Stem Cell Reports 2021; 16:2784-2797. [PMID: 34715054 PMCID: PMC8581166 DOI: 10.1016/j.stemcr.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 10/26/2022] Open
Abstract
Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.
Collapse
Affiliation(s)
- Hannah Lawson
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Louie N van de Lagemaat
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Melania Barile
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jozef Durko
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Arnaud Villacreces
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aarushi Bellani
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher Mapperley
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Elise Georges
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Catarina Sepulveda
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Lewis Allen
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Joana Campos
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Dónal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome and Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, 33000 Bordeaux, France.
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
22
|
Wilson MM, Callens C, Le Gallo M, Mironov S, Ding Q, Salamagnon A, Chavarria TE, Viel R, Peasah AD, Bhutkar A, Martin S, Godey F, Tas P, Kang HS, Juin PP, Jetten AM, Visvader JE, Weinberg RA, Attanasio M, Prigent C, Lees JA, Guen VJ. An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. SCIENCE ADVANCES 2021; 7:eabf6063. [PMID: 34705506 PMCID: PMC8550236 DOI: 10.1126/sciadv.abf6063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/08/2021] [Indexed: 05/14/2023]
Abstract
The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base. We show that GLIS2 inactivation promotes MaSC stemness, and GLIS2 is required for normal mammary gland development. Moreover, GLIS2 inactivation is required to induce the proliferative and tumorigenic capacities of the mammary tumor–initiating cells (MaTICs) of claudin-low breast cancers. Claudin-low breast tumors can be segregated from other breast tumor subtypes based on a GLIS2-dependent gene expression signature. Collectively, our findings establish molecular mechanisms by which EMT programs induce ciliogenesis to control MaSC and MaTIC stemness, mammary gland development, and claudin-low breast cancer formation.
Collapse
Affiliation(s)
- Molly M. Wilson
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Céline Callens
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Svetlana Mironov
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Qiong Ding
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Amandine Salamagnon
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
| | - Tony E. Chavarria
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roselyne Viel
- Plateforme d’Histopathologie de Haute Précision (H2P2), Rennes, France
| | - Abena D. Peasah
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Sophie Martin
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Florence Godey
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Patrick Tas
- INSERM U1242, Rennes 1 University, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Hong Soon Kang
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Anton M. Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane E. Visvader
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert A. Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- MIT Department of Biology and the Whitehead Institute, Cambridge, MA, USA
| | - Massimo Attanasio
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Claude Prigent
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
- CRBM, CNRS, Université de Montpellier, Montpellier, France
| | - Jacqueline A. Lees
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vincent J. Guen
- Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique, Rennes, France
- CRCINA, INSERM, Université de Nantes, Nantes, France
| |
Collapse
|
23
|
Ma Z, Wang X, Lv Q, Gong Y, Xia M, Zhuang L, Lu X, Yang Y, Zhang W, Fu G, Ye Y, Lai D. Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:823-837. [PMID: 34285551 PMCID: PMC8285300 DOI: 10.2147/pgpm.s314880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
Background Considered as one of the major reasons of sudden cardiac death, hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for discovering potential therapeutic targets and candidate biomarkers. Methods We analysed three gene expression datasets for HCM from the Gene Expression Omnibus. Two of them were merged by “sva” package. The merged dataset was used for analysis while the other dataset was used for validation. Following this, a weighted gene coexpression network analysis (WGCNA) was performed, and the key module most related to HCM was identified. Based on the intramodular connectivity, we identified the potential hub genes. Then, a receiver operating characteristic curve analysis was performed to verify the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic transcription and protein expression levels, in datasets of HCM patients and myocardium of transverse aortic constriction (TAC) mice. Results In the merged dataset, a total of 455 differentially expressed genes (DEGs) were identified from normal and hypertrophic myocardium. In WGCNA, the blue module was identified as the key module and the genes in this module showed a high positive correlation with HCM. Functional enrichment analysis of DEGs and key module revealed that the extracellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB, COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These genes showed a good predictive value for HCM and were significantly up-regulated in HCM patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in myocardium of TAC mice. Conclusion This study revealed that five hub genes are involved in the occurrence and development of HCM, and they are potentially to be used as therapeutic targets and biomarkers for HCM.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China.,Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong Province, 528403, People's Republic of China
| | - Xizhi Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Minghong Xia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Lenan Zhuang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xue Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Ying Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| |
Collapse
|
24
|
Ezawa M, Kouno F, Kubo H, Sakuma T, Yamamoto T, Kinoshita T. Pou5f3.3 is involved in establishment and maintenance of hematopoietic cells during Xenopus development. Tissue Cell 2021; 72:101531. [PMID: 33798831 DOI: 10.1016/j.tice.2021.101531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Three POU family class V gene homologues are expressed in the development of Xenopus. In contrast to the expression of Pou5f3.1 and Pou5f3.2 in organogenesis, Pou5f3.3 is expressed during oogenesis in ovary. We investigated the expression and function of Pou5f3.3 in organogenesis of Xenopus laevis. RT-PCR and immunohistochemical analysis indicated that Pou5f3.3 was expressed in a small number of adult liver cells and blood cells. Immunocytochemical investigation proved that Bmi1, a marker for hematopoietic progenitor cells, was co-expressed in Pou5f3.3-expressing small spherical cells in the peripheral blood. In anemic induction by intraperitoneal injection of phenyl hydrazine, the number of Pou5f3.3-expressing cells significantly increased within 3 days after phenyl hydrazine injection. In CRISPR/Cas mutagenesis of Pou5f3.3, Bmi1-positive hematopoietic progenitor cell count decreased in the hematopoietic dorsal-lateral plate (DLP) region, resulting in a considerable reduction in peripheral blood cells. CRISPR/Cas-induced hematopoietic deficiency was completely rescued by Pou5f3.3 supplementation, but not by Pou5f3.1 or Pou5f3.2. Transplantation experiments using the H2B-GFP transgenic line demonstrated that DLP-derived Pou5f3.3-positive and Bmi1-positive cells were translocated into the liver and bone through the bloodstream. These results suggest that Pou5f3.3 plays an essential role in the establishment and maintenance of hematopoietic progenitor cells during Xenopus development.
Collapse
Affiliation(s)
- Minami Ezawa
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Fumika Kouno
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hideo Kubo
- Department of Membrane Biochemistry, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Tsutomu Kinoshita
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
25
|
Lv K, Gong C, Antony C, Han X, Ren JG, Donaghy R, Cheng Y, Pellegrino S, Warren AJ, Paralkar VR, Tong W. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 2021; 28:1275-1290.e9. [PMID: 33711283 DOI: 10.1016/j.stem.2021.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Impaired ribosome function is the underlying etiology in a group of bone marrow failure syndromes called ribosomopathies. However, how ribosomes are regulated remains poorly understood, as are approaches to restore hematopoietic stem cell (HSC) function loss because of defective ribosome biogenesis. Here we reveal a role of the E3 ubiquitin ligase HectD1 in regulating HSC function via ribosome assembly and protein translation. Hectd1-deficient HSCs exhibit a striking defect in transplantation ability and ex vivo maintenance concomitant with reduced protein synthesis and growth rate under stress conditions. Mechanistically, HectD1 ubiquitinates and degrades ZNF622, an assembly factor for the ribosomal 60S subunit. Hectd1 loss leads to accumulation of ZNF622 and the anti-association factor eIF6 on 60S, resulting in 60S/40S joining defects. Importantly, Znf622 depletion in Hectd1-deficient HSCs restored ribosomal subunit joining, protein synthesis, and HSC reconstitution capacity. These findings highlight the importance of ubiquitin-coordinated ribosome assembly in HSC regeneration.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chujie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Antony
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simone Pellegrino
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Vikram R Paralkar
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Stumpf PS, Du X, Imanishi H, Kunisaki Y, Semba Y, Noble T, Smith RCG, Rose-Zerili M, West JJ, Oreffo ROC, Farrahi K, Niranjan M, Akashi K, Arai F, MacArthur BD. Transfer learning efficiently maps bone marrow cell types from mouse to human using single-cell RNA sequencing. Commun Biol 2020; 3:736. [PMID: 33277618 PMCID: PMC7718277 DOI: 10.1038/s42003-020-01463-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Biomedical research often involves conducting experiments on model organisms in the anticipation that the biology learnt will transfer to humans. Previous comparative studies of mouse and human tissues were limited by the use of bulk-cell material. Here we show that transfer learning-the branch of machine learning that concerns passing information from one domain to another-can be used to efficiently map bone marrow biology between species, using data obtained from single-cell RNA sequencing. We first trained a multiclass logistic regression model to recognize different cell types in mouse bone marrow achieving equivalent performance to more complex artificial neural networks. Furthermore, it was able to identify individual human bone marrow cells with 83% overall accuracy. However, some human cell types were not easily identified, indicating important differences in biology. When re-training the mouse classifier using data from human, less than 10 human cells of a given type were needed to accurately learn its representation. In some cases, human cell identities could be inferred directly from the mouse classifier via zero-shot learning. These results show how simple machine learning models can be used to reconstruct complex biology from limited data, with broad implications for biomedical research.
Collapse
Affiliation(s)
- Patrick S Stumpf
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, 52074, Germany.
| | - Xin Du
- Electronics and Computer Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Haruka Imanishi
- Kyushu University, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Kunisaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Timothy Noble
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rosanna C G Smith
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew Rose-Zerili
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katayoun Farrahi
- Electronics and Computer Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mahesan Niranjan
- Electronics and Computer Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumio Arai
- Kyushu University, Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- The Alan Turing Institute, London, NW1 2DB, UK.
| |
Collapse
|
27
|
Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 2020; 34:3136-3148. [PMID: 33077865 DOI: 10.1038/s41375-020-01062-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for lifelong maintenance of hematopoiesis through self-renewal and differentiation into mature blood cell lineages. Traditional models hold that HSPCs guard homeostatic function and adapt to regenerative demand by integrating cell-autonomous, intrinsic programs with extrinsic cues from the niche. Despite the biologic significance, little is known about the active roles HSPCs partake in reciprocally shaping the function of their microenvironment. Here, we review evidence of signals emerging from HSPCs through secreted autocrine or paracrine factors, including extracellular vesicles, and via direct contact within the niche. We also discuss the functional impact of direct cellular interactions between hematopoietic elements on niche occupancy in the context of leukemic infiltration. The aggregate data support a model whereby HSPCs are active participants in the dynamic adaptation of the stem cell niche unit during development and homeostasis, and under inflammatory stress, malignancy, or transplantation.
Collapse
|
28
|
Brulois K, Rajaraman A, Szade A, Nordling S, Bogoslowski A, Dermadi D, Rahman M, Kiefel H, O'Hara E, Koning JJ, Kawashima H, Zhou B, Vestweber D, Red-Horse K, Mebius RE, Adams RH, Kubes P, Pan J, Butcher EC. A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun 2020; 11:3798. [PMID: 32732867 PMCID: PMC7393069 DOI: 10.1038/s41467-020-17291-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis.
Collapse
Affiliation(s)
- Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Agata Szade
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ania Bogoslowski
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Milladur Rahman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward O'Hara
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Hiroto Kawashima
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Beijing, China
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, Münster, Germany
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Junliang Pan
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
29
|
Sun S, Jiang N, Jiang Y, He Q, He H, Wang X, Yang L, Li R, Liu F, Lin X, Zhao B. Chromatin remodeler Znhit1 preserves hematopoietic stem cell quiescence by determining the accessibility of distal enhancers. Leukemia 2020; 34:3348-3358. [PMID: 32694618 PMCID: PMC7685981 DOI: 10.1038/s41375-020-0988-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cell (HSC) utilizes its quiescence feature to combat exhaustion for lifetime blood cell supply. To date, how certain chromatin architecture and subsequent transcription profile permit HSC quiescence remains unclear. Here, we show an essential role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining HSC quiescence. We find that loss of Znhit1 leads to exhaustion of stem cell pool and impairment of hematopoietic function. Mechanically, Znhit1 determines the chromatin accessibility at distal enhancers of HSC quiescence genes, including Pten, Fstl1, and Klf4, for sustained transcription and consequent PI3K-Akt signaling inhibition. Moreover, Znhit1-Pten-PI3K-Akt axis also participates in controlling myeloid expansion and B-lymphoid specification. Our findings therefore identify a dominant role of Znhit1-mediated chromatin remodeling in preserving HSC function for hematopoietic homeostasis.
Collapse
Affiliation(s)
- Shenfei Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.,National Health Commission Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yamei Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiuping He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Li Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Runsheng Li
- National Health Commission Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
30
|
Zhang Q, Wang J, Liu M, Zhu Q, Li Q, Xie C, Han C, Wang Y, Gao M, Liu J. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:13502-13517. [PMID: 32644941 PMCID: PMC7377834 DOI: 10.18632/aging.103454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the top two gene modules identified ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 as the top five mRNAsi-related genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in normal liver tissues. These findings demonstrate that a new survival model derived from five strongly correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients.
Collapse
Affiliation(s)
- Qiujing Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jia Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo 255000, Shandong, China
| | - Menghan Liu
- Basic Medicine College, Shandong First Medical University, Taian 271016, Shandong, China
| | - Qingqing Zhu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qiang Li
- Department of Oncology, Mengyin County Hospital, Linyi 276299, Shandong, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Congcong Han
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yali Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Min Gao
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
31
|
Darden DB, Stortz JA, Hollen MK, Cox MC, Apple CG, Hawkins RB, Rincon JC, Lopez MC, Wang Z, Navarro E, Hagen JE, Parvataneni HK, Brusko MA, Kladde M, Bacher R, Brumback BA, Brakenridge SC, Baker HV, Cogle CR, Mohr AM, Efron PA. Identification of Unique mRNA and miRNA Expression Patterns in Bone Marrow Hematopoietic Stem and Progenitor Cells After Trauma in Older Adults. Front Immunol 2020; 11:1289. [PMID: 32670283 PMCID: PMC7326804 DOI: 10.3389/fimmu.2020.01289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Older adults have significantly worse morbidity and mortality after severe trauma than younger cohorts. The competency of the innate immune response decreases with advancing age, especially after an inflammatory insult. Subsequent poor outcomes after trauma are caused in part by dysfunctional leukocytes derived from the host's hematopoietic stem and progenitor cells (HSPCs). Our objective was to analyze the bone marrow (BM) HSPC transcriptomic [mRNA and microRNA (miR)] responses to trauma in older and younger adults. BM was collected intraoperatively <9 days after initial injury from trauma patients with non-mild injury [ISS ≥ 9] or with shock (lactate ≥ 2, base deficit ≥ 5, MAP ≤ 65) who underwent operative fixation of a pelvic or long bone fracture. Samples were also analyzed based on age (<55 years and ≥55 years), ISS score and transfusion in the first 24 h, and compared to age/sex-matched controls from non-cancer elective hip replacement or purchased healthy younger adult human BM aspirates. mRNA and miR expression patterns were calculated from lineage-negative enriched HSPCs. 924 genes were differentially expressed in older trauma subjects vs. age/sex-matched controls, while 654 genes were differentially expressed in younger subjects vs. age/sex-matched control. Only 68 transcriptomic changes were shared between the two groups. Subsequent analysis revealed upregulation of transcriptomic pathways related to quantity, function, differentiation, and proliferation of HSPCs in only the younger cohort. miR expression differences were also identified, many of which were associated with cell cycle regulation. In summary, differences in the BM HSPC mRNA and miR expression were identified between older and younger adult trauma subjects. These differences in gene and miR expression were related to pathways involved in HSPC production and differentiation. These differences could potentially explain why older adult patients have a suboptimal hematopoietic response to trauma. Although immunomodulation of HSPCs may be a necessary consideration to promote host protective immunity after host injury, the age related differences further highlight that patients may require an age-defined medical approach with interventions that are specific to their transcriptomic and biologic response. Also, targeting the older adult miRs may be possible for interventions in this patient population.
Collapse
Affiliation(s)
- Dijoia B Darden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael C Cox
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Camille G Apple
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Eduardo Navarro
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jennifer E Hagen
- Department of Orthopaedics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hari K Parvataneni
- Department of Orthopaedics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A Brusko
- Department of Biomedical Engineering, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael Kladde
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Babette A Brumback
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher R Cogle
- Department of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
32
|
Chen MJ, Lummertz da Rocha E, Cahan P, Kubaczka C, Hunter P, Sousa P, Mullin NK, Fujiwara Y, Nguyen M, Tan Y, Landry S, Han A, Yang S, Lu YF, Jha DK, Vo LT, Zhou Y, North TE, Zon LI, Daley GQ, Schlaeger TM. Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports 2020; 14:956-971. [PMID: 32302558 PMCID: PMC7220988 DOI: 10.1016/j.stemcr.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.
Collapse
Affiliation(s)
- Michael J Chen
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Edroaldo Lummertz da Rocha
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Caroline Kubaczka
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Phoebe Hunter
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Sousa
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathaniel K Mullin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuko Fujiwara
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Minh Nguyen
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel Landry
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Areum Han
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Song Yang
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Fen Lu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Kumar Jha
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Zhou
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Leonard I Zon
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA, USA; Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - George Q Daley
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Thorsten M Schlaeger
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
33
|
Stem cell engraftment within our G(P)RASP. Blood 2020; 135:1077-1078. [PMID: 32243516 DOI: 10.1182/blood.2020005117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Morales-Hernández A, Benaksas C, Chabot A, Caprio C, Ferdous M, Zhao X, Kang G, McKinney-Freeman S. GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood 2020; 135:1111-1123. [PMID: 32027737 PMCID: PMC7118811 DOI: 10.1182/blood.2019003435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation (HSCT) is often exploited to treat hematologic disease. Donor HSCs must survive, proliferate, and differentiate in the damaged environment of the reconstituting niche. Illuminating molecular mechanisms regulating the activity of transplanted HSCs will inform efforts to improve HSCT. Here, we report that G-protein-coupled receptor-associated sorting proteins (GPRASPs) function as negative regulators of HSCT. Silencing of Gprasp1 or Gprasp2 increased the survival, quiescence, migration, niche retention, and hematopoietic repopulating activity of hematopoietic stem and progenitor cells (HSPCs) posttransplant. We further show that GPRASP1 and GPRASP2 promote the degradation of CXCR4, a master regulator of HSC function during transplantation. CXCR4 accumulates in Gprasp-deficient HSPCs, boosting their function posttransplant. Thus, GPRASPs negatively regulate CXCR4 stability in HSCs. Our work reveals GPRASP proteins as negative regulators of HSCT and CXCR4 activity. Disruption of GPRASP/CXCR4 interactions could be exploited in the future to enhance the efficiency of HSCT.
Collapse
Affiliation(s)
| | - Chaïma Benaksas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
- Paris Diderot University, Paris, France; and
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Claire Caprio
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Maheen Ferdous
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Xiwen Zhao
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
35
|
Abstract
Heart failure is a major health problem worldwide with a significant morbidity and mortality rate. Although studied extensively in animal models, data from patients at the compensated disease stage are lacking. We sampled myocardium biopsies from aortic stenosis patients with compensated hypertrophy and moderate heart failure and used transcriptomics to study the transition to failure. Sequencing and comparative analysis of analogous samples of mice with transverse aortic constriction identified 25 candidate genes with similar regulation in response to pressure overload, reflecting highly conserved molecular processes. The gene cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is upregulated in the transition to failure in human and mouse and its function is unknown. Homology to ion channel regulatory toxins suggests a role in Ca2+ cycling. CRISPR/Cas9-mediated loss-of-function leads to dysregulated Ca2+ handling in human-induced pluripotent stem cell-derived cardiomyocytes. The downregulation of prohypertrophic, proapoptotic and Ca2+-signaling pathways upon CRISPLD1-KO and its upregulation in the transition to failure implicates a contribution to adverse remodeling. These findings provide new pathophysiological data on Ca2+ regulation in the transition to failure and novel candidate genes with promising potential for therapeutic interventions.
Collapse
|
36
|
The nuclear receptor corepressor NCoR1 regulates hematopoiesis and leukemogenesis in vivo. Blood Adv 2020; 3:644-657. [PMID: 30804018 DOI: 10.1182/bloodadvances.2018022756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
Enhanced understanding of normal and malignant hematopoiesis pathways should facilitate the development of effective clinical treatment strategies for hematopoietic malignancies. Nuclear receptor corepressor 1 (NCoR1) has been implicated in transcriptional repression and embryonic organ development, but its role in hematopoiesis is yet to be fully elucidated. Here, we showed that hematopoietic-specific loss of NCoR1 leads to expansion of the hematopoietic stem cell (HSC) pool due to aberrant cell cycle entry of long-term HSCs under steady-state conditions. Moreover, NCoR1-deficient HSCs exhibited normal self-renewal capacity but severely impaired lymphoid-differentiation potential in competitive hematopoietic-reconstitution assays. Transcriptome analysis further revealed that several hematopoiesis-associated genes are regulated by NCoR1. In addition, NCoR1 deficiency in hematopoietic cells delayed the course of leukemia and promoted leukemia cell differentiation in an MLL-AF9-induced mouse model. NCoR1 and its partner, histone deacetylase 3, can modulate histone acetylation and gene transcription through binding the promoter regions of myeloid-differentiation genes. Our collective results support the critical involvement of NCoR1 in normal and malignant hematopoiesis in vivo.
Collapse
|
37
|
Khokhar ES, Borikar S, Eudy E, Stearns T, Young K, Trowbridge JJ. Aging-associated decrease in the histone acetyltransferase KAT6B is linked to altered hematopoietic stem cell differentiation. Exp Hematol 2020; 82:43-52.e4. [PMID: 32014431 PMCID: PMC7179256 DOI: 10.1016/j.exphem.2020.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
Aged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused short hairpin RNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells at the expense of erythroid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as a novel epigenetic regulator of hematopoietic differentiation and a target to improve aged immune function.
Collapse
Affiliation(s)
- Eraj Shafiq Khokhar
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | - Kira Young
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Jennifer J Trowbridge
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
38
|
Zhang Q, Thakur C, Fu Y, Bi Z, Wadgaonkar P, Xu L, Liu Z, Liu W, Wang J, Kidder BL, Chen F. Mdig promotes oncogenic gene expression through antagonizing repressive histone methylation markers. Theranostics 2020; 10:602-614. [PMID: 31903140 PMCID: PMC6929976 DOI: 10.7150/thno.36220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The mineral dust-induced gene (mdig) is overexpressed in a number of human cancers, suggesting critical roles of this gene played on the pathogenesis of cancers. Unlike several other JmjC-domain containing proteins that exhibit histone demethylase activity, it remains enigmatic whether mdig is involved in the demethylation processes of the histone proteins. Methods: To provide direct evidence suggesting contribution of mdig to the demethylation of histone proteins, we recently examined the histone methylation profiles in human bronchial epithelial cells as well as two cancer cell lines with mdig knockout through CRISPR-Cas9 gene editing. Results: Global histone methylation analysis revealed a pronounced increase of the repressive histone trimethylation in three different cell types with mdig depletion, including trimethylation of lysines 9 and 27 on histone H3 (H3K9me3, H3K27me3) and trimethylation of lysine 20 of histone H4 (H4K20me3). Importantly, data from both ChIP-seq and RNA-seq suggested that genetic disruption of mdig enriches repressive histone trimethylation and inhibits expression of target genes in the oncogenic pathways of cell growth, stemness of the cells, tissue fibrosis, and cell motility. Conclusion: Taken together, our study provides the first insight into the molecular effects of mdig as an antagonist for repressive histone methylation markers and suggests that targeting mdig may represent a new area to explore in cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Avenue, West Lafayette, IN 47907, USA
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Jian Wang
- Department of Pathology, School of Medicine, Wayne State University, 540 E. Canfield Street, Detroit, MI 48201, USA
| | - Benjamin L. Kidder
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- Department of Oncology and the Karmanos Cancer Institute, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA
| |
Collapse
|
39
|
Saçma M, Pospiech J, Bogeska R, de Back W, Mallm JP, Sakk V, Soller K, Marka G, Vollmer A, Karns R, Cabezas-Wallscheid N, Trumpp A, Méndez-Ferrer S, Milsom MD, Mulaw MA, Geiger H, Florian MC. Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat Cell Biol 2019; 21:1309-1320. [PMID: 31685996 DOI: 10.1038/s41556-019-0418-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing.
Collapse
Affiliation(s)
- Mehmet Saçma
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Johannes Pospiech
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Ruzhica Bogeska
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Walter de Back
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan-Philipp Mallm
- Deutsches Krebsforschungszentrum, Division of Chromatin Network, Heidelberg, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | | | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood & Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Deutsches Krebsforschungszentrum, Division of Experimental Hematology, Heidelberg, Germany
| | - Medhanie A Mulaw
- Molecular Oncology Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Maria Carolina Florian
- Institute of Molecular Medicine, Stem Cells and Aging, Aging Research Center, Ulm University, Ulm, Germany.
- Center for Regenerative Medicine in Barcelona, Bellvitge Institute for Biomedical Research, Barcelona, Spain.
| |
Collapse
|
40
|
Zhu B, Luo R, Jin P, Li T, Oak HC, Giera S, Monk KR, Lak P, Shoichet BK, Piao X. GAIN domain-mediated cleavage is required for activation of G protein-coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist. J Biol Chem 2019; 294:19246-19254. [PMID: 31628191 DOI: 10.1074/jbc.ra119.008234] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) represent a distinct family of GPCRs that regulate several developmental and physiological processes. Most aGPCRs undergo GPCR autoproteolysis-inducing domain-mediated protein cleavage, which produces a cryptic tethered agonist (termed Stachel (stinger)), and cleavage-dependent and -independent aGPCR signaling mechanisms have been described. aGPCR G1 (ADGRG1 or G protein-coupled receptor 56 (GPR56)) has pleiotropic functions in the development of multiple organ systems, which has broad implications for human diseases. To date, two natural GPR56 ligands, collagen III and tissue transglutaminase (TG2), and one small-molecule agonist, 3-α-acetoxydihydrodeoxygedunin (3-α-DOG), have been identified, in addition to a synthetic peptide, P19, that contains seven amino acids of the native Stachel sequence. However, the mechanisms by which these natural and small-molecule agonists signal through GPR56 remain unknown. Here we engineered a noncleavable receptor variant that retains signaling competence via the P19 peptide. We demonstrate that both natural and small-molecule agonists can activate only cleaved GPR56. Interestingly, TG2 required both receptor cleavage and the presence of a matrix protein, laminin, to activate GPR56, whereas collagen III and 3-α-DOG signaled without any cofactors. On the other hand, both TG2/laminin and collagen III activate the receptor by dissociating the N-terminal fragment from its C-terminal fragment, enabling activation by the Stachel sequence, whereas P19 and 3-α-DOG initiate downstream signaling without disengaging the N-terminal fragment from its C-terminal fragment. These findings deepen our understanding of how GPR56 signals via natural ligands, and a small-molecule agonist may be broadly applicable to other aGPCR family members.
Collapse
Affiliation(s)
- Beika Zhu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Rong Luo
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Peng Jin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Tao Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Hayeon C Oak
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Stefanie Giera
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Kelly R Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, California 94143
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, California 94143
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143 .,Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, California 94158.,Newborn Brain Research Institute, University of California, San Francisco, California 94158
| |
Collapse
|
41
|
Scicchitano S, Giordano M, Lucchino V, Montalcini Y, Chiarella E, Aloisio A, Codispoti B, Zoppoli P, Melocchi V, Bianchi F, De Smaele E, Mesuraca M, Morrone G, Bond HM. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis 2019; 10:715. [PMID: 31558698 PMCID: PMC6763495 DOI: 10.1038/s41419-019-1946-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/17/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023]
Abstract
ZNF521 is a transcription co-factor with recognized regulatory functions in haematopoietic, osteo-adipogenic and neural progenitor cells. Among its diverse activities, ZNF521 has been implicated in the regulation of medulloblastoma (MB) cells, where the Hedgehog (HH) pathway, has a key role in the development of normal cerebellum and of a substantial fraction of MBs. Here a functional cross-talk is shown for ZNF521 with the HH pathway, where it interacts with GLI1 and GLI2, the major HH transcriptional effectors and enhances the activity of HH signalling. In particular, ZNF521 cooperates with GLI1 and GLI2 in the transcriptional activation of GLI (glioma-associated transcription factor)-responsive promoters. This synergism is dependent on the presence of the N-terminal, NuRD-binding motif in ZNF521, and is sensitive to HDAC (histone deacetylase) and GLI inhibitors. Taken together, these results highlight the role of ZNF521, and its interaction with the NuRD complex, in determining the HH response at the level of transcription. This may be of particular relevance in HH-driven diseases, especially regarding the MBs belonging to the SHH (sonic HH) subgroup where a high expression of ZNF521 is correlated with that of HH pathway components.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, European Institute of Oncology IRCCS, Via G. Ripamonti 435, 20141, Milano, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900, Crotone, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Valentina Melocchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Fabrizio Bianchi
- Fondazione IRCCS - Casa Sollievo della Sofferenza, Laboratory of Cancer Biomarkers, San Giovanni Rotondo, 71013, (FG), Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, University La Sapienza, 00161, Rome, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100, Catanzaro, Italy.
| |
Collapse
|
42
|
Jetten AM. Emerging Roles of GLI-Similar Krüppel-like Zinc Finger Transcription Factors in Leukemia and Other Cancers. Trends Cancer 2019; 5:547-557. [PMID: 31474360 DOI: 10.1016/j.trecan.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 01/22/2023]
Abstract
GLI-similar 1-3 (GLIS1-3), a subfamily of Krüppel-like zinc finger transcription factors, function as key regulators of several biological processes important to oncogenesis, including control of cell proliferation, differentiation, self-renewal, and epithelial-mesenchymal transition. This review provides a short overview of the critical roles genetic changes in GLIS1-3 play in the development of several malignancies. This includes intrachromosomal translocations involving GLIS2 and ETO2/CBFA2T3 in the development of pediatric non-Down's syndrome (DS), acute megakaryoblastic leukemia (AMKL), a malignancy with poor prognosis, and an association of interchromosomal translocations between GLIS3, GLIS1, and PAX8, and between GLIS3 and CLPTM1L with hyalinizing trabecular tumors (HTTs) and fibrolamellar hepatocellular carcinoma (FHCC), respectively. Targeting upstream signaling pathways that regulate GLIS signaling may offer new therapeutic strategies in the management of cancer.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
43
|
Low Expression of GLIS2 Gene Might Associate with Radiosensitivity of Gastric Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2934925. [PMID: 31281358 PMCID: PMC6590498 DOI: 10.1155/2019/2934925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 01/05/2023]
Abstract
Human gene GLIS family zinc finger 2 (GLIS2) is a member of GLI-similar zinc finger protein family. Previous studies indicated GLIS2 gene involved in tumorigenesis mechanisms. However, the association between GLIS2 expression and radiosensitivity of gastric cancer has not been well understood. In this study, we used the gastric cancer database in TCGA, and significant association was observed between the low expression of GLIS2 and radiosensitivity of patients with gastric cancer. The adjusted HR values for radiotherapy were 0.162(0.035-0.756) and 0.089(0.014-0.564), with p values 0.021 and 0.010, respectively, in training and testing data, for these patients with low expression of GLIS2, while for patients with high expression of GLIS2, there was no significant survival difference between radiotherapy and nonradiotherapy groups. The adjusted HR were 0.676(0.288-1.586) and 0.508(0.178-1.450), with p values 0.368 and 0.206 in training and testing data, respectively. Further study showed that, for low expression patients, radiotherapy did not significantly increase new tumor event rate and disease progression rate, which partially supported our assumption. These results suggested that low expression of GLIS2 might significantly associate with the radiosensitivity of patients with gastric cancer. The GLIS2 gene might be a potential effective molecular marker of gastric cancer for precise radiotherapy.
Collapse
|
44
|
Shen H, Cui G, Li Y, Ye W, Sun Y, Zhang Z, Li J, Xu G, Zeng X, Zhang Y, Zhang W, Huang Z, Chen W, Shen Z. Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther 2019; 10:17. [PMID: 30635025 PMCID: PMC6330478 DOI: 10.1186/s13287-018-1111-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cell therapy remains the most promising approach against ischemic heart injury. However, poor survival of engrafted cells in ischemic sites diminishes its therapeutic efficacy. Follistatin-like 1 (Fstl1) is documented as a novel pro-survival cardiokine for cardiomyocytes, and it is protective during ischemic heart injury. In the present study, we characterize the potential of Fstl1 as an effective strategy to enhance hypoxia resistance of donor cells and optimize stem cell-based therapy. METHODS Murine bone marrow-derived mesenchymal stem cells (MSCs) were expanded in monolayer culture and characterized by flow cytometry. MSCs were subjected to hypoxia to mimic cardiac ischemic environment. Expression of Fstl1 was monitored 0, 24, and 48 h following hypoxia. Constitutive expression of Fstl1 in MSCs was achieved by lentivirus-mediated Fstl1 overexpression. Genetically modified MSCs were further collected for cell death and proliferation assay following 48 h of hypoxic treatment. Acute myocardial infarction (MI) model was created by ligating the left anterior descending coronary artery, while control MSCs (MSCs-mCherry) or Fstl1-overexpressing MSCs (MSCs-Fstl1) were injected into the peri-infarct zone simultaneously. Subsequently, retention of the donor cells was evaluated on post-therapy 1, 3, & 7 days. Finally, myocardial function, infarct size, inflammation, and neovascularization of the infarcted hearts were calculated thereafter. RESULTS Expression of Fstl1 in hypoxic MSCs declines dramatically in a time-dependent manner. In vitro study further demonstrated that Fstl1 promotes survival and proliferation of hypoxic MSCs. Moreover, Fstl1 significantly prolongs MSC survival/retention after implantation. Finally, transplantation with Fstl1-overexpressing MSCs significantly improves post-MI cardiac function by limiting scar formation, reducing inflammatory response, and enhancing neovascularization. CONCLUSIONS Our results suggest Fstl1 is an intrinsic cardiokine promoting survival and proliferation of MSCs, thereby optimizing their engraftment and therapeutic efficacy during cell therapy.
Collapse
Affiliation(s)
- Han Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Guanghao Cui
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yanqiong Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Yimin Sun
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zihan Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Jingjing Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Guiying Xu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Xiansheng Zeng
- Department of Cardiology of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210000 China
| | - Weiqian Chen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| | - Zhenya Shen
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006 China
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, 215006 China
| |
Collapse
|
45
|
Oliphant MUJ, Vincent MY, Galbraith MD, Pandey A, Zaberezhnyy V, Rudra P, Johnson KR, Costello JC, Ghosh D, DeGregori J, Espinosa JM, Ford HL. SIX2 Mediates Late-Stage Metastasis via Direct Regulation of SOX2 and Induction of a Cancer Stem Cell Program. Cancer Res 2019; 79:720-734. [PMID: 30606720 DOI: 10.1158/0008-5472.can-18-1791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/06/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
The capacity for tumor cells to metastasize efficiently is directly linked to their ability to colonize secondary sites. Here we identify Six2, a developmental transcription factor, as a critical regulator of a breast cancer stem cell program that enables metastatic colonization. In several triple-negative breast cancer (TNBC) models, Six2 enhanced the expression of genes associated with embryonic stem cell programs. Six2 directly bound the Sox2 Srr2 enhancer, promoting Sox2 expression and downstream expression of Nanog, which are both key pluripotency factors. Regulation of Sox2 by Six2 enhanced cancer stem cell properties and increased metastatic colonization. Six2 and Sox2 expression correlated highly in breast cancers including TNBC, where a Six2 expression signature was predictive of metastatic burden and poor clinical outcome. Our findings demonstrate that a SIX2/SOX2 axis is required for efficient metastatic colonization, underscoring a key role for stemness factors in outgrowth at secondary sites. SIGNIFICANCE: These findings provide novel mechanistic insight into stemness and the metastatic outgrowth of triple-negative breast cancer cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/720/F1.large.jpg.
Collapse
Affiliation(s)
- Michael U J Oliphant
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ahwan Pandey
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Pratyaydipta Rudra
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Katherine R Johnson
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
46
|
Masetti R, Bertuccio SN, Pession A, Locatelli F. CBFA2T3-GLIS2-positive acute myeloid leukaemia. A peculiar paediatric entity. Br J Haematol 2018; 184:337-347. [PMID: 30592296 PMCID: PMC6590351 DOI: 10.1111/bjh.15725] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The scenario of paediatric acute myeloid leukaemia (AML), particularly non‐Down syndrome acute megakaryoblastic leukaemia (non‐DS‐AMKL), has been recently revolutionized by the advent of large‐scale, genomic sequencing technologies. In this changing landscape, a significantly relevant discovery has been represented by the identification of the CBFA2T3‐GLIS2 fusion gene, which is the result of a cryptic inversion of chromosome 16. It is the most frequent chimeric oncogene identified to date in non‐DS‐AMKL, although it seems not to be exclusively restricted to the French‐American‐British M7 subgroup. The CBFA2T3‐GLIS2 fusion gene characterizes a subtype of leukaemia that is specific to paediatrics, having never been identified in adults. It characterizes an extremely aggressive leukaemia, as the presence of this fusion is associated with a grim outcome in almost all of the case series reported, with overall survival rates ranging between 15% and 30%. Although the molecular basis that underlies this leukaemia subtype is still far from being completely elucidated, unique functional properties induced by CBFA2T3‐GLIS2 in the leukaemogenesis driving process have been recently identified. We here review the peculiarities of CBFA2T3‐GLIS2‐positive AML, describing its intriguing clinical and biological behaviour and providing some challenging targeting opportunities.
Collapse
Affiliation(s)
- Riccardo Masetti
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Salvatore N Bertuccio
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, "Lalla Seràgnoli", Haematology-Oncology Unit, University of Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology-Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
47
|
Lopez CK, Mercher T. [Pediatric de novo acute megakaryoblastic leukemia: an affair of complexes]. Med Sci (Paris) 2018; 34:954-962. [PMID: 30526836 DOI: 10.1051/medsci/2018237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pediatric acute megakaryoblastic leukemia (AMKL) are generally associated with poor prognosis and the expression of fusion oncogenes involving transcriptional regulators. Recent results indicate that the ETO2-GLIS2 fusion, associated with 25-30 % of pediatric AMKL, binds and alters the activity of regulatory regions of gene expression, called "enhancers", resulting in the deregulation of GATA and ETS factors essential for the development of hematopoietic stem cells. An imbalance in GATA/ETS factor activity is also found in other AMKL subgroups. This review addresses the transcriptional bases of transformation in pediatric AMKL and therapeutic perspectives.
Collapse
Affiliation(s)
- Cécile K Lopez
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | - Thomas Mercher
- Inserm U1170, Institut Gustave Roussy, Pavillon recherche 2, 39 rue Camille Desmoulins, 94800 Villejuif, France
| |
Collapse
|
48
|
Wang JY, Zhang YJ, Li H, Hu XL, Li MP, Song PY, Ma QL, Peng LM, Chen XP. CRISPLD1 rs12115090 polymorphisms alters antiplatelet potency of clopidogrel in coronary artery disease patients in Chinese Han. Gene 2018; 678:226-232. [DOI: 10.1016/j.gene.2018.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/29/2018] [Accepted: 08/06/2018] [Indexed: 11/28/2022]
|
49
|
Balcerek J, Jiang J, Li Y, Jiang Q, Holdreith N, Singh B, Chandra V, Lv K, Ren JG, Rozenova K, Li W, Greenberg RA, Tong W. Lnk/Sh2b3 deficiency restores hematopoietic stem cell function and genome integrity in Fancd2 deficient Fanconi anemia. Nat Commun 2018; 9:3915. [PMID: 30254368 PMCID: PMC6156422 DOI: 10.1038/s41467-018-06380-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia (FA) is a bone marrow failure (BMF) syndrome that arises from mutations in a network of FA genes essential for DNA interstrand crosslink (ICL) repair and replication stress tolerance. While allogeneic stem cell transplantation can replace defective HSCs, interventions to mitigate HSC defects in FA do not exist. Remarkably, we reveal here that Lnk (Sh2b3) deficiency restores HSC function in Fancd2−/− mice. Lnk deficiency does not impact ICL repair, but instead stabilizes stalled replication forks in a manner, in part, dependent upon alleviating blocks to cytokine−mediated JAK2 signaling. Lnk deficiency restores proliferation and survival of Fancd2−/− HSCs, while reducing replication stress and genomic instability. Furthermore, deletion of LNK in human FA-like HSCs promotes clonogenic growth. These findings highlight a new role for cytokine/JAK signaling in promoting replication fork stability, illuminate replication stress as a major underlying origin of BMF in FA, and have strong therapeutic implications. Loss of Fancd2 leads to replication stress intolerance and Fanconi Anemia, where haematopoietic stem cell (HSC) function is compromised. Here, the authors show that Lnk/Sh2b3 loss restores HSC proliferation and survival in Fancd2 knockout mice and ameliorates replication stress in a cytokine/JAK2 signaling dependent manner.
Collapse
Affiliation(s)
- Joanna Balcerek
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.,Institute of Translational Medicine, School of Medicine, Yangzhou University, 225001, Yangzhou, Jiangsu, China
| | - Yang Li
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qinqin Jiang
- Department of Cancer Biology, Abramson Cancer Research Institute and Basser Center for BRCA, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicholas Holdreith
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brijendra Singh
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian-Gang Ren
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Weihua Li
- Department of Cancer Biology, Abramson Cancer Research Institute and Basser Center for BRCA, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Abramson Cancer Research Institute and Basser Center for BRCA, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment. Mol Cell Biol 2018; 38:MCB.00603-17. [PMID: 29915154 DOI: 10.1128/mcb.00603-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 06/11/2018] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Krüppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521-/-) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521's role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.
Collapse
|