1
|
Yadav A, Verma K, Singh K, Tyagi S, Kori L, Bharti PK. Analysis of diagnostic biomarkers for malaria: Prospects on rapid diagnostic test (RDT) development. Microb Pathog 2024; 196:106978. [PMID: 39321969 DOI: 10.1016/j.micpath.2024.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Accurate malaria diagnosis remains a formidable challenge in remote regions of malaria-endemic areas globally. Existing diagnostic methods predominantly rely on microscopy and rapid diagnostic tests (RDTs). While RDTs offer advantages such as rapid results and reduced dependence on highly skilled technicians compared to microscopy, persistent challenges emphasize the critical need to identify novel diagnostic biomarkers to further enhance RDT based malaria diagnosis. This comprehensive review presents a range of promising diagnostic targets. These targets could be useful in developing more robust, accurate, and effective diagnostic tools. Such tools are crucial for the detection of the Plasmodium falciparum (P.falcipaum) malaria parasite. The potential biomarkers discussed here significantly address the challenges posed by HRP2 gene deletion in P.falciparum. Researchers, RDT manufacturers, industrial and other stakeholders involved in malaria diagnosis can harness the crucial information described in this article, to drive the development of advanced RDTs as viable alternatives. By diversifying the available tools for diagnosis, we can attempt to enhance our ability to knock out malaria effectively and contribute to better health outcomes for people residing in malaria-endemic regions. This review serves as a valuable resource for advancing research and development in the field of malaria diagnostics, ultimately aiding to the global fight against this devastating ancient disease.
Collapse
Affiliation(s)
- Ankit Yadav
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India
| | - Kanika Verma
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Kuldeep Singh
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Suchi Tyagi
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Lokesh Kori
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India
| | - Praveen Kumar Bharti
- Department of Molecular Epidemiology, LOT Testing Laboratory, ICMR-NIMR, Dwarka, Delhi, 110077, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus Sector-19, Ghaziabad, U.P, India.
| |
Collapse
|
2
|
Pitolli M, Cela M, Kapps D, Chicher J, Despons L, Frugier M. Comparative proteomics uncovers low asparagine content in Plasmodium tRip-KO proteins. IUBMB Life 2024. [PMID: 38963319 DOI: 10.1002/iub.2891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
tRNAs are not only essential for decoding the genetic code, but their abundance also has a strong impact on the rate of protein production, folding, and on the stability of the translated messenger RNAs. Plasmodium expresses a unique surface protein called tRip, involved in the import of exogenous tRNAs into the parasite. Comparative proteomic analysis of the blood stage of wild-type and tRip-KO variant of P. berghei parasites revealed that downregulated proteins in the mutant parasite are distinguished by a bias in their asparagine content. Furthermore, the demonstration of the possibility of charging host tRNAs with Plasmodium aminoacyl-tRNA synthetases led us to propose that imported host tRNAs participate in parasite protein synthesis. These results also suggest a novel mechanism of translational control in which import of host tRNAs emerge as regulators of gene expression in the Plasmodium developmental cycle and pathogenesis, by enabling the synthesis of asparagine-rich regulatory proteins that efficiently and selectively control the parasite infectivity.
Collapse
Affiliation(s)
- Martina Pitolli
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Marta Cela
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Laurence Despons
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, Strasbourg, France
| |
Collapse
|
3
|
Chandrasekharan G, Unnikrishnan M. High throughput methods to study protein-protein interactions during host-pathogen interactions. Eur J Cell Biol 2024; 103:151393. [PMID: 38306772 DOI: 10.1016/j.ejcb.2024.151393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
The ability of a pathogen to survive and cause an infection is often determined by specific interactions between the host and pathogen proteins. Such interactions can be both intra- and extracellular and may define the outcome of an infection. There are a range of innovative biochemical, biophysical and bioinformatic techniques currently available to identify protein-protein interactions (PPI) between the host and the pathogen. However, the complexity and the diversity of host-pathogen PPIs has led to the development of several high throughput (HT) techniques that enable the study of multiple interactions at once and/or screen multiple samples at the same time, in an unbiased manner. We review here the major HT laboratory-based technologies employed for host-bacterial interaction studies.
Collapse
Affiliation(s)
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
4
|
Khan S, Patel MP, Patni AD, Cha SJ. Targeting Plasmodium Life Cycle with Novel Parasite Ligands as Vaccine Antigens. Vaccines (Basel) 2024; 12:484. [PMID: 38793735 PMCID: PMC11125637 DOI: 10.3390/vaccines12050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The WHO reported an estimated 249 million malaria cases and 608,000 malaria deaths in 85 countries in 2022. A total of 94% of malaria deaths occurred in Africa, 80% of which were children under 5. In other words, one child dies every minute from malaria. The RTS,S/AS01 malaria vaccine, which uses the Plasmodium falciparum circumsporozoite protein (CSP) to target sporozoite infection of the liver, achieved modest efficacy. The Malaria Vaccine Implementation Program (MVIP), coordinated by the WHO and completed at the end of 2023, found that immunization reduced mortality by only 13%. To further reduce malaria death, the development of a more effective malaria vaccine is a high priority. Three malaria vaccine targets being considered are the sporozoite liver infection (pre-erythrocytic stage), the merozoite red blood cell infection (asexual erythrocytic stage), and the gamete/zygote mosquito infection (sexual/transmission stage). These targets involve specific ligand-receptor interactions. However, most current malaria vaccine candidates that target two major parasite population bottlenecks, liver infection, and mosquito midgut infection, do not focus on such parasite ligands. Here, we evaluate the potential of newly identified parasite ligands with a phage peptide-display technique as novel malaria vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA 31207, USA; (S.K.); (M.P.P.); (A.D.P.)
| |
Collapse
|
5
|
Ma X, Liu B, Gong Z, Wang J, Qu Z, Cai J. Comparative proteomic analysis across the developmental stages of the Eimeria tenella. Genomics 2024; 116:110792. [PMID: 38215860 DOI: 10.1016/j.ygeno.2024.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Eimeria tenella is the main pathogen responsible for coccidiosis in chickens. The life cycle of E. tenella is, arguably, the least complex of all Coccidia, with only one host. However, it presents different developmental stages, either in the environment or in the host and either intracellular or extracellular. Its signaling and metabolic pathways change with its different developmental stages. Until now, little is known about the developmental regulation and transformation mechanisms of its life cycle. In this study, protein profiles from the five developmental stages, including unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), sporozoites (S) and second-generation merozoites (M2), were harvested using the label-free quantitative proteomics approach. Then the differentially expressed proteins (DEPs) for these stages were identified. A total of 314, 432, 689, and 665 DEPs were identified from the comparison of SO7h vs USO, SO vs SO7h, S vs SO, and M2 vs S, respectively. By conducting weighted gene coexpression network analysis (WGCNA), six modules were dissected. Proteins in blue and brown modules were calculated to be significantly positively correlated with the E. tenella developmental stages of sporozoites (S) and second-generation merozoites (M2), respectively. In addition, hub proteins with high intra-module degree were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses revealed that hub proteins in blue modules were involved in electron transport chain and oxidative phosphorylation. Hub proteins in the brown module were involved in RNA splicing. These findings provide new clues and ideas to enhance our fundamental understanding of the molecular mechanisms underlying parasite development.
Collapse
Affiliation(s)
- Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Baohong Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| | - Zhenxing Gong
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia Province 750021, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China.
| |
Collapse
|
6
|
Verga JBM, Graminha MAS, Jacobs-Lorena M, Cha SJ. Peptide selection via phage display to inhibit Leishmania-macrophage interactions. Front Microbiol 2024; 15:1362252. [PMID: 38476939 PMCID: PMC10927855 DOI: 10.3389/fmicb.2024.1362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Leishmaniasis comprises a complex group of diseases caused by protozoan parasites from the Leishmania genus, presenting a significant threat to human health. Infection starts by the release into the skin of metacyclic promastigote (MP) form of the parasite by an infected sand fly. Soon after their release, the MPs enter a phagocytic host cell. This study focuses on finding peptides that can inhibit MP-phagocytic host cell interaction. Methods We used a phage display library to screen for peptides that bind to the surface of L. amazonensis (causative agent for cutaneous leishmaniasis) and L. infantum (causative agent for cutaneous and visceral leishmaniasis) MPs. Candidate peptide binding to the MP surface and inhibition of parasite-host cell interaction were tested in vitro. Peptide Inhibition of visceral leishmaniasis development was assessed in BALB/c mice. Results The selected L. amazonensis binding peptide (La1) and the L. infantum binding peptide (Li1) inhibited 44% of parasite internalization into THP-1 macrophage-like cells in vitro. While inhibition of internalization by La1 was specific to L. amazonensis, Li1 was effective in inhibiting internalization of both parasite species. Importantly, Li1 inhibited L. infantum spleen and liver infection of BALB/c mice by 84%. Conclusion We identified one peptide that specifically inhibits L. amazonensis MP infection of host cells and another that inhibits both, L. amazonensis and L. infantum, MP infection. Our findings suggest a promising path for the development of new treatments and prevention of leishmaniasis.
Collapse
Affiliation(s)
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Jacobs-Lorena
- Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, GA, United States
| |
Collapse
|
7
|
Cha SJ, Vega-Rodriguez J, Tao D, Kudyba HM, Hanner K, Jacobs-Lorena M. Plasmodium female gamete surface HSP90 is a key determinant for fertilization. mBio 2024; 15:e0314223. [PMID: 38131664 PMCID: PMC10865824 DOI: 10.1128/mbio.03142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Plasmodium fertilization, an essential step for the development of the malaria parasite in the mosquito, is a prime target for blocking pathogen transmission. Using phage peptide display screening, we identified MG1, a peptide that binds to male gametes and inhibits fertilization, presumably by competing with a female gamete ligand. Anti-MG1 antibodies bind to the female gamete surface and, by doing so, also inhibit fertilization. We determined that this antibody recognizes HSP90 on the surface of Plasmodium female gametes. Our findings establish Plasmodium HSP90 as a prime target for the development of a transmission-blocking vaccine.IMPORTANCEMalaria kills over half a million people every year and this number has not decreased in recent years. The development of new tools to combat this disease is urgently needed. In this article, we report the identification of a key molecule-HSP90-on the surface of the parasite's female gamete that is required for fertilization to occur and for the completion of the parasite cycle in the mosquito. HSP90 is a promising candidate for the development of a transmission-blocking vaccine.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Dingyin Tao
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heather M. Kudyba
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Kelly Hanner
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Sheng ZA, Wu CL, Wang DY, Zhong SH, Yang X, Rao GS, Peng H, Feng SW, Li J, Huang WY, Luo HL. Proteomic analysis of exosome-like vesicles from Fasciola gigantica adult worm provides support for new vaccine targets against fascioliasis. Parasit Vectors 2023; 16:62. [PMID: 36765398 PMCID: PMC9921414 DOI: 10.1186/s13071-023-05659-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) released by helminths play an important role in parasite-host communication. However, little is known about the characteristics and contents of the EVs of Fasciola gigantica, a parasitic flatworm that causes tropical fascioliasis. A better understanding of EVs released by F. gigantica will help elucidate the mechanism of F. gigantica-host interaction and facilitate the search for new vaccine candidates for the control and treatment of fascioliasis. METHODS Two different populations of EVs (15k EVs and 100k EVs) were purified from adult F. gigantica culture media by ultracentrifugation. The morphology and size of the purified EVs were determined by transmission electron microscopy (TEM) and by the Zetasizer Nano ZSP high performance particle characterization system. With the aim of identifying diagnostic markers or potential vaccine candidates, proteins within the isolated 100k EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). Mice were then vaccinated with excretory/secretory products (ESPs; depleted of EVs), 15k EVs, 100k EVs and recombinant F. gigantica heat shock protein 70 (rFg-HSP70) combined with alum adjuvant followed by challenge infection with F. gigantica metacercariae. Fluke recovery and antibody levels were used as measures of vaccine protection. RESULTS TEM analysis and nanoparticle tracking analysis indicated the successful isolation of two subpopulations of EVs (15k EVs and 100k EVs) from adult F. gigantica culture supernatants using differential centrifugation. A total of 755 proteins were identified in the 100k EVs. Exosome biogenesis or vesicle trafficking proteins, ESCRT (endosomal sorting complex required for transport) pathway proteins and exosome markers, heat shock proteins and 14-3-3 proteins were identified in the 100k EVs. These results indicate that the isolated 100k EVs were exosome-like vesicles. The functions of the identified proteins may be associated with immune regulation, immune evasion and virulence. Mice immunized with F. gigantica ESPs, 15k EVs, 100k EVs and rFg-HSP70 exhibited a reduction in fluke burden of 67.90%, 60.38%, 37.73% and 56.6%, respectively, compared with the adjuvant control group. The vaccination of mice with F. gigantica 100k EVs, 15k EVs, ESP and rFg-HSP70 induced significant production of specific immunoglobulins in sera, namely IgG, IgG1 and IgG2a. CONCLUSION The results of this study suggest that proteins within the exosome-like vesicles of F. gigantica have immunomodulatory, immune evasion and virulence functions. This knowledge may lead to new strategies for immunotherapy, vaccination and the diagnosis of fascioliasis.
Collapse
Affiliation(s)
- Zhao-An Sheng
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China ,grid.449428.70000 0004 1797 7280Department of Pathogenic Biology, Jining Medical University, Shandong, People’s Republic of China
| | - Cui-Lan Wu
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Dong-Ying Wang
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Shu-Hong Zhong
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Xi Yang
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China ,Yuxi Animal Disease Prevention and Control Center, Yuxi, People’s Republic of China
| | - Guo-Shun Rao
- grid.256609.e0000 0001 2254 5798Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Hao Peng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Shi-Wen Feng
- grid.418337.aGuangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi People’s Republic of China ,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi People’s Republic of China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, People's Republic of China. .,Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, Guangxi, People's Republic of China.
| | - Wei-Yi Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| | - Hong-Lin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People's Republic of China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, People's Republic of China.
| |
Collapse
|
9
|
Akuh OA, Elahi R, Prigge ST, Seeber F. The ferredoxin redox system - an essential electron distributing hub in the apicoplast of Apicomplexa. Trends Parasitol 2022; 38:868-881. [PMID: 35999149 PMCID: PMC9481715 DOI: 10.1016/j.pt.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.
Collapse
Affiliation(s)
- Ojo-Ajogu Akuh
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany; Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australia
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Frank Seeber
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany.
| |
Collapse
|
10
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
11
|
Matteucci KC, Correa AAS, Costa DL. Recent Advances in Host-Directed Therapies for Tuberculosis and Malaria. Front Cell Infect Microbiol 2022; 12:905278. [PMID: 35669122 PMCID: PMC9163498 DOI: 10.3389/fcimb.2022.905278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, and malaria, caused by parasites from the Plasmodium genus, are two of the major causes of death due to infectious diseases in the world. Both diseases are treatable with drugs that have microbicidal properties against each of the etiologic agents. However, problems related to treatment compliance by patients and emergence of drug resistant microorganisms have been a major problem for combating TB and malaria. This factor is further complicated by the absence of highly effective vaccines that can prevent the infection with either M. tuberculosis or Plasmodium. However, certain host biological processes have been found to play a role in the promotion of infection or in the pathogenesis of each disease. These processes can be targeted by host-directed therapies (HDTs), which can be administered in conjunction with the standard drug treatments for each pathogen, aiming to accelerate their elimination or to minimize detrimental side effects resulting from exacerbated inflammation. In this review we discuss potential new targets for the development of HDTs revealed by recent advances in the knowledge of host-pathogen interaction biology, and present an overview of strategies that have been tested in vivo, either in experimental models or in patients.
Collapse
Affiliation(s)
- Kely C. Matteucci
- Plataforma de Medicina Translacional Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André A. S. Correa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Diego L. Costa,
| |
Collapse
|
12
|
Molecular characterization of glyceraldehyde-3-phosphate dehydrogenase from Eimeria tenella. Parasitol Res 2022; 121:1749-1760. [PMID: 35366097 DOI: 10.1007/s00436-022-07508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
Chicken coccidiosis is an extremely common and lethally epidemic disease caused by Eimeria spp. The control measures of coccidiosis depend mainly on drugs. However, the ensuing drug resistance problem has brought considerable economic loss to the poultry industry. In our previous study, comparative transcriptome analyses of a drug-sensitive (DS) strain and two drug-resistant strains (diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains) of Eimeria tenella were carried out by transcriptome sequencing. The expression of glyceraldehyde-3-phosphate dehydrogenase of E. tenella (EtGAPDH) was upregulated in the two resistant strains. In this study, we cloned and characterized EtGAPDH. Indirect immunofluorescence localization was used to observe the distribution of EtGAPDH in E. tenella. The results showed that the protein was distributed mainly on the surface of sporozoites and merozoites, and in the cytoplasm of merozoites. qPCR was performed to detect the transcription level of EtGAPDH in the different developmental stages of the E. tenella DS strain. The transcription level of EtGAPDH was significantly higher in second-generation merozoites than in the other three stages. The transcription level of EtGAPDH in the different drug-resistant strains and DS strain of E. tenella was also analyzed by qPCR. The results showed that the transcription level was significantly higher in the two drug-resistant strains (MRR and DZR) than in the DS strain. As the concentration of diclazuril and maduramicin increased, the transcription levels also increased. Western blot results showed that EtGAPDH protein was upregulated in the DZR and MRR strains. Enzyme activity showed that the enzyme activity of EtGAPDH was higher in the two resistant strains than in the DS strain. These results showed that EtGAPDH possess several roles that separate and distinct from its glycolytic function and maybe involved in the development of E. tenella resistance to anticoccidial drugs.
Collapse
|
13
|
de Paula JI, Lopes-Torres EJ, Jacobs-Lorena M, Paes MC, Cha SJ. The Screen of a Phage Display Library Identifies a Peptide That Binds to the Surface of Trypanosoma cruzi Trypomastigotes and Impairs Their Infection of Mammalian Cells. Front Microbiol 2022; 13:864788. [PMID: 35359712 PMCID: PMC8960960 DOI: 10.3389/fmicb.2022.864788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundChagas is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. On the order of seven million people are infected worldwide and current therapies are limited, highlighting the urgent need for new interventions. T. cruzi trypomastigotes can infect a variety of mammalian cells, recognition and adhesion to the host cell being critical for parasite entry. This study focuses on trypomastigote surface ligands involved in cell invasion.MethodsThree selection rounds of a phage peptide display library for isolation of phages that bind to trypomastigotes, resulted in the identification of the N3 dodecapeptide. N3 peptide binding to T. cruzi developmental forms (trypomastigotes, amastigotes and epimastigotes) was evaluated by flow cytometry and immunofluorescence assays. Parasite invasion of Vero cells was assessed by flow cytometry and immunofluorescence assays.ResultsPhage display screening identified the N3 peptide that binds preferentially to the surface of the trypomastigote and amastigote infective forms as opposed to non-infective epimastigotes. Importantly, the N3 peptide, but not a control scrambled peptide, inhibits trypomastigote invasion of Vero cells by 50%.ConclusionThe N3 peptide specifically binds to T. cruzi, and by doing so, inhibits Vero cell infection. Follow-up studies will identify the molecule on the parasite surface to which the N3 peptide binds. This putative T. cruzi ligand may advance chemotherapy design and vaccine development.
Collapse
Affiliation(s)
- Jéssica I. de Paula
- Laboratório de Interação Tripanossomatídeos e Vetores – Departamento de Bioquímica, IBRAG – UERJ, Rio de Janeiro, Brazil
| | - Eduardo J. Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, MD, United States
| | - Marcia Cristina Paes
- Laboratório de Interação Tripanossomatídeos e Vetores – Departamento de Bioquímica, IBRAG – UERJ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
- Marcia Cristina Paes,
| | - Sung-Jae Cha
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, MD, United States
- *Correspondence: Sung-Jae Cha,
| |
Collapse
|
14
|
Identification of Key Determinants of Cerebral Malaria Development and Inhibition Pathways. mBio 2022; 13:e0370821. [PMID: 35073748 PMCID: PMC8787489 DOI: 10.1128/mbio.03708-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria (CM), coma caused by Plasmodium falciparum-infected red blood cells (iRBCs), is the deadliest complication of malaria. The mechanisms that lead to CM development are incompletely understood. Here we report on the identification of activation and inhibition pathways leading to mouse CM with supporting evidence from the analysis of human specimens. We find that CM suppression can be induced by vascular injury when sporozoites exit the circulation to infect the liver and that CM suppression is mediated by the release of soluble factors into the circulation. Among these factors is insulin like growth factor 1 (IGF1), administration of which inhibits CM development in mice. IMPORTANCE Liver infection by Plasmodium sporozoites is a required step for infection of the organism. We found that alternate pathways of sporozoite liver infection differentially influence cerebral malaria (CM) development. CM is one of the primary causes of death following malaria infection. To date, CM research has focused on how CM phenotypes develop but no successful therapeutic treatment or prognostic biomarkers are available. Here we show for the first time that sporozoite liver invasion can trigger CM-inhibitory immune responses. Importantly, we identified a number of early-stage prognostic CM inhibitory biomarkers, many of which had never been associated with CM development. Serological markers identified using a mouse model are directly relevant to human CM.
Collapse
|
15
|
Cha SJ, Kim MS, Na CH, Jacobs-Lorena M. Plasmodium sporozoite phospholipid scramblase interacts with mammalian carbamoyl-phosphate synthetase 1 to infect hepatocytes. Nat Commun 2021; 12:6773. [PMID: 34799567 PMCID: PMC8604956 DOI: 10.1038/s41467-021-27109-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate. After transmission of Plasmodium sporozoites from infected mosquitoes, parasites first infect hepatocytes. Here, Cha et al. identify a sporozoite ligand (phospholipid scramblase) and the hepatocytic receptor (carbamoyl-phosphate synthetase 1) as relevant for hepatocyte invasion and show that an antibody to hepatocyte-binding peptide 1 (HP1), which structurally mimics the sporozoite ligand, partially protects mice from infection.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Laboratory Detection of Malaria Antigens: a Strong Tool for Malaria Research, Diagnosis, and Epidemiology. Clin Microbiol Rev 2021; 34:e0025020. [PMID: 34043447 DOI: 10.1128/cmr.00250-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification and characterization of proteins produced during human infection with Plasmodium spp. have guided the malaria community in research, diagnosis, epidemiology, and other efforts. Recently developed methods for the detection of these proteins (antigens) in the laboratory have provided new types of data that can inform the evaluation of malaria diagnostics, epidemiological investigations, and overall malaria control strategies. Here, the focus is primarily on antigens that are currently known to be detectable in human specimens and on their impact on the understanding of malaria in human populations. We highlight historical and contemporary laboratory assays for malaria antigen detection, the concept of an antigen profile for a biospecimen, and ways in which binary results for a panel of antigens could be interpreted and utilized for different analyses. Particular emphasis is given to the direct comparison of field-level malaria diagnostics and laboratory antigen detection for the development of an external evaluation scheme. The current limitations of laboratory antigen detection are considered, and the future of this developing field is discussed.
Collapse
|
17
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Loubens M, Vincensini L, Fernandes P, Briquet S, Marinach C, Silvie O. Plasmodium sporozoites on the move: Switching from cell traversal to productive invasion of hepatocytes. Mol Microbiol 2021; 115:870-881. [PMID: 33191548 PMCID: PMC8247013 DOI: 10.1111/mmi.14645] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Parasites of the genus Plasmodium, the etiological agent of malaria, are transmitted through the bite of anopheline mosquitoes, which deposit sporozoites into the host skin. Sporozoites migrate through the dermis, enter the bloodstream, and rapidly traffic to the liver. They cross the liver sinusoidal barrier and traverse several hepatocytes before switching to productive invasion of a final one for replication inside a parasitophorous vacuole. Cell traversal and productive invasion are functionally independent processes that require proteins secreted from specialized secretory organelles known as micronemes. In this review, we summarize the current understanding of how sporozoites traverse through cells and productively invade hepatocytes, and discuss the role of environmental sensing in switching from a migratory to an invasive state. We propose that timely controlled secretion of distinct microneme subsets could play a key role in successful migration and infection of hepatocytes. A better understanding of these essential biological features of the Plasmodium sporozoite may contribute to the development of new strategies to fight against the very first and asymptomatic stage of malaria.
Collapse
Affiliation(s)
- Manon Loubens
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Laetitia Vincensini
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Priyanka Fernandes
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Sylvie Briquet
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Carine Marinach
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| | - Olivier Silvie
- Centre d’Immunologie et des Maladies InfectieusesSorbonne Université, INSERM, CNRS, CIMI‐ParisParisFrance
| |
Collapse
|
19
|
Gani Z, Boradia VM, Kumar A, Patidar A, Talukdar S, Choudhary E, Singh R, Agarwal N, Raje M, Iyengar Raje C. Mycobacterium tuberculosis glyceraldehyde-3-phosphate dehydrogenase plays a dual role-As an adhesin and as a receptor for plasmin(ogen). Cell Microbiol 2021; 23:e13311. [PMID: 33486886 DOI: 10.1111/cmi.13311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022]
Abstract
The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.
Collapse
Affiliation(s)
- Zahid Gani
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Vishant Mahendra Boradia
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India.,Seattle Children's Research Institute, Global Center for Infectious Disease Research, Seattle, Washington, USA
| | - Ajay Kumar
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Anil Patidar
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Sharmila Talukdar
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Eira Choudhary
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, India.,Symbiosis School of Biomedical Sciences, Symbiosis International (Deemed University), Pune, Maharashtra, India
| | - Ranvir Singh
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Raje
- Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| |
Collapse
|
20
|
Galbiati A, Zana A, Conti P. Covalent inhibitors of GAPDH: From unspecific warheads to selective compounds. Eur J Med Chem 2020; 207:112740. [PMID: 32898762 DOI: 10.1016/j.ejmech.2020.112740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022]
Abstract
Targeting glycolysis is an attractive approach for the treatment of a wide range of pathologies, such as various tumors and parasitic infections. Due to its pivotal role in the glycolysis, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represents a rate-limiting enzyme in those cells that mostly, or exclusively rely on this pathway for energy production. In this context, GAPDH inhibition can be a valuable approach for the development of anticancer and antiparasitic drugs. In addition to its glycolytic role, GAPDH possesses several moonlight functions, whose deregulation is involved in some pathological conditions. Covalent modification on different amino acids of GAPDH, in particular on cysteine residues, can lead to a modulation of the enzyme activity. The selectivity towards specific cysteine residues is essential to achieve a specific phenotypic effect. In this work we report an extensive overview of the latest advances on the numerous compounds able to inhibit GAPDH through the covalent binding to cysteine residues, ranging from endogenous metabolites and xenobiotics, which may serve as pharmacological tools to actual drug-like compounds with promising therapeutic perspectives. Furthermore, we focused on the potentialities of the different warheads, shedding light on the possibility to exploit a combination of a finely tuned electrophilic group with a well-designed recognition moiety. These findings can provide useful information for the rational design of novel covalent inhibitors of GAPDH, with the final goal to expand the current treatment options.
Collapse
Affiliation(s)
- Andrea Galbiati
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy.
| | - Aureliano Zana
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milano, Italy
| |
Collapse
|
21
|
Identification of Immunogenic Antigens of Naegleria fowleri Adjuvanted by Cholera Toxin. Pathogens 2020; 9:pathogens9060460. [PMID: 32531943 PMCID: PMC7350353 DOI: 10.3390/pathogens9060460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The intranasal administration of Naegleria fowleri lysates plus cholera toxin (CT) increases protection against N. fowleri meningoencephalitis in mice, suggesting that humoral immune response mediated by antibodies is crucial to induce protection against the infection. In the present study, we applied a protein analysis to detect and identify immunogenic antigens from N. fowleri, which might be responsible for such protection. A Western blot assay of N. fowleri polypeptides was performed using the serum and nasal washes from mice immunized with N. fowleri lysates, either alone or with CT after one, two, three, or four weekly immunizations and challenged with trophozoites of N. fowleri. Immunized mice with N. fowleri plus CT, after four doses, had the highest survival rate (100%). Nasal or sera IgA and IgG antibody response was progressively stronger as the number of immunizations was increased, and that response was mainly directed to 250, 100, 70, 50, 37, and 19 kDa polypeptide bands, especially in the third and fourth immunization. Peptides present in these immunogenic bands were matched by nano-LC–ESI-MSMS with different proteins, which could serve as candidates for a vaccine against N. fowleri infection.
Collapse
|
22
|
Arévalo-Pinzón G, Garzón-Ospina D, Pulido FA, Bermúdez M, Forero-Rodríguez J, Rodríguez-Mesa XM, Reyes-Guarín LP, Suárez CF, Patarroyo MA. Plasmodium vivax Cell Traversal Protein for Ookinetes and Sporozoites (CelTOS) Functionally Restricted Regions Are Involved in Specific Host-Pathogen Interactions. Front Cell Infect Microbiol 2020; 10:119. [PMID: 32266169 PMCID: PMC7105572 DOI: 10.3389/fcimb.2020.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Following the injection of Plasmodium sporozoites by a female Anopheles mosquito into the dermis, they become engaged on a long journey to hepatic tissue where they must migrate through different types of cell to become established in parasitophorous vacuoles in hepatocytes. Studies have shown that proteins such as cell traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) play a crucial role in cell-traversal ability. Although CelTOS has been extensively studied in various species and included in pre-clinical assays it remains unknown which P. vivax CelTOS (PvCelTOS) regions are key in its interaction with traversed or target cells (Kupffer or hepatocytes) and what type of pressure, association and polymorphism these important regions could have to improve their candidacy as important vaccine antigens. This work has described producing a recombinant PvCelTOS which was recognized by ~30% P. vivax-infected individuals, thereby confirming its ability for inducing a natural immune response. PvCelTOS' genetic diversity in Colombia and its ability to interact with HeLa (traversal cell) and/or HepG2 cell (target cell) external membrane have been assessed. One region in the PvCelTOS amino-terminal region and another in its C-terminus were seen to be participating in host-pathogen interactions. These regions had important functional constraint signals (ω < 0.3 and several sites under negative selection) and were able to inhibit specific rPvCelTOS binding to HeLa cells. This led to suggesting that sequences between aa 41-60 (40833) and 141-160 (40838) represent promising candidates for an anti-P. vivax subunit-based vaccine.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diego Garzón-Ospina
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogota, Colombia
| | - Fredy A Pulido
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia
| | - Maritza Bermúdez
- Receptor-Ligand Department, Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota, Colombia
| | - Johanna Forero-Rodríguez
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Xandy M Rodríguez-Mesa
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Leidy P Reyes-Guarín
- Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Carlos F Suárez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.,Biomathematics Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.,Molecular Biology and Immunology Department, Fundacion Instituto de Immunologia de Colombia (FIDIC), Bogota, Colombia
| |
Collapse
|
23
|
Liu J, Tuo W, Wu X, Xiong J, Yu E, Yin C, Ma Z, Liu L. Immunoproteomic and mass spectrometric analysis of Eimeria acervulina antigens recognized by antisera from chickens infected with E. acervulina, E. tenella or E. necatrix. Parasit Vectors 2020; 13:93. [PMID: 32085718 PMCID: PMC7035704 DOI: 10.1186/s13071-020-3965-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background Coccidiosis is caused by Eimeria spp. and can result in severe economic losses to the global poultry industry. Due to anticoccidial drug resistance rapidly developing in the parasites and drug residues in poultry products, efficacious and safe alternative coccidia control measures are needed. The objective of the present study was to identify common protective antigens which may be used as vaccine candidates in the development of subunit, multivalent, cross-protective vaccines against most of the economically important Eimeria species. Methods Whole sporozoite proteins of Eimeria acervulina were prepared and analyzed by 2-dimensional gel electrophoresis (2-DE) followed by western blotting using immune sera specific to E. tenella, E. acervulina, or E. necatrix. The protein spots detected by all three immune sera were then excised from the preparative gel and protein ID was performed by MALDI-TOF-MS/MS. Results Approximately 620 E. acervulina sporozoite protein spots were demonstrated by 2-DE with silver staining, among which 23 protein spots were recognized by immune sera specific to all three Eimeria species. The results showed that 21 putative E. acervulina proteins were identified, which include proteins with known enzymatic properties, and those which are involved in protein translation, transport and trafficking, and ribosomal biogenesis and functions. There is one protein which may be involved in transcription and one heat-shock protein. Two proteins contain predicted domains, but with no apparent functions known. There were 2 protein spots which had no detectable proteins. None of the proteins has a predicted signal peptide or a transmembrane domain; however, 6 of the 21 putative proteins were predicted to be potentially secretory through the non-classical pathway. Conclusions Our study identified a diverse group of antigens immunologically common to all three Eimeria species, none of which was previously characterized and tested as a vaccine candidate. Further research on immunogenicity and cross-protective potential of these individual proteins as vaccine candidates will aid the development of vaccines against the most common and pathogenic Eimeria spp.![]()
Collapse
Affiliation(s)
- Jin Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xiangdong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiaming Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Enchao Yu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chao Yin
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Zhiwu Ma
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Liheng Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
24
|
Rajan P, Mishra PKK, Joshi P. Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol 2019; 41:e12611. [PMID: 30548600 DOI: 10.1111/pim.12611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 11/28/2022]
Abstract
Haemonchus contortus is an economically important parasite that survives the host defense system by modulating the immune response. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is secreted by the parasite and the host responds by producing anti-enzyme antibodies. The enzyme inhibits complement cascade, an arm of the innate immunity, by binding to complement C3. In this study, the C3 binding site and the antigenic region of the enzyme were identified by generating short recombinant fragments and deleting a defined region of the enzyme. Using these proteins in ligand overlay and plate binding assay, the C3 binding region of GAPDH was localized within the 38 residues represented by 77-114 amino acids whereas one of the antigenic regions was identified in between 77 and 171 amino acids. In addition, deletion of amino acids 77 to 171 from GAPDH (fragment AB) also showed weak immunogenicity but lacked C3 binding activity. Fragment D comprising 95 residues (77-171), had both the C3 binding activity as well as immunogenicity like the parent enzyme, also stimulated host peripheral blood mononuclear cells in vitro. This truncated GAPDH moiety was stable at refrigerated temperature for at least 12 weeks and appears as a promising new therapeutic tool considering its longer shelf life as compared to the parent protein.
Collapse
Affiliation(s)
- Parvathy Rajan
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanta K K Mishra
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Paritosh Joshi
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
25
|
Cullia G, Bruno S, Parapini S, Margiotta M, Tamborini L, Pinto A, Galbiati A, Mozzarelli A, Persico M, Paladino A, Fattorusso C, Taramelli D, Conti P. Covalent Inhibitors of Plasmodium falciparum Glyceraldehyde 3-Phosphate Dehydrogenase with Antimalarial Activity in Vitro. ACS Med Chem Lett 2019; 10:590-595. [PMID: 30996801 DOI: 10.1021/acsmedchemlett.8b00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
Covalent inhibitors of PfGAPDH characterized by a 3-bromoisoxazoline warhead were developed, and their mode of interaction with the target enzyme was interpreted by means of molecular modeling studies: some of them displayed a submicromolar antiplasmodial activity against both chloroquine sensitive and resistant strains of Plasmodium falciparum, with good selectivity indices.
Collapse
Affiliation(s)
- Gregorio Cullia
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Area Parco delle Scienze 23A, 43124 Parma, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Area Parco delle Scienze 23A, 43124 Parma, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Pinto
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Via Celoria 2, 20133 Milano, Italy
| | - Andrea Galbiati
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Area Parco delle Scienze 23A, 43124 Parma, Italy
| | - Marco Persico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via M. Bianco 9, 20131 Milano, Italy
| | - Caterina Fattorusso
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal 36, 20133 Milano, Italy
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
26
|
Swearingen KE, Lindner SE. Plasmodium Parasites Viewed through Proteomics. Trends Parasitol 2018; 34:945-960. [PMID: 30146456 PMCID: PMC6204299 DOI: 10.1016/j.pt.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/02/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022]
Abstract
Early sequencing efforts that produced the genomes of several species of malaria parasites (Plasmodium genus) propelled transcriptomic and proteomic efforts. In this review, we focus upon some of the exciting proteomic advances from studies of Plasmodium parasites over approximately the past decade. With improvements to both instrumentation and data-processing capabilities, long-standing questions about the forms and functions of these important pathogens are rapidly being answered. In particular, global and subcellular proteomics, quantitative proteomics, and the detection of post-translational modifications have all revealed important features of the parasite's regulatory mechanisms. Finally, we provide our perspectives on future applications of proteomics to Plasmodium research, as well as suggestions for further improvement through standardization of data deposition, analysis, and accessibility.
Collapse
Affiliation(s)
- Kristian E Swearingen
- Institute for Systems Biology, Seattle, WA 98109, USA; Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
27
|
Cha SJ, McLean KJ, Jacobs-Lorena M. Identification of Plasmodium GAPDH epitopes for generation of antibodies that inhibit malaria infection. Life Sci Alliance 2018; 1:e201800111. [PMID: 30456380 PMCID: PMC6238388 DOI: 10.26508/lsa.201800111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Plasmodium sporozoite liver infection is an essential step for parasite development in its mammalian host. Previously, we used a phage display library to identify mimotope peptides that bind to Kupffer cells and competitively inhibit sporozoite-Kupffer cell interaction. These peptides led to the identification of a Kupffer cell receptor-CD68-and a Plasmodium sporozoite ligand-GAPDH-that are required for sporozoite traversal of Kupffer cells and subsequent infection of hepatocytes. Here, we report that the C-terminal end of Plasmodium GAPDH interacts with the Kupffer CD68 receptor, and identify two epitopes within this region as candidate antigens for the development of antibodies that inhibit Plasmodium infection.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kyle Jarrod McLean
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
28
|
Pinto Torres JE, Goossens J, Ding J, Li Z, Lu S, Vertommen D, Naniima P, Chen R, Muyldermans S, Sterckx YGJ, Magez S. Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci Rep 2018; 8:9019. [PMID: 29899344 PMCID: PMC5998082 DOI: 10.1038/s41598-018-26732-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
Animal African trypanosomosis (AAT), a disease affecting livestock, is caused by parasites of the Trypanosoma genus (mainly T. vivax and T. congolense). AAT is widespread in Sub-Saharan Africa, where it continues to impose a heavy socio-economic burden as it renders development of sustainable livestock rearing very strenuous. Active case-finding and the identification of infected animals prior to initiation of drug treatment requires the availability of sensitive and specific diagnostic tests. In this paper, we describe the development of two heterologous sandwich assay formats (ELISA and LFA) for T. congolense detection through the use of Nanobodies (Nbs). The immunisation of an alpaca with a secretome mix from two T. congolense strains resulted in the identification of a Nb pair (Nb44/Nb42) that specifically targets the glycolytic enzyme pyruvate kinase. We demonstrate that the Nb44/Nb42 ELISA and LFA can be employed to detect parasitaemia in plasma samples from experimentally infected mice and cattle and, additionally, that they can serve as ‘test-of-cure’ tools. Altogether, the findings in this paper present the development and evaluation of the first Nb-based antigen detection LFA to identify active T. congolense infections.
Collapse
Affiliation(s)
- Joar E Pinto Torres
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Julie Goossens
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jianzu Ding
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Zeng Li
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Shaohong Lu
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Didier Vertommen
- Department of Metabolism and Hormones, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B-1200, Brussels, Belgium
| | - Peter Naniima
- Institute of Virology, Structural Virology Group, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Rui Chen
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang, China
| | - Serge Muyldermans
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Yann G-J Sterckx
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Stefan Magez
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050, Brussels, Belgium. .,Structural Biology Research Center (SBRC), VIB, Pleinlaan 2, B-1050, Brussels, Belgium. .,Ghent University Global Campus, Songdomunhwa-Ro 119, Yeonsu-Gu, 406-840, Incheon, South Korea.
| |
Collapse
|
29
|
Draheim M, Wlodarczyk MF, Crozat K, Saliou JM, Alayi TD, Tomavo S, Hassan A, Salvioni A, Demarta-Gatsi C, Sidney J, Sette A, Dalod M, Berry A, Silvie O, Blanchard N. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol Med 2018; 9:1605-1621. [PMID: 28935714 PMCID: PMC5666312 DOI: 10.15252/emmm.201708123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In malaria, CD4 Th1 and T follicular helper (TFH) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T‐cell subsets are critical to hamper pathology. Yet the antigen‐presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood‐stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP‐specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α+ dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite‐specific Th1 cells and inhibit the development of IL‐10+CD4 T cells. This work profiles the P. berghei blood‐stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria‐specific CD4 T‐cell responses.
Collapse
Affiliation(s)
- Marion Draheim
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Myriam F Wlodarczyk
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Karine Crozat
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Tchilabalo Dilezitoko Alayi
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Stanislas Tomavo
- Centre d'Infection et d'Immunité de Lille (CIIL), CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France.,Plateforme de Protéomique et Peptides Modifiés (P3M), CNRS, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Ali Hassan
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Anna Salvioni
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Claudia Demarta-Gatsi
- CNRS, INSERM, Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - John Sidney
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Alessandro Sette
- La Jolla Institute of Allergy and Immunology, San Diego, CA, USA
| | - Marc Dalod
- CNRS, INSERM, CIML, Aix Marseille Université, Marseille, France
| | - Antoine Berry
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Olivier Silvie
- INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC University of Paris 06, Paris, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
30
|
Nuclear, Cytosolic, and Surface-Localized Poly(A)-Binding Proteins of Plasmodium yoelii. mSphere 2018; 3:mSphere00435-17. [PMID: 29359180 PMCID: PMC5760745 DOI: 10.1128/msphere.00435-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs. Malaria is a devastating illness that causes approximately 500,000 deaths annually. The malaria-causing parasite (Plasmodium genus) uses the process of translational repression to regulate its growth, development, and transmission. As poly(A)-binding proteins (PABP) have been identified as critical components of RNA metabolism and translational repression in model eukaryotes and in Plasmodium, we have identified and investigated two PABPs in Plasmodium yoelii, PyPABP1 and PyPABP2. In contrast to most single-celled eukaryotes, Plasmodium closely resembles metazoans and encodes both a nuclear PABP and a cytosolic PABP; here, we provide multiple lines of evidence in support of this observation. The conserved domain architectures of PyPABP1 and PyPABP2 resemble those of yeast and metazoans, while multiple independent binding assays demonstrated their ability to bind very strongly and specifically to poly(A) sequences. Interestingly, we also observed that purified PyPABP1 forms homopolymeric chains despite exhaustive RNase treatment in vitro. Finally, we show by indirect immunofluorescence assays (IFAs) that PyPABP1 and PyPABP2 are cytoplasm- and nucleus-associated PABPs during the blood stages of the life cycle. Surprisingly, however, PyPABP1 was instead observed to also be localized on the surface of transmitted salivary gland sporozoites and to be deposited in trails when parasites glide on a substrate. This is the third RNA-binding protein verified to be found on the sporozoite surface, and the data may point to an unappreciated RNA-centered interface between the host and parasite. IMPORTANCE Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs.
Collapse
|
31
|
Yang ASP, O'Neill MT, Jennison C, Lopaticki S, Allison CC, Armistead JS, Erickson SM, Rogers KL, Ellisdon AM, Whisstock JC, Tweedell RE, Dinglasan RR, Douglas DN, Kneteman NM, Boddey JA. Cell Traversal Activity Is Important for Plasmodium falciparum Liver Infection in Humanized Mice. Cell Rep 2017; 18:3105-3116. [PMID: 28355563 DOI: 10.1016/j.celrep.2017.03.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/29/2023] Open
Abstract
Malaria sporozoites are deposited into the skin by mosquitoes and infect hepatocytes. The molecular basis of how Plasmodium falciparum sporozoites migrate through host cells is poorly understood, and direct evidence of its importance in vivo is lacking. Here, we generated traversal-deficient sporozoites by genetic disruption of sporozoite microneme protein essential for cell traversal (PfSPECT) or perforin-like protein 1 (PfPLP1). Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice. This is in contrast with NF54 sporozoites, which infected the humanized mice and developed into exoerythrocytic forms. This study demonstrates that SPECT and perforin-like protein 1 (PLP1) are critical for transcellular migration by P. falciparum sporozoites and demonstrates the importance of cell traversal for liver infection by this human pathogen.
Collapse
Affiliation(s)
- Annie S P Yang
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Matthew T O'Neill
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Charlie Jennison
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Sash Lopaticki
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia
| | - Cody C Allison
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Jennifer S Armistead
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Sara M Erickson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Kelly L Rogers
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, VIC, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton 3800, VIC, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, VIC, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton 3800, VIC, Australia
| | - Rebecca E Tweedell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Rhoel R Dinglasan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Justin A Boddey
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, VIC, Australia.
| |
Collapse
|
32
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
Sack BK, Mikolajczak SA, Fishbaugher M, Vaughan AM, Flannery EL, Nguyen T, Betz W, Jane Navarro M, Foquet L, Steel RWJ, Billman ZP, Murphy SC, Hoffman SL, Chakravarty S, Sim BKL, Behet M, Reuling IJ, Walk J, Scholzen A, Sauerwein RW, Ishizuka AS, Flynn B, Seder RA, Kappe SHI. Humoral protection against mosquito bite-transmitted Plasmodium falciparum infection in humanized mice. NPJ Vaccines 2017; 2:27. [PMID: 29263882 PMCID: PMC5634440 DOI: 10.1038/s41541-017-0028-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/25/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
A malaria vaccine that prevents infection will be an important new tool in continued efforts of malaria elimination, and such vaccines are under intense development for the major human malaria parasite Plasmodium falciparum (Pf). Antibodies elicited by vaccines can block the initial phases of parasite infection when sporozoites are deposited into the skin by mosquito bite and then target the liver for further development. However, there are currently no standardized in vivo preclinical models that can measure the inhibitory activity of antibody specificities against Pf sporozoite infection via mosquito bite. Here, we use human liver-chimeric mice as a challenge model to assess prevention of natural Pf sporozoite infection by antibodies. We demonstrate that these mice are consistently infected with Pf by mosquito bite and that this challenge can be combined with passive transfer of either monoclonal antibodies or polyclonal human IgG from immune serum to measure antibody-mediated blocking of parasite infection using bioluminescent imaging. This methodology is useful to down-select functional antibodies and to investigate mechanisms or immune correlates of protection in clinical trials, thereby informing rational vaccine optimization.
Collapse
Affiliation(s)
| | | | | | | | | | - Thao Nguyen
- Center for Infectious Disease Research, Seattle, WA USA
| | - Will Betz
- Center for Infectious Disease Research, Seattle, WA USA
| | | | - Lander Foquet
- Center for Infectious Disease Research, Seattle, WA USA
| | | | - Zachary P. Billman
- Departments of Laboratory Medicine and Microbiology and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA USA
| | - Sean C. Murphy
- Center for Infectious Disease Research, Seattle, WA USA
- Departments of Laboratory Medicine and Microbiology and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA USA
| | | | | | | | | | | | - Jona Walk
- Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | - Stefan H. I. Kappe
- Center for Infectious Disease Research, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
34
|
Abstract
In this Commentary, we highlight the latest findings in three active areas of malaria research: Plasmodium biology; host response; and malaria control, prevention and treatment.
Collapse
|
35
|
Plasmodium glyceraldehyde-3-phosphate dehydrogenase: A potential malaria diagnostic target. Exp Parasitol 2017; 179:7-19. [DOI: 10.1016/j.exppara.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023]
|
36
|
Yang ASP, Lopaticki S, O'Neill MT, Erickson SM, Douglas DN, Kneteman NM, Boddey JA. AMA1 and MAEBL are important for Plasmodium falciparum sporozoite infection of the liver. Cell Microbiol 2017; 19. [PMID: 28371168 DOI: 10.1111/cmi.12745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022]
Abstract
The malaria sporozoite injected by a mosquito migrates to the liver by traversing host cells. The sporozoite also traverses hepatocytes before invading a terminal hepatocyte and developing into exoerythrocytic forms. Hepatocyte infection is critical for parasite development into merozoites that infect erythrocytes, and the sporozoite is thus an important target for antimalarial intervention. Here, we investigated two abundant sporozoite proteins of the most virulent malaria parasite Plasmodium falciparum and show that they play important roles during cell traversal and invasion of human hepatocytes. Incubation of P. falciparum sporozoites with R1 peptide, an inhibitor of apical merozoite antigen 1 (AMA1) that blocks merozoite invasion of erythrocytes, strongly reduced cell traversal activity. Consistent with its inhibitory effect on merozoites, R1 peptide also reduced sporozoite entry into human hepatocytes. The strong but incomplete inhibition prompted us to study the AMA-like protein, merozoite apical erythrocyte-binding ligand (MAEBL). MAEBL-deficient P. falciparum sporozoites were severely attenuated for cell traversal activity and hepatocyte entry in vitro and for liver infection in humanized chimeric liver mice. This study shows that AMA1 and MAEBL are important for P. falciparum sporozoites to perform typical functions necessary for infection of human hepatocytes. These two proteins therefore have important roles during infection at distinct points in the life cycle, including the blood, mosquito, and liver stages.
Collapse
Affiliation(s)
- Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sara M Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donna N Douglas
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Norman M Kneteman
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Tavares J, Costa DM, Teixeira AR, Cordeiro-da-Silva A, Amino R. In vivo imaging of pathogen homing to the host tissues. Methods 2017; 127:37-44. [PMID: 28522323 DOI: 10.1016/j.ymeth.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Hematogenous dissemination followed by tissue tropism is a characteristic of the infectious process of many pathogens including those transmitted by blood-feeding vectors. After entering into the blood circulation, these pathogens must arrest in the target organ before they infect a specific tissue. Here, we describe a non-invasive method to visualize and quantify the homing of pathogens to the host tissues. By using in vivo bioluminescence imaging we quantify the accumulation of luciferase-expressing parasites in the host organs during the first minutes following their intravascular inoculation in mice. Using this technique we show that in the malarial infection, once in the blood circulation, most of bioluminescent Plasmodium berghei sporozoites, the parasite stage transmitted to the host skin by a mosquito bite, rapidly home to the liver where they invade and develop inside hepatocytes. This homing is specific to this developmental stage since blood stage parasites do not accumulate in the liver, as well as extracellular Trypanosoma brucei bloodstream forms and liver-infecting Leishmania infantum amastigotes. Finally, this method can be used to study the dynamics of tissue tropism of parasites, dissect the molecular and cellular basis of their increased arrest in organs and to evaluate immune interventions designed to block this targeted interaction.
Collapse
Affiliation(s)
- Joana Tavares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | - David Mendes Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Ana Rafaela Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Faculdade de Farmácia da Universidade do Porto, Departamento de Ciências Biológicas, Portugal
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France.
| |
Collapse
|
38
|
Sack B, Kappe SHI, Sather DN. Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection. Expert Rev Vaccines 2017; 16:403-414. [PMID: 28277097 DOI: 10.1080/14760584.2017.1295853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
Collapse
Affiliation(s)
- Brandon Sack
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| | - Stefan H I Kappe
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| | - D Noah Sather
- a Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute) , Seattle , WA , USA
| |
Collapse
|
39
|
Kanoi BN, Takashima E, Morita M, White MT, Palacpac NMQ, Ntege EH, Balikagala B, Yeka A, Egwang TG, Horii T, Tsuboi T. Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda. Vaccine 2017; 35:873-881. [PMID: 28089547 DOI: 10.1016/j.vaccine.2017.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
The key targets of protective antibodies against Plasmodium falciparum remain largely unknown. In this study, we determined immunoreactivity to 1827 recombinant proteins derived from 1565 genes representing ∼30% of the entire P. falciparum genome, for identification of novel malaria vaccine candidates. The recombinant proteins were expressed by wheat germ cell-free system, a platform that can synthesize quality plasmodial proteins that elicit biologically active antibodies in animals. Sera were obtained from indigenous residents of a malaria endemic region in Northern Uganda who were enrolled at the start of a rainy season and prospectively monitored for symptomatic malaria episodes for a year. Immunoreactivity to sera was determined by AlphaScreen; a homogeneous high-throughput system that detects protein interactions. Our analysis revealed antibody responses to 128 proteins that significantly associated with protection from symptomatic malaria. From 128 proteins, 53 were down-selected as the most plausible targets of host protective immune response by virtue of having a predicted signal peptide and/or transmembrane domain(s), or confirmed localization on the parasite surface. The 53 proteins comprised of not only previously characterized vaccine candidates but also uncharacterized proteins. Proteins involved in erythrocyte invasion; RON4, RON2 and CLAG3.1 and pre-erythrocytic proteins; SIAP-2, TRAP and CelTOS, were recommended for prioritization for further evaluation as vaccine candidates. The findings clearly demonstrate that generation of the protein library using the wheat germ cell-free system coupled with high throughput immunoscreening with AlphaScreen offers new options for rational discovery and selection of potential malaria vaccine candidates.
Collapse
Affiliation(s)
- Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Michael T White
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; MRC Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Betty Balikagala
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Adoke Yeka
- Makerere University College of Health Sciences, School of Public Health, Kampala, Uganda
| | - Thomas G Egwang
- Med Biotech Laboratories, Plot 4-6 Bell Close, Port Bell Road Luzira, Kampala, Uganda
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
40
|
Goulart LR, da S. Ribeiro V, Costa-Cruz JM. Anti-parasitic Antibodies from Phage Display. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:155-171. [DOI: 10.1007/978-3-319-72077-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
El-Manzalawy Y, Munoz EE, Lindner SE, Honavar V. PlasmoSEP: Predicting surface-exposed proteins on the malaria parasite using semisupervised self-training and expert-annotated data. Proteomics 2016; 16:2967-2976. [PMID: 27714937 PMCID: PMC5600274 DOI: 10.1002/pmic.201600249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/31/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
Accurate and comprehensive identification of surface-exposed proteins (SEPs) in parasites is a key step in developing novel subunit vaccines. However, the reliability of MS-based high-throughput methods for proteome-wide mapping of SEPs continues to be limited due to high rates of false positives (i.e., proteins mistakenly identified as surface exposed) as well as false negatives (i.e., SEPs not detected due to low expression or other technical limitations). We propose a framework called PlasmoSEP for the reliable identification of SEPs using a novel semisupervised learning algorithm that combines SEPs identified by high-throughput experiments and expert annotation of high-throughput data to augment labeled data for training a predictive model. Our experiments using high-throughput data from the Plasmodium falciparum surface-exposed proteome provide several novel high-confidence predictions of SEPs in P. falciparum and also confirm expert annotations for several others. Furthermore, PlasmoSEP predicts that 25 of 37 experimentally identified SEPs in Plasmodium yoelii salivary gland sporozoites are likely to be SEPs. Finally, PlasmoSEP predicts several novel SEPs in P. yoelii and Plasmodium vivax malaria parasites that can be validated for further vaccine studies. Our computational framework can be easily adapted to improve the interpretation of data from high-throughput studies.
Collapse
Affiliation(s)
- Yasser El-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, PA, USA
| | - Elyse E Munoz
- Center for Malaria Research, Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, USA
| | - Scott E Lindner
- Center for Malaria Research, Department of Biochemistry and Molecular Biology, Pennsylvania State University, PA, USA
| | - Vasant Honavar
- College of Information Sciences and Technology, Pennsylvania State University, PA, USA
| |
Collapse
|