1
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Ushio A, Matsuda-Lennikov M, Kalle-Youngoue F, Shimizu A, Abdelmaksoud A, Kelly MC, Ishimaru N, Takahama Y. Functionally diverse thymic medullary epithelial cells interplay to direct central tolerance. Cell Rep 2024; 43:114072. [PMID: 38581680 PMCID: PMC11079940 DOI: 10.1016/j.celrep.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/24/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024] Open
Abstract
Medullary thymic epithelial cells (mTECs) are essential for the establishment of self-tolerance in T cells. Promiscuous gene expression by a subpopulation of mTECs regulated by the nuclear protein Aire contributes to the display of self-genomic products to newly generated T cells. Recent reports have highlighted additional self-antigen-displaying mTEC subpopulations, namely Fezf2-expressing mTECs and a mosaic of self-mimetic mTECs including thymic tuft cells. In addition, a functionally different subset of mTECs produces chemokine CCL21, which attracts developing thymocytes to the medullary region. Here, we report that CCL21+ mTECs and Aire+ mTECs non-redundantly cooperate to direct self-tolerance to prevent autoimmune pathology by optimizing the deletion of self-reactive T cells and the generation of regulatory T cells. We also detect cooperation for self-tolerance between Aire and Fezf2, the latter of which unexpectedly regulates thymic tuft cells. Our results indicate an indispensable interplay among functionally diverse mTECs for the establishment of central self-tolerance.
Collapse
Affiliation(s)
- Aya Ushio
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Oral Molecular Pathology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto, Tokushima 770-8504, Japan
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felix Kalle-Youngoue
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Akihide Shimizu
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdalla Abdelmaksoud
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Cancer Research Technology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto, Tokushima 770-8504, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Montero-Herradón S, García-Ceca J, Villarejo-Torres M, Zapata AG. Peripheral T-cell responses of EphB2- and EphB3-deficient mice in a model of collagen-induced arthritis. Cell Mol Life Sci 2024; 81:159. [PMID: 38558087 PMCID: PMC10984909 DOI: 10.1007/s00018-024-05197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Both EphB2- and EphB3-deficient mice exhibit profound histological alterations in the thymic epithelial network but few changes in T-cell differentiation, suggesting that this organization would be sufficient to produce functional T lymphocytes. Also, other antigen-presenting cells involved in immunological education could substitute the thymic epithelium. Accordingly, we found an increased frequency of plasmacytoid dendritic cells but not of conventional dendritic cells, medullary fibroblasts or intrathymic B lymphocytes. In addition, there are no lymphoid infiltrates in the organs of mutant mice nor do they contain circulating autoantibodies. Furthermore, attempts to induce arthritic lesions after chicken type II collagen administration fail totally in EphB2-deficient mice whereas all WT and half of the immunized EphB3-/- mice develop a typical collagen-induced arthritis. Our results point out that Th17 cells, IL4-producing Th2 cells and regulatory T cells are key for the induction of disease, but mutant mice appear to have deficits in T cell activation or cell migration properties. EphB2-/- T cells show reduced in vitro proliferative responses to anti-CD3/anti-CD28 antibodies, produce low levels of anti-type II collagen antibodies, and exhibit low proportions of T follicular helper cells. On the contrary, EphB3-/- lymph node cells respond accurately to the different immune stimuli although in lower levels than WT cells but show a significantly reduced migration in in vitro transwell assays, suggesting that no sufficient type II collagen-dependent activated lymphoid cells reached the joints, resulting in reduced arthritic lesions.
Collapse
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041, Madrid, Spain.
| |
Collapse
|
5
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
6
|
James KD, Cosway EJ, Parnell SM, White AJ, Jenkinson WE, Anderson G. Assembling the thymus medulla: Development and function of epithelial cell heterogeneity. Bioessays 2024; 46:e2300165. [PMID: 38161233 PMCID: PMC11475500 DOI: 10.1002/bies.202300165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.
Collapse
Affiliation(s)
- Kieran D. James
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Emilie J. Cosway
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Sonia M. Parnell
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Andrea J. White
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | | | - Graham Anderson
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| |
Collapse
|
7
|
Malin J, Martinez-Ruiz GU, Zhao Y, Shissler SC, Cowan JE, Ding Y, Morales-Sanchez A, Ishikawa M, Lavaert M, Das A, Butcher D, Warner AC, Kallarakal M, Chen J, Kedei N, Kelly M, Brinster LR, Allman D, Bhandoola A. Expression of the transcription factor Klf6 by thymic epithelial cells is required for thymus development. SCIENCE ADVANCES 2023; 9:eadg8126. [PMID: 37967174 PMCID: PMC10651122 DOI: 10.1126/sciadv.adg8126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using Foxn1-Cre-driven ablation of Klf6 gene in TEC, we identified Klf6 as a critical factor in TEC development. Klf6 deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed. Among cortical TEC (cTEC), a previously unreported cTEC population expressing the transcription factor Sox10 was relatively expanded. Within medullary TEC (mTEC), mTEC I and Tuft-like mTEC IV were disproportionately decreased. Klf6 deficiency altered chromatin accessibility and affected TEC chromatin configuration. Consistent with these defects, naïve conventional T cells and invariant natural killer T cells were reduced in the spleen. Late stages of T cell receptor-dependent selection of thymocytes were affected, and mice exhibited autoimmunity. Thus, Klf6 has a prosurvival role and affects the development of specific TEC subsets contributing to thymic function.
Collapse
Affiliation(s)
- Justin Malin
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital Federico Gomez, Mexico City, Mexico
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susannah C. Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E. Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital Federico Gomez, Mexico City, Mexico
| | - Masaki Ishikawa
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Melissa Kallarakal
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqiu Chen
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- ACROBiosystems, Newark, DE, USA
| | - Noemi Kedei
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren R. Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Chiu H, Linsley PS, Ziegler SF. Investigating Thymic Epithelial Cell Diversity Using Systems Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:888-894. [PMID: 36947816 PMCID: PMC10037528 DOI: 10.4049/jimmunol.2200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 03/24/2023]
Abstract
The thymus is an intricate organ consisting of a diverse population of thymic epithelial cells (TECs). Cortical and medullary TECs and their subpopulations have distinct roles in coordinating the development and selection of functionally competent and self-tolerant T cells. Recent advances made in technologies such as single-cell RNA sequencing have made it possible to investigate and resolve the heterogeneity in TECs. These findings have provided further understanding of the molecular mechanisms regulating TEC function and expression of tissue-restricted Ags. In this brief review, we focus on the newly characterized subsets of TECs and their diversity in relation to their functions in supporting T cell development. We also discuss recent discoveries in expression of self-antigens in the context of TEC development as well as the cellular and molecular changes occurring during embryonic development to thymic involution.
Collapse
|
9
|
The unilateral involution in the thymus of a 96-year-old male leads to the preservation of structural integrity in one thymic lobe, as assessed by the expression of medullar and cortical antigens and the presence of CD3+ cells. Heliyon 2022; 8:e11734. [PMID: 36411931 PMCID: PMC9674545 DOI: 10.1016/j.heliyon.2022.e11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The process of thymic involution begins soon after birth and continues through adult life. Although evolutionary conserved in all vertebrates, the thymic involution has no defined kinetics. Little is known about the pace of its regression in humans, except that there is a marked increase of thymic involution after puberty. This report describes the unusual structural findings in the thymus of a 96-year-old male. The morphological parameters of the organ were evaluated using H&E and immunohistochemistry (IHC) techniques. The macroscopic examination showed a typical organ's weight and size, except that the right thymic lobe presented a well-preserved organ and the left lobe was significantly adiposed. The H&E staining of the thymic sections from the left and right lobes confirmed advanced thymic adiposity in the left lobe and preserved thymic epithelial space containing hematoxylin-stained cells in the right lobe. The multiplex immunostaining of the right lobe sections with antibodies specific to cytokeratins -14 and -8, CD3, and CD4 revealed the presence of medullar and cortical epithelium and mix population of CD3+/CD4+ and CD3+/CD4- T cells. The T cells were associated with the medulla but not with the cortex of the thymus. The immunostaining with an antibody to FoxN1 showed that the protein was expressed in the thymic epithelium. Taken together, we provide evidence that the thymus of a 96-year-old man involuted different kinetics in each of the two thymic lobes. Furthermore, the presence of CD3+/CD4+ and CD3+/CD4-cells gives a hand to the hypothesis that a pool of T-cells may associate with this primary lymphatic organ for as long as there is the available thymic epithelium and be a source of lymphocytes aiding adaptive immune responses to old age.
Collapse
|
10
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
11
|
Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022; 13:930963. [PMID: 35844523 PMCID: PMC9277542 DOI: 10.3389/fimmu.2022.930963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.
Collapse
|
12
|
Dong X, Zhang J, Zhang Q, Liang Z, Xu Y, Zhao Y, Zhang B. Cytosolic Nuclear Sensor Dhx9 Controls Medullary Thymic Epithelial Cell Differentiation by p53-Mediated Pathways. Front Immunol 2022; 13:896472. [PMID: 35720303 PMCID: PMC9203851 DOI: 10.3389/fimmu.2022.896472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
Thymic epithelial cells (TECs) critically participate in T cell maturation and selection for the establishment of immunity to foreign antigens and immune tolerance to self-antigens of T cells. It is well known that many intracellular and extracellular molecules elegantly have mastered the development of medullary TECs (mTECs) and cortical TECs (cTECs). However, the role played by NTP-dependent helicase proteins in TEC development is currently unclear. Herein, we created mice with a TEC-specific DExD/H-box helicase 9 (Dhx9) deletion (Dhx9 cKO) to study the involvement of Dhx9 in TEC differentiation and function. We found that a Dhx9 deficiency in TECs caused a significant decreased cell number of TECs, including mTECs and thymic tuft cells, accompanied by accelerated mTEC maturation but no detectable effect on cTECs. Dhx9-deleted mTECs transcriptionally expressed poor tissue-restricted antigen profiles compared with WT mTECs. Importantly, Dhx9 cKO mice displayed an impaired thymopoiesis, poor thymic T cell output, and they suffered from spontaneous autoimmune disorders. RNA-seq analysis showed that the Dhx9 deficiency caused an upregulated DNA damage response pathway and Gadd45, Cdkn1a, Cdc25, Wee1, and Myt1 expression to induce cell cycle arrest in mTECs. In contrast, the p53-dependent upregulated RANK-NF-κB pathway axis accelerated the maturation of mTECs. Our results collectively indicated that Dhx9, a cytosolic nuclear sensor recognizing viral DNA or RNA, played an important role in mTEC development and function in mice.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Baojun Zhang, ; Yong Zhao,
| |
Collapse
|
13
|
Monteleone-Cassiano AC, Dernowsek JA, Mascarenhas RS, Assis AF, Pitol D, Santos Moreira NC, Sakamoto-Hojo ET, Issa JPM, Donadi EA, Passos GA. The absence of the autoimmune regulator gene (AIRE) impairs the three-dimensional structure of medullary thymic epithelial cell spheroids. BMC Mol Cell Biol 2022; 23:15. [PMID: 35331137 PMCID: PMC8952272 DOI: 10.1186/s12860-022-00414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background Besides controlling the expression of peripheral tissue antigens, the autoimmune regulator (AIRE) gene also regulates the expression of adhesion genes in medullary thymic epithelial cells (mTECs), an essential process for mTEC-thymocyte interaction for triggering the negative selection in the thymus. For these processes to occur, it is necessary that the medulla compartment forms an adequate three-dimensional (3D) architecture, preserving the thymic medulla. Previous studies have shown that AIRE knockout (KO) mice have a small and disorganized thymic medulla; however, whether AIRE influences the mTEC-mTEC interaction in the maintenance of the 3D structure has been little explored. Considering that AIRE controls cell adhesion genes, we hypothesized that this gene affects 3D mTEC-mTEC interaction. To test this, we constructed an in vitro model system for mTEC spheroid formation, in which cells adhere to each other, establishing a 3D structure. Results The comparisons between AIRE wild type (AIREWT) and AIRE KO (AIRE−/−) 3D mTEC spheroid formation showed that the absence of AIRE: i) disorganizes the 3D structure of mTEC spheroids, ii) increases the proportion of cells at the G0/G1 phase of the cell cycle, iii) increases the rate of mTEC apoptosis, iv) decreases the strength of mTEC-mTEC adhesion, v) promotes a differential regulation of mTEC classical surface markers, and vi) modulates genes encoding adhesion and other molecules. Conclusions Overall, the results show that AIRE influences the 3D structuring of mTECs when these cells begin the spheroid formation through controlling cell adhesion genes.
Collapse
Affiliation(s)
- Ana Carolina Monteleone-Cassiano
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Janaina A Dernowsek
- Institute for Energy and Nuclear Research, University of São Paulo, São Paulo, SP, Brazil
| | - Romario S Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Amanda Freire Assis
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Dimitrius Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Geraldo Aleixo Passos
- Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil. .,Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil. .,Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Cosway EJ, White AJ, Parnell SM, Schweighoffer E, Jolin HE, Bacon A, Rodewald HR, Tybulewicz V, McKenzie ANJ, Jenkinson WE, Anderson G. Eosinophils are an essential element of a type 2 immune axis that controls thymus regeneration. Sci Immunol 2022; 7:eabn3286. [PMID: 35275754 PMCID: PMC7612579 DOI: 10.1126/sciimmunol.abn3286] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Therapeutic interventions used for cancer treatment provoke thymus damage and limit the recovery of protective immunity. Here, we show that eosinophils are an essential part of an intrathymic type 2 immune network that enables thymus recovery after ablative therapy. Within hours of damage, the thymus undergoes CCR3-dependent colonization by peripheral eosinophils, which reestablishes the epithelial microenvironments that control thymopoiesis. Eosinophil regulation of thymus regeneration occurs via the concerted action of NKT cells that trigger CCL11 production via IL4 receptor signaling in thymic stroma, and ILC2 that represent an intrathymic source of IL5, a cytokine that therapeutically boosts thymus regeneration after damage. Collectively, our findings identify an intrathymic network composed of multiple innate immune cells that restores thymus function during reestablishment of the adaptive immune system.
Collapse
Affiliation(s)
- Emilie J. Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea J. White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sonia M. Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Victor Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK,Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | | | - W. E. Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK,Correspondence to: Professor Graham Anderson, Institute for Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, B15 2TT, United Kingdom. Tel: (44)1214146817.
| |
Collapse
|
15
|
Alawam AS, Cosway EJ, James KD, Lucas B, Bacon A, Parnell SM, White AJ, Jenkinson WE, Anderson G. Failures in thymus medulla regeneration during immune recovery cause tolerance loss and prime recipients for auto-GVHD. J Exp Med 2022; 219:212911. [PMID: 34910105 PMCID: PMC8679781 DOI: 10.1084/jem.20211239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Bone marrow transplantation (BMT) is a widely used therapy for blood cancers and primary immunodeficiency. Following transplant, the thymus plays a key role in immune reconstitution by generating a naive αβT cell pool from transplant-derived progenitors. While donor-derived thymopoiesis during the early post-transplant period is well studied, the ability of the thymus to synchronize T cell development with essential tolerance mechanisms is poorly understood. Using a syngeneic mouse transplant model, we analyzed T cell recovery alongside the regeneration and function of intrathymic microenvironments. We report a specific and prolonged failure in the post-transplant recovery of medullary thymic epithelial cells (mTECs). This manifests as loss of medulla-dependent tolerance mechanisms, including failures in Foxp3+ regulatory T cell development and formation of the intrathymic dendritic cell pool. In addition, defective negative selection enables escape of self-reactive conventional αβT cells that promote autoimmunity. Collectively, we show that post-transplant T cell recovery involves an uncoupling of thymopoiesis from thymic tolerance, which results in autoimmune reconstitution caused by failures in thymic medulla regeneration.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Kieran D James
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Beth Lucas
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Andrea J White
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Herppich S, Beckstette M, Huehn J. The thymic microenvironment gradually modulates the phenotype of thymus-homing peripheral conventional dendritic cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:175-188. [PMID: 34748687 PMCID: PMC8767516 DOI: 10.1002/iid3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Background & Aims Thymic conventional dendritic cells (t‑DCs) are crucial for the development of T cells. A substantial fraction of t‑DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self‑reactive thymocytes and the generation of regulatory T (Treg) cells. So far, it is only incompletely understood which impact the thymic microenvironment has on thymus‑homing conventional DCs (cDCs), which phenotypic changes occur after the entry of peripheral cDCs into the thymus and which functional properties these modulated cells acquire. Materials & Methods In the present study, we mimicked the thymus‑homing of peripheral cDCs by introducing ex vivo isolated splenic cDCs (sp‑DCs) into reaggregated thymic organ cultures (RTOCs). Results Already after two days of culture, the transcriptomic profile of sp‑DCs was modulated and had acquired certain key signatures of t‑DCs. The regulated genes included immunomodulatory cytokines and chemokines as well as costimulatory molecules. After four days of culture, sp‑DCs appeared to have at least partially acquired the peculiar Treg cell‐inducing capacity characteristic of t‑DCs. Discussion & Conclusion Taken together, our findings indicate that peripheral cDCs possess a high degree of plasticity enabling them to quickly adapt to the thymus‐specific microenvironment. We further provide indirect evidence that thymus‐specific properties such as the efficient induction of Treg cells under homeostatic conditions can be partially transferred to thymus‑homing peripheral cDC subsets.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
19
|
Jain R, Zhao K, Sheridan JM, Heinlein M, Kupresanin F, Abeysekera W, Hall C, Rickard J, Bouillet P, Walczak H, Strasser A, Silke J, Gray DHD. Dual roles for LUBAC signaling in thymic epithelial cell development and survival. Cell Death Differ 2021; 28:2946-2956. [PMID: 34381167 PMCID: PMC8481470 DOI: 10.1038/s41418-021-00850-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.
Collapse
Affiliation(s)
- Reema Jain
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kelin Zhao
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Julie M Sheridan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Melanie Heinlein
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Fiona Kupresanin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- ANZAC Research Institute, Concord, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - James Rickard
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
- Centre for Biochemistry, University of Cologne, Cologne, Germany
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel H D Gray
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
21
|
Borelli A, Irla M. Lymphotoxin: from the physiology to the regeneration of the thymic function. Cell Death Differ 2021; 28:2305-2314. [PMID: 34290396 PMCID: PMC8329281 DOI: 10.1038/s41418-021-00834-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/31/2023] Open
Abstract
The members of the Tumor Necrosis Factor (TNF) superfamily, the ligand lymphotoxin α1β2 (LTα1β2) and its unique receptor lymphotoxin β receptor (LTβR), play a pivotal role in the establishment and regulation of the immune system by allowing a tight communication between lymphocytes and stromal cells. Recent advances using transgenic mice harboring a specific deletion of the Ltbr gene in distinct stromal cells have revealed important roles for LTβR signaling in the thymic function that ensures the generation of a diverse and self-tolerant T-cell repertoire. In this review, we summarize our current knowledge on this signaling axis in the thymic homing of lymphoid progenitors and peripheral antigen-presenting cells, the trafficking and egress of thymocytes, the differentiation of medullary thymic epithelial cells, and the establishment of central tolerance. We also highlight the importance of LTα1β2/LTβR axis in controlling the recovery of the thymic function after myeloablative conditioning regimen, opening novel perspectives in regenerative medicine.
Collapse
Affiliation(s)
- Alexia Borelli
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Magali Irla
- grid.417850.f0000 0004 0639 5277Aix-Marseille University, CNRS, INSERM, CIML, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
22
|
Shou Y, Koroleva E, Spencer CM, Shein SA, Korchagina AA, Yusoof KA, Parthasarathy R, Leadbetter EA, Akopian AN, Muñoz AR, Tumanov AV. Redefining the Role of Lymphotoxin Beta Receptor in the Maintenance of Lymphoid Organs and Immune Cell Homeostasis in Adulthood. Front Immunol 2021; 12:712632. [PMID: 34335629 PMCID: PMC8320848 DOI: 10.3389/fimmu.2021.712632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023] Open
Abstract
Lymphotoxin beta receptor (LTβR) is a promising therapeutic target in autoimmune and infectious diseases as well as cancer. Mice with genetic inactivation of LTβR display multiple defects in development and organization of lymphoid organs, mucosal immune responses, IgA production and an autoimmune phenotype. As these defects are imprinted in embryogenesis and neonate stages, the impact of LTβR signaling in adulthood remains unclear. Here, to overcome developmental defects, we generated mice with inducible ubiquitous genetic inactivation of LTβR in adult mice (iLTβRΔ/Δ mice) and redefined the role of LTβR signaling in organization of lymphoid organs, immune response to mucosal bacterial pathogen, IgA production and autoimmunity. In spleen, postnatal LTβR signaling is required for development of B cell follicles, follicular dendritic cells (FDCs), recruitment of neutrophils and maintenance of the marginal zone. Lymph nodes of iLTβRΔ/Δ mice were reduced in size, lacked FDCs, and had disorganized subcapsular sinus macrophages. Peyer`s patches were smaller in size and numbers, and displayed reduced FDCs. The number of isolated lymphoid follicles in small intestine and colon were also reduced. In contrast to LTβR-/- mice, iLTβRΔ/Δ mice displayed normal thymus structure and did not develop signs of systemic inflammation and autoimmunity. Further, our results suggest that LTβR signaling in adulthood is required for homeostasis of neutrophils, NK, and iNKT cells, but is dispensable for the maintenance of polyclonal IgA production. However, iLTβRΔ/Δ mice exhibited an increased sensitivity to C. rodentium infection and failed to develop pathogen-specific IgA responses. Collectively, our study uncovers new insights of LTβR signaling in adulthood for the maintenance of lymphoid organs, neutrophils, NK and iNKT cells, and IgA production in response to mucosal bacterial pathogen.
Collapse
Affiliation(s)
- Yajun Shou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Department of Gastroenterology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ekaterina Koroleva
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | | - Sergey A. Shein
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Anna A. Korchagina
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kizil A. Yusoof
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Elizabeth A. Leadbetter
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amanda R. Muñoz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Alexei V. Tumanov,
| |
Collapse
|
23
|
Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021; 12:668528. [PMID: 34220815 PMCID: PMC8250140 DOI: 10.3389/fimmu.2021.668528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.
Collapse
Affiliation(s)
- Ruben G R Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Doctoral Program in Cell and Molecular Biology, Instituto de Ciências Biomédicas, Universidade do Porto, Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
26
|
Reis M, Willis GR, Fernandez-Gonzalez A, Yeung V, Taglauer E, Magaletta M, Parsons T, Derr A, Liu X, Maehr R, Kourembanas S, Mitsialis SA. Mesenchymal Stromal Cell-Derived Extracellular Vesicles Restore Thymic Architecture and T Cell Function Disrupted by Neonatal Hyperoxia. Front Immunol 2021; 12:640595. [PMID: 33936055 PMCID: PMC8082426 DOI: 10.3389/fimmu.2021.640595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Treating premature infants with high oxygen is a routine intervention in the context of neonatal intensive care. Unfortunately, the increase in survival rates is associated with various detrimental sequalae of hyperoxia exposure, most notably bronchopulmonary dysplasia (BPD), a disease of disrupted lung development. The effects of high oxygen exposure on other developing organs of the infant, as well as the possible impact such disrupted development may have on later life remain poorly understood. Using a neonatal mouse model to investigate the effects of hyperoxia on the immature immune system we observed a dramatic involution of the thymic medulla, and this lesion was associated with disrupted FoxP3+ regulatory T cell generation and T cell autoreactivity. Significantly, administration of mesenchymal stromal cell-derived extracellular vesicles (MEx) restored thymic medullary architecture and physiological thymocyte profiles. Using single cell transcriptomics, we further demonstrated preferential impact of MEx treatment on the thymic medullary antigen presentation axis, as evidenced by enrichment of antigen presentation and antioxidative-stress related genes in dendritic cells (DCs) and medullary epithelial cells (mTECs). Our study demonstrates that MEx treatment represents a promising restorative therapeutic approach for oxygen-induced thymic injury, thus promoting normal development of both central tolerance and adaptive immunity.
Collapse
Affiliation(s)
- Monica Reis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Elizabeth Taglauer
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Margaret Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Teagan Parsons
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Alan Derr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rene Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine & Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Front Cell Dev Biol 2021; 9:655552. [PMID: 33869219 PMCID: PMC8044826 DOI: 10.3389/fcell.2021.655552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Although some advances have been made in understanding the molecular regulation of mTEC development, the role of epigenetic regulators in the development and maturation of mTEC is poorly understood. Here, using the TEC-specific Sirt6 knockout mice, we found the deacetylase Sirtuin 6 (Sirt6) is essential for the development of functionally competent mTECs. First of all, TEC-specific Sirt6 deletion dramatically reduces the mTEC compartment, which is caused by reduced DNA replication and subsequent impaired proliferation ability of Sirt6-deficient mTECs. Secondly, Sirt6 deficiency specifically accelerates the differentiation of mTECs from CD80–Aire– immature population to CD80+Aire– intermediate mature population by promoting the expression of Spib. Finally, Sirt6 ablation in TECs markedly interferes the proper expression of tissue-restricted antigens (TRAs) and impairs the development of thymocytes and nTreg cells. In addition, TEC conditional knockout of Sirt6 results in severe autoimmune disease manifested by reduced body weight, the infiltration of lymphocytes and the presence of autoantibodies. Collectively, this study reveals that the expression of epigenetic regulator Sirt6 in TECs is crucial for the development and differentiation of mTECs, which highlights the importance of Sirt6 in the establishment of central immune tolerance.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Montero-Herradón S, García-Ceca J, Zapata AG. How Many Thymic Epithelial Cells Are Necessary for a Proper Maturation of Thymocytes? Front Immunol 2021; 12:618216. [PMID: 33763065 PMCID: PMC7982454 DOI: 10.3389/fimmu.2021.618216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
29
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
30
|
James KD, Jenkinson WE, Anderson G. Non-Epithelial Stromal Cells in Thymus Development and Function. Front Immunol 2021; 12:634367. [PMID: 33717173 PMCID: PMC7946857 DOI: 10.3389/fimmu.2021.634367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
The thymus supports T-cell development via specialized microenvironments that ensure a diverse, functional and self-tolerant T-cell population. These microenvironments are classically defined as distinct cortex and medulla regions that each contain specialized subsets of stromal cells. Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T-cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic microenvironments, including multiple subsets of mesenchymal and endothelial cells. In contrast to our current understanding of TEC biology, the developmental origins, lineage relationships, and functional properties, of NES remain poorly understood. However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell development, or by indirectly regulating TEC development and/or function. Here, we focus attention on the contribution of NES to thymic microenvironments, including their phenotypic identification and functional classification, and explore their impact on thymus function.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Ohigashi I, Frantzeskakis M, Jacques A, Fujimori S, Ushio A, Yamashita F, Ishimaru N, Yin D, Cam M, Kelly MC, Awasthi P, Takada K, Takahama Y. The thymoproteasome hardwires the TCR repertoire of CD8+ T cells in the cortex independent of negative selection. J Exp Med 2021; 218:211763. [PMID: 33555295 PMCID: PMC7873839 DOI: 10.1084/jem.20201904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The thymoproteasome expressed specifically in thymic cortical epithelium optimizes the generation of CD8+ T cells; however, how the thymoproteasome contributes to CD8+ T cell development is unclear. Here, we show that the thymoproteasome shapes the TCR repertoire directly in cortical thymocytes before migration to the thymic medulla. We further show that the thymoproteasome optimizes CD8+ T cell production independent of the thymic medulla; independent of additional antigen-presenting cells, including medullary thymic epithelial cells and dendritic cells; and independent of apoptosis-mediated negative selection. These results indicate that the thymoproteasome hardwires the TCR repertoire of CD8+ T cells with cortical positive selection independent of negative selection in the thymus.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Melina Frantzeskakis
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alison Jacques
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Aya Ushio
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Fusano Yamashita
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Da Yin
- Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Margaret Cam
- Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael C Kelly
- Single Cell Analysis Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Parirokh Awasthi
- Transgenic Mouse Model Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kensuke Takada
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Ho KH, Patrizi A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep 2021; 11:3278. [PMID: 33558629 PMCID: PMC7870894 DOI: 10.1038/s41598-021-82800-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Choroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
33
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
34
|
Cosway EJ, James KD, Lucas B, Anderson G, White AJ. The thymus medulla and its control of αβT cell development. Semin Immunopathol 2020; 43:15-27. [PMID: 33306154 PMCID: PMC7925449 DOI: 10.1007/s00281-020-00830-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
αβT cells are an essential component of effective immune responses. The heterogeneity that lies within them includes subsets that express diverse self-MHC-restricted αβT cell receptors, which can be further subdivided into CD4+ helper, CD8+ cytotoxic, and Foxp3+ regulatory T cells. In addition, αβT cells also include invariant natural killer T cells that are very limited in αβT cell receptor repertoire diversity and recognise non-polymorphic CD1d molecules that present lipid antigens. Importantly, all αβT cell sublineages are dependent upon the thymus as a shared site of their development. Ongoing research has examined how the thymus balances the intrathymic production of multiple αβT cell subsets to ensure correct formation and functioning of the peripheral immune system. Experiments in both wild-type and genetically modified mice have been essential in revealing complex cellular and molecular mechanisms that regulate thymus function. In particular, studies have demonstrated the diverse and critical role that the thymus medulla plays in shaping the peripheral T cell pool. In this review, we summarise current knowledge on functional properties of the thymus medulla that enable the thymus to support the production of diverse αβT cell types.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Andrea J White
- Institute of Immunology and Immunotherapy, Floor 4 Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
35
|
Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, Steinmetz LM. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. eLife 2020; 9:60188. [PMID: 33226342 PMCID: PMC7771965 DOI: 10.7554/elife.60188] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a critical role in central immune tolerance by mediating negative selection of autoreactive T cells through the collective expression of the peripheral self-antigen compartment, including tissue-specific antigens (TSAs). Recent work has shown that gene-expression patterns within the mTEC compartment are heterogenous and include multiple differentiated cell states. To further define mTEC development and medullary epithelial lineage relationships, we combined lineage tracing and recovery from transient in vivo mTEC ablation with single-cell RNA-sequencing in Mus musculus. The combination of bioinformatic and experimental approaches revealed a non-stem transit-amplifying population of cycling mTECs that preceded Aire expression. We propose a branching model of mTEC development wherein a heterogeneous pool of transit-amplifying cells gives rise to Aire- and Ccl21a-expressing mTEC subsets. We further use experimental techniques to show that within the Aire-expressing developmental branch, TSA expression peaked as Aire expression decreased, implying Aire expression must be established before TSA expression can occur. Collectively, these data provide a roadmap of mTEC development and demonstrate the power of combinatorial approaches leveraging both in vivo models and high-dimensional datasets. Specialized cells in the immune system known as T cells protect the body from infection by destroying disease-causing microbes, such as bacteria or viruses. T cells use proteins on their surface called receptors to stick to infectious microbes and remove them from the body. Some newly developed T-cells, however, contain receptors that recognize and bind to cells that belong in the body. If these faulty T cells are released, they can attack healthy tissues and cause an autoimmune disease. After a new T cell is developed, it gets carried to a gland in the chest known as the thymus. Cells in the thymus called mTECs screen T cells for receptors that may bind to the body’s tissues. mTECs do this by presenting T cells with proteins that are commonly found on the surface of healthy cells in the body. If a T cell recognizes any of these ‘tissue specific proteins’, it is destroyed or given a new role in the body. Some faulty T cells, however, still manage to evade detection. One way to uncover why this might happen is to investigate how mTECs develop. Previous work showed that mTECs transition through various stages before reaching their final form. However, the order in which these events occur remained unclear. To gain a better understanding of these developmental steps, Wells, Miller et al. extracted mTECs from the thymus of mice and analyzed the genetic make-up of individual cells. This uncovered a missing link in mTEC development: a new type of cell that is the immediate predecessor of the final mTEC. These ‘predecessor’ cells were actively growing, highlighting that mTECs can be constantly generated in the body. By probing the genes that generate tissue-specific proteins in mTECs, Wells, Miller et al. revealed that these proteins were only produced for short periods and in the late stages of mTEC development. These findings contribute to our understanding of how mTECs develop to screen T cells. Mapping these developmental stages will make it easier to identify when faulty T cells are able to evade mTECs. This will lead to earlier detection of autoimmune diseases which could result in better treatments.
Collapse
Affiliation(s)
- Kristen L Wells
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Corey N Miller
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Andreas R Gschwind
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Wu Wei
- Stanford Genome Technology Center, Stanford University, Palo Alto, United States
| | - Jonah D Phipps
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States.,Department of Medicine, University of California San Francisco, San Francisco, United States
| | - Lars M Steinmetz
- Department of Genetics, Stanford University School of Medicine, Stanford, United States.,Stanford Genome Technology Center, Stanford University, Palo Alto, United States.,Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
36
|
García-Ceca J, Montero-Herradón S, Zapata AG. Intrathymic Selection and Defects in the Thymic Epithelial Cell Development. Cells 2020; 9:cells9102226. [PMID: 33023072 PMCID: PMC7601110 DOI: 10.3390/cells9102226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Intimate interactions between thymic epithelial cells (TECs) and thymocytes (T) have been repeatedly reported as essential for performing intrathymic T-cell education. Nevertheless, it has been described that animals exhibiting defects in these interactions were capable of a proper positive and negative T-cell selection. In the current review, we first examined distinct types of TECs and their possible role in the immune surveillance. However, EphB-deficient thymi that exhibit profound thymic epithelial (TE) alterations do not exhibit important immunological defects. Eph and their ligands, the ephrins, are implicated in cell attachment/detachment and govern, therefore, TEC–T interactions. On this basis, we hypothesized that a few normal TE areas could be enough for a proper phenotypical and functional maturation of T lymphocytes. Then, we evaluated in vivo how many TECs would be necessary for supporting a normal T-cell differentiation, concluding that a significantly low number of TEC are still capable of supporting normal T lymphocyte maturation, whereas with fewer numbers, T-cell maturation is not possible.
Collapse
Affiliation(s)
- Javier García-Ceca
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Sara Montero-Herradón
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (J.G.-C.); (S.M.-H.)
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: ; Tel.: +34-91-394-4979
| |
Collapse
|
37
|
Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol 2020; 21:1172-1180. [PMID: 32839611 DOI: 10.1038/s41590-020-0756-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Fibroblasts are one of the most common but also neglected types of stromal cells, the heterogeneity of which underlies the specific function of tissue microenvironments in development and regeneration. In the thymus, autoreactive T cells are thought to be negatively selected by reference to the self-antigens expressed in medullary epithelial cells, but the contribution of other stromal cells to tolerance induction has been poorly examined. In the present study, we report a PDGFR+ gp38+ DPP4- thymic fibroblast subset that is required for T cell tolerance induction. The deletion of the lymphotoxin β-receptor in thymic fibroblasts caused an autoimmune phenotype with decreased expression of tissue-restricted and fibroblast-specific antigens, offering insight into the long-sought target of lymphotoxin signaling in the context of the regulation of autoimmunity. Thus, thymic medullary fibroblasts play an essential role in the establishment of central tolerance by producing a diverse array of self-antigens.
Collapse
|
38
|
Eshima K, Misawa K, Ohashi C, Noma H, Iwabuchi K. NF-κB-inducing kinase contributes to normal development of cortical thymic epithelial cells: its possible role in shaping a proper T-cell repertoire. Immunology 2020; 160:198-208. [PMID: 32145062 PMCID: PMC7218659 DOI: 10.1111/imm.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor (NF)-κB-inducing kinase (NIK) is known to be a critical regulator of multiple aspects of the immune response. Although the role of NIK in the development of medullary thymic epithelial cells (mTECs) has been well documented, the impact of NIK on the differentiation and function of cortical thymic epithelial cells (cTECs) remains ambiguous. To investigate the possible involvement of NIK in cTEC differentiation, we have compared the gene expression and function of cTECs from a NIK-mutant mouse, alymphoplasia (aly/aly) with those of cTECs from wild-type (WT) mice. Flow cytometric analyses revealed that expression levels of MHC class II, but not MHC class I or other TEC markers, were higher in aly/aly cells than in WT cells. Notably, the proportion of MHC class IIhi+ cTECs was elevated in aly/aly mice. We also demonstrated that expression of Ccl5 mRNA in the MHC class IIhi+ subset of aly/aly cTECs was decreased compared with that in WT cells, implying an abnormal pattern of gene expression in aly/aly cTECs. Analyses of bone marrow chimera using aly/aly or aly/+ mice as hosts suggested that Vβ usage and CD5 expression on WT T-cells were altered when they matured in aly/aly thymi. These results collectively indicate that NIK may be involved in controlling the function of cTEC in selecting a proper T-cell repertoire.
Collapse
Affiliation(s)
- Koji Eshima
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kana Misawa
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Chihiro Ohashi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Haruka Noma
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kazuya Iwabuchi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| |
Collapse
|
39
|
Alawam AS, Anderson G, Lucas B. Generation and Regeneration of Thymic Epithelial Cells. Front Immunol 2020; 11:858. [PMID: 32457758 PMCID: PMC7221188 DOI: 10.3389/fimmu.2020.00858] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
The thymus is unique in its ability to support the maturation of phenotypically and functionally distinct T cell sub-lineages. Through its combined production of MHC-restricted conventional CD4+ and CD8+, and Foxp3+ regulatory T cells, as well as non-conventional CD1d-restricted iNKT cells and invariant γδT cells, the thymus represents an important orchestrator of immune system development and control. It is now clear that thymus function is largely determined by the availability of stromal microenvironments. These specialized areas emerge during thymus organogenesis and are maintained throughout life. They are formed from both epithelial and mesenchymal components, and collectively they support a stepwise program of thymocyte development. Of these stromal cells, cortical, and medullary thymic epithelial cells represent functional components of thymic microenvironments in both the cortex and medulla. Importantly, a key feature of thymus function is that levels of T cell production are not constant throughout life. Here, multiple physiological factors including aging, stress and pregnancy can have either short- or long-term detrimental impact on rates of thymus function. Here, we summarize our current understanding of the development and function of thymic epithelial cells, and relate this to strategies to protect and/or restore thymic epithelial cell function for therapeutic benefit.
Collapse
Affiliation(s)
- Abdullah S Alawam
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Beth Lucas
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, Jones ND, Ohigashi I, Takahama Y, Jenkinson WE, Anderson G. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat Commun 2020; 11:2198. [PMID: 32366944 PMCID: PMC7198500 DOI: 10.1038/s41467-020-16041-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
The thymus supports multiple αβ T cell lineages that are functionally distinct, but mechanisms that control this multifaceted development are poorly understood. Here we examine medullary thymic epithelial cell (mTEC) heterogeneity and its influence on CD1d-restricted iNKT cells. We find three distinct mTEClow subsets distinguished by surface, intracellular and secreted molecules, and identify LTβR as a cell-autonomous controller of their development. Importantly, this mTEC heterogeneity enables the thymus to differentially control iNKT sublineages possessing distinct effector properties. mTEC expression of LTβR is essential for the development thymic tuft cells which regulate NKT2 via IL-25, while LTβR controls CD104+CCL21+ mTEClow that are capable of IL-15-transpresentation for regulating NKT1 and NKT17. Finally, mTECs regulate both iNKT-mediated activation of thymic dendritic cells, and iNKT availability in extrathymic sites. In conclusion, mTEC specialization controls intrathymic iNKT cell development and function, and determines iNKT pool size in peripheral tissues.
Collapse
Affiliation(s)
- Beth Lucas
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrea J White
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kieran D James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nick D Jones
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
41
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020; 367:367/6480/eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/16/2020] [Indexed: 11/03/2022]
Abstract
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.,WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
42
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. [DOI: 10.1126/science.aay3224 32079746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A. Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J. Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R. Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A. Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R. Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
43
|
Kondo K, Ohigashi I, Takahama Y. Thymus machinery for T-cell selection. Int Immunol 2020; 31:119-125. [PMID: 30476234 DOI: 10.1093/intimm/dxy081] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
An immunocompetent and self-tolerant pool of naive T cells is formed in the thymus through the process of repertoire selection. T cells that are potentially capable of responding to foreign antigens are positively selected in the thymic cortex and are further selected in the thymic medulla to help prevent self-reactivity. The affinity between T-cell antigen receptors expressed by newly generated T cells and self-peptide-major histocompatibility complexes displayed in the thymic microenvironments plays a key role in determining the fate of developing T cells during thymic selection. Recent advances in our knowledge of the biology of thymic epithelial cells have revealed unique machinery that contributes to positive and negative selection in the thymus. In this article, we summarize recent findings on thymic T-cell selection, focusing on the machinery unique to thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Kuramoto, Tokushima, Japan
| |
Collapse
|
44
|
Abstract
Thymic malignancies are rare mediastinal cancers, classified according to the World Health Organization's histopathologic classification which distinguishes thymomas from thymic carcinomas. One key consideration when discussing immunotherapy for thymic epithelial tumors is that one-third of patients diagnosed with thymomas present at the time of diagnosis with autoimmune disorders, the most common being myasthenia gravis. The first step in the understanding of autoimmunity in thymic epithelial tumors is to distinguish true autoimmune disorders from paraneoplastic syndromes; besides pathophysiology, clinical correlates, impact on oncological management and survival may differ strongly. Autoimmune disorders are related to a deregulation in the physiological role of the thymus (i.e. to induce central tolerance to tissue self-antigens) through control of differentiation and subsequent positive and negative selection of immature T cells; from a clinical standpoint, in thymomas, once autoimmune disorders are present, they may not regress significantly after thymectomy. PD-L1 expression, while observed in more than 90% of epithelial cells of the normal thymus with a medullar tropism respecting Hassall's corpuscles, has also been identified in thymomas and thymic carcinomas using various immunohistochemistry protocols. Immune checkpoint inhibitors of the PD-1/PD-L1 axis have been assessed in advanced and metastatic thymic epithelial tumors, mainly thymic carcinomas. Several case reports have been published, and four trials have assessed the efficacy and safety of these inhibitors. Immunotherapy is not standard given the frequent occurrence of severe autoimmune disorders, and clinical trials are ongoing. Thymic malignancies are rare tumors. Advanced, metastatic and refractory thymic tumors may be treated with chemotherapy. Autoimmune disorders, such as myasthenia gravis, are observed in 30% of cases. PD-L1 expression is a hallmark of thymic epithelial cells. Immunotherapy is not standard, given the occurrence of autoimmune disorders.
Collapse
Affiliation(s)
- Nicolas Girard
- Correspondence to: Nicolas Girard, Institut Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
45
|
Ribeiro C, Alves NL, Ferreirinha P. Medullary thymic epithelial cells: Deciphering the functional diversity beyond promiscuous gene expression. Immunol Lett 2019; 215:24-27. [PMID: 30853502 DOI: 10.1016/j.imlet.2019.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
Within the thymus, cortical and medullary thymic epithelial cells (cTECs and mTECs, respectively) provide unique microenvironments for the development of T cells that are responsive to diverse foreign antigens while self-tolerant. Essential for tolerance induction, mTECs play a critical role in negative selection and T regulatory cell differentiation. In this article, we review the current knowledge on the functional diversity within mTECs and discuss how these novel subsets contribute to tolerance induction and are integrated in the complex blueprint of mTEC differentiation.
Collapse
Affiliation(s)
- Camila Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| |
Collapse
|
46
|
Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol 2019; 40:279-291. [PMID: 30803714 DOI: 10.1016/j.it.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
Abstract
In the thymus, distinct cortex and medulla areas emphasize the division of labor in selection events shaping the αβT cell receptor repertoire. For example, MHC restriction via positive selection is a unique property of epithelial cells in the thymic cortex. Far less clear are the events controlling tolerance induction in the medulla. By acting in concert through multiple roles, including antigen production/presentation and chemokine-mediated control of migration, we propose that medullary epithelium and dendritic cells collectively enable the medulla to balance T cell production with negative selection and Foxp3+ regulatory T cell (Treg) development. We examine here the features of these medullary resident cells and their roles in T cell tolerance, and discuss how imbalance in the thymus can result in loss of T cell tolerance.
Collapse
Affiliation(s)
- Sarah Inglesfield
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, UK.
| |
Collapse
|
47
|
Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility. iScience 2018; 10:98-113. [PMID: 30508722 PMCID: PMC6277225 DOI: 10.1016/j.isci.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) plays critical roles in T cell development in the thymus. Nevertheless, the dynamics of ERK activity and the role of ERK in regulating thymocyte motility remain largely unknown due to technical limitations. To visualize ERK activity in thymocytes, we here developed knockin reporter mice expressing a Förster/fluorescence resonance energy transfer (FRET)-based biosensor for ERK from the ROSA26 locus. Live imaging of thymocytes isolated from the reporter mice revealed that ERK regulates thymocyte motility in a subtype-specific manner. Negative correlation between ERK activity and motility was observed in CD4/CD8 double-positive thymocytes and CD8 single-positive thymocytes, but not in CD4 single-positive thymocytes. Interestingly, however, the temporal deviations of ERK activity from the average correlate with the motility of CD4 single-positive thymocytes. Thus, live-cell FRET imaging will open a window to understanding the dynamic nature and the diverse functions of ERK signaling in T cell biology. Mice expressing EKAREV from ROSA26 locus enable ERK activity monitoring in T cells ERK activity negatively regulates the motility of thymocytes in the thymus Temporal dynamics of ERK activity regulates cell motility of CD4-SP in the medulla TCR signal from intercellular association induces ERK activity dynamics in CD4-SP
Collapse
|
48
|
James KD, Cosway EJ, Lucas B, White AJ, Parnell SM, Carvalho-Gaspar M, Tumanov AV, Anderson G, Jenkinson WE. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med 2018; 215:2984-2993. [PMID: 30425120 PMCID: PMC6279407 DOI: 10.1084/jem.20181345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Thymic emigration is essential for establishing T cell immunity. We show the requirement for LTβR segregates from its control of medullary epithelium. Instead, our study demonstrates LTβR expression by the endothelium acts to rate limit thymocyte egress via perivascular routes. The emigration of mature thymocytes from the thymus is critical for establishing peripheral T cell compartments. However, the pathways controlling this process and the timing of egress in relation to postselection developmental stages are poorly defined. Here, we reexamine thymocyte egress and test current and opposing models in relation to the requirement for LTβR, a regulator of thymic microenvironments and thymocyte emigration. Using cell-specific gene targeting, we show that the requirement for LTβR in thymocyte egress is distinct from its control of thymic epithelium and instead maps to expression by endothelial cells. By separating emigration into sequential phases of perivascular space (PVS) entry and transendothelial migration, we reveal a developmentally ordered program of egress where LTβR operates to rate limit access to the PVS. Collectively, we show the process of thymic emigration ensures only the most mature thymocytes leave the thymus and demonstrate a role for LTβR in the initiation of thymus emigration that segregates from its control of medulla organization.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Andrea J White
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Manuela Carvalho-Gaspar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Villegas JA, Gradolatto A, Truffault F, Roussin R, Berrih-Aknin S, Le Panse R, Dragin N. Cultured Human Thymic-Derived Cells Display Medullary Thymic Epithelial Cell Phenotype and Functionality. Front Immunol 2018; 9:1663. [PMID: 30083154 PMCID: PMC6064927 DOI: 10.3389/fimmu.2018.01663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Thymic epithelial cells are one of the main components of the thymic microenvironment required for T-cell development. In this work, we describe an efficient method free of enzymatic and Facs-sorted methods to culture human medullary thymic epithelial cells without affecting the cell phenotypic, physiologic and functional features. Human medulla thymic epithelial cells (mTECs) are obtained by culturing thymic biopsies explants. After 7 days of primo-culture, mTECs keep their ability to express key molecules involved in immune tolerance processes such as autoimmune regulator, tissue-specific antigens, chemokines, and cytokines. In addition, the cells sensor their cultured environment and consequently adjust their gene expression network. Therefore, we describe and provide a human mTEC model that may be used to test the effect of various molecules on thymic epithelial cell homeostasis and physiology. This method should allow the investigations of the specificities and the knowledge of human mTECs in normal or pathological conditions and therefore discontinue the extrapolations done on the murine models.
Collapse
Affiliation(s)
- José A Villegas
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Angeline Gradolatto
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Frédérique Truffault
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | | | - Sonia Berrih-Aknin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Rozen Le Panse
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France
| | - Nadine Dragin
- INSERM, AIM, Center of Research in Myology, UMRS974, Sorbonne University, Paris, France.,Inovarion, Paris, France
| |
Collapse
|
50
|
Cheng M, Anderson MS. Thymic tolerance as a key brake on autoimmunity. Nat Immunol 2018; 19:659-664. [PMID: 29925986 PMCID: PMC6370479 DOI: 10.1038/s41590-018-0128-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
Although the thymus has long been recognized as a key organ for T cell selection, the intricate details linking these selection events to human autoimmunity have been challenging to decipher. Over the last two decades, there has been rapid progress in understanding the role of thymic tolerance mechanisms in autoimmunity through genetics. Here we review some of the recent progress in understanding key thymic tolerance processes that are critical for preventing autoimmune disease.
Collapse
Affiliation(s)
- Mickie Cheng
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|