1
|
Patel SB, Moskop DR, Jordan CT, Pietras EM. Understanding MDS stem cells: Advances and limitations. Semin Hematol 2024; 61:409-419. [PMID: 39472255 DOI: 10.1053/j.seminhematol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
In work spanning several decades, extensive studies have focused on the properties of malignant stem cells that drive the pathogenesis of acute myeloid leukemia (AML). However, relatively little attention has been devoted to several serious myeloid malignancies that occur prior to the onset of frank leukemia, including myelodysplastic syndrome (MDS). Like leukemia, MDS is hypothesized to arise from a pool of immature malignant stem and progenitor cells (MDS-SCs) that serve as a reservoir for disease evolution and progression1. While multiple studies have sought to identify and characterize the biology and vulnerabilities of MDS-SCs, yet translation of scientific concepts to therapeutically impactful regimens has been limited. Here, we evaluate the currently known properties of MDS-SCs as well as the post-transcriptional mechanisms that drive MDS pathogenesis at a stem and progenitor level. We highlight limits and gaps in our characterization and understanding of MDS-SCs and address the extent to which the properties of MDS-SC are (and can be) inferred from the characterization of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Daniel R Moskop
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| |
Collapse
|
2
|
Nisar H, Brauny M, Labonté FM, Schmitz C, Konda B, Hellweg CE. DNA Damage and Inflammatory Response of p53 Null H358 Non-Small Cell Lung Cancer Cells to X-Ray Exposure Under Chronic Hypoxia. Int J Mol Sci 2024; 25:12590. [PMID: 39684302 DOI: 10.3390/ijms252312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Hypoxia-induced radioresistance limits therapeutic success in cancer. In addition, p53 mutations are widespread in tumors including non-small cell lung carcinomas (NSCLCs), and they might modify the radiation response of hypoxic tumor cells. We therefore analyzed the DNA damage and inflammatory response in chronically hypoxic (1% O2, 48 h) p53 null H358 NSCLC cells after X-ray exposure. We used the colony-forming ability assay to determine cell survival, γH2AX immunofluorescence microscopy to quantify DNA double-strand breaks (DSBs), flow cytometry of DAPI-stained cells to measure cell cycle distribution, ELISAs to quantify IL-6 and IL-8 secretion in cell culture supernatants, and RNA sequencing to determine gene expression. Chronic hypoxia increased the colony-forming ability and radioresistance of H358 cells. It did not affect the formation or resolution of X-ray-induced DSBs. It reduced the fraction of cells undergoing G2 arrest after X-ray exposure and delayed the onset of G2 arrest. Hypoxia led to an earlier enhancement in cytokines secretion rate after X-irradiation compared to normoxic controls. Gene expression changes were most pronounced after the combined exposure to hypoxia and X-rays and pertained to senescence and different cell death pathways. In conclusion, hypoxia-induced radioresistance is present despite the absence of functional p53. This resistance is related to differences in clonogenicity, cell cycle regulation, cytokine secretion, and gene expression under chronic hypoxia, but not to differences in DNA DSB repair kinetics.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Melanie Brauny
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science & Faculty of Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Frederik M Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, 50923 Cologne, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Christine E Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
3
|
Ho TC, LaMere MW, Kawano H, Byun DK, LaMere EA, Chiu YC, Chen C, Wang J, Dokholyan NV, Calvi LM, Liesveld JL, Jordan CT, Kapur R, Singh RK, Becker MW. Targeting IL-1/IRAK1/4 signaling in Acute Myeloid Leukemia Stem Cells Following Treatment and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.09.622796. [PMID: 39605740 PMCID: PMC11601227 DOI: 10.1101/2024.11.09.622796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Therapies for acute myeloid leukemia (AML) face formidable challenges due to relapse, often driven by leukemia stem cells (LSCs). Strategies targeting LSCs hold promise for enhancing outcomes, yet paired comparisons of functionally defined LSCs at diagnosis and relapse remain underexplored. We present transcriptome analyses of functionally defined LSC populations at diagnosis and relapse, revealing significant alterations in IL-1 signaling. Interleukin-1 receptor type I (IL1R1) and interleukin-1 receptor accessory protein (IL1RAP) were notably upregulated in leukemia stem and progenitor cells at both diagnosis and relapse. Knockdown of IL1R1 and IL1RAP reduced the clonogenicity and/or engraftment of primary human AML cells. In leukemic MLL-AF9 mice, Il1r1 knockout reduced LSC frequency and extended survival. To target IL-1 signaling at both diagnosis and relapse, we developed UR241-2, a novel interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4) inhibitor. UR241-2 robustly suppressed IL-1/IRAK1/4 signaling, including NF-κB activation and phosphorylation of p65 and p38, following IL-1 stimulation. UR241-2 selectively inhibited LSC clonogenicity in primary human AML cells at both diagnosis and relapse, while sparing normal hematopoietic stem and progenitor cells. It also reduced AML engraftment in leukemic mice. Our findings highlight the therapeutic potential of UR241-2 in targeting IL-1/IRAK1/4 signaling to eradicate LSCs and improve AML outcomes.
Collapse
|
4
|
Reuvekamp T, Bachas C, Cloos J. Immunophenotypic features of early haematopoietic and leukaemia stem cells. Int J Lab Hematol 2024; 46:795-808. [PMID: 39045906 DOI: 10.1111/ijlh.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Many tumours are organised in a hierarchical structure with at its apex a cell that can maintain, establish, and repopulate the tumour-the cancer stem cell. The haematopoietic stem cell (HSC) is the founder cell for all functional blood cells. Like HSCs, the leukaemia stem cells (LSC) are hypothesised to be the leukaemia-initiating cells, which have features of stemness such as self-renewal, quiescence, and resistance to cytotoxic drugs. Immunophenotypically, CD34+CD38- defines HSCs by adding lineage negativity and CD90+CD45RA-. At which stage of maturation the further differentiation is blocked, determines the type of leukaemia, and determines the immunophenotype of the LSC specific to the leukaemia type. No apparent LSC phenotype has been described in lymphoid leukaemia, and it is debated if a specific acute lymphocytic leukaemia-initiating cell is present, as all cells are capable of engraftment in a secondary mouse model. In chronic lymphocytic leukaemia, a B-cell clone is responsible for uncontrolled proliferation, not a specific LSC. In chronic and acute myeloid leukaemia, LSC is described as CD34+CD38- with the expression of a marker that is aberrantly expressed (LSC marker), such as CD45RA, CD123 or in the case of chronic myeloid leukaemia CD26. In acute myeloid leukaemia, the LSC load had prognostic relevance and might be a biomarker that can be used for monitoring and as an addition to measurable residual disease. However, challenges such as the CD34-negative immunophenotype need to be explored.
Collapse
Affiliation(s)
- Tom Reuvekamp
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
6
|
Vladyka O, Zieg J, Pátek O, Bloomfield M, Paračková Z, Šedivá A, Klocperk A. Profound T Lymphocyte and DNA Repair Defect Characterizes Schimke Immuno-Osseous Dysplasia. J Clin Immunol 2024; 44:180. [PMID: 39153074 PMCID: PMC11330395 DOI: 10.1007/s10875-024-01787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Schimke immuno-osseous dysplasia is a rare multisystemic disorder caused by biallelic loss of function of the SMARCAL1 gene that plays a pivotal role in replication fork stabilization and thus DNA repair. Individuals affected from this disease suffer from disproportionate growth failure, steroid resistant nephrotic syndrome leading to renal failure and primary immunodeficiency mediated by T cell lymphopenia. With infectious complications being the leading cause of death in this disease, researching the nature of the immunodeficiency is crucial, particularly as the state is exacerbated by loss of antibodies due to nephrotic syndrome or immunosuppressive treatment. Building on previous findings that identified the loss of IL-7 receptor expression as a possible cause of the immunodeficiency and increased sensitivity to radiation-induced damage, we have employed spectral cytometry and multiplex RNA-sequencing to assess the phenotype and function of T cells ex-vivo and to study changes induced by in-vitro UV irradiation and reaction of cells to the presence of IL-7. Our findings highlight the mature phenotype of T cells with proinflammatory Th1 skew and signs of exhaustion and lack of response to IL-7. UV light irradiation caused a severe increase in the apoptosis of T cells, however the expression of the genes related to immune response and regulation remained surprisingly similar to healthy cells. Due to the disease's rarity, more studies will be necessary for complete understanding of this unique immunodeficiency.
Collapse
Affiliation(s)
- Ondřej Vladyka
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Ondřej Pátek
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Zuzana Paračková
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic.
| |
Collapse
|
7
|
Zhang Y, Park M, Ghoda LY, Zhao D, Valerio M, Nafie E, Gonzalez A, Ly K, Parcutela B, Choi H, Gong X, Chen F, Harada K, Chen Z, Nguyen LXT, Pichiorri F, Chen J, Song J, Forman SJ, Amanam I, Zhang B, Jin J, Williams JC, Marcucci G. IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells. J Hematol Oncol 2024; 17:67. [PMID: 39143574 PMCID: PMC11325815 DOI: 10.1186/s13045-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Miso Park
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lucy Y Ghoda
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dandan Zhao
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ebtesam Nafie
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Asaul Gonzalez
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin Ly
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bea Parcutela
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hyeran Choi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xubo Gong
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Chen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kaito Harada
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Idoroenyi Amanam
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - John C Williams
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
8
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Mosna F. The Immunotherapy of Acute Myeloid Leukemia: A Clinical Point of View. Cancers (Basel) 2024; 16:2359. [PMID: 39001421 PMCID: PMC11240611 DOI: 10.3390/cancers16132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The potential of the immune system to eradicate leukemic cells has been consistently demonstrated by the Graft vs. Leukemia effect occurring after allo-HSCT and in the context of donor leukocyte infusions. Various immunotherapeutic approaches, ranging from the use of antibodies, antibody-drug conjugates, bispecific T-cell engagers, chimeric antigen receptor (CAR) T-cells, and therapeutic infusions of NK cells, are thus currently being tested with promising, yet conflicting, results. This review will concentrate on various types of immunotherapies in preclinical and clinical development, from the point of view of a clinical hematologist. The most promising therapies for clinical translation are the use of bispecific T-cell engagers and CAR-T cells aimed at lineage-restricted antigens, where overall responses (ORR) ranging from 20 to 40% can be achieved in a small series of heavily pretreated patients affected by refractory or relapsing leukemia. Toxicity consists mainly in the occurrence of cytokine-release syndrome, which is mostly manageable with step-up dosing, the early use of cytokine-blocking agents and corticosteroids, and myelosuppression. Various cytokine-enhanced natural killer products are also being tested, mainly as allogeneic off-the-shelf therapies, with a good tolerability profile and promising results (ORR: 20-37.5% in small trials). The in vivo activation of T lymphocytes and NK cells via the inhibition of their immune checkpoints also yielded interesting, yet limited, results (ORR: 33-59%) but with an increased risk of severe Graft vs. Host disease in transplanted patients. Therefore, there are still several hurdles to overcome before the widespread clinical use of these novel compounds.
Collapse
Affiliation(s)
- Federico Mosna
- Hematology and Bone Marrow Transplantation Unit (BMTU), Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of Paracelsus Medical University (PMU), 39100 Bolzano, Italy
| |
Collapse
|
10
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Mulholland M, Depuydt MAC, Jakobsson G, Ljungcrantz I, Grentzmann A, To F, Bengtsson E, Jaensson Gyllenbäck E, Grönberg C, Rattik S, Liberg D, Schiopu A, Björkbacka H, Kuiper J, Bot I, Slütter B, Engelbertsen D. Interleukin-1 receptor accessory protein blockade limits the development of atherosclerosis and reduces plaque inflammation. Cardiovasc Res 2024; 120:581-595. [PMID: 38563353 PMCID: PMC11074796 DOI: 10.1093/cvr/cvae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
AIMS The interleukin-1 receptor accessory protein (IL1RAP) is a co-receptor required for signalling through the IL-1, IL-33, and IL-36 receptors. Using a novel anti-IL1RAP-blocking antibody, we investigated the role of IL1RAP in atherosclerosis. METHODS AND RESULTS Single-cell RNA sequencing data from human atherosclerotic plaques revealed the expression of IL1RAP and several IL1RAP-related cytokines and receptors, including IL1B and IL33. Histological analysis showed the presence of IL1RAP in both the plaque and adventitia, and flow cytometry of murine atherosclerotic aortas revealed IL1RAP expression on plaque leucocytes, including neutrophils and macrophages. High-cholesterol diet fed apolipoprotein E-deficient (Apoe-/-) mice were treated with a novel non-depleting IL1RAP-blocking antibody or isotype control for the last 6 weeks of diet. IL1RAP blockade in mice resulted in a 20% reduction in subvalvular plaque size and limited the accumulation of neutrophils and monocytes/macrophages in plaques and of T cells in adventitia, compared with control mice. Indicative of reduced plaque inflammation, the expression of several genes related to leucocyte recruitment, including Cxcl1 and Cxcl2, was reduced in brachiocephalic arteries of anti-IL1RAP-treated mice, and the expression of these chemokines in human plaques was mainly restricted to CD68+ myeloid cells. Furthermore, in vitro studies demonstrated that IL-1, IL-33, and IL-36 induced CXCL1 release from both macrophages and fibroblasts, which could be mitigated by IL1RAP blockade. CONCLUSION Limiting IL1RAP-dependent cytokine signalling pathways in atherosclerotic mice reduces plaque burden and plaque inflammation, potentially by limiting plaque chemokine production.
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Gabriel Jakobsson
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Irena Ljungcrantz
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Andrietta Grentzmann
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| | - Fong To
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Cardiovascular Research—Matrix and Inflammation in Atherosclerosis, Lund University, Malmö, Sweden
- Department of Biomedical Science, Malmö University, Malmö, Sweden
- Biofilms—Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | | | | | - Sara Rattik
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
- Cantargia AB, Lund, Sweden
| | | | - Alexandru Schiopu
- Department of Translational Medicine, Cardiac Inflammation, Lund University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Cardiovascular Research—Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, The Netherlands
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Cardiovascular Research—Immune Regulation, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Landuzzi L, Ruzzi F, Pellegrini E, Lollini PL, Scotlandi K, Manara MC. IL-1 Family Members in Bone Sarcomas. Cells 2024; 13:233. [PMID: 38334625 PMCID: PMC10854900 DOI: 10.3390/cells13030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
IL-1 family members have multiple pleiotropic functions affecting various tissues and cells, including the regulation of the immune response, hematopoietic homeostasis, bone remodeling, neuronal physiology, and synaptic plasticity. Many of these activities are involved in various pathological processes and immunological disorders, including tumor initiation and progression. Indeed, IL-1 family members have been described to contribute to shaping the tumor microenvironment (TME), determining immune evasion and drug resistance, and to sustain tumor aggressiveness and metastasis. This review addresses the role of IL-1 family members in bone sarcomas, particularly the highly metastatic osteosarcoma (OS) and Ewing sarcoma (EWS), and discusses the IL-1-family-related mechanisms that play a role in bone metastasis development. We also consider the therapeutic implications of targeting IL-1 family members, which have been proposed as (i) relevant targets for anti-tumor and anti-metastatic drugs; (ii) immune checkpoints for immune suppression; and (iii) potential antigens for immunotherapy.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Evelin Pellegrini
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| | - Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (E.P.); (K.S.); (M.C.M.)
| |
Collapse
|
13
|
Zarezadeh Mehrabadi A, Shahba F, Khorramdelazad H, Aghamohammadi N, Karimi M, Bagherzadeh K, Khoshmirsafa M, Massoumi R, Falak R. Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Crit Rev Oncol Hematol 2024; 193:104200. [PMID: 37981104 DOI: 10.1016/j.critrevonc.2023.104200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
IL-1, plays a role in some pathological inflammatory conditions. This pro-inflammatory cytokine also has a crucial role in tumorigenesis and immune responses in the tumor microenvironment (TME). IL-1 receptor accessory protein (IL-1RAP), combined with IL-1 receptor-1, provides a functional complex for binding and signaling. In addition to the direct role of IL-1, some studies demonstrated that IL1-RAP has essential roles in the progression, angiogenesis, and metastasis of solid tumors such as gastrointestinal tumors, lung carcinoma, glioma, breast and cervical cancers. This molecule also interacts with FLT-3 and c-Kit tyrosine kinases and is involved in the pathogenesis of hematological malignancies such as acute myeloid lymphoma. Additionally, IL-1RAP interacts with solute carrier family 3 member 2 (SLC3A2) and thereby increasing the resistance to anoikis and metastasis in Ewing sarcoma. This review summarizes the role of IL-1RAP in different types of cancers and discusses its targeting as a novel therapeutic approach for malignancies.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faezeh Shahba
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Nazanin Aghamohammadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden.
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yu F, Xing J, Li L, Xiang M. CircCRIM1 mediates proliferation, migration, and invasion of trophoblast cell through regulating miR-942-5p/IL1RAP axis. Am J Reprod Immunol 2023; 90:e13699. [PMID: 37382169 DOI: 10.1111/aji.13699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a severe complication that occurs during pregnancy and a main cause of perinatal mortality of mothers as well as infants, which is characterized by abnormal placental trophoblast. Previous study reported that aberrant circular RNA (circRNA) was involved in the pathogenesis and progression of PE. Herein, we aimed to investigate the role of circCRIM1 and explore the mechanism of circCRIM1 in PE. METHODS The quantitative real-time PCR (qRT-PCR) was conducted to determine the relative expression of circCRIM1, miR-942-5p, and IL1RAP in tissues and cells. Cell proliferation viability was assessed by both MTT and EdU assays. Cell cycle distribution was analyzed using flow cytometry. Transwell assay was performed to test the cell migration and invasion. The protein levels of CyclinD1, MMP9, MMP2, and IL1RAP were measured by western blot. The putative binding sites between miR-942-5p and circCRIM1 or IL1RAP 3'UTR were verified by dual-luciferase reporter gene assay. Rescue experiment was performed to confirm that miR-942-5p/IL1RAP axis was functional target of circCRIM1 in trophoblast cells. RESULTS CircCRIM1 was upregulated in placenta tissues of PE and its expression was inversely related to infant weight. Overexpression of circCRIM1 suppressed proliferation, migration, and invasion and reduced the protein levels of CyclinD1, MMP9, MMP2 of trophoblast cells, whereas its knockdown exerted the opposite effect. CircCRIM1 could interact with miR-942-5p, and introduction of miR-942-5p partially abated the inhibitory effect of circCRIM1 on trophoblast cell behaviors. IL1RAP was directly targeted and negatively regulated by miR-942-5p. miR-942-5p played its regulatory role on cell proliferation, migration, and invasion of trophoblast by IL1RAP. Further analysis showed that circCRIM1 modulated IL1RAP expression via sponging miR-942-5p. CONCLUSION The results of the present study demonstrated that circCRIM1 inhibited the proliferation, migration, and invasion of trophoblast cells through sponging miR-942-5p and up-regulating IL1RAP, providing a possible new mechanism of PE.
Collapse
Affiliation(s)
- Fen Yu
- Department of Gynecology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jie Xing
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lingyun Li
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Mi Xiang
- Department of Obstetrics, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Nicod C, da Rocha MN, Warda W, Roussel X, Haderbache R, Seffar E, Trad R, Bouquet L, Goncalves M, Bosdure L, Laude MC, Guiot M, Ferrand C, Deschamps M. CAR-T cells targeting IL-1RAP produced in a closed semiautomatic system are ready for the first phase I clinical investigation in humans. Curr Res Transl Med 2023; 71:103385. [PMID: 36773434 DOI: 10.1016/j.retram.2023.103385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE OF THE STUDY The use of chimeric antigen receptor (CAR)-T cells has demonstrated excellent results in B-lymphoid malignancies. The Advanced Therapy Medicinal Products (ATMP) status and good manufacturing practice (GMP) of CAR-T cells require particular conditions of production performed in a pharmaceutical establishment. Our team developed a new medical drug candidate for acute myeloid leukemia (AML), a CAR targeting interleukin-1 receptor accessory protein (IL-1RAP) expressed by leukemia stem cells, which will need to be evaluated in a phase I-IIa clinical trial. During the preclinical development phase, we produced IL-1RAP CAR-T cells in a semi-automated closed system (CliniMACSࣨ Prodigy) using research grade lentiviral particles. PATIENTS AND THE METHODS The purpose of this work was to validate our production process and to characterize our preclinical GMP-like medicinal product. IL-1RAP CAR-T cells were produced from healthy donors in 9 days, either in an semi-automated closed system (with GMP-like compliant conditions) or according to another research protocols, which was used as a reference. RESULTS Based on phenotypic, functional and metabolic analyses, we were able to show that the final product is ready for clinical use. Finally, in a xenograft AML murine model, we demonstrated that the IL-1RAP CAR-T cells generated in a GMP-like environment could eliminate tumor cells and increase overall survival. CONCLUSION We demonstrated that our IL-1RAP CAR-T cell preclinical GMP-like production process meets standard regulatory requirements in terms of CAR-T cell number, subpopulation phenotype and cytotoxic functionality. Our CAR-T cell production process was validated and can be used to produce medicinal IL-1RAP CAR-T cells for the first phase I clinical trial.
Collapse
Affiliation(s)
- Clémentine Nicod
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mathieu Neto da Rocha
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Walid Warda
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Xavier Roussel
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Hematology, CHU Besançon, F-25000 Besançon, France
| | - Rafik Haderbache
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Evan Seffar
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Rim Trad
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Lucie Bouquet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mathieu Goncalves
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Lymphobank S.A.S.U, F-25000 Besançon, France
| | - Léa Bosdure
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Marie-Charlotte Laude
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mélanie Guiot
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Christophe Ferrand
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Marina Deschamps
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France.
| |
Collapse
|
16
|
Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation. Nat Commun 2023; 14:12. [PMID: 36596811 PMCID: PMC9810723 DOI: 10.1038/s41467-022-35700-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression.
Collapse
|
17
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol 2022; 13:1085978. [PMID: 36605213 PMCID: PMC9809466 DOI: 10.3389/fimmu.2022.1085978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.
Collapse
Affiliation(s)
- Christopher Schorr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Biomedical Engineering, Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Fabiana Perna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Fabiana Perna,
| |
Collapse
|
19
|
Zhou J, Xiang W, Zhang K, Zhao Q, Xu Z, Li Z. IL1RAP Knockdown in LPS-Stimulated Normal Human Astrocytes Suppresses LPS-Induced Reactive Astrogliosis and Promotes Neuronal Cell Proliferation. Neurochem Res 2022; 48:1468-1479. [PMID: 36502418 DOI: 10.1007/s11064-022-03811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 12/14/2022]
Abstract
The reactivation of astrocytes plays a critical role in spinal cord injury (SCI) repairment. In this study, IL1RAP expression has been found to be upregulated in SCI mice spinal cord, SCI astrocytes, and LPS-stimulated NHAs. Genes correlated with IL1RAP were significantly enriched in cell proliferation relative pathways. In LPS-stimulated NHAs, IL1RAP overexpression promoted NHA cell proliferation, decreased PTEN protein levels, and increased the phosphorylation of Akt and mTOR. IL1RAP overexpression promoted LPS-induced NHA activation and NF-κB signaling activation. Conditioned medium from IL1RAP-overexpressing NHAs inhibited SH-SY5Y cells viability but promoted cell apoptosis. Conclusively, IL1RAP knockdown in LPS-stimulated NHAs could partially suppress LPS-induced reactive astrogliosis, therefore promoting neuronal cell proliferation.
Collapse
Affiliation(s)
- Jiahui Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weineng Xiang
- Department of Orthopedics, The First Hospital of Changsha City, Changsha, 410005, China
| | - Kexiang Zhang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qun Zhao
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhewei Xu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyue Li
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
20
|
Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a Key Therapeutic Target in Cancer. Int J Mol Sci 2022; 23:ijms232314918. [PMID: 36499246 PMCID: PMC9735758 DOI: 10.3390/ijms232314918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer is a major cause of death worldwide and especially in high- and upper-middle-income countries. Despite recent progress in cancer therapies, such as chimeric antigen receptor T (CAR-T) cells or antibody-drug conjugate (ADC), new targets expressed by the tumor cells need to be identified in order to selectively drive these innovative therapies to tumors. In this context, IL-1RAP recently showed great potential to become one of these new targets for cancer therapy. IL-1RAP is highly involved in the inflammation process through the interleukins 1, 33, and 36 (IL-1, IL-33, IL-36) signaling pathways. Inflammation is now recognized as a hallmark of carcinogenesis, suggesting that IL-1RAP could play a role in cancer development and progression. Furthermore, IL-1RAP was found overexpressed on tumor cells from several hematological and solid cancers, thus confirming its potential involvement in carcinogenesis. This review will first describe the structure and genetics of IL-1RAP as well as its role in tumor development. Finally, a focus will be made on the therapies based on IL-1RAP targeting, which are now under preclinical or clinical development.
Collapse
Affiliation(s)
- Jame Frenay
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Pierre-Simon Bellaye
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alexandra Oudot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Alex Helbling
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Camille Petitot
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| | - Christophe Ferrand
- INSERM UMR1098, EFS BFC, Université de Bourgogne Franche-Comté, 25000 Besançon, France
- CanCell Therapeutics, 25000 Besançon, France
| | - Bertrand Collin
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, 21000 Dijon, France
| | - Alexandre M M Dias
- Plateforme d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France
| |
Collapse
|
21
|
Choudhary GS, Pellagatti A, Agianian B, Smith MA, Bhagat TD, Gordon-Mitchell S, Sahu S, Pandey S, Shah N, Aluri S, Aggarwal R, Aminov S, Schwartz L, Steeples V, Booher RN, Ramachandra M, Samson M, Carbajal M, Pradhan K, Bowman TV, Pillai MM, Will B, Wickrema A, Shastri A, Bradley RK, Martell RE, Steidl UG, Gavathiotis E, Boultwood J, Starczynowski DT, Verma A. Activation of targetable inflammatory immune signaling is seen in myelodysplastic syndromes with SF3B1 mutations. eLife 2022; 11:e78136. [PMID: 36040792 PMCID: PMC9427103 DOI: 10.7554/elife.78136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the SF3B1 splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 (IRAK4) isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in preclinical models of MDS/AML. Results RNA-seq splicing analysis of SF3B1 mutant MDS samples revealed retention of full-length exon 6 of IRAK4, a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteasomal degradation. Expression of IRAK4-long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models. Funding This work was supported by Cincinnati Children's Hospital Research Foundation, Leukemia Lymphoma Society, and National Institute of Health (R35HL135787, RO1HL111103, RO1DK102759, RO1HL114582), Gabrielle's Angel Foundation for Cancer Research, and Edward P. Evans Foundation grants to DTS. AV is supported by Edward P. Evans Foundation, National Institute of Health (R01HL150832, R01HL139487, R01CA275007), Leukemia and Lymphoma Society, Curis and a gift from the Jane and Myles P. Dempsey family. AP and JB are supported by Blood Cancer UK (grants 13042 and 19004). GC is supported by a training grant from NYSTEM. We acknowledge support of this research from The Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. MS is supported by a National Institute of Health Research Training and Career Development Grant (F31HL132420).
Collapse
Affiliation(s)
- Gaurav S Choudhary
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Bogos Agianian
- Department of Biochemistry, Albert Einstein College of MedicineThe BronxUnited States
| | - Molly A Smith
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Tushar D Bhagat
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Shanisha Gordon-Mitchell
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Srabani Sahu
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Sanjay Pandey
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Nishi Shah
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Srinivas Aluri
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Ritesh Aggarwal
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Sarah Aminov
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Leya Schwartz
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Violetta Steeples
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Milagros Carbajal
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Kith Pradhan
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Teresa V Bowman
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | | | - Britta Will
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | | | - Aditi Shastri
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | | | | | - Ulrich G Steidl
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of MedicineThe BronxUnited States
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Daniel T Starczynowski
- Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Amit Verma
- Blood Cancer Institute, Albert Einstein College of Medicine, Montefiore Medical CenterThe BronxUnited States
| |
Collapse
|
22
|
Zheng E, Cai Z, Li W, Ni C, Fang Q. Achaete-scute complex-like 2 regulated inflammatory mechanism through Toll-like receptor 4 activating in stomach adenocarcinoma. World J Surg Oncol 2022; 20:266. [PMID: 36008864 PMCID: PMC9404661 DOI: 10.1186/s12957-022-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background To investigate the role of achaete-scute complex-like 2 (ASCL2) in stomach adenocarcinoma (STAD), we analyze whether ASCL2 suppression could retard cancer development and further observe the relevance between ASCL2 and inflammation via Toll-like receptor 4 (TLR4) activation in STAD, both in vitro and in vivo. Methods Proliferation, development, inflammation, and apoptosis in STAD are observed using sh-ASCL2 lentivirus via TLR4 activation in vitro and in vivo. The relationship between ASCL2 and inflammation is analyzed. Western blotting of ASCL2 with the target protein of immune-associated cells is performed. The prognosis of STAD and associated ASCL2 mutation are analyzed. Results The ASCL2 level in STAD tumor tissues is increased, compared to normal tissues, and brings a worse prognosis. The ASCL2 shows a negative correlation with inflammation, and TLR4 reveals a positive correlation with gastric cancer. ASCL2 expression is high in MGC803 cells. Sh-ASCL2 could reduce STAD development by decreasing proliferation, tumor volume, and biomarker levels and increasing apoptosis in vitro and in vivo. The inflammatory role of ASCL2 is regulated through TLR4 activation. ASCL2 levels may be related to CNTNAP3, CLIP1, C9orf84, ARIH2, and IL1R2 mutations; positively correlated with M2 macrophage and T follicular helper cell levels; negatively correlated with neutrophil, dendritic cell, monocyte, CD8 T cell, and M1 macrophage levels; and involved in STAD prognosis. Conclusions The ASCL2 may adjust inflammation in STAD through TLR4 activation and may be associated with related immune cells. ASCL2 is possibly an upstream target factor of the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Enqi Zheng
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Zhun Cai
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Wangyong Li
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Chuandou Ni
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China
| | - Qian Fang
- Department of General Surgery, The First People's Hospital of Wenling, No.333 south Chuan-an road, Chengxi street, Wenling, 317500, Zhejinag Province, People's Republic of China.
| |
Collapse
|
23
|
Trad R, Warda W, Alcazer V, Neto da Rocha M, Berceanu A, Nicod C, Haderbache R, Roussel X, Desbrosses Y, Daguindau E, Renosi F, Roumier C, Bouquet L, Biichle S, Guiot M, Seffar E, Caillot D, Depil S, Robinet E, Salma Y, Deconinck E, Deschamps M, Ferrand C. Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia. J Immunother Cancer 2022; 10:jitc-2021-004222. [PMID: 35803613 PMCID: PMC9272123 DOI: 10.1136/jitc-2021-004222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a very difficult disease to cure due to the persistence of leukemic stem cells (LSCs), which are resistant to different lines of chemotherapy and are the basis of refractory/relapsed (R/R) disease in 80% of patients with AML not receiving allogeneic transplantation. Methods In this study, we showed that the interleukin-1 receptor accessory protein (IL-1RAP) protein is overexpressed on the cell surface of LSCs in all subtypes of AML and confirmed it as an interesting and promising target in AML compared with the most common potential AML targets, since it is not expressed by the normal hematopoietic stem cell. After establishing the proof of concept for the efficacy of chimeric antigen receptor (CAR) T-cells targeting IL-1RAP in chronic myeloid leukemia, we hypothesized that third-generation IL-1RAP CAR T-cells could eliminate AML LSCs, where the medical need is not covered. Results We first demonstrated that IL-1RAP CAR T-cells can be produced from AML T-cells at the time of diagnosis and at relapse. In vitro and in vivo, we showed the effectiveness of IL-1RAP CAR T-cells against AML cell lines expressing different levels of IL-1RAP and the cytotoxicity of autologous IL-1RAP CAR T-cells against primary cells from patients with AML at diagnosis or at relapse. In patient-derived relapsed AML xenograft models, we confirmed that IL-1RAP CAR T-cells are able to circulate in peripheral blood and to migrate in the bone marrow and spleen, are cytotoxic against primary AML cells and increased overall survival. Conclusion In conclusion, our preclinical results suggest that IL-1RAP CAR T-based adoptive therapy could be a promising strategy in AML treatment and it warrants the clinical investigation of this CAR T-cell therapy.
Collapse
Affiliation(s)
- Rim Trad
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Walid Warda
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | | | - Mathieu Neto da Rocha
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | - Ana Berceanu
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | | | | | - Xavier Roussel
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | | | | | - Florain Renosi
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | | | - Lucie Bouquet
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Sabeha Biichle
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Melanie Guiot
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Evan Seffar
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France
| | - Denis Caillot
- Clinical Hematology, CHU François Mitterrand, Dijon, France
| | | | | | - Yahya Salma
- Laboratory of Applied Biotechnology (LBA3B), Lebanese University, Tripoli, Lebanon
| | - Eric Deconinck
- Clinical Hematology, C.H. Univ Jean Minjoz, Besancon, France
| | - Marina Deschamps
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France.,CanCell Therapeutics, Besancon, France
| | - Christophe Ferrand
- TIMC, EFSBFC, INSERM UMR1098 RIGHT,UFC, Besancon, France .,CanCell Therapeutics, Besancon, France
| |
Collapse
|
24
|
Zhang Y, Chen X, Wang H, Gordon-Mitchell S, Sahu S, Bhagat TD, Choudhary G, Aluri S, Pradhan K, Sahu P, Carbajal M, Zhang H, Agarwal B, Shastri A, Martell R, Starczynowski D, Steidl U, Maitra A, Verma A. Innate immune mediator, Interleukin-1 receptor accessory protein (IL1RAP), is expressed and pro-tumorigenic in pancreatic cancer. J Hematol Oncol 2022; 15:70. [PMID: 35606824 PMCID: PMC9128118 DOI: 10.1186/s13045-022-01286-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Advanced pancreatic ductal adenocarcinoma (PDAC) is usually an incurable malignancy that needs newer therapeutic targets. Interleukin-1 receptor accessory protein (IL1RAP) is an innate immune mediator that regulates activation of pro-inflammatory and mitogenic signaling pathways. Immunohistochemistry on tissue microarrays demonstrated expression of IL1RAP in majority of human PDAC specimens and in murine pancreatic tumors from K-RasG122D/p53R172H/PDXCre (KPC) mice. Single cell RNA-Seq analysis of human primary pre-neoplastic lesions and adenocarcinoma specimens indicated that overexpression occurs during carcinogenesis. IL1RAP overexpression was associated with worse overall survival. IL1RAP knockdown significantly reduced cell viability, invasiveness, and clonogenic growth in pancreatic cancer cell lines. Inhibition of the downstream interleukin-1 receptor-associated kinase 4 (IRAK4) using two pharmacologic inhibitors, CA-4948 and PF06650833, resulted in reduced growth in pancreatic cancer cell lines and in xenograft models.
Collapse
Affiliation(s)
- Yang Zhang
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Xiaoyi Chen
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Huamin Wang
- Departments of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shanisha Gordon-Mitchell
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Srabani Sahu
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tushar D Bhagat
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Gaurav Choudhary
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Srinivas Aluri
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kith Pradhan
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Plabani Sahu
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Milagros Carbajal
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Hui Zhang
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | | | - Aditi Shastri
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | | | | | - Ulrich Steidl
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Anirban Maitra
- Departments of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Amit Verma
- Albert Einstein College of Medicine, Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
25
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
26
|
Qian F, Arner BE, Kelly KM, Annageldiyev C, Sharma A, Claxton DF, Paulson RF, Prabhu KS. Interleukin-4 treatment reduces leukemia burden in acute myeloid leukemia. FASEB J 2022; 36:e22328. [PMID: 35471732 PMCID: PMC9994642 DOI: 10.1096/fj.202200251r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
Abstract
Interleukin-4 (IL-4) is a signature cytokine pivotal in Type 2 helper T cell (Th2) immune response, particularly in allergy and hypersensitivity. Interestingly, IL-4 increases endogenous levels of prostaglandin D2 (PGD2 ) and its metabolites, Δ12 -prostaglandin J2 (Δ12 -PGJ2 ) and 15-deoxy-Δ12,14 -prostaglandin J2 (15d-PGJ2 ), collectively called cyclopentenone PGs (CyPGs). However, the therapeutic role of IL-4 in hematologic malignancies remains unclear. Here, we employed a murine model of acute myeloid leukemia (AML), where human MLL-AF9 fusion oncoprotein was expressed in hematopoietic progenitor cells, to test the effect of IL-4 treatment in vivo. Daily intraperitoneal treatment with IL-4 at 60 µg/kg/d significantly alleviated the severity of AML, as seen by decreased leukemia-initiating cells (LICs). The effect of IL-4 was mediated, in part, by the enhanced expression of hematopoietic- PGD2 synthase (H-PGDS) to effect endogenous production of CyPGs, through autocrine and paracrine signaling mechanisms. Similar results were seen with patient-derived AML cells cultured ex vivo with IL-4. Use of GW9662, a peroxisome proliferator-activated receptor gamma (PPARγ) antagonist, suggested endogenous CyPGs-PPARγ axis mediated p53-dependent apoptosis of LICs by IL-4. Taken together, our results reveal a beneficial role of IL-4 treatment in AML suggesting a potential therapeutic regimen worthy of clinical trials in patients with AML.
Collapse
Affiliation(s)
- Fenghua Qian
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brooke E. Arner
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kathleen M. Kelly
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
- Mammalian Pathology Section, Animal Diagnostic Laboratory, Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charyguly Annageldiyev
- Division of Hematology and Oncology and Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Division of Hematology and Oncology and Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - David F. Claxton
- Division of Hematology and Oncology and Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert F. Paulson
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - K. Sandeep Prabhu
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Inflammation and myeloid malignancy: Quenching the flame. Blood 2022; 140:1067-1074. [PMID: 35468199 DOI: 10.1182/blood.2021015162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic inflammation with aging ("inflammaging") plays a prominent role in the pathogenesis of myeloid malignancies. Aberrant inflammatory activity impacts many different cells in the marrow, including normal blood and stromal marrow elements and leukemic cells, in unique and distinct ways. Inflammation can promote selective clonal expansion through differential immune-mediated suppression of normal hematopoietic cells and malignant clones. We review these complex roles, how they can be understood by separating cell-intrinsic from extrinsic effects, and how this informs future clinical trials.
Collapse
|
28
|
Sunthankar KI, Jenkins MT, Cote CH, Patel SB, Welner RS, Ferrell PB. Isocitrate dehydrogenase mutations are associated with altered IL-1β responses in acute myeloid leukemia. Leukemia 2022; 36:923-934. [PMID: 34857894 PMCID: PMC9066619 DOI: 10.1038/s41375-021-01487-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
Mutations in isocitrate dehydrogenase 2 (IDH2) have been noted to impact cellular differentiation in addition to DNA and histone methylation. However, little is known about the impact of IDH2 mutations on intracellular signaling. Using an isogenic cell line model, we investigated both differentiation and signaling responses in IDH2 mutant cells and show augmented responses to inflammatory immune ligands. Using phospho-specific flow and mass cytometry, we demonstrate IDH2 mutant cells were significantly more sensitive to IL-1β at multiple downstream readouts. Further, bulk RNA sequencing confirmed increases in cytokine-related signaling pathways and NF-κB target genes. Single-cell RNA sequencing of unstimulated and stimulated cells confirmed altered IL-1β transcriptional responses in the IDH2 mutant cells. Targeted inhibition of the IKK complex reduced IL-1β responses and induced cell death in primary IDH-mutated leukemia samples. Together, these results confirm altered IL-1β signaling in IDH2 mutant cells and identify this pathway as a potential therapeutic target.
Collapse
Affiliation(s)
- Kathryn I. Sunthankar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew T. Jenkins
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Candace H. Cote
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Sweta B. Patel
- Division of Hematology/Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert S. Welner
- Division of Hematology/Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - P. Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Corresponding Author (PBF),
| |
Collapse
|
29
|
Zarezadeh Mehrabadi A, Aghamohamadi N, Khoshmirsafa M, Aghamajidi A, Pilehforoshha M, Massoumi R, Falak R. The roles of interleukin-1 receptor accessory protein in certain inflammatory conditions. Immunology 2022; 166:38-46. [PMID: 35231129 DOI: 10.1111/imm.13462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Interleukin-1 receptor accessory protein (IL-1RAcP) is a member of the immunoglobulin superfamily proteins consisting of soluble and membranous isoforms. IL-1RAcP plays an essential role in the signaling of the IL-1 family cytokines such as IL-1, IL-33, and IL-36, as well as tyrosine kinases FLT3 and C-Kit. IL-1RAcP generally initiate inflammatory signaling pathway through the recruitment of signaling mediators, including MYD88 and IRAK. Chronic inflammation following prolonged signaling of cytokine receptors is a critical process in the pathogenesis of many inflammatory disorders, including autoimmunity, obesity, psoriasis, type 1 diabetes, endometriosis, preeclampsia and Alzheimer's disease. Recently IL-1RAcP aberrant signaling has been considered to play a central role in the pathogenesis of these chronic inflammatory diseases. Targeting IL-1RAcP signaling pathway that was recently considered in clinical trials related to malignancies, also indicates its potential as therapeutic target for the inflammatory and autoimmune diseases. This review summarizes the molecular structure, components associated with IL-1RAcP signaling pathways, and their involvement in the pathogenesis of different inflammatory diseases. We will also discuss the effect of IL-1RAcP inhibition for treatment proposes.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Nazanin Aghamohamadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Mohammad Pilehforoshha
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Huang L, Wu C, Xu D, Cui Y, Tang J. Screening of Important Factors in the Early Sepsis Stage Based on the Evaluation of ssGSEA Algorithm and ceRNA Regulatory Network. Evol Bioinform Online 2021; 17:11769343211058463. [PMID: 34866895 PMCID: PMC8637398 DOI: 10.1177/11769343211058463] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Sepsis is a dysregulated host response to pathogens. Delay in sepsis diagnosis has become a primary cause of patient death. This study determines some factors to prevent septic shock in its early stage, contributing to the early treatment of sepsis. Methods: The sequencing data (RNA- and miRNA-sequencing) of patients with septic shock were obtained from the NCBI GEO database. After re-annotation, we obtained lncRNAs, miRNA, and mRNA information. Then, we evaluated the immune characteristics of the sample based on the ssGSEA algorithm. We used the WGCNA algorithm to obtain genes significantly related to immunity and screen for important related factors by constructing a ceRNA regulatory network. Result: After re-annotation, we obtained 1708 lncRNAs, 129 miRNAs, and 17 326 mRNAs. Also, through the ssGSEA algorithm, we obtained 5 important immune cells. Finally, we constructed a ceRNA regulation network associated with SS pathways. Conclusion: We identified 5 immune cells with significant changes in the early stage of septic shock. We also constructed a ceRNA network, which will help us explore the pathogenesis of septic shock.
Collapse
Affiliation(s)
- Liou Huang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunrong Wu
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Dan Xu
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuhui Cui
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Marchand T, Pinho S. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Front Immunol 2021; 12:775128. [PMID: 34721441 PMCID: PMC8554324 DOI: 10.3389/fimmu.2021.775128] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. While complete remission can be obtained with intensive chemotherapy in young and fit patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since their discovery, more than 30 years ago, LSCs have been a topic of intense research and their identification paved the way for cancer stem cell research. LSCs are defined by their ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic modifications, and a specific metabolic profile. LSCs are usually considered resistant to chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart, LSCs reside in a highly specialized microenvironment referred to as the “niche”. Bidirectional interactions between leukemic cells and the microenvironment favor leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs are thought to be protected from genotoxic insults. Improvement in our understanding of LSC gene expression profile and phenotype has led to the development of prognosis signatures and the identification of potential therapeutic targets. In this review, we will discuss LSC biology in the context of their specific microenvironment and how a better understanding of LSC niche biology could pave the way for new therapies that target AML.
Collapse
Affiliation(s)
- Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Faculté de médecine, Université Rennes 1, Rennes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1236, Rennes, France
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Zhang HF, Hughes CS, Li W, He JZ, Surdez D, El-Naggar AM, Cheng H, Prudova A, Delaidelli A, Negri GL, Li X, Ørum-Madsen MS, Lizardo MM, Oo HZ, Colborne S, Shyp T, Scopim-Ribeiro R, Hammond CA, Dhez AC, Langman S, Lim JKM, Kung SHY, Li A, Steino A, Daugaard M, Parker SJ, Geltink RIK, Orentas RJ, Xu LY, Morin GB, Delattre O, Dimitrov DS, Sorensen PH. Proteomic Screens for Suppressors of Anoikis Identify IL1RAP as a Promising Surface Target in Ewing Sarcoma. Cancer Discov 2021; 11:2884-2903. [PMID: 34021002 PMCID: PMC8563374 DOI: 10.1158/2159-8290.cd-20-1690] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Christopher S Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Jian-Zhong He
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Didier Surdez
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Hongwei Cheng
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Modelling and translation Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anna Prudova
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Xiaojun Li
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Michael M Lizardo
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Renata Scopim-Ribeiro
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne-Chloe Dhez
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sofya Langman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Jonathan K M Lim
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sonia H Y Kung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Amy Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne Steino
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rimas J Orentas
- Seattle Children's Research Institute, Seattle, Washington
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivier Delattre
- INSERM U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Centre, Institut Curie Research Centre, 75005 Paris, France
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Rennert PD, Dufort FJ, Su L, Sanford T, Birt A, Wu L, Lobb RR, Ambrose C. Anti-CD19 CAR T Cells That Secrete a Biparatopic Anti-CLEC12A Bridging Protein Have Potent Activity Against Highly Aggressive Acute Myeloid Leukemia In Vitro and In Vivo. Mol Cancer Ther 2021; 20:2071-2081. [PMID: 34253594 PMCID: PMC9398100 DOI: 10.1158/1535-7163.mct-20-1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Refractory acute myeloid leukemia (AML) remains an incurable malignancy despite the clinical use of novel targeted therapies, new antibody-based therapies, and cellular therapeutics. Here, we describe the preclinical development of a novel cell therapy that targets the antigen CLEC12A with a biparatopic bridging protein. Bridging proteins are designed as "CAR-T cell engagers," with a CAR-targeted protein fused to antigen binding domains derived from antibodies. Here, we created a CD19-anti-CLEC12A bridging protein that binds to CAR19 T cells and to the antigen CLEC12A. Biparatopic targeting increases the potency of bridging protein-mediated cytotoxicity by CAR19 T cells. Using CAR19 T cells that secrete the bridging protein we demonstrate potent activity against aggressive leukemic cell lines in vivo This CAR-engager platform is facile and modular, as illustrated by activity of a dual-antigen bridging protein targeting CLEC12A and CD33, designed to counter tumor heterogeneity and antigen escape, and created without the need for extensive CAR T-cell genetic engineering. CAR19 T cells provide an optimal cell therapy platform with well-understood inherent persistence and fitness characteristics.
Collapse
Affiliation(s)
- Paul D. Rennert
- Corresponding Author: Paul D. Rennert, Research & Development, Aleta Biotherapeutics Inc., Natick, MA 01760. Phone: 508-282-6370; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 2021; 11:152. [PMID: 34521810 PMCID: PMC8440507 DOI: 10.1038/s41408-021-00547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies, particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
Collapse
Affiliation(s)
- Samarpana Chakraborty
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren C Shapiro
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bianca Rivera-Pena
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
35
|
Guo Y, Zhou K, Zhuang X, Li J, Shen X. CDCA7-regulated inflammatory mechanism through TLR4/NF-κB signaling pathway in stomach adenocarcinoma. Biofactors 2021; 47:865-878. [PMID: 34339079 DOI: 10.1002/biof.1773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/13/2021] [Indexed: 11/06/2022]
Abstract
To investigate the role of cell division cycle associated 7 (CDCA7) in stomach carcinoma, detect whether CDCA7 knockdown could regulate the development of stomach carcinoma, and further observe the relationship between CDCA7 and inflammation through TLR4/NF-κB signaling pathway in stomach adenocarcinoma (STAD) in vitro and in vivo. TIMER2.0, Kaplan-Meier plotter, Target Gene, and GEPIA systems were used to predict the potential function of CDCA7. Western blot and immunohistochemistry was used to analyze the expression of CDCA7 at different tissue or cell lines. The proliferation, development, inflammation, and apoptosis of STAD in vitro and in vivo were observed by using CDCA7 knockdown lentivirus through TLR4 suppression by its inhibitor. Bioinformatics analysis of CDCA7 with inflammation and western blot of CDCA7 with target protein of immune-associated cells were observed by using CDCA7 knockdown lentivirus in vivo. Finally, the prognosis and associated of CDCA7 in some gene mutations of STAD was observed by Target Gene system. CDCA7 expression in STAD tumor tissue was higher than the normal. The CDCA7 expression in tumor or MGC803 cells was increased. Furthermore, CDCA7 knockdown lentivirus could inhibit STAD development in vitro and in vivo through weakening tumor cells proliferation, reducing tumor volume and biomarker levels, and then increasing apoptotic level. CDCA7 is possibly able to regulate inflammation in STAD through TLR4/NF-κB signaling pathway. Furthermore, CDCA7 may be related with mast cells and the upstream target factor of TLR4/NF-κB signaling pathway in inflammation. These results may provide a new strategy to stomach carcinoma development by regulating inflammation.
Collapse
Affiliation(s)
- Yu Guo
- Department of Pathology, The First People's Hospital of Yibin, Chongqing Medical University, Yibin, China
| | - Kaimei Zhou
- Department of Pathology, The First People's Hospital of Yibin, Chongqing Medical University, Yibin, China
| | - Xiang Zhuang
- Department of Pathology, The First People's Hospital of Yibin, Chongqing Medical University, Yibin, China
| | - Junjie Li
- Department of Pathology, The First People's Hospital of Yibin, Chongqing Medical University, Yibin, China
| | - Xianglin Shen
- Department of Pathology, The First People's Hospital of Yibin, Chongqing Medical University, Yibin, China
| |
Collapse
|
36
|
Zhan D, Park CY. Stem Cells in the Myelodysplastic Syndromes. FRONTIERS IN AGING 2021; 2:719010. [PMID: 35822030 PMCID: PMC9261372 DOI: 10.3389/fragi.2021.719010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
The myelodysplastic syndromes (MDS) represent a group of clonal disorders characterized by ineffective hematopoiesis, resulting in peripheral cytopenias and frequent transformation to acute myeloid leukemia (AML). We and others have demonstrated that MDS arises in, and is propagated by malignant stem cells (MDS-SCs), that arise due to the sequential acquisition of genetic and epigenetic alterations in normal hematopoietic stem cells (HSCs). This review focuses on recent advancements in the cellular and molecular characterization of MDS-SCs, as well as their role in mediating MDS clinical outcomes. In addition to discussing the cell surface proteins aberrantly upregulated on MDS-SCs that have allowed the identification and prospective isolation of MDS-SCs, we will discuss the recurrent cytogenetic abnormalities and genetic mutations present in MDS-SCs and their roles in initiating disease, including recent studies demonstrating patterns of clonal evolution and disease progression from pre-malignant HSCs to MDS-SCs. We also will discuss the pathways that have been described as drivers or promoters of disease, including hyperactivated innate immune signaling, and how the identification of these alterations in MDS-SC have led to investigations of novel therapeutic strategies to treat MDS. It is important to note that despite our increasing understanding of the pathogenesis of MDS, the molecular mechanisms that drive responses to therapy remain poorly understood, especially the mechanisms that underlie and distinguish hematologic improvement from reductions in blast burden. Ultimately, such distinctions will be required in order to determine the shared and/or unique molecular mechanisms that drive ineffective hematopoiesis, MDS-SC maintenance, and leukemic transformation.
Collapse
Affiliation(s)
- Di Zhan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, United States
| | - Christopher Y. Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, United States
- *Correspondence: Christopher Y. Park,
| |
Collapse
|
37
|
Daver N, Alotaibi AS, Bücklein V, Subklewe M. T-cell-based immunotherapy of acute myeloid leukemia: current concepts and future developments. Leukemia 2021; 35:1843-1863. [PMID: 33953290 PMCID: PMC8257483 DOI: 10.1038/s41375-021-01253-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease linked to a broad spectrum of molecular alterations, and as such, long-term disease control requires multiple therapeutic approaches. Driven largely by an improved understanding and targeting of these molecular aberrations, AML treatment has rapidly evolved over the last 3-5 years. The stellar successes of immunotherapies that harness the power of T cells to treat solid tumors and an improved understanding of the immune systems of patients with hematologic malignancies have led to major efforts to develop immunotherapies for the treatment of patients with AML. Several immunotherapies that harness T cells against AML are in various stages of preclinical and clinical development. These include bispecific and dual antigen receptor-targeting antibodies (targeted to CD33, CD123, CLL-1, and others), chimeric antigen receptor (CAR) T-cell therapies, and T-cell immune checkpoint inhibitors (including those targeting PD-1, PD-L1, CTLA-4, and newer targets such as TIM3 and STING). The current and future directions of these T-cell-based immunotherapies in the treatment landscape of AML are discussed in this review.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Ahmad S Alotaibi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Veit Bücklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv 2021; 4:5118-5132. [PMID: 33085758 DOI: 10.1182/bloodadvances.2020001742] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
In an attempt to identify novel markers and immunological targets in leukemic stem cells (LSCs) in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), we screened bone marrow (BM) samples from patients with AML (n = 274) or CML (n = 97) and controls (n = 288) for expression of cell membrane antigens on CD34+/CD38- and CD34+/CD38+ cells by multicolor flow cytometry. In addition, we established messenger RNA expression profiles in purified sorted CD34+/CD38- and CD34+/CD38+ cells using gene array and quantitative polymerase chain reaction. Aberrantly expressed markers were identified in all cohorts. In CML, CD34+/CD38- LSCs exhibited an almost invariable aberration profile, defined as CD25+/CD26+/CD56+/CD93+/IL-1RAP+. By contrast, in patients with AML, CD34+/CD38- cells variably expressed "aberrant" membrane antigens, including CD25 (48%), CD96 (40%), CD371 (CLL-1; 68%), and IL-1RAP (65%). With the exception of a subgroup of FLT3 internal tandem duplication-mutated patients, AML LSCs did not exhibit CD26. All other surface markers and target antigens detected on AML and/or CML LSCs, including CD33, CD44, CD47, CD52, CD105, CD114, CD117, CD133, CD135, CD184, and roundabout-4, were also found on normal BM stem cells. However, several of these surface targets, including CD25, CD33, and CD123, were expressed at higher levels on CD34+/CD38- LSCs compared with normal BM stem cells. Moreover, antibody-mediated immunological targeting through CD33 or CD52 resulted in LSC depletion in vitro and a substantially reduced LSC engraftment in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Together, we have established surface marker and target expression profiles of AML LSCs and CML LSCs, which should facilitate LSC enrichment, diagnostic LSC phenotyping, and development of LSC-eradicating immunotherapies.
Collapse
|
39
|
Ho TC, Kim HS, Chen Y, Li Y, LaMere MW, Chen C, Wang H, Gong J, Palumbo CD, Ashton JM, Kim HW, Xu Q, Becker MW, Leong KW. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. SCIENCE ADVANCES 2021; 7:eabg3217. [PMID: 34138728 PMCID: PMC8133753 DOI: 10.1126/sciadv.abg3217] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/23/2021] [Indexed: 05/06/2023]
Abstract
Leukemia stem cells (LSCs) sustain the disease and contribute to relapse in acute myeloid leukemia (AML). Therapies that ablate LSCs may increase the chance of eliminating this cancer in patients. To this end, we used a bioreducible lipidoid-encapsulated Cas9/single guide RNA (sgRNA) ribonucleoprotein [lipidoid nanoparticle (LNP)-Cas9 RNP] to target the critical gene interleukin-1 receptor accessory protein (IL1RAP) in human LSCs. To enhance LSC targeting, we loaded LNP-Cas9 RNP and the chemokine CXCL12α onto mesenchymal stem cell membrane-coated nanofibril (MSCM-NF) scaffolds mimicking the bone marrow microenvironment. In vitro, CXCL12α release induced migration of LSCs to the scaffolds, and LNP-Cas9 RNP induced efficient gene editing. IL1RAP knockout reduced LSC colony-forming capacity and leukemic burden. Scaffold-based delivery increased the retention time of LNP-Cas9 in the bone marrow cavity. Overall, sustained local delivery of Cas9/IL1RAP sgRNA via CXCL12α-loaded LNP/MSCM-NF scaffolds provides an effective strategy for attenuating LSC growth to improve AML therapy.
Collapse
Affiliation(s)
- Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Yumei Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Mark W LaMere
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Caroline Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hui Wang
- Humanized Mouse Core Facility, Columbia Center for Translational Immunology, Columbia University, New York, NY, USA
| | - Jing Gong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Cal D Palumbo
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester, Rochester, NY, USA
| | - John M Ashton
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester, Rochester, NY, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Boston, MA, USA
| | - Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Chavez JS, Rabe JL, Loeffler D, Higa KC, Hernandez G, Mills TS, Ahmed N, Gessner RL, Ke Z, Idler BM, Niño KE, Kim H, Myers JR, Stevens BM, Davizon-Castillo P, Jordan CT, Nakajima H, Ashton J, Welner RS, Schroeder T, DeGregori J, Pietras EM. PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 2021; 218:211996. [PMID: 33857288 PMCID: PMC8056754 DOI: 10.1084/jem.20201169] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.
Collapse
Affiliation(s)
- James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Rachel L Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhonghe Ke
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Beau M Idler
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katia E Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hyunmin Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Brett M Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University School of Medicine, Yokohama, Japan
| | - John Ashton
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Robert S Welner
- Division of Hematology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - James DeGregori
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
41
|
Stauber J, Greally JM, Steidl U. Preleukemic and leukemic evolution at the stem cell level. Blood 2021; 137:1013-1018. [PMID: 33275656 PMCID: PMC7907728 DOI: 10.1182/blood.2019004397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered questions about the contribution of the hematopoietic stem cell population to these processes.
Collapse
Affiliation(s)
- Jacob Stauber
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - John M Greally
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine-Montefiore Health System, The Bronx, NY
| |
Collapse
|
42
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
43
|
Lv Q, Xia Q, Li A, Wang Z. The Potential Role of IL1RAP on Tumor Microenvironment-Related Inflammatory Factors in Stomach Adenocarcinoma. Technol Cancer Res Treat 2021; 20:1533033821995282. [PMID: 33602046 PMCID: PMC7897808 DOI: 10.1177/1533033821995282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was performed to investigate the role of interleukin-1 receptor accessory protein (IL1RAP) in stomach carcinoma in vitro and in vivo, determine whether IL1RAP knockdown could regulate the development of stomach carcinoma, and elucidate the relationship between IL1RAP knockdown and inflammation by tumor microenvironment-related inflammatory factors in stomach carcinoma. We first used TCGA and GEPIA systems to predict the potential function of IL1RAP. Second, western blot and RT-PCR were used to analyze the expression, or mRNA level, of IL1RAP at different tissue or cell lines. Third, the occurrence and development of stomach carcinoma in vitro and in vivo were observed by using IL1RAP knockdown lentivirus. Finally, the inflammation of stomach carcinoma in vitro and in vivo was observed. Results show that in GEPIA and TCGA systems, IL1RAP expression in STAD tumor tissue was higher than normal, and high expression of IL1RAP in STAD patients had a worse prognostic outcome. Besides, GSEA shown IL1RAP was negative correlation of apopopsis, TLR4 and NF-κB signaling pathway. We also predicted that IL1RAP may related to IL-1 s, IL-33, and IL-36 s in STAD. The IL1RAP expression and mRNA level in tumor, or MGC803, cells were increased. Furthermore, IL1RAP knockdown by lentivirus could inhibit stomach carcinoma development in vitro and in vivo through weakening tumor cell proliferation, migration, invasion, therefore reducing tumor volume, weight, and biomarker levels, and increasing apoptotic level. Finally, we found IL1RAP knockdown could increase inflammation of tumor microenvironment-related inflammatory factors of stomach carcinoma, in vitro and in vivo. Our study demonstrates that IL1RAP is possibly able to regulate inflammation and apoptosis in stomach carcinoma. Furthermore, TLR4, NF-κB, IL-1 s, IL-33, and IL-36 s maybe the downstream target factor of IL1RAP in inflammation. These results may provide a new strategy for stomach carcinoma development by regulating inflammation.
Collapse
Affiliation(s)
- Qing Lv
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Anshu Li
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Zhiyong Wang
- Department of Gastrointestinal Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| |
Collapse
|
44
|
Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, Leslie C, Papapetrou EP. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell 2021; 28:1074-1089.e7. [PMID: 33571445 DOI: 10.1016/j.stem.2021.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/20/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Human cancers arise through the sequential acquisition of somatic mutations that create successive clonal populations. Human cancer evolution models could help illuminate this process and inform therapeutic intervention at an early disease stage, but their creation has faced significant challenges. Here, we combined induced pluripotent stem cell (iPSC) and CRISPR-Cas9 technologies to develop a model of the clonal evolution of acute myeloid leukemia (AML). Through the stepwise introduction of three driver mutations, we generated iPSC lines that, upon hematopoietic differentiation, capture distinct premalignant stages, including clonal hematopoiesis (CH) and myelodysplastic syndrome (MDS), culminating in a transplantable leukemia, and recapitulate transcriptional and chromatin accessibility signatures of primary human MDS and AML. By mapping dynamic changes in transcriptomes and chromatin landscapes, we characterize transcriptional programs driving specific transitions between disease stages. We identify cell-autonomous dysregulation of inflammatory signaling as an early and persistent event in leukemogenesis and a promising early therapeutic target.
Collapse
Affiliation(s)
- Tiansu Wang
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison R Pine
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Han Yuan
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lee Zamparo
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel T Starczynowski
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christina Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
45
|
Petersen MA, Bill M, Rosenberg CA. OMIP 072: A 15-color panel for immunophenotypic identification, quantification, and characterization of leukemic stem cells in children with acute myeloid leukemia. Cytometry A 2020; 99:382-387. [PMID: 33369057 DOI: 10.1002/cyto.a.24284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
This panel was designed to identify, quantify and phenotypically characterize putative leukemic stem cells (LSCs) in bone marrow (BM) samples from individual pediatric patients diagnosed with acute myeloid leukemia (AML). Based on an aberrant expression on immunophenotypically defined hematopoietic stem cells (HSCs), several antigens have been proposed as LSC markers in AML research, using healthy adult BM samples as reference material. Generally, these antigens have been evaluated individually in smaller panels (e.g. 8-color panels). This necessitates several tubes to characterize the LSC phenotype and compromises the ability to evaluate LSC heterogeneity. The present 15-color OMIP incorporates nine suggested LSC markers to comprehensively capture LSC immunophenotypes and to explore heterogenic marker-patterns within LSC populations in a single tube. Importantly, this single tube approach requires less input material, which is essential when sampling BM aspirates from pediatric patients where sample volumes often are sparse. As knowledge on normal expression levels of the included LSC markers in HSCs from hematologically healthy children are a prerequisite for labelling a phenotype as abnormal, we have evaluated the applicability of the panel on cryopreserved mononuclear cells (MNCs) isolated from BM samples from pediatric patients without hematological disorders as well as pediatric AML patients. The panel is optimized for cryopreserved BM MNCs, but could in principle, be utilized for LSC detection in any biological material containing human hematopoietic cells.
Collapse
Affiliation(s)
- Marianne A Petersen
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
46
|
Roussel X, Daguindau E, Berceanu A, Desbrosses Y, Warda W, Neto da Rocha M, Trad R, Deconinck E, Deschamps M, Ferrand C. Acute Myeloid Leukemia: From Biology to Clinical Practices Through Development and Pre-Clinical Therapeutics. Front Oncol 2020; 10:599933. [PMID: 33363031 PMCID: PMC7757414 DOI: 10.3389/fonc.2020.599933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Recent studies have provided several insights into acute myeloid leukemia. Studies based on molecular biology have identified eight functional mutations involved in leukemogenesis, including driver and passenger mutations. Insight into Leukemia stem cells (LSCs) and assessment of cell surface markers have enabled characterization of LSCs from hematopoietic stem and progenitor cells. Clonal evolution has been described as having an effect similar to that of microenvironment alterations. Such biological findings have enabled the development of new targeted drugs, including drug inhibitors and monoclonal antibodies with blockage functions. Some recently approved targeted drugs have resulted in new therapeutic strategies that enhance standard intensive chemotherapy regimens as well as supportive care regimens. Besides the progress made in adoptive immunotherapy, since allogenic hematopoietic stem cell transplantation enabled the development of new T-cell transfer therapies, such as chimeric antigen receptor T-cell and transgenic TCR T-cell engineering, new promising strategies that are investigated.
Collapse
Affiliation(s)
- Xavier Roussel
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Etienne Daguindau
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Ana Berceanu
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Yohan Desbrosses
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Walid Warda
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | | | - Rim Trad
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Eric Deconinck
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
- Department of Hematology, University Hospital of Besançon, Besançon, France
| | - Marina Deschamps
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| | - Christophe Ferrand
- Inserm EFS BFC, UMR1098 RIGHT, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
47
|
Noh JY, Seo H, Lee J, Jung H. Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. Int J Mol Sci 2020; 21:E8000. [PMID: 33121189 PMCID: PMC7663624 DOI: 10.3390/ijms21218000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Korea;
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
48
|
Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:77-90. [PMID: 32901590 DOI: 10.2174/1871530320666200909092908] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohnmp's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Kokelavani Nampalli Babu
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Akash Guruswamy
- University of Missouri- Kansas City, College of Medicine, Kansas City, MO 64110, United States
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ilangovan Ramachandran
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
49
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
50
|
Pasvenskaite A, Vilkeviciute A, Liutkeviciene R, Gedvilaite G, Liutkevicius V, Uloza V. Associations of IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606 single gene polymorphisms with laryngeal squamous cell carcinoma. Gene 2020; 747:144700. [PMID: 32330537 DOI: 10.1016/j.gene.2020.144700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/06/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Survival rate of laryngeal squamous cell carcinoma (LSCC) patients is not improving. To understand more complete biology of LSCC, studies focused on identification of new specific and prognostic markers are performed. The aim of current study was to evaluate the impact of five different single nucleotide polymorphisms (SNP) (IL6 rs1800795, BLK rs13277113, TIMP3 rs9621532, IL1RL1 rs1041973 and IL1RAP rs4624606) on LSCC development. MATERIAL AND METHODS A total of 891 subjects (353 histologically verified LSCC patients and 538 healthy controls) were involved in this study. The genotyping was carried out using the real-time-PCR. RESULTS Statistical analysis revealed statistically significant associations between TIMP3 rs96215332 variants and LSCC in the codominant (OR = 0.600; 95% CI: 0.390-0.922; p = 0.020), overdominant (OR = 0.599; 95% CI: 0.390-0.922; p = 0.020) and additive (OR = 0.675; 95% CI: 0.459-0.991; p = 0.045) models. Also, significant variants of IL1RAP rs4624606 were determined in the codominant (OR = 1.372; 95% CI: 1.031-1.827; p = 0.030), overdominant (OR = 1.353; 95% CI: 1.018-1.798; p = 0.037) and additive (OR = 1.337; 95% CI: 1.038-1.724; p = 0.025) models. CONCLUSION Results of the current study indicate significant associations between TIMP3 rs9621532 and IL1RAP rs4624606 gene polymorphisms and LSCC development.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania, Lithuania
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|