1
|
Santos DBDN, da Silva LC, da Silva IDVD, de Andrade BAB, Maia LC, Tenório JR. Main oral characteristics and treatment of ligneous gingivitis and periodontitis in individuals with plasminogen deficiency: A systematic review. SPECIAL CARE IN DENTISTRY 2025; 45:e13068. [PMID: 39334536 DOI: 10.1111/scd.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE This systematic review evaluated the main clinical, radiographic, histopathological and treatment-related characteristics of ligneous gingivitis (LG) and periodontitis (LP) in individuals with plasminogen deficiency (PD). MATERIAL AND METHODS Studies in humans diagnosed with PD, focusing on the evaluation of oral characteristics and treatment of the LG/LP were considered for inclusion criteria. Electronic searches were performed up to April 2024 in five databases and in the grey literature. Risk of bias was assessed according to the Joanna Briggs Institute Critical Appraisal Checklists for case reports. It was provided a narrative synthesis of the results. RESULTS A total of 17 studies were included. All were case reports that analyzed 17 individuals with PD who presented with LG/LP. The relative frequency of PD type I was 56%, while type II constitutes the remaining 44%. In most studies, patients exhibited ulceration clinically, bone loss radiographically, and subepithelial eosinophilic material accumulation on histopathological evaluation. Conventional periodontal scaling was the most used management. All included studies provided well-described clinical characteristics and confirmed plasminogen deficiency through laboratory testing. Only three studies had a risk of bias values lower than 15%. CONCLUSIONS Current evidence is limited and varied, complicating the diagnosis and treatment of GL/PL. Future studies should provide a more detailed account of treatments and include extended clinical and radiographic follow-up.
Collapse
Affiliation(s)
| | - Larissa Conrado da Silva
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Lucianne Cople Maia
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jefferson R Tenório
- Department of Pathology and Oral Diagnosis, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Efimenko AY, Shmakova AA, Popov VS, Basalova NA, Vigovskiy MA, Grigorieva OA, Sysoeva VY, Klimovich PS, Khabibullin NR, Tkachuk VA, Rubina KA, Semina EV. Mesenchymal stem/stromal cells alleviate early-stage pulmonary fibrosis in a uPAR-dependent manner. Cell Biol Int 2024; 48:1714-1730. [PMID: 39023281 DOI: 10.1002/cbin.12222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.
Collapse
Affiliation(s)
- Anastasia Yu Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Institut Gustave Roussy, Université Paris Saclay, UMR 9018, CNRS, Villejuif, France
| | - Vladimir S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Basalova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim A Vigovskiy
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina S Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | | | - Vsevolod A Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina V Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| |
Collapse
|
3
|
Guggenheim L, Magni S, Catic A, Pagnamenta A, Harder Y, Schmauss D. The Effects of Systemic Tranexamic Acid Administration on Drainage Volume, Duration of Drain Placement, and Length of Hospital Stay in Skin- and Nipple-Sparing Mastectomies with Immediate Expander-Based Breast Reconstruction. J Clin Med 2024; 13:6507. [PMID: 39518646 PMCID: PMC11546841 DOI: 10.3390/jcm13216507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Skin- (SSM) and nipple-sparing (NSM) mastectomies are frequently performed surgeries with a considerable risk for post-operative hematoma or seroma. Tranexamic acid (TXA) is a potent antifibrinolytic drug commonly used in many surgical fields but rather novel in plastic and, specifically, breast surgery. This study investigates the influence of TXA in patients undergoing SSM or NSM with expander-based reconstruction (EbR) on post-operative outcomes. Methodology: A retrospective study was conducted on 132 patients undergoing uni- or bilateral SSM or NSM with EbR between May 2015 and March 2022. Patients receiving systemic TXA treatment for 48 h following a standardized protocol were compared to those who received no treatment. Multivariable linear regression was performed to identify influencing factors and quantify their effect on drainage volume, duration of drain placement, length of hospital stay, post-operative bleeding, and seroma formation. Results: The 132 patients underwent a total of 155 mastectomies (72 in the TXA group, 83 in the control group). TXA significantly reduced drainage volume (-22.3 mL, p = 0.011). Duration of drain placement and length of hospital stay were significantly shorter in the TXA group (p < 0.001 and p = 0.001). No significant side effects were reported. Conclusion: TXA is a safe drug if administered respecting the well-defined contraindications. Systemic TXA administration significantly reduces drainage volume in patients undergoing SSM or NSM and should encourage surgeons to reconsider using drains in post-operative protocols. Duration of drain placement and length of hospital stay were significantly reduced in the TXA group but other factors like resection weight might have a more substantial impact.
Collapse
Affiliation(s)
- Leon Guggenheim
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland; (L.G.)
| | - Sara Magni
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), CH-6900 Lugano, Switzerland;
| | - Armin Catic
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland; (L.G.)
| | - Alberto Pagnamenta
- Clinical Trial Unit (CTU), Ente Ospedaliero Cantonale (EOC), CH-6900 Lugano, Switzerland;
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne (UNIL), CH-1015 Lausanne, Switzerland
| | - Daniel Schmauss
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland; (L.G.)
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), CH-6900 Lugano, Switzerland;
| |
Collapse
|
4
|
Velarde K, Arvonen A, Gonzalez T, Diller RB. A Biologic and Physical Characterization of an Injectable Amniotic Membrane Designed for Treating Diabetic Foot Ulcers. Bioengineering (Basel) 2024; 11:1087. [PMID: 39593747 PMCID: PMC11591430 DOI: 10.3390/bioengineering11111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Globally, the health and quality of life of millions of people are negatively affected by diabetic foot ulcers (DFUs). To treat these chronic wounds, a novel injectable drug for closing DFUs composed of micronized amniotic membrane was developed. This new therapeutic drug for wound repair expands on traditional allograft therapies by allowing extracellular matrix proteins, growth factors, and cytokines to reach wound anatomies in DFUs that are difficult to treat. The aim of this study was to evaluate the components of the injectable drug. METHODS Liquid chromatography with tandem mass spectrometry and a Quantibody® human cytokine array were conducted to identify and characterize growth factors and proteins known to contribute to wound healing. In addition, hyaluronic acid was quantified and compared between the injectable and human amniotic fluid using a hyaluronan enzyme-linked immunosorbent assay. Cell proliferation, migration, angiogenesis, and viability were evaluated to assess the performance of the novel injectable in vitro. The rheometric properties of the product were evaluated by assessing it pre- and post-injection through a 22-gauge needle to measure the viscosity using a shear- and temperature-dependent viscosity protocol. RESULTS Liquid chromatography with tandem mass spectrometry and Quantibody® human cytokine array revealed growth factors and proteins imperative for wound healing. The quantified hyaluronic acid was compared between the injectable and human amniotic fluid, resulting in a statistically significant difference, with higher protein concentrations found in the injectable. In vitro qualitative and quantitative analysis confirmed an increase in cell viability, proliferation, and migration when treated with the drug. An evaluation of the rheometric properties of the injectable drug after passing through a 22-gauge cannula presented no alterations to the biologic drug. CONCLUSIONS Collectively, these data present the potential of a novel injectable drug for the treatment of DFUs.
Collapse
Affiliation(s)
- Kimberly Velarde
- Amnio Technology, LLC., 22510 N. 18th Dr., Phoenix, AZ 85027, USA; (K.V.); (A.A.); (T.G.)
| | - Audrey Arvonen
- Amnio Technology, LLC., 22510 N. 18th Dr., Phoenix, AZ 85027, USA; (K.V.); (A.A.); (T.G.)
| | - Tatyana Gonzalez
- Amnio Technology, LLC., 22510 N. 18th Dr., Phoenix, AZ 85027, USA; (K.V.); (A.A.); (T.G.)
| | - Robert B. Diller
- Amnio Technology, LLC., 22510 N. 18th Dr., Phoenix, AZ 85027, USA; (K.V.); (A.A.); (T.G.)
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
5
|
Hemalatha T, Aarthy M, Sundarapandiyan A, Ayyadurai N. Bioengineered Silk Fibroin Hydrogel Reinforced with Collagen-Like Protein Chimeras for Improved Wound Healing. Macromol Biosci 2024:e2400346. [PMID: 39422581 DOI: 10.1002/mabi.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
The study investigates the potentials of the rapid crosslinking hydrogel concoction comprising of natural silk fibroin (SF) and recombinant tailorable collagen-like protein with binding domains for wound repair. The formation of dityrosine crosslinks between the tyrosine moieties augments the formation of stable hydrogels, in the presence of the cytocompatible photo-initiator riboflavin and visible light. This uniquely engineered PASCH (Photo-activated silk fibroin and tailor-made collagen-like protein hydrogel) confers the key advantage of improved biological properties over the control hydrogels comprising only of SF. The physico-chemical characterization of the hydrogels with respect to crosslinking, modulus, and thermal stability delineates the ascendancy of PASCH 7:3 over other combinations. Furthermore, the hybrid protein hydrogel proves to be a favorable cellular matrix as it enhances cell adhesion, elongation, growth, and proliferation in vitro. Time-lapse microscopy studies reveal an enhanced wound closure in human endothelial cell monolayer (EA.hy926), while the gene expression studies portray the dynamic interplay of cytokines and growth factors in the wound milieu facilitating the repair and regeneration of cells, sculpted by the proteins. The results demonstrate the improved physical and biological properties of fabricated PASCH, depicting their synergism, and implying their competency for use in tissue engineering applications.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Ashokraj Sundarapandiyan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| |
Collapse
|
6
|
Wnorowska K, Młynek K, Puppel K. The Impact of Negative Energy Balance in Holstein-Friesian Cows on the Blood Concentrations of Interleukin-6 and Plasminogen. Metabolites 2024; 14:548. [PMID: 39452929 PMCID: PMC11509748 DOI: 10.3390/metabo14100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The negative energy balance activaties of spontaneous lipolysis. This may promotes inflammation within the adipose tissue. The aim of the study was to explain the development of inflammation during increased lactogenesis. It was hypothesized that lipolysis contributes synthesis of interleukin-6 and plasminogen. Methods: The study was in production conditions carried out using Holstein-Friesian cows. The period studied covered time of early lactation. Results: Up to the peak of lactation, milk yield strongly influenced the rate of loss of body condition. This had an impact on with the intensity of the release of the fatty acids. In both cases this relationships strengthened to the peak of production. Oobserved tendencies towards a decrease in the concentration of glucose and an increase in that of leptin. Loss of the body condition and the release of NEFA were were influencing to affect the blood concentrations of interleukin-6 and plasminogen. We have shown that IL-6 has a relatively strong correlation with the NEFA. They correlate with IL-6 independently of EB influence. This may suggest independent associations between these variables, which could potentially be applied in practice. Conclusions: The NEFA release in the long term can increase the inflammatory response within adipose tissue and can intensify the release of interleukin-6 and plasminogen. It is likely that in the initial stage of lactogenesis, the inflammatory process developing within adipose tissue is physiologically justified. Our results can provide background to this little-described area of research.
Collapse
Affiliation(s)
- Kalina Wnorowska
- Institute of Zootechnics and Fisheries, University of Siedlce, B. Prusa 14, 08-110 Siedlce, Poland;
| | - Krzysztof Młynek
- Institute of Zootechnics and Fisheries, University of Siedlce, B. Prusa 14, 08-110 Siedlce, Poland;
| | - Kamila Puppel
- Institute of Animal Sciences, Departments of Animal Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland;
| |
Collapse
|
7
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Adachi E, Tabe Y, Hattori N, Osada T, Naito T, Takahashi K, Hattori K, Heissig B. The influence of 4G/5G polymorphism in the plasminogen-activator-inhibitor-1 promoter on COVID-19 severity and endothelial dysfunction. Front Immunol 2024; 15:1445294. [PMID: 39281671 PMCID: PMC11392769 DOI: 10.3389/fimmu.2024.1445294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Plasminogen activator inhibitor-1 (PAI-1) is linked to thrombosis and endothelial dysfunction in severe COVID-19. The +43 G>A PAI-1 and 4G/5G promoter polymorphism can influence PAI-1 expression. The 4G5G PAI-1 promoter gene polymorphism constitutes the 4G4G, 4G5G, and 5G5G genotypes. However, the impact of PAI-1 polymorphisms on disease severity or endothelial dysfunction remains unclear. Methods Clinical data, sera, and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients were studied. Results Comorbidities and clinical biomarkers did not correlate with genotypes in either polymorphism. However, differences between fibrinolytic factors and interleukin-1β (IL-1β) were identified in genotypes of the 4G/5G but not the 43 G>A PAI polymorphism. Patients with the 4G4G genotype of the 4G/5G polymorphism showed high circulating PAI-1, mainly complexed with plasminogen activators, and low IL-1β and plasmin levels, indicating suppressed fibrinolysis. NFκB was upregulated in PBMCs of COVID-19 patients with the 4G4G genotype. Discussion Mechanistically, IL-1β enhanced PAI-1 expression in 4G4G endothelial cells, preventing the generation of plasmin and cleavage products like angiostatin, soluble uPAR, and VCAM1. We identified inflammation-induced endothelial dysfunction coupled with fibrinolytic system overactivation as a risk factor for patients with the 5G5G genotype.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University, Urayasu Hospital, Urayasu-shi, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
8
|
Langbøl M, Saruhanian A, Saruhanian S, Tiedemann D, Baskaran T, Vohra R, Rives AS, Moreira J, Prokosch V, Liu H, Lackmann JW, Müller S, Nielsen CH, Kolko M, Rovelt J. Proteomic and Cytokine Profiling in Plasma from Patients with Normal-Tension Glaucoma and Ocular Hypertension. Cell Mol Neurobiol 2024; 44:59. [PMID: 39150567 PMCID: PMC11329415 DOI: 10.1007/s10571-024-01492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Primary open-angle glaucoma (POAG) is subdivided depending on eye pressure. Patients with normal-tension glaucoma (NTG) have never had high intraocular pressure (IOP) measured while patients with ocular hypertension (OHT) have high eye pressure but no signs of glaucoma. Although IOP is considered to be a risk factor for all glaucoma patients, it is reasonable to assume that other risk factors such as inflammation play a role. We aimed to characterize the proteome and cytokine profile during hypoxia in plasma from patients with NTG (n = 10), OHT (n = 10), and controls (n = 10). Participants were exposed to hypoxia for two hours, followed by 30 min of normoxia. Samples were taken before ("baseline"), during ("hypoxia"), and after hypoxia ("recovery"). Proteomics based on liquid chromatography coupled with mass spectrometry (LC-MS) was performed. Cytokines were measured by Luminex assays. Bioinformatic analyses indicated the involvement of complement and coagulation cascades in NTG and OHT. Regulation of high-density lipoprotein 3 (HDL3) apolipoproteins suggested that changes in cholesterol metabolism are related to OHT. Hypoxia decreased the level of tumor necrosis factor-α (TNF-α) in OHT patients compared to controls. Circulating levels of interleukin-1β (IL-1β) and C-reactive protein (CRP) were decreased in NTG patients compared to controls during hypoxia. After recovery, plasma interleukin-6 (IL-6) was upregulated in patients with NTG and OHT. Current results indicate an enhanced systemic immune response in patients with NTG and OHT, which correlates with pathogenic events in glaucoma. Apolipoproteins may have anti-inflammatory effects, enabling OHT patients to withstand inflammation and development of glaucoma despite high IOP.
Collapse
Affiliation(s)
- Mia Langbøl
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark.
| | - Arevak Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Sarkis Saruhanian
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Veterinary & Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Tiedemann
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Thisayini Baskaran
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Amalie Santaolalla Rives
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - José Moreira
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Stefan Müller
- CECAD/CMMC Proteomics Facility, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, 2200, Copenhagen, Denmark
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Jens Rovelt
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, Building 22, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
9
|
Bouras M, Bourdiol A, Rooze P, Hourmant Y, Caillard A, Roquilly A. Tranexamic acid: a narrative review of its current role in perioperative medicine and acute medical bleeding. Front Med (Lausanne) 2024; 11:1416998. [PMID: 39170034 PMCID: PMC11335516 DOI: 10.3389/fmed.2024.1416998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Tranexamic acid (TXA) is the most widely prescribed antifibrinolytic for active bleeding or to prevent surgical bleeding. Despite numerous large multi-center randomized trials involving thousands of patients being conducted, TXA remains underutilized in indications where it has demonstrated efficacy and a lack of harmful effects. This narrative review aims to provide basic concepts about fibrinolysis and TXA's mode of action and is focused on the most recent and important trials evaluating this drug in different hemorrhagic situations. Methods We selected every low bias RCT, and we highlighted their strengths and limitations throughout this review. Principal findings While TXA appears to have a favorable benefit-risk ratio in most situations (trauma, obstetrics, at-risk for bleeding surgeries) evidence of benefit is lacking in certain medical settings (SAH, digestive bleeding). Conclusion Although in some situations the drug's effect on significant outcomes is modest, its favorable safety profile allows it to be recommended for trauma patients, in obstetrics, and in scheduled surgeries at risk of bleeding. However, it cannot be recommended in cases of spontaneous intracranial bleeding, subarachnoid hemorrhage (SAH), or gastrointestinal bleeding.
Collapse
Affiliation(s)
- Marwan Bouras
- CHU Brest, Anesthesiology and Intensive Care Unit, Brest, France
- INSERM UMR 1064 CR2TI, University of Nantes, Nantes, France
| | - Alexandre Bourdiol
- CHU Nantes, Anesthesiology and Intensive Care Unit, CIC Immunology and Infection, Nantes, France
| | - Paul Rooze
- CHU Nantes, Anesthesiology and Intensive Care Unit, CIC Immunology and Infection, Nantes, France
| | - Yannick Hourmant
- CHU Nantes, Anesthesiology and Intensive Care Unit, CIC Immunology and Infection, Nantes, France
| | - Anaïs Caillard
- CHU Brest, Anesthesiology and Intensive Care Unit, Brest, France
| | - Antoine Roquilly
- INSERM UMR 1064 CR2TI, University of Nantes, Nantes, France
- CHU Nantes, Anesthesiology and Intensive Care Unit, CIC Immunology and Infection, Nantes, France
| |
Collapse
|
10
|
de Cos M, Mosoyan G, Chauhan K, Troost JP, Wong JS, Lefferts S, Morgan P, Meliambro K, Egerman M, Ray J, Parker T, Levine D, Seshan S, Bardash Y, Horowitz B, Kent CA, Shaw MM, Perlman A, Moledina DG, Coca SG, Campbell KN. Urinary Plasminogen as a Marker of Disease Progression in Human Glomerular Disease. Am J Kidney Dis 2024; 84:205-214.e1. [PMID: 38452919 PMCID: PMC11260534 DOI: 10.1053/j.ajkd.2024.01.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE & OBJECTIVE Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME Progression to ESKD. ANALYTICAL APPROACH Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean Lefferts
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Morgan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom Parker
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Daniel Levine
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yoni Bardash
- St. Joseph's University Medical, Paterson, New Jersey
| | - Benjamin Horowitz
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Candice A Kent
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa M Shaw
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Alan Perlman
- Rogosin Institute, Weill Cornell Medicine, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
11
|
Xie W, Donat A, Jiang S, Baranowsky A, Keller J. The emerging role of tranexamic acid and its principal target, plasminogen, in skeletal health. Acta Pharm Sin B 2024; 14:2869-2884. [PMID: 39027253 PMCID: PMC11252461 DOI: 10.1016/j.apsb.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 07/20/2024] Open
Abstract
The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use. Some clinical trials have characterized the effects of TXA on reducing postoperative infection rates and regulating immune responses in patients undergoing surgery. Also, several animal studies suggest potential therapeutic effects of TXA on skeletal diseases such as osteoporosis and fracture healing. Although a direct effect of TXA on the differentiation and function of bone cells in vitro was shown, few mechanisms of action have been reported. Here, we summarize recent findings of the effects of TXA on skeletal diseases and discuss the underlying plasminogen-dependent and -independent mechanisms related to bone metabolism and the immune response. We furthermore discuss potential novel indications for TXA application as a treatment strategy for skeletal diseases.
Collapse
Affiliation(s)
- Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
12
|
López-Valverde L, Vázquez-Mosquera ME, Colón-Mejeras C, Bravo SB, Barbosa-Gouveia S, Álvarez JV, Sánchez-Martínez R, López-Mendoza M, López-Rodríguez M, Villacorta-Argüelles E, Goicoechea-Diezhandino MA, Guerrero-Márquez FJ, Ortolano S, Leao-Teles E, Hermida-Ameijeiras Á, Couce ML. Characterization of the plasma proteomic profile of Fabry disease: Potential sex- and clinical phenotype-specific biomarkers. Transl Res 2024; 269:47-63. [PMID: 38395389 DOI: 10.1016/j.trsl.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.
Collapse
Affiliation(s)
- Laura López-Valverde
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - María E Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Cristóbal Colón-Mejeras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Sofía Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - J Víctor Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain
| | - Rosario Sánchez-Martínez
- Internal Medicine Department, Alicante General University Hospital-Alicante Institute of Health and Biomedical Research (ISABIAL), Pintor Baeza 12, Alicante 03010, Spain
| | - Manuel López-Mendoza
- Department of Nephrology, Hospital Universitario Virgen del Rocío, Manuel Siurot s/n, Sevilla 41013, Spain
| | - Mónica López-Rodríguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Colmenar Viejo, Madrid 28034, Spain; Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), Av. de Madrid, Alcalá de Henares 28871, Spain
| | - Eduardo Villacorta-Argüelles
- Department of Cardiology, Complejo Asistencial Universitario de Salamanca, P°. de San Vicente 58, Salamanca 37007, Spain
| | | | - Francisco J Guerrero-Márquez
- Department of Cardiology, Internal Medicine Service, Hospital de la Serranía, San Pedro, Ronda, Málaga 29400, Spain
| | - Saida Ortolano
- Rare Diseases and Pediatric Medicine Research Group, Galicia Sur Health Research Institute-SERGAS-UVIGO, Clara Campoamor 341, Vigo 36213, Spain
| | - Elisa Leao-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário de São João, Prof. Hernâni Monteiro, Porto 4200-319, Portugal
| | - Álvaro Hermida-Ameijeiras
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| | - María L Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases. RICORS-SAMID, CIBERER. University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain; Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, Choupana s/n, Santiago de Compostela, A Coruña 15706, Spain.
| |
Collapse
|
13
|
Brito-Robinson T, Ayinuola YA, Ploplis VA, Castellino FJ. Plasminogen missense variants and their involvement in cardiovascular and inflammatory disease. Front Cardiovasc Med 2024; 11:1406953. [PMID: 38984351 PMCID: PMC11231438 DOI: 10.3389/fcvm.2024.1406953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Human plasminogen (PLG), the zymogen of the fibrinolytic protease, plasmin, is a polymorphic protein with two widely distributed codominant alleles, PLG/Asp453 and PLG/Asn453. About 15 other missense or non-synonymous single nucleotide polymorphisms (nsSNPs) of PLG show major, yet different, relative abundances in world populations. Although the existence of these relatively abundant allelic variants is generally acknowledged, they are often overlooked or assumed to be non-pathogenic. In fact, at least half of those major variants are classified as having conflicting pathogenicity, and it is unclear if they contribute to different molecular phenotypes. From those, PLG/K19E and PLG/A601T are examples of two relatively abundant PLG variants that have been associated with PLG deficiencies (PD), but their pathogenic mechanisms are unclear. On the other hand, approximately 50 rare and ultra-rare PLG missense variants have been reported to cause PD as homozygous or compound heterozygous variants, often leading to a debilitating disease known as ligneous conjunctivitis. The true abundance of PD-associated nsSNPs is unknown since they can remain undetected in heterozygous carriers. However, PD variants may also contribute to other diseases. Recently, the ultra-rare autosomal dominant PLG/K311E has been found to be causative of hereditary angioedema (HAE) with normal C1 inhibitor. Two other rare pathogenic PLG missense variants, PLG/R153G and PLG/V709E, appear to affect platelet function and lead to HAE, respectively. Herein, PLG missense variants that are abundant and/or clinically relevant due to association with disease are examined along with their world distribution. Proposed molecular mechanisms are discussed when known or can be reasonably assumed.
Collapse
Affiliation(s)
| | | | | | - Francis J. Castellino
- Department of Chemistry and Biochemistry and the W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
14
|
Petrenko O, Badziukh S, Korsa V, Kolosovych I, Tykhomyrov A. Topical Application of Autologous Plasma-Derived Plasminogen Accelerates Healing of Chronic Foot Ulcers in Type 2 Diabetes Patients. INT J LOW EXTR WOUND 2024:15347346241256025. [PMID: 38758187 DOI: 10.1177/15347346241256025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Plasminogen (Pg) is currently considered a master regulator of wound healing, but the molecular mechanisms of its efficacy in improving impaired closure of chronic skin ulcers in type 2 diabetes patients remain unclear. Here, we investigated wound healing effects of autologous plasma-derived Pg in diabetes patients with chronic foot ulcers and evaluated Pg-induced changes in levels of key protein markers related to wound repair. Type 2 diabetes patients with chronic wounds of lower extremities were included in the study and received topical applications of Pg in a dose of 1.0 mg/mL every 2 days during 20 days, in addition to the standard wound management treatment. Patients treated only according to conventional protocol served as a control. Wound closure rates were monitored by digital planimetry of wound areas. Plasminogen supplementary treatment significantly accelerated relative wound closure as compared with diabetes patients from the control group (24 ± 4 days vs 120 ± 17 days, respectively, P < .01). As shown by Western blot, Pg application reduced expression of protein regulators of hypoxia events, angiogenesis, and autophagy such as hypoxia-inducible factor-1α (by 6.3-folds, P < .01), angiostatins (by 2.5-folds, P < .05), and autophagy marker LC3-II/LC3-I (by 8.6-folds, P < .05), while increasing vascular endothelial growth factor level by 1.9-folds (P < .05). Gelatin zymography showed that Pg-supplemented therapy decreased activity of matrix metalloproteinase-9 (MMP-9) by 3.5-folds at the end of treatment period (P < .01). We report here for the first time that topically applied plasma-derived Pg has a pronounced beneficial effect in promoting foot ulcer healing in patients with type 2 diabetes through preventing hypoxia-induced signaling, reducing autophagy flux, diminishing excessive MMP activity, and enhancing angiogenesis.
Collapse
Affiliation(s)
- Oleg Petrenko
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Sergiy Badziukh
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Ihor Kolosovych
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Keskinidou C, Vassiliou AG, Papoutsi E, Jahaj E, Dimopoulou I, Siempos I, Kotanidou A. Dysregulated Coagulation and Fibrinolysis Are Present in Patients Admitted to the Emergency Department with Acute Hypoxemic Respiratory Failure: A Prospective Study. Biomedicines 2024; 12:1081. [PMID: 38791043 PMCID: PMC11118913 DOI: 10.3390/biomedicines12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acute hypoxemic respiratory failure (AHRF) is defined as acute and progressive, and patients are at a greater risk of developing acute respiratory distress syndrome (ARDS). Until now, most studies have focused on prognostic and diagnostic biomarkers in ARDS. Since there is evidence supporting a connection between dysregulated coagulant and fibrinolytic pathways in ARDS progression, it is plausible that this dysregulation also exists in AHRF. The aim of this study was to explore whether levels of soluble endothelial protein C receptor (sEPCR) and plasminogen differentiate patients admitted to the emergency department (ED) with AHRF. sEPCR and plasminogen levels were measured in 130 AHRF patients upon ED presentation by ELISA. Our results demonstrated that patients presenting to the ED with AHRF had elevated levels of sEPCR and plasminogen. It seems that dysregulation of coagulation and fibrinolysis occur in the early stages of respiratory failure requiring hospitalisation. Further research is needed to fully comprehend the contribution of sEPCR and plasminogen in AHRF.
Collapse
Affiliation(s)
| | - Alice Georgia Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.K.); (E.P.); (E.J.); (I.D.); (I.S.)
| | | | | | | | | | - Anastasia Kotanidou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.K.); (E.P.); (E.J.); (I.D.); (I.S.)
| |
Collapse
|
16
|
Wen Y, Chen YQ, Konrad RJ. Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism. Curr Opin Lipidol 2024; 35:58-65. [PMID: 37962908 DOI: 10.1097/mol.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
PURPOSE OF REVIEW The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities. RECENT FINDINGS After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5). SUMMARY ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
17
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat Commun 2024; 15:2704. [PMID: 38538626 PMCID: PMC10973455 DOI: 10.1038/s41467-024-46974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J Molina
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurt N Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Marissa J Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Elizabeth R Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Urology, University of Washington Medical Center, Seattle, WA, 98133-9733, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ana L Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
18
|
Prakash P, Erdjument-Bromage H, O'Dea MR, Munson CN, Labib D, Fossati V, Neubert TA, Liddelow SA. Proteomic profiling of interferon-responsive reactive astrocytes in rodent and human. Glia 2024; 72:625-642. [PMID: 38031883 PMCID: PMC10843807 DOI: 10.1002/glia.24494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNβ and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Priya Prakash
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Hediye Erdjument-Bromage
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Christy N Munson
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - David Labib
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Thomas A Neubert
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
19
|
Seillier C, Lesec L, Hélie P, Marie C, Vivien D, Docagne F, Le Mauff B, Toutirais O. Tissue-plasminogen activator effects on the phenotype of splenic myeloid cells in acute inflammation. J Inflamm (Lond) 2024; 21:4. [PMID: 38355547 PMCID: PMC10865617 DOI: 10.1186/s12950-024-00375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tissue-plasminogen activator (tPA) is a serine protease well known for its fibrinolytic function. Recent studies indicate that tPA could also modulate inflammation via plasmin generation and/or by receptor mediated signalling in vitro. However, the contribution of tPA in inflammatory processes in vivo has not been fully addressed. Therefore, using tPA-deficient mice, we have analysed the effect of lipopolysaccharide (LPS) challenge on the phenotype of myeloid cells including neutrophils, macrophages and dendritic cells (DCs) in spleen. We found that LPS treatment upregulated the frequency of major histocompatibility class two (MHCII+) macrophages but also, paradoxically, induced a deep downregulation of MHCII molecule level on macrophages and on conventional dendritic cells 2 (cDC2). Expression level of the CD11b integrin, known as a tPA receptor, was upregulated by LPS on MHCII+ macrophages and cDC2, suggesting that tPA effects could be amplified during inflammation. In tPA-/- mice under inflammatory conditions, expression of costimulatory CD86 molecules on MHCII+ macrophages was decreased compared to WT mice, while in steady state the expression of MHCII molecules was higher on macrophages. Finally, we reported that tPA deficiency slightly modified the phenotype of DCs and T cells in acute inflammatory conditions. Overall, our findings indicate that in vivo, LPS injection had an unexpectedly bimodal effect on MHCII expression on macrophages and DCs that consequently might affect adaptive immunity. tPA could also participate in the regulation of the T cell response by modulating the levels of CD86 and MHCII molecules on macrophages.
Collapse
Affiliation(s)
- Célia Seillier
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Léonie Lesec
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
| | - Pauline Hélie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present address: Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Charlotte Marie
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- UAR 3408-US50 / Centre Universitaire de Ressources Biologiques (CURB), GIP Cyceron, Caen, France
| | - Denis Vivien
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU Caen, France
| | - Fabian Docagne
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Present Address: INSERM, Département de L'information Scientifique Et de La Communication (DISC), 75654, Paris Cedex 13, France
| | - Brigitte Le Mauff
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France
| | - Olivier Toutirais
- Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, UNICAEN, INSERM, GIP Cyceron, Caen, France.
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU Caen, France.
| |
Collapse
|
20
|
Bednarek A, Satala D, Zawrotniak M, Nobbs AH, Rapala-Kozik M, Kozik A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024; 25:1013. [PMID: 38256088 PMCID: PMC10815899 DOI: 10.3390/ijms25021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Angela H. Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| |
Collapse
|
21
|
Bharadwaj AG, Okura GC, Woods JW, Allen EA, Miller VA, Kempster E, Hancock MA, Gujar S, Slibinskas R, Waisman DM. Identification and characterization of calreticulin as a novel plasminogen receptor. J Biol Chem 2024; 300:105465. [PMID: 37979915 PMCID: PMC10770727 DOI: 10.1016/j.jbc.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 μM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.
Collapse
Affiliation(s)
- Alamelu G Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gillian C Okura
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John W Woods
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erica A Allen
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria A Miller
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montréal, Québec, Canada
| | - Shashi Gujar
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rimantas Slibinskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - David M Waisman
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
22
|
Cramer DAT, Yin V, Caval T, Franc V, Yu D, Wu G, Lloyd G, Langendorf C, Whisstock JC, Law RHP, Heck AJR. Proteoform-Resolved Profiling of Plasminogen Activation Reveals Novel Abundant Phosphorylation Site and Primary N-Terminal Cleavage Site. Mol Cell Proteomics 2024; 23:100696. [PMID: 38101751 PMCID: PMC10825491 DOI: 10.1016/j.mcpro.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Dingyi Yu
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guojie Wu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Gordon Lloyd
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Christopher Langendorf
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Rosenfeld MA, Yurina LV, Gavrilina ES, Vasilyeva AD. Post-Translational Oxidative Modifications of Hemostasis Proteins: Structure, Function, and Regulation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S14-S33. [PMID: 38621742 DOI: 10.1134/s0006297924140025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 04/17/2024]
Abstract
Reactive oxygen species (ROS) are constantly generated in a living organism. An imbalance between the amount of generated reactive species in the body and their destruction leads to the development of oxidative stress. Proteins are extremely vulnerable targets for ROS molecules, which can cause oxidative modifications of amino acid residues, thus altering structure and function of intra- and extracellular proteins. The current review considers the effect of oxidation on the structural rearrangements and functional activity of hemostasis proteins: coagulation system proteins such as fibrinogen, prothrombin/thrombin, factor VII/VIIa; anticoagulant proteins - thrombomodulin and protein C; proteins of the fibrinolytic system such as plasminogen, tissue plasminogen activator and plasminogen activator inhibitor-1. Structure and function of the proteins, oxidative modifications, and their detrimental consequences resulting from the induced oxidation or oxidative stress in vivo are described. Possible effects of oxidative modifications of proteins in vitro and in vivo leading to disruption of the coagulation and fibrinolysis processes are summarized and systematized, and the possibility of a compensatory mechanism in maintaining hemostasis under oxidative stress is analyzed.
Collapse
Affiliation(s)
- Mark A Rosenfeld
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Lyubov V Yurina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elizaveta S Gavrilina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra D Vasilyeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
24
|
Kostrubsky V, Liu Y, Muste C, Gu C, Kirkland M, Nishimura N, Hasegawa K, Hasumi K, Yuan L. Preclinical safety, toxicokinetics and metabolism of BIIB131, a novel prothrombolytic agent for acute stroke. Regul Toxicol Pharmacol 2023; 145:105498. [PMID: 37778433 DOI: 10.1016/j.yrtph.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BIIB131, a small molecule, is currently in Phase 2 for the treatment of acute ischemic stroke. Safety and metabolism of BIIB131 were evaluated following intravenous administration to rats and monkeys. Exposure increased dose-proportionally in rats up to 60 mg/kg and more than dose-proportionally in monkeys at greater than 10 mg/kg accompanied by prolonged half-life and safety findings. The BIIB131 was poorly metabolized in microsomes with no inhibition of CYPs. BIIB131-glucuronide, formed by UGT1A1, accounted for 21.5% metabolism in human hepatocytes and 28-40% in rat bile. In rats, excretion was primarily via the bile. BIIB131 inhibited the hERG and Nav1.5 cardiac channels by 39% but showed no effect on cardiovascular parameters in monkeys. Toxicology findings were limited to reversable hematuria, changes in urinary parameters and local effects. A MTD of 30 mg/kg was established in monkeys, the most sensitive species, at total plasma Cmax and AUC of 6- and 14-fold, respectively, greater than the NOAEL. The Phase 1 study started with intravenous 0.05 mg/kg and ascended to 6.0 mg/kg which corresponded to safety margins of 147- to 0.9-fold (for Cmax) within the linear drug exposure. Thus, the preclinical profile of BIIB131 has been appropriately characterized and supports its further clinical development.
Collapse
Affiliation(s)
- Vick Kostrubsky
- Nonclinical Safety Science, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA.
| | - Ying Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Cathy Muste
- Drug Metabolism and Pharmacokinetics, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Melissa Kirkland
- Nonclinical Safety Science, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| | - Naoko Nishimura
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan
| | - Keiko Hasegawa
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan
| | - Keiji Hasumi
- Division of Research and Development, TMS Co., Ltd., Tokyo, Japan; Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Long Yuan
- Drug Metabolism and Pharmacokinetics, Biogen, Inc., 225 Binney Street, Cambridge, MA, 02142, USA
| |
Collapse
|
25
|
Hao Y, Li C, Wang H, Ming C. Effects of copy number variations on longevity in late-onset Alzheimer's disease patients: insights from a causality network analysis. Front Aging Neurosci 2023; 15:1241412. [PMID: 38020759 PMCID: PMC10652415 DOI: 10.3389/fnagi.2023.1241412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD), particularly late-onset Alzheimer's disease (LOAD), is a prevalent form of dementia that significantly affects patients' cognitive and behavioral capacities and longevity. Although approximately 70 genetic risk factors linked with AD have been identified, their influence on patient longevity remains unclear. Further, recent studies have associated copy number variations (CNVs) with the longevity of healthy individuals and immune-related pathways in AD patients. This study aims to investigate the role of CNVs on the longevity of AD patients by integrating the Whole Genome Sequencing (WGS) and transcriptomics data from the Religious Orders Study/Memory and Aging Project (ROSMAP) cohort through causality network inference. Our comprehensive analysis led to the construction of a CNV-Gene-Age of Death (AOD) causality network. We successfully identified three key CNVs (DEL5006, mCNV14192, and DUP42180) and seven AD-longevity causal genes (PLGRKT, TLR1, PLAU, CALB2, SYTL2, OTOF, and NT5DC1) impacting AD patient longevity, independent of disease severity. This outcome emphasizes the potential role of plasminogen activation and chemotaxis in longevity. We propose several hypotheses regarding the role of identified CNVs and the plasminogen system on patient longevity. However, experimental validation is required to further corroborate these findings and uncover precise mechanisms. Despite these limitations, our study offers promising insights into the genetic influence on AD patient longevity and contributes to paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Yanan Hao
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - Chuhao Li
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, Macao SAR, China
| |
Collapse
|
26
|
Wang J, Smeath E, Lim HY, Nandurkar H, Kok HK, Ho P. Current challenges in the prevention and management of post-thrombotic syndrome-towards improved prevention. Int J Hematol 2023; 118:547-567. [PMID: 37651058 PMCID: PMC10615940 DOI: 10.1007/s12185-023-03651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Post-thrombotic syndrome (PTS) is a common and potentially debilitating complication of deep vein thrombosis (DVT), affecting up to 50% of DVT patients. The consequence of this chronic condition includes reduced quality of life, increased use of the healthcare system and decreased productivity. The societal impact of this condition is projected to increase, given our ageing population and increased burden of thrombotic diseases. Despite significant recent advances in our understanding of PTS, many unanswered questions remain. Currently, there are few effective and proven options for established PTS; hence, the emphasis should be on instituting effective prevention to reduce the progression to PTS. Effective anticoagulation lowers the risk of PTS, with direct oral anticoagulants appearing to outperform vitamin-K antagonists. However, the evidence for elastic compression stockings and endovascular thrombolysis or thrombectomy techniques remains unclear. Accurate identification of individuals at high risk of developing PTS may also improve the targeting of preventative interventions. This review will examine the current body of evidence regarding PTS, with a focus on preventative strategies as well as novel biomarkers.
Collapse
Affiliation(s)
- Julie Wang
- Northern Health, Epping, Melbourne, VIC, Australia.
- University of Melbourne, Melbourne, VIC, Australia.
- Department of Haematology, Northern Hospital, 185 Cooper St., Epping, Melbourne, 3076, VIC, Australia.
| | - Elise Smeath
- University of Melbourne, Melbourne, VIC, Australia
| | - Hui Yin Lim
- Northern Health, Epping, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | | | - Hong Kuan Kok
- Northern Health, Epping, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Prahlad Ho
- Northern Health, Epping, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Jonasdottir AD, Manojlovic M, Vojinovic J, Nordin A, Bruchfeld A, Gunnarsson I, Mobarrez F, Antovic A. Augmented thrombin formation is related to circulating levels of extracellular vesicles exposing tissue factor and citrullinated histone-3 in anti-neutrophil cytoplasmic antibody-associated vasculitides. Front Med (Lausanne) 2023; 10:1240325. [PMID: 37915326 PMCID: PMC10616855 DOI: 10.3389/fmed.2023.1240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Objectives To study circulating myeloperoxidase (MPO)-positive extracellular vesicles (MPO+EVs) exposing citrullinated histone-3 (H3Cit), tissue factor (TF), and plasminogen (Plg) in association to thrombin generation in patients with anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (AAV). Methods We have involved well-characterized patients with AAV together with population-based controls. Flow cytometry was used to assess the levels of MPO+EVs in citrated plasma. MPO+EVs were phenotyped by anti-MPO-antibodies together with anti-CD142 (anti-TF), anti-H3Cit, and anti-Plg antibodies. A modified Calibrated Automated Thrombogram (CAT) assay was utilized to measure thrombin generation in plasma initiated by EVs-enriched pellets. The activity of AAV was evaluated with the Birmingham Vasculitis Activity Score (BVAS). Results This study comprised 46 AAV patients, 23 in the active stage of the disease and 23 in remission, as well as 23 age- and sex matched population-based controls. Augmented levels of all investigated MPO+ EVs were found in active AAV patients in comparison to the subgroup of patients in remission and controls. Thrombin generation, measured by endogenous thrombin potential (ETP) and peak of thrombin formation, was higher in plasma when triggered by EVs-enriched pellet from AAV patients. ETP and peak were associated with the levels of MPO+TF+ and MPO+H3Cit+ EVs. Additionally, MPO+TF+ EVs correlated with the disease activity evaluated with BVAS. Conclusion Augmented thrombin generation is found in AAV patients regardless of disease activity and is associated with higher exposure of TF and H3Cit on MPO+EVs. This may contribute to the increased risk of thrombosis seen in AAV patients.
Collapse
Affiliation(s)
- Asta Dogg Jonasdottir
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Nephrology, Department of Medicine, Landspitali – The National University Hospital, Reykjavik, Iceland
| | - Milena Manojlovic
- Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia
| | - Jelena Vojinovic
- Department of Pediatrics, Medical Faculty, University of Niš, Niš, Serbia
| | - Annica Nordin
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Iva Gunnarsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden
- Rheumatology, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | | | - Aleksandra Antovic
- Department of Medicine, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden
- Rheumatology, Karolinska University Hospital Stockholm, Stockholm, Sweden
| |
Collapse
|
28
|
Siebert AE, Brake MA, Verbeek SC, Johnston AJ, Morgan AP, Cleuren AC, Jurek AM, Schneider CD, Germain DM, Battistuzzi FU, Zhu G, Miller DR, Johnsen JM, Pardo-Manuel de Villena F, Rondina MT, Westrick RJ. Identification of genomic loci regulating platelet plasminogen activator inhibitor-1 in mice. J Thromb Haemost 2023; 21:2917-2928. [PMID: 37364776 PMCID: PMC10826891 DOI: 10.1016/j.jtha.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Stephanie C Verbeek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | - Andrew P Morgan
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Audrey C Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrianna M Jurek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Caitlin D Schneider
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Derrik M Germain
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darla R Miller
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jill M Johnsen
- Department of Medicine, Institute for Stem Cell & Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew T Rondina
- Molecular Medicine Program, Departments of Internal Medicine and Pathology, the University of Utah, Salt Lake City, Utah, USA; The George E. Wahlen Department of Medical Affairs Medical Center, Salt Lake City, Utah, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA; Eye Research Center and Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA.
| |
Collapse
|
29
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Extensive rewiring of the gene regulatory interactions between in vitro-produced conceptuses and endometrium during attachment. PNAS NEXUS 2023; 2:pgad284. [PMID: 37711857 PMCID: PMC10498941 DOI: 10.1093/pnasnexus/pgad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Pregnancy loss is a significant problem when embryos produced in vitro are transferred to a synchronized uterus. Currently, mechanisms that underlie losses of in vitro-produced embryos during implantation are largely unknown. We investigated this problem using cattle as a model of conceptus attachment by analyzing transcriptome data of paired extraembryonic membrane and endometrial samples collected on gestation days 18 and 25, which spans the attachment window in cattle. We identified that the transfer of an in vitro-produced embryo caused a significant alteration in transcript abundance of hundreds of genes in extraembryonic and endometrial tissues on gestation days 18 and 25, when compared to pregnancies initiated by artificial insemination. Many of the genes with altered transcript abundance are associated with biological processes that are relevant to the establishment of pregnancy. An integrative analysis of transcriptome data from the conceptus and endometrium identified hundreds of putative ligand-receptor pairs. There was a limited variation of ligand-receptor pairs in pregnancies initiated by in vitro-produced embryos on gestation day 18, and no alteration was observed on gestation day 25. In parallel, we identified that in vitro production of embryos caused an extensive alteration in the coexpression of genes expressed in the extraembryonic membranes and the corresponding endometrium on both gestation days. Both the transcriptional dysregulation that exists in the conceptus or endometrium independently and the rewiring of gene transcription between the conceptus and endometrium are a potential component of the mechanisms that contribute to pregnancy losses caused by in vitro production of embryos.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL 36849, USA
| | - Marta Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
30
|
Napolitano F, Giudice V, Selleri C, Montuori N. Plasminogen System in the Pathophysiology of Sepsis: Upcoming Biomarkers. Int J Mol Sci 2023; 24:12376. [PMID: 37569751 PMCID: PMC10418678 DOI: 10.3390/ijms241512376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Severe hemostatic disturbances and impaired fibrinolysis occur in sepsis. In the most serious cases, the dysregulation of fibrinolysis contributes to septic shock, disseminated intravascular coagulation (DIC), and death. Therefore, an analysis of circulating concentrations of pro- and anti-fibrinolytic mediators could be a winning strategy in both the diagnosis and the treatment of sepsis. However, the optimal cutoff value, the timing of the measurements, and their combination with coagulation indicators should be further investigated. The purpose of this review is to summarize all relevant publications regarding the role of the main components of the plasminogen activation system (PAS) in the pathophysiology of sepsis. In addition, the clinical value of PAS-associated biomarkers in the diagnosis and the outcomes of patients with septic syndrome will be explored. In particular, experimental and clinical trials performed in emergency departments highlight the validity of soluble urokinase plasminogen activator receptor (suPAR) as a predictive and prognostic biomarker in patients with sepsis. The measurements of PAI-I may also be useful, as its increase is an early manifestation of sepsis and may precede the development of thrombocytopenia. The upcoming years will undoubtedly see progress in the use of PAS-associated laboratory parameters.
Collapse
Affiliation(s)
- Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (V.G.); (C.S.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy; (V.G.); (C.S.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
- Center for Basic and Clinical Immunology Research (CISI), WAO Center of Excellence, University of Naples “Federico II”, 80138 Naples, Italy
| |
Collapse
|
31
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
32
|
Martire-Greco D, La Greca A, Montañez LC, Biani C, Lombardi A, Birnberg-Weiss F, Norris A, Sacerdoti F, Amaral MM, Rodrigues-Rodriguez N, Pittaluga JR, Furmento VA, Landoni VI, Miriuka SG, Luzzani C, Fernández GC. EFFECTS OF BACTERIAL LIPOPOLYSACCHARIDE AND SHIGA TOXIN ON INDUCED PLURIPOTENT STEM CELL-DERIVED MESENCHYMAL STEM CELLS. Shock 2023; 59:941-947. [PMID: 37036956 DOI: 10.1097/shk.0000000000002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ABSTRACT Background : Mesenchymal stem cells (MSCs) can be activated by different bacterial toxins. Lipopolysaccharides and Shiga Toxin (Stx) are the main toxins necessary for hemolytic uremic syndrome development. The main etiological event in this disease is endothelial damage that causes glomerular destruction. Considering the repairing properties of MSC, we aimed to study the response of MSC derived from induced pluripotent stem cells (iPSC-MSC) to LPS and/or Stx and its effect on the restoration of injured endothelial cells. Methods : iPSC-MSC were treated with LPS and or/Stx for 24 h and secretion of cytokines, adhesion, and migration were measured in response to these toxins. In addition, conditioned media from treated iPSC-MSC were collected and used for proteomics analysis and evaluation of endothelial cell healing and tubulogenesis using human microvascular endothelial cells 1 as a source of endothelial cells. Results : The results obtained showed that LPS induced a proinflammatory profile on iPSC-MSC, whereas Stx effects were less evident, even though cells expressed the Gb 3 receptor. Moreover, LPS induced on iPSC-MSC an increment in migration and adhesion to a gelatin substrate. Addition of conditioned media of iPSC-MSC treated with LPS + Stx, decreased the capacity of human microvascular endothelial cells 1 to close a wound, and did not favor tubulogenesis. Proteomic analysis of iPSC-MSC treated with LPS and/or Stx revealed specific protein secretion patterns that support the functional results described. Conclusions : iPSC-MSC activated by LPS acquired a proinflammatory profile that induces migration and adhesion to extracellular matrix proteins but the addition of Stx did not activate any repair program to ameliorate endothelial damage, indicating that the use of iPSC-MSC to regenerate endothelial injury caused by LPS and/or Stx in hemolytic uremic syndrome could not be the best option to consider to regenerate a tissue injury.
Collapse
Affiliation(s)
| | - Alejandro La Greca
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Luis Castillo Montañez
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Celeste Biani
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Antonella Lombardi
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Alessandra Norris
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | | | | | - Nahuel Rodrigues-Rodriguez
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jose Ramón Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios. Instituto de Medicina Experimental (IMEX-CONICET). Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Verónica Alejandra Furmento
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Instituto de Neurociencias (INEU), FLENI-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Vizzoni L, Migone C, Grassiri B, Zambito Y, Ferro B, Roncucci P, Mori F, Salvatore A, Ascione E, Crea R, Esin S, Batoni G, Piras AM. Biopharmaceutical Assessment of Mesh Aerosolised Plasminogen, a Step towards ARDS Treatment. Pharmaceutics 2023; 15:1618. [PMID: 37376068 PMCID: PMC10300680 DOI: 10.3390/pharmaceutics15061618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe complication of lung injuries, commonly associated with bacterial, fungal and viral infections, including SARS-CoV-2 viral infections. ARDS is strongly correlated with patient mortality and its clinical management is very complex, with no effective treatment presently available. ARDS involves severe respiratory failure, fibrin deposition in both airways and lung parenchyma, with the development of an obstructing hyaline membrane drastically limiting gas exchange. Moreover, hypercoagulation is related to deep lung inflammation, and a pharmacological action toward both aspects is expected to be beneficial. Plasminogen (PLG) is a main component of the fibrinolytic system playing key roles in various inflammation regulatory processes. The inhalation of PLG has been proposed in the form of the off-label administration of an eyedrop solution, namely, a plasminogen-based orphan medicinal product (PLG-OMP), by means of jet nebulisation. Being a protein, PLG is susceptible to partial inactivation under jet nebulisation. The aim of the present work is to demonstrate the efficacy of the mesh nebulisation of PLG-OMP in an in vitro simulation of clinical off-label administration, considering both the enzymatic and immunomodulating activities of PLG. Biopharmaceutical aspects are also investigated to corroborate the feasibility of PLG-OMP administration by inhalation. The nebulisation of the solution was performed using an Aerogen® SoloTM vibrating-mesh nebuliser. Aerosolised PLG showed an optimal in vitro deposition profile, with 90% of the active ingredient impacting the lower portions of a glass impinger. The nebulised PLG remained in its monomeric form, with no alteration of glycoform composition and 94% of enzymatic activity maintenance. Activity loss was observed only when PLG-OMP nebulisation was performed under simulated clinical oxygen administration. In vitro investigations evidenced good penetration of aerosolised PLG through artificial airway mucus, as well as poor permeation across an Air-Liquid Interface model of pulmonary epithelium. The results suggest a good safety profile of inhalable PLG, excluding high systemic absorption but with good mucus diffusion. Most importantly, the aerosolised PLG was capable of reversing the effects of an LPS-activated macrophage RAW 264.7 cell line, demonstrating the immunomodulating activity of PLG in an already induced inflammatory state. All physical, biochemical and biopharmaceutical assessments of mesh aerosolised PLG-OMP provided evidence for its potential off-label administration as a treatment for ARDS patients.
Collapse
Affiliation(s)
- Lucia Vizzoni
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Research Centre for Nutraceutical and Healthy Foods “NUTRAFOOD”, University of Pisa, 56124 Pisa, Italy
| | - Baldassare Ferro
- Anestesia e Rianimazione, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Paolo Roncucci
- Anestesia e Rianimazione, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Filippo Mori
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Alfonso Salvatore
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Ester Ascione
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Roberto Crea
- Kedrion S.p.A., Via di Fondovalle, Loc. Bolognana, 55027 Gallicano, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Centre for Instrument Sharing of University of Pisa (CISUP), 56126 Pisa, Italy
| |
Collapse
|
34
|
Martinez V, Dettleff P, Zamorano P, Galarce N, Borie C, Naish K. Host-pathogen interaction involving cytoskeleton changes as well as non-coding regulation as primary mechanisms for SRS resistance in Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108711. [PMID: 37004895 DOI: 10.1016/j.fsi.2023.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-β), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.
Collapse
Affiliation(s)
- Victor Martinez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa, 11735, Santiago, Chile.
| | - Phillip Dettleff
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Avda. Santa Rosa, 11735, Santiago, Chile
| | - Pedro Zamorano
- Cell and Molecular Biology-Genetics Unit, University of Antofagasta, Antofagasta, Chile
| | - Nicolás Galarce
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370146, Chile
| | - Consuelo Borie
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370146, Chile
| | - Kerry Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, United States
| |
Collapse
|
35
|
Afosah DK, Fayyad RM, Puliafico VR, Merrell S, Langmia EK, Diagne SR, Al-Horani RA, Desai UR. Homogeneous, Synthetic, Non-Saccharide Glycosaminoglycan Mimetics as Potent Inhibitors of Human Cathepsin G. Biomolecules 2023; 13:760. [PMID: 37238630 PMCID: PMC10216581 DOI: 10.3390/biom13050760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Cathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential. We reasoned that synthetic small mimetics of heparin, labeled as non-saccharide glycosaminoglycan mimetics (NSGMs), would exhibit potent CatG inhibition while being devoid of bleeding risks associated with heparin. Hence, we screened a focused library of 30 NSGMs for CatG inhibition using a chromogenic substrate hydrolysis assay and identified nano- to micro-molar inhibitors with varying levels of efficacy. Of these, a structurally-defined, octasulfated di-quercetin NSGM 25 inhibited CatG with a potency of ~50 nM. NSGM 25 binds to CatG in an allosteric site through an approximately equal contribution of ionic and nonionic forces. Octasulfated 25 exhibits no impact on human plasma clotting, suggesting minimal bleeding risk. Considering that octasulfated 25 also potently inhibits two other pro-inflammatory proteases, human neutrophil elastase and human plasmin, the current results imply the possibility of a multi-pronged anti-inflammatory approach in which these proteases are likely to simultaneously likely combat important conditions, e.g., rheumatoid arthritis, emphysema, or cystic fibrosis, with minimal bleeding risk.
Collapse
Affiliation(s)
- Daniel K. Afosah
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rawan M. Fayyad
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Valerie R. Puliafico
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Spencer Merrell
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Eltice K. Langmia
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA 24450, USA
| | - Sophie R. Diagne
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Umesh R. Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (R.M.F.)
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
36
|
Vago JP, Zaidan I, Perucci LO, Brito LF, Teixeira LC, Silva CMS, Miranda TC, Melo EM, Bruno AS, Queiroz-Junior CM, Sugimoto MA, Tavares LP, Grossi LC, Borges IN, Schneider AH, Baik N, Schneider AH, Talvani A, Ferreira RG, Alves-Filho JC, Nobre V, Teixeira MM, Parmer RJ, Miles LA, Sousa LP. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023; 8:e166044. [PMID: 36917195 PMCID: PMC10243804 DOI: 10.1172/jci.insight.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.
Collapse
Affiliation(s)
- Juliana P. Vago
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Isabella Zaidan
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Luiza O. Perucci
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Larissa Froede Brito
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Lívia C.R. Teixeira
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Camila Meirelles Souza Silva
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís C. Miranda
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Eliza M. Melo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre S. Bruno
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A. Sugimoto
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P. Tavares
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laís C. Grossi
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| | - Isabela N. Borges
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Ayda H. Schneider
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Talvani
- Department of Biological Sciences, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Raphael G. Ferreira
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José C. Alves-Filho
- Department of Pharmacology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vandack Nobre
- Hospital of Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System and University of California, San Diego, California, USA
| | - Lindsey A. Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Lirlândia P. Sousa
- Signaling in Inflammation Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, and
| |
Collapse
|
37
|
Badimon A, Torrente D, Norris EH. Vascular Dysfunction in Alzheimer's Disease: Alterations in the Plasma Contact and Fibrinolytic Systems. Int J Mol Sci 2023; 24:7046. [PMID: 37108211 PMCID: PMC10138543 DOI: 10.3390/ijms24087046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, affecting millions of people worldwide. The classical hallmarks of AD include extracellular beta-amyloid (Aβ) plaques and neurofibrillary tau tangles, although they are often accompanied by various vascular defects. These changes include damage to the vasculature, a decrease in cerebral blood flow, and accumulation of Aβ along vessels, among others. Vascular dysfunction begins early in disease pathogenesis and may contribute to disease progression and cognitive dysfunction. In addition, patients with AD exhibit alterations in the plasma contact system and the fibrinolytic system, two pathways in the blood that regulate clotting and inflammation. Here, we explain the clinical manifestations of vascular deficits in AD. Further, we describe how changes in plasma contact activation and the fibrinolytic system may contribute to vascular dysfunction, inflammation, coagulation, and cognitive impairment in AD. Given this evidence, we propose novel therapies that may, alone or in combination, ameliorate AD progression in patients.
Collapse
Affiliation(s)
| | | | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
38
|
Shi H, Duan J, Chen Z, Huang M, Han W, Kong R, Guan X, Qi Z, Zheng S, Lu M. A prognostic gene signature for gastric cancer and the immune infiltration-associated mechanism underlying the signature gene, PLG. Clin Transl Oncol 2023; 25:995-1010. [PMID: 36376702 DOI: 10.1007/s12094-022-03003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Globally, gastric cancer (GC) is a common and lethal solid malignant tumor. Identifying the molecular signature and its functions can provide mechanistic insights into GC development and new methods for targeted therapy. METHODS Differentially expressed genes (DEGs) and prognostic genes (from univariate Cox regression analysis) were overlapped to obtain prognostic DEGs. Subsequently, molecular modules and the functions of these prognostic DEGs were identified by Metascape and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)/Gene Set Enrichment Analysis (GSEA) enrichment analyses, respectively. Protein-protein interaction (PPI) networks of up- and down-regulated prognostic DEGs in GC were analyzed using the MCC algorithm of the Cytohubba plug-in in Cytoscape. The prognostic gene signature was defined on hub genes of the PPI networks by least absolute shrinkage and selection operator (LASSO)-Cox regression analysis. Furthermore, the expressional level of PLG in our clinical GC samples was validated by quantitative PCR (qPCR), western blotting, and immunohistochemistry (IHC). Subsequently, the PLG expression-correlation analysis was performed to assess the role of PLG in GC progression. Immune infiltration analysis was performed by single-sample gene set enrichment analysis (ssGSEA) to assess the inhibitory effect of PLG on immune infiltration. RESULTS Firstly, Up- and down-regulated prognostic DEGs and hub genes in protein-protein interaction (PPI) networks in GC were identified. A prognostic five-gene signature (i.e., PLG, SPARC, FGB, SERPINE1, and KLHL41) was identified. Among the five genes, the relationship between plasminogen (PLG) and GC remains largely unclear. Moreover, the functions of PLG-correlated genes in GC, like 'fibrinolysis', 'hemostasis', 'ion channel complex', and 'transporter complex' were identified. In addition, PLG expression correlated negatively with the infiltration of almost all immune cell types. Interestingly, the expression of PLG was significantly and highly correlated with that of CD160, an immune checkpoint inhibitor. CONCLUSION Our findings defined a new five-gene signature for predicting GC prognosis, but more validation is required to assess the effects and mechanism of the five genes, especially PLG, for the development of new GC therapies.
Collapse
Affiliation(s)
- Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Jiangling Duan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Zhangming Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengqi Huang
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wenxiu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Rui Kong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Xiuyin Guan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Zhen Qi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China
| | - Shuang Zheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, No.218, Ji Xi Road, Hefei, 230032, Anhui, China.
| | - Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, No.81, Mei Shan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
39
|
Beghelli D, Zallocco L, Angeloni C, Bistoni O, Ronci M, Cavallucci C, Mazzoni MR, Nuccitelli A, Catalano C, Hrelia S, Lucacchini A, Giusti L. Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression. Life (Basel) 2023; 13:life13030750. [PMID: 36983904 PMCID: PMC10055707 DOI: 10.3390/life13030750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Intense exercise can cause inflammation and oxidative stress due to the production of reactive oxygen species. These pathophysiological processes are interdependent, and each one can induce the other, creating a vicious circle. A placebo-controlled blind study was carried out in show jumping horses (n. 16) to evaluate the effects of a commercial dietary supplement (Dolhorse® N.B.F. Lanes srl, Milan, Italy) containing Verbascum thapsus leaf powder (1.42%), Curcuma longa (14.280 mg/kg), and Boswellia serrata (Roxb ex Colebr) (14.280 mg/kg) extracts. Before and after 10 days of dietary supplementation, blood samples were collected to evaluate the protein levels, antioxidants, and inflammatory responses by proteomic analysis or real-time Reverse Transcriptase-Polymerase Chain Reaction (real-time RT-PCR). A total of 36 protein spots, connected to 29 proteins, were modulated by dietary supplementation, whereas real-time RT-PCR revealed a significant downregulation of proinflammatory cytokines (interleukin 1α (p < 0.05) and interleukin-6 (0.005), toll-like receptor 4 (p < 0.05), and IKBKB (p < 0.05) in supplemented sport horses. Immunoglobulin chains, gelsolin, plasminogen, vitamin D binding protein, apolipoprotein AIV, and filamin B were overexpressed, whereas haptoglobin, α-2-HS-glycoprotein, α2-macroglobulin, afamin, amine oxidase, 60S acidic ribosomal protein, and complement fragments 3, 4, and 7 were reduced. No effect was observed on the antioxidant defense systems. The present results suggest this phytotherapy may reinforce the innate immune responses, thus representing a valid adjuvant to alleviate inflammation, which is a pathophysiological process in sport horses.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence: (D.B.); (L.G.); Tel.: +39-737-403201 (D.B.); +39-737-402916 (L.G.)
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Onelia Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, 06126 Perugia, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | - Anna Nuccitelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | | | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (D.B.); (L.G.); Tel.: +39-737-403201 (D.B.); +39-737-402916 (L.G.)
| |
Collapse
|
40
|
Zhen EY, Chen YQ, Russell AM, Ehsani M, Siegel RW, Qian Y, Konrad RJ. Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity. Proc Natl Acad Sci U S A 2023; 120:e2214081120. [PMID: 36763533 PMCID: PMC9963551 DOI: 10.1073/pnas.2214081120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Triglyceride (TG) metabolism is highly regulated by angiopoietin-like protein (ANGPTL) family members [Y. Q. Chen et al., J. Lipid Res. 61, 1203-1220 (2020)]. During feeding, ANGPTL8 forms complexes with the fibrinogen-like domain-containing protein ANGPTL4 in adipose tissue to decrease ANGPTL3/8- and ANGPTL4-mediated lipoprotein lipase (LPL)-inhibitory activity and promote TG hydrolysis and fatty acid (FA) uptake. The ANGPTL4/8 complex, however, tightly binds LPL and partially inhibits it in vitro. To try to reconcile the in vivo and in vitro data on ANGPTL4/8, we aimed to find novel binding partners of ANGPTL4/8. To that end, we performed pulldown experiments and found that ANGPTL4/8 bound both tissue plasminogen activator (tPA) and plasminogen, the precursor of the fibrinolytic enzyme plasmin. Remarkably, ANGPTL4/8 enhanced tPA activation of plasminogen to generate plasmin in a manner like that observed with fibrin, while minimal plasmin generation was observed with ANGPTL4 alone. The addition of tPA and plasminogen to LPL-bound ANGPTL4/8 caused rapid, complete ANGPTL4/8 cleavage and increased LPL activity. Restoration of LPL activity in the presence of ANGPTL4/8 was also achieved with plasmin but was blocked when catalytically inactive plasminogen (S760A) was added to tPA or when plasminogen activator inhibitor-1 was added to tPA + plasminogen, indicating that conversion of plasminogen to plasmin was essential. Together, these results suggest that LPL-bound ANGPTL4/8 mimics fibrin to recruit tPA and plasminogen to generate plasmin, which then cleaves ANGPTL4/8, enabling LPL activity to be increased. Our observations thus reveal a unique link between the ANGPTL4/8 complex and plasmin generation.
Collapse
Affiliation(s)
- Eugene Y. Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yan Q. Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Anna M. Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN46225
| |
Collapse
|
41
|
Yatsenko T, Skrypnyk M, Troyanovska O, Tobita M, Osada T, Takahashi S, Hattori K, Heissig B. The Role of the Plasminogen/Plasmin System in Inflammation of the Oral Cavity. Cells 2023; 12:cells12030445. [PMID: 36766787 PMCID: PMC9913802 DOI: 10.3390/cells12030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The oral cavity is a unique environment that consists of teeth surrounded by periodontal tissues, oral mucosae with minor salivary glands, and terminal parts of major salivary glands that open into the oral cavity. The cavity is constantly exposed to viral and microbial pathogens. Recent studies indicate that components of the plasminogen (Plg)/plasmin (Pm) system are expressed in tissues of the oral cavity, such as the salivary gland, and contribute to microbial infection and inflammation, such as periodontitis. The Plg/Pm system fulfills two major functions: (a) the destruction of fibrin deposits in the bloodstream or damaged tissues, a process called fibrinolysis, and (b) non-fibrinolytic actions that include the proteolytic modulation of proteins. One can observe both functions during inflammation. The virus that causes the coronavirus disease 2019 (COVID-19) exploits the fibrinolytic and non-fibrinolytic functions of the Plg/Pm system in the oral cavity. During COVID-19, well-established coagulopathy with the development of microthrombi requires constant activation of the fibrinolytic function. Furthermore, viral entry is modulated by receptors such as TMPRSS2, which is necessary in the oral cavity, leading to a derailed immune response that peaks in cytokine storm syndrome. This paper outlines the significance of the Plg/Pm system for infectious and inflammatory diseases that start in the oral cavity.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Olga Troyanovska
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-Shi 279-0021, Japan
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Correspondence: (K.H.); (B.H.); Tel.: +81-3-3813-3111 (switchboard 2115) (B.H.)
| |
Collapse
|
42
|
Chlastáková A, Kaščáková B, Kotál J, Langhansová H, Kotsyfakis M, Kutá Smatanová I, Tirloni L, Chmelař J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front Immunol 2023; 14:1116324. [PMID: 36756125 PMCID: PMC9901544 DOI: 10.3389/fimmu.2023.1116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,*Correspondence: Jindřich Chmelař,
| |
Collapse
|
43
|
Browning JL, Bhawan J, Tseng A, Crossland N, Bujor AM, Akassoglou K, Assassi S, Skaug B, Ho J. Extensive and Persistent Extravascular Dermal Fibrin Deposition Characterizes Systemic Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.523256. [PMID: 36711912 PMCID: PMC9882194 DOI: 10.1101/2023.01.16.523256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive multiorgan fibrosis. While the cause of SSc remains unknown, a perturbed vasculature is considered a critical early step in the pathogenesis. Using fibrinogen as a marker of vascular leakage, we found extensive extravascular fibrinogen deposition in the dermis of both limited and diffuse systemic sclerosis disease, and it was present in both early and late-stage patients. Based on a timed series of excision wounds, retention on the fibrin deposit of the splice variant domain, fibrinogen αEC, indicated a recent event, while fibrin networks lacking the αEC domain were older. Application of this timing tool to SSc revealed considerable heterogeneity in αEC domain distribution providing unique insight into disease activity. Intriguingly, the fibrinogen-αEC domain also accumulated in macrophages. These observations indicate that systemic sclerosis is characterized by ongoing vascular leakage resulting in extensive interstitial fibrin deposition that is either continually replenished and/or there is impaired fibrin clearance. Unresolved fibrin deposition might then incite chronic tissue remodeling.
Collapse
Affiliation(s)
- Jeffrey L Browning
- Department of Microbiology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Jag Bhawan
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Anna Tseng
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Nicholas Crossland
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA
| | - Andreea M Bujor
- Department of Rheumatology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease San Francisco California USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center, Houston, TX
| | - Jonathan Ho
- Department of Dermatopathology, Boston University Chobanian & Avedesian School of Medicine, Boston, MA
- Section Dermatology University of the West Indies, Mona Jamaica
| |
Collapse
|
44
|
Alfieri M, Meo L, Ragno P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. Int J Mol Sci 2023; 24:ijms24020962. [PMID: 36674481 PMCID: PMC9860977 DOI: 10.3390/ijms24020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Various species of non-coding RNAs (ncRNAs) may act as functional molecules regulating diverse biological processes. In cancer cell biology, ncRNAs include RNAs that regulate the expression of oncogenes and tumor suppressor genes through various mechanisms. The urokinase (uPA)-mediated plasminogen activation system (PAS) includes uPA, its inhibitors PAI-1 and PAI-2 and its specific cellular receptor uPAR; their increased expression represents a negative prognostic factor in several cancers. Here, we will briefly describe the main uPA-mediated PAS components and ncRNA species; then, we will review more recent evidence of the roles that ncRNAs may play in regulating the expression and functions of uPA-mediated PAS components in cancer.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Clinical Pathology, Pausilipon Hospital, A.O.R.N Santobono-Pausilipon, 80123 Naples, Italy
| | - Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-969456
| |
Collapse
|
45
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NAH, Alexiou A, Batiha GES. Tranexamic Acid and Plasminogen/Plasmin Glaring Paradox in COVID-19. Endocr Metab Immune Disord Drug Targets 2023; 23:35-45. [PMID: 35927893 DOI: 10.2174/1871530322666220801102402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a severe acute respiratory syndrome, coronavirus type 2 (SARS-CoV-2), leading to acute tissue injury and an overstated immune response. In COVID-19, there are noteworthy changes in the fibrinolytic system with the development of coagulopathy. Therefore, modulation of the fibrinolytic system may affect the course of COVID-19. Tranexamic acid (TXA) is an anti-fibrinolytic drug that reduces the conversion of plasminogen to plasmin, which is necessary for SARS-CoV-2 infectivity. In addition, TXA has anti-inflammatory, anti-platelet, and anti-thrombotic effects, which may attenuate the COVID-19 severity. Thus, in this narrative review, we try to find the beneficial and harmful effects of TXA in COVID-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyiah University, Baghdad, Iraq
| | - Nasser A Hadi Al-Harcan
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Rasheed University College, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
46
|
Nekrasova LA, Shmakova AA, Samokhodskaya LM, Kirillova KI, Stoyanova SS, Mershina EA, Nazarova GB, Rubina KA, Semina EV, Kamalov AA. The Association of PLAUR Genotype and Soluble suPAR Serum Level with COVID-19-Related Lung Damage Severity. Int J Mol Sci 2022; 23:ijms232416210. [PMID: 36555850 PMCID: PMC9785175 DOI: 10.3390/ijms232416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Uncovering the risk factors for acute respiratory disease coronavirus 2019 (COVID-19) severity may help to provide a valuable tool for early patient stratification and proper treatment implementation, improving the patient outcome and lowering the burden on the healthcare system. Here we report the results of a single-center retrospective cohort study on 151 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected symptomatic hospitalized adult patients. We assessed the association of several blood test measurements, soluble urokinase receptor (uPAR) serum level and specific single nucleotide polymorphisms of ACE (I/D), NOS3 (rs2070744, rs1799983), SERPINE1 (rs1799768), PLAU (rs2227564) and PLAUR (rs344781, rs2302524) genes, with the disease severity classified by the percentage of lung involvement on computerized tomography scans. Our findings reveal that the T/C genotype of PLAUR rs2302524 was independently associated with a less severe lung damage (odds ratio 0.258 [0.071-0.811]). Along with high C-reactive protein, fibrinogen and soluble uPAR serum levels turned out to be independently associated with more severe lung damage in COVID-19 patients. The identified factors may be further employed as predictors of a possibly severe COVID-19 clinical course.
Collapse
Affiliation(s)
- Ludmila A. Nekrasova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Larisa M. Samokhodskaya
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Karina I. Kirillova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Simona S. Stoyanova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Elena A. Mershina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Galina B. Nazarova
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina V. Semina
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia
- Institute of Experimental Cardiology, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Correspondence:
| | - Armais A. Kamalov
- Medical Scientific and Educational Centre, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
47
|
Chen PC, Hsieh MH, Kuo WS, Wu LSH, Kao HF, Liu LF, Liu ZG, Jeng WY, Wang JY. Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages. J Biomed Sci 2022; 29:75. [PMID: 36175886 PMCID: PMC9520948 DOI: 10.1186/s12929-022-00861-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extra-intestinal effects of probiotics for preventing allergic diseases are well known. However, the probiotic components that interact with host target molecules and have a beneficial effect on allergic asthma remain unknown. Lactobacillus gasseri attenuates allergic airway inflammation through the activation of peroxisome proliferator- activated receptor γ (PPARγ) in dendritic cells. Therefore, we aimed to isolate and investigate the immunomodulatory effect of the PPARγ activation component from L. gasseri. METHODS Culture supernatants of L. gasseri were fractionated and screened for the active component for allergic asthma. The isolated component was subjected to in vitro functional assays and then cloned. The crystal structure of this component protein was determined using X-ray crystallography. Intrarectal inoculation of the active component-overexpressing Clear coli (lipopolysaccharide-free Escherichia coli) and intraperitoneal injection of recombinant component protein were used in a house dust mite (HDM)-induced allergic asthma mouse model to investigate the protective effect. Recombinant mutant component proteins were assayed, and their structures were superimposed to identify the detailed mechanism of alleviating allergic inflammation. RESULTS A moonlighting protein, glycolytic glyceraldehyde 3-phosphate dehydrogenase (GAPDH), LGp40, that has multifunctional effects was purified from cultured L. gasseri, and the crystal structure was determined. Both intrarectal inoculation of LGp40-overexpressing Clear coli and intraperitoneal administration of recombinant LGp40 protein attenuated allergic inflammation in a mouse model of allergic asthma. However, CDp40, GAPDH isolated from Clostridium difficile did not possess this anti-asthma effect. LGp40 redirected allergic M2 macrophages toward the M1 phenotype and impeded M2-prompted Th2 cell activation through glycolytic activity that induced immunometabolic changes. Recombinant mutant LGp40, without enzyme activity, showed no protective effect against HDM-induced airway inflammation. CONCLUSIONS We found a novel mechanism of moonlighting LGp40 in the reversal of M2-prompted Th2 cell activation through glycolytic activity, which has an important immunoregulatory role in preventing allergic asthma. Our results provide a new strategy for probiotics application in alleviating allergic asthma.
Collapse
Affiliation(s)
- Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Li-Fan Liu
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shengzhen University, Shengzhen, China
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan. .,Children's Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
48
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|
49
|
Diosdado A, Simón F, Serrat J, González-Miguel J. Interaction of helminth parasites with the haemostatic system of their vertebrate hosts: a scoping review. PARASITE (PARIS, FRANCE) 2022; 29:35. [PMID: 35833785 PMCID: PMC9281497 DOI: 10.1051/parasite/2022034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022]
Abstract
Helminth parasitoses are among the most prevalent health issues worldwide. Their control depends largely on unravelling host–parasite interactions, including parasitic exploitation of the host haemostatic system. The present study undertakes a scoping review of the research carried out in this field with the aim of unifying and updating concepts. Multiple keywords combined with Boolean operators were employed to design the literature search strategy. Two online databases were used to identify original peer-reviewed articles written in English and published before 1st January 2020 describing molecular interactions between helminth parasites and the host haemostatic system. Relevant data from the selected sources of evidence were extracted and analysed. Ninety-six publications reporting 259 interactions were selected. Fifty-three proteins belonging to 32 species of helminth parasites were involved in interactions with components of the host haemostatic system. Many of these proteins from both parasite and host were conserved among the different interactions identified. Most of these interactions were related to the inhibition of the coagulation system and the activation of fibrinolysis. This was associated mainly with a potential of parasites to reduce the formation of blood clots in the host and attributed to biological processes, such as parasite nutrition, survival, invasion, evasion and migration or the appearance of pathological mechanisms in the host. A wide range of helminth parasites have developed similar strategies to exploit the haemostatic system of their hosts, which could be regarded as an evolutionary conserved mechanism that could confer benefits to parasites in terms of survival and establishment in their vertebrate hosts.
Collapse
Affiliation(s)
- Alicia Diosdado
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Fernando Simón
- Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | - Judit Serrat
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain - Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, H91 DK59 Galway, Ireland
| |
Collapse
|
50
|
Qin W, Huang H, Dai Y, Han W, Gao Y. Proteome analysis of urinary biomarkers in a cigarette smoke-induced COPD rat model. Respir Res 2022; 23:156. [PMID: 35705945 PMCID: PMC9202220 DOI: 10.1186/s12931-022-02070-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease caused by inhalation of cigarette smoke (CS) and other harmful gases and particles. METHODS This study aimed to explore potential urinary biomarkers for CS-induced COPD based on LC-MS/MS analysis. RESULTS A total of 340 urinary proteins were identified, of which 79 were significantly changed (30, 31, and 37 at week 2, 4 and 8, respectively). GO annotation of the differential urinary proteins revealed that acute-phase response, response to organic cyclic compounds, complement activation classical pathway, and response to lead ion were significantly enriched at week 2 and 4. Another four processes were only enriched at week 8, namely response to oxidative stress, positive regulation of cell proliferation, thyroid hormone generation, and positive regulation of apoptotic process. The PPI network indicated that these differential proteins were biologically connected in CS-exposed rats. Of the 79 differential proteins in CS-exposed rats, 56 had human orthologs. Seven proteins that had changed at week 2 and 4 when there were no changes of pulmonary function and pathological morphology were verified as potential biomarkers for early screening of CS-induced COPD by proteomic analysis. Another six proteins that changed at week 8 when obvious airflow obstruction was detected were verified as potential biomarkers for prognostic assessment of CS-induced COPD. CONCLUSIONS These results reveal that the urinary proteome could sensitively reflect pathological changes in CS-exposed rats, and provide valuable clues for exploring COPD biomarkers.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - He Huang
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yuting Dai
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Wei Han
- Department of Respiratory Medicine, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|