1
|
Melo-Silva CR, Sigal LJ. Innate and adaptive immune responses that control lymph-borne viruses in the draining lymph node. Cell Mol Immunol 2024; 21:999-1007. [PMID: 38918577 PMCID: PMC11364670 DOI: 10.1038/s41423-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
The interstitial fluids in tissues are constantly drained into the lymph nodes (LNs) as lymph through afferent lymphatic vessels and from LNs into the blood through efferent lymphatics. LNs are strategically positioned and have the appropriate cellular composition to serve as sites of adaptive immune initiation against invading pathogens. However, for lymph-borne viruses, which disseminate from the entry site to other tissues through the lymphatic system, immune cells in the draining LN (dLN) also play critical roles in curbing systemic viral dissemination during primary and secondary infections. Lymph-borne viruses in tissues can be transported to dLNs as free virions in the lymph or within infected cells. Regardless of the entry mechanism, infected myeloid antigen-presenting cells, including various subtypes of dendritic cells, inflammatory monocytes, and macrophages, play a critical role in initiating the innate immune response within the dLN. This innate immune response involves cellular crosstalk between infected and bystander innate immune cells that ultimately produce type I interferons (IFN-Is) and other cytokines and recruit inflammatory monocytes and natural killer (NK) cells. IFN-I and NK cell cytotoxicity can restrict systemic viral spread during primary infections and prevent serious disease. Additionally, the memory CD8+ T-cells that reside or rapidly migrate to the dLN can contribute to disease prevention during secondary viral infections. This review explores the intricate innate immune responses orchestrated within dLNs that contain primary viral infections and the role of memory CD8+ T-cells following secondary infection or CD8+ T-cell vaccination.
Collapse
Affiliation(s)
- Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Bluemle Life Sciences Building Room 709, 233 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Zhao S, Li Y, Chen G, Wang X, Chen N, Wu X. Genome-wide chromatin interaction profiling reveals a vital role of super-enhancers and rearrangements in host enhancer contacts during BmNPV infection. Genome Res 2023; 33:1958-1974. [PMID: 37871969 PMCID: PMC10760458 DOI: 10.1101/gr.277931.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
As influential regulatory elements in the genome, enhancers control gene expression under specific cellular conditions, and such connections are dynamic under different conditions. However, because of the lack of a genome-wide enhancer-gene connection map, the roles and regulatory pattern of enhancers were poorly investigated in insects, and the dynamic changes of enhancer contacts and functions under different conditions remain elusive. Here, combining Hi-C, ATAC-seq, and H3K27ac ChIP-seq data, we generate the genome-wide enhancer-gene map of silkworm and identify super-enhancers with a role in regulating the expression of vital genes related to cell state maintenance through a sophisticated interaction network. Additionally, a radical attenuation of chromatin interactions is found after infection of Bombyx mori nucleopolyhedrovirus (BmNPV), the main pathogen of silkworm, which directly rearranges the enhancer contacts. Such a rearrangement disturbs the intrinsic enhancer-gene connections in several antiviral genes, resulting in reduced expression of these genes, which accelerates viral infection. Overall, our results reveal the regulatory role of super-enhancers and shed new light on the mechanisms and dynamic changes of the genome-wide enhancer regulatory network.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Yuedong Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Guanping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xingyang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Nan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
3
|
Nilsen KE, Zhang B, Skjesol A, Ryan L, Vagle H, Bøe MH, Orning P, Kim H, Bakke SS, Elamurugan K, Mestvedt IB, Stenvik J, Husebye H, Lien E, Espevik T, Yurchenko M. Peptide derived from SLAMF1 prevents TLR4-mediated inflammation in vitro and in vivo. Life Sci Alliance 2023; 6:e202302164. [PMID: 37788908 PMCID: PMC10547912 DOI: 10.26508/lsa.202302164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammation plays a crucial role in the development and progression of many diseases, and is often caused by dysregulation of signalling from pattern recognition receptors, such as TLRs. Inhibition of key protein-protein interactions is an attractive target for treating inflammation. Recently, we demonstrated that the signalling lymphocyte activation molecule family 1 (SLAMF1) positively regulates signalling downstream of TLR4 and identified the interaction interface between SLAMF1 and the TLR4 adaptor protein TRIF-related adapter molecule (TRAM). Based on these findings, we developed a SLAMF1-derived peptide, P7, which is linked to a cell-penetrating peptide for intracellular delivery. We found that P7 peptide inhibits the expression and secretion of IFNβ and pro-inflammatory cytokines (TNF, IL-1β, IL-6) induced by TLR4, and prevents death in mice subjected to LPS shock. The mechanism of action of P7 peptide is based on interference with several intracellular protein-protein interactions, including TRAM-SLAMF1, TRAM-Rab11FIP2, and TIRAP-MyD88 interactions. Overall, P7 peptide has a unique mode of action and demonstrates high efficacy in inhibiting TLR4-mediated signalling in vitro and in vivo.
Collapse
Affiliation(s)
- Kaja Elisabeth Nilsen
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Boyao Zhang
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Astrid Skjesol
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hilde Vagle
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maren Helene Bøe
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hera Kim
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siril Skaret Bakke
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirusika Elamurugan
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingvild Bergdal Mestvedt
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Stenvik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Harald Husebye
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| | - Maria Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, Clinic of Medicine, St. Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Amarasinghe HE, Zhang P, Whalley JP, Allcock A, Migliorini G, Brown AC, Scozzafava G, Knight JC. Mapping the epigenomic landscape of human monocytes following innate immune activation reveals context-specific mechanisms driving endotoxin tolerance. BMC Genomics 2023; 24:595. [PMID: 37805492 PMCID: PMC10559536 DOI: 10.1186/s12864-023-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.
Collapse
Affiliation(s)
- Harindra E Amarasinghe
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
| | - Ping Zhang
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Justin P Whalley
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Alice Allcock
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew C Brown
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
5
|
Malinczak CA, Fonseca W, Mire MM, Parolia A, Chinnaiyan A, Rasky AJ, Morris S, Yagi K, Bermick JR, Lukacs NW. Sex-associated early-life viral innate immune response is transcriptionally associated with chromatin remodeling of type-I IFN-inducible genes. Mucosal Immunol 2023; 16:578-592. [PMID: 37302711 PMCID: PMC10646734 DOI: 10.1016/j.mucimm.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
This study investigates sex-associated systemic innate immune differences by examining bone marrow-derived dendritic cells (BMDCs). BMDC grown from 7-day-old mice show enhanced type-I interferon (IFN) signaling in female compared to male BMDC. Upon respiratory syncytial virus (RSV) infection of 7-day-old mice, a significantly altered phenotype of BMDC at 4 weeks post-infection is observed in a sex-dependent manner. The alterations include heightened Ifnb/ interleukin (Il12a) and enhanced IFNAR1+ expression in BMDC from early-life RSV-infected female mice that leads to increased IFN-γ production by T cells. Phenotypic differences were verified upon pulmonary sensitization whereby EL-RSV male-derived BMDC promoted enhanced T helper 2/17 responses and exacerbated disease upon RSV infection while EL-RSV/F BMDC sensitization was relatively protective. Assay for transposase-accessible chromatin using sequencing analysis (ATAC-seq) demonstrated that EL-RSV/F BMDC had enhanced chromatin accessibility near type-I immune genes with JUN, STAT1/2, and IRF1/8 transcription factors predicted to have binding sites in accessible regions. Importantly, ATAC-seq of human cord blood-derived monocytes displayed a similar sex-associated chromatin landscape with female-derived monocytes having more accessibility in type-I immune genes. These studies enhance our understanding of sex-associated differences in innate immunity by epigenetically controlled transcriptional programs amplified by early-life infection in females via type-I immunity.
Collapse
Affiliation(s)
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Mohamed M Mire
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, USA
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Susan Morris
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | | | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, USA; Mary H Weiser Food Allergy Center, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
6
|
Luo X, Jiang Y, Li Q, Yu X, Ma T, Cao H, Ke M, Zhang P, Tan J, Gong Y, Wang L, Gao L, Yang H. hESC-Derived Epicardial Cells Promote Repair of Infarcted Hearts in Mouse and Swine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300470. [PMID: 37505480 PMCID: PMC10520683 DOI: 10.1002/advs.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-β and mimics the effects of hEP-conditioned medium in suppression of IFN-β-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.
Collapse
Affiliation(s)
- Xiao‐Ling Luo
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Xiu‐Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Teng Ma
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Hao Cao
- Department of Cardiovascular and Thoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Min‐Xia Ke
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Ji‐Liang Tan
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Yan‐Shan Gong
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Li Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Huang‐Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
- Institute for Stem Cell and RegenerationCASBeijing100101China
| |
Collapse
|
7
|
Van Eyndhoven LC, Verberne VPG, Bouten CVC, Singh A, Tel J. Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. eLife 2023; 12:83055. [PMID: 36629318 PMCID: PMC9910831 DOI: 10.7554/elife.83055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Type I interferon (IFN-I)-mediated antiviral responses are central to host defense against viral infections. Crucial is the tight and well-orchestrated control of cellular decision-making leading to the production of IFN-Is. Innovative single-cell approaches revealed that the initiation of IFN-I production is limited to only fractions of 1-3% of the total population, both found in vitro, in vivo, and across cell types, which were thought to be stochastically regulated. To challenge this dogma, we addressed the influence of various stochastic and deterministic host-intrinsic factors on dictating early IFN-I responses, using a murine fibroblast reporter model. Epigenetic drugs influenced the percentage of responding cells. Next, with the classical Luria-Delbrück fluctuation test, we provided evidence for transient heritability driving responder fates, which was verified with mathematical modeling. Finally, while studying varying cell densities, we substantiated an important role for cell density in dictating responsiveness, similar to the phenomenon of quorum sensing. Together, this systems immunology approach opens up new avenues to progress the fundamental understanding on cellular decision-making during early IFN-I responses, which can be translated to other (immune) signaling systems.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Vincent PG Verberne
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| | - Carlijn VC Bouten
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
- Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of DelawareNewarkUnited States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of TechnologyEindhovenNetherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of TechnologyEindhovenNetherlands
| |
Collapse
|
8
|
Zhang W, Liu T, Jiang L, Chen J, Li Q, Wang J. Immunogenic cell death-related gene landscape predicts the overall survival and immune infiltration status of ovarian cancer. Front Genet 2022; 13:1001239. [PMID: 36425071 PMCID: PMC9679378 DOI: 10.3389/fgene.2022.1001239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background: Ovarian cancer (OC) is the most troubling malignant tumor of the female reproductive system. It has a low early diagnosis rate and a high tumor recurrence rate after treatment. Immunogenic cell death (ICD) is a unique form of regulated cell death that can activate the adaptive immune system through the release of DAMPs and cytokines in immunocompromised hosts and establish long-term immunologic memory. Therefore, this study aims to explore the prognostic value and underlying mechanisms of ICD-related genes in OC on the basis of characteristics. Methods: The gene expression profiles and related clinical information of OC were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. ICD-related genes were collected from the Genecards database. ICD-related prognostic genes were obtained by intersecting ICD-related genes with the OC prognostic-related genes that were analyzed in the TCGA database. Functional enrichment, genetic mutation, and immune infiltration correlation analyses were further performed to identify underlying mechanisms. Subsequently, we developed a TCGA cohort-based prognostic risk model that included a nine-gene signature through univariate and multivariate Cox regression and LASSO regression analyses. Meanwhile, external validation was performed on two sets of GEO cohorts and the TCGA training cohort for three other common tumors in women. In addition, a nomogram was established by integrating clinicopathological features and ICD-related gene signature to predict survival probability. Finally, functional enrichment and immune infiltration analyses were performed on the two risk subgroups. Results: By utilizing nine genes (ERBB2, RB1, CCR7, CD38, IFNB1, ANXA2, CXCL9, SLC9A1, and SLAMF7), we constructed an ICD-related prognostic signature. Subsequently, patients were subdivided into high- and low-risk subgroups in accordance with the median value of the risk score. In multivariate Cox regression analyses, risk score was an independent prognostic factor (hazard ratio = 2.783; p < 0.01). In the TCGA training cohort and the two GEO validation cohorts, patients with high-risk scores had worse prognosis than those with low-risk scores (p < 0.05). The time-dependent receiver operating characteristic curve further validated the prognostic power of the gene signature. Finally, gene set enrichment analysis indicated that multiple oncological pathways were significantly enriched in the high-risk subgroup. By contrast, the low-risk subgroup was strongly related to the immune-related signaling pathways. Immune infiltration analysis further illustrated that most immune cells showed higher levels of infiltration in the low-risk subgroup than in the high-risk subgroup. Conclusion: We constructed a novel ICD-related gene model for forecasting the prognosis and immune infiltration status of patients with OC. In the future, new ICD-related genes may provide novel potential targets for the therapeutic intervention of OC.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Bae EJ, Choi M, Kim JT, Kim DK, Jung MK, Kim C, Kim TK, Lee JS, Jung BC, Shin SJ, Rhee KH, Lee SJ. TNF-α promotes α-synuclein propagation through stimulation of senescence-associated lysosomal exocytosis. Exp Mol Med 2022; 54:788-800. [PMID: 35790884 PMCID: PMC9352737 DOI: 10.1038/s12276-022-00789-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-to-cell propagation of α-synuclein is thought to be the underlying mechanism of Parkinson's disease progression. Recent evidence suggests that inflammation plays an important role in the propagation of protein aggregates. However, the mechanism by which inflammation regulates the propagation of aggregates remains unknown. Here, using in vitro cultures, we found that soluble factors secreted from activated microglia promote cell-to-cell propagation of α-synuclein and further showed that among these soluble factors, TNF-α had the most robust stimulatory activity. Treatment of neurons with TNF-α triggered cellular senescence, as shown by transcriptomic analyses demonstrating induction of senescence-associated genes and immunoanalysis of senescence phenotype marker proteins. Interestingly, secretion of α-synuclein was increased in senescent neurons, reflecting acquisition of a senescence-associated secretory phenotype (SASP). Using vacuolin-1, an inhibitor of lysosomal exocytosis, and RNAi against rab27a, we demonstrated that the SASP was mediated by lysosomal exocytosis. Correlative light and electron microscopy and immunoelectron microscopy confirmed that propagating α-synuclein aggregates were present in electron-dense lysosome-like compartments. TNF-α promoted the SASP through stimulation of lysosomal exocytosis, thereby increasing the secretion of α-synuclein. Collectively, these results suggest that TNF-α is the major inflammatory factor that drives cell-to-cell propagation of α-synuclein by promoting the SASP and subsequent secretion of α-synuclein.
Collapse
Affiliation(s)
- Eun-Jin Bae
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Minsun Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jeong Tae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dong-Kyu Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Min Kyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41068, Korea
| | - Changyoun Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Kyung Kim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Exercise Physiology and Sport Science Institute, Korea National Sport University, Seoul, 05541, Republic of Korea
| | - Jun Sung Lee
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Neuramedy Co., Ltd., Seoul, Korea
| | - Byung Chul Jung
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Soo Jean Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ka Hyun Rhee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Jae Lee
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Kazakov AS, Sofin AD, Avkhacheva NV, Deryusheva EI, Rastrygina VA, Permyakova ME, Uversky VN, Permyakov EA, Permyakov SE. Interferon-β Activity Is Affected by S100B Protein. Int J Mol Sci 2022; 23:ijms23041997. [PMID: 35216109 PMCID: PMC8877046 DOI: 10.3390/ijms23041997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Alexander D. Sofin
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Nadezhda V. Avkhacheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
11
|
Abstract
SARS-CoV-2 has mutually illuminated our collective knowledge and knowledge gaps, particularly in antiviral defense and therapeutic strategies. A recent study in Science (Poirier et al., 2021) uncovers an ancient antiviral mechanism that mammals utilize to suppress viruses, including SARS-CoV-2 and Zika virus, that could have broad implications for therapeutic strategies.
Collapse
Affiliation(s)
- Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|