1
|
He H, Li X, Guzman GA, Bungert-Plümke S, Franzen A, Lin X, Zhu H, Peng G, Zhang H, Yu Y, Sun S, Huang Z, Zhai Q, Chen Z, Peng J, Guzman RE. Expanding the genetic and phenotypic relevance of CLCN4 variants in neurodevelopmental condition: 13 new patients. J Neurol 2024; 271:4933-4948. [PMID: 38758281 DOI: 10.1007/s00415-024-12383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Li
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - G A Guzman
- Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Jülich Research Center, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - XueQin Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongmin Zhu
- Department of Rehabilitation, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Guilan Peng
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Hongwei Zhang
- Epilepsy Center, Children's Hospital Affiliated to Shandong University, Jinan, China
| | - Yonglin Yu
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Sun
- Department of Pediatric Neurology, Hebei Children's Hospital, Hebei Medical University, Shijiazhuang, China
| | - Zhongqin Huang
- Department of Neurology, Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Qiongxiang Zhai
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zheng Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany.
| |
Collapse
|
2
|
Sahly AN, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Mougharbel L, Berrahmoune S, Dassi C, Poulin C, Srour M, Guzman RE, Myers KA. Genotype-phenotype correlation in CLCN4-related developmental and epileptic encephalopathy. Hum Genet 2024; 143:667-681. [PMID: 38578438 DOI: 10.1007/s00439-024-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.
Collapse
Affiliation(s)
- Ahmed N Sahly
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
| | - Arne Franzen
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany
| | - Lina Mougharbel
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Saoussen Berrahmoune
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Christelle Dassi
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
| | - Chantal Poulin
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada
| | - Myriam Srour
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada
| | - Raul E Guzman
- Institute of Biological Information Processing; Biological Molecular and Cell Physiology (IBI-1), Molecular and Cell Physiology, Research Center Jülich , GmbH Leo-Brandt-Strasse 1, 52428, Jülich, Germany.
| | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada.
- Research Institute of the McGill University Medical Centre, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University Health Centre, 1001 Boulevard Décarie, Montreal, PQ, H4A 3J1, Canada.
| |
Collapse
|
3
|
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R, Ciftci HD, Falzone ME, Huysmans G, Robertson JL, Boudker O, Accardi A. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 2024; 31:644-656. [PMID: 38279055 PMCID: PMC11262703 DOI: 10.1038/s41594-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiorgos Argyros
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hatice Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, New York, NY, USA
| | - Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Gerard Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Erasmus University, Jette, Belgium
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
4
|
Wang C, Li J, Liu W, Li S, Zhang Y, Jin Y, Cui J. Comprehensive analysis and experimental validation reveal elevated CLCN4 is a promising biomarker in endometrial cancer. Aging (Albany NY) 2023; 15:8744-8769. [PMID: 37671947 PMCID: PMC10522378 DOI: 10.18632/aging.204994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Several studies have reported the role of CLCN4 in tumor progression. However, its mechanism remains to be thoroughly studied. The objective of this study was to explore the potential pathogenic role of CLCN4 in endometrial carcinoma (UCEC) with a better understanding of the pathological mechanisms involved. The potential roles of CLCN4 in different tumors were explored based on The Cancer Genome Atlas (TCGA), the expression difference, mutation, survival, pathological stage, Immunity subtypes, Immune infiltration, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) related to CLCN4 were analyzed. Then, the expression, prognosis, mutation, and functional enrichment of CLCN4 in UCEC were analyzed. Immunohistochemical experiment was used to verify the expression of CLCN4 in endometrial cancer tissues and normal tissues. In vitro, we knocked down of CLCN4 in HEC-1-A cells and performed CCK8, WB, RT-PCR, wound-healing, transwell assays to further validation of the molecular function. Results revealed that high expression of CLCN4 was observed in 20 cancer types of TCGA. CLCN4 expression correlates with poor survival in MESO, BLCA, THCA, especially UCEC tumors. CLCN4 expression was significantly associated with CD4+ T-cell infiltration, especially CD4+ Th1-cell. Immunohistochemical experiment reveals that CLCN4 is high expressed in endometrial tumors, in vitro experiment reveals that knockdown of CLCN4 inhibits the cells proliferation, migration and invasion. Our study is the first to offer a comprehensive understanding of the oncogenic roles of CLCN4 on different tumors. CLCN4 may become a potential biomarker in UCEC.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Li
- Department of Gynecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong 266000, China
| | - Weina Liu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Shiya Li
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yi Zhang
- Department of Gynecology, The University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Yanbin Jin
- Department of Gynecology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), Haikou 570311, China
| | - Jinquan Cui
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
5
|
Kolen B, Borghans B, Kortzak D, Lugo V, Hannack C, Guzman RE, Ullah G, Fahlke C. Vesicular glutamate transporters are H +-anion exchangers that operate at variable stoichiometry. Nat Commun 2023; 14:2723. [PMID: 37169755 PMCID: PMC10175566 DOI: 10.1038/s41467-023-38340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.
Collapse
Affiliation(s)
- Bettina Kolen
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Bart Borghans
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Victor Lugo
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Cora Hannack
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Raul E Guzman
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
6
|
Leisle L, Lam K, Dehghani-Ghahnaviyeh S, Fortea E, Galpin JD, Ahern CA, Tajkhorshid E, Accardi A. Backbone amides are determinants of Cl - selectivity in CLC ion channels. Nat Commun 2022; 13:7508. [PMID: 36473856 PMCID: PMC9726985 DOI: 10.1038/s41467-022-35279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chloride homeostasis is regulated in all cellular compartments. CLC-type channels selectively transport Cl- across biological membranes. It is proposed that side-chains of pore-lining residues determine Cl- selectivity in CLC-type channels, but their spatial orientation and contributions to selectivity are not conserved. This suggests a possible role for mainchain amides in selectivity. We use nonsense suppression to insert α-hydroxy acids at pore-lining positions in two CLC-type channels, CLC-0 and bCLC-k, thus exchanging peptide-bond amides with ester-bond oxygens which are incapable of hydrogen-bonding. Backbone substitutions functionally degrade inter-anion discrimination in a site-specific manner. The presence of a pore-occupying glutamate side chain modulates these effects. Molecular dynamics simulations show backbone amides determine ion energetics within the bCLC-k pore and how insertion of an α-hydroxy acid alters selectivity. We propose that backbone-ion interactions are determinants of Cl- specificity in CLC channels in a mechanism reminiscent of that described for K+ channels.
Collapse
Affiliation(s)
- Lilia Leisle
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Kin Lam
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eva Fortea
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
7
|
Guzman RE, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Fahlke C. Functional Characterization of CLCN4 Variants Associated With X-Linked Intellectual Disability and Epilepsy. Front Mol Neurosci 2022; 15:872407. [PMID: 35721313 PMCID: PMC9198718 DOI: 10.3389/fnmol.2022.872407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes. CLC-type Cl–/H+ exchangers are a group of endo-lysosomal transporters that are assumed to regulate luminal acidification and chloride concentration in multiple endosomal compartments. Heterodimers of ClC-3 and ClC-4 localize to various internal membranes, from the endoplasmic reticulum and Golgi to recycling endosomes and late endosomes/lysosomes. The importance of ClC-4-mediated ion transport is illustrated by the association of naturally occurring CLCN4 mutations with epileptic encephalopathy, intellectual disability, and behavioral disorders in human patients. However, how these mutations affect the expression, subcellular localization, and function of ClC-4 is insufficiently understood. We here studied 12 CLCN4 variants that were identified in patients with X-linked intellectual disability and epilepsy and were already characterized to some extent in earlier work. We analyzed the consequences of these mutations on ClC-4 ion transport, subcellular trafficking, and heterodimerization with ClC-3 using heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings. The mutations led to a variety of changes in ClC-4 function, ranging from gain/loss of function and impaired heterodimerization with ClC-3 to subtle impairments in transport functions. Our results suggest that even slight functional changes to the endosomal Cl–/H+ exchangers can cause serious neurological symptoms.
Collapse
|
8
|
The Role of the Lysosomal Cl−/H+ Antiporter ClC-7 in Osteopetrosis and Neurodegeneration. Cells 2022; 11:cells11030366. [PMID: 35159175 PMCID: PMC8833911 DOI: 10.3390/cells11030366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
CLC proteins comprise Cl− channels and anion/H+ antiporters involved in several fundamental physiological processes. ClC-7 is a lysosomal Cl−/H+ antiporter that together with its beta subunit Ostm1 has a critical role in the ionic homeostasis of lysosomes and of the osteoclasts’ resorption lacuna, although the specific underlying mechanism has so far remained elusive. Mutations in ClC-7 cause osteopetrosis, but also a form of lysosomal storage disease and neurodegeneration. Interestingly, both loss-of- and gain-of-function mutations of ClC-7 can be pathogenic, but the mechanistic implications of this finding are still unclear. This review will focus on the recent advances in our understanding of the biophysical properties of ClC-7 and of its role in human diseases with a focus on osteopetrosis and neurodegeneration.
Collapse
|
9
|
He H, Guzman RE, Cao D, Sierra-Marquez J, Yin F, Fahlke C, Peng J, Stauber T. The molecular and phenotypic spectrum of CLCN4-related epilepsy. Epilepsia 2021; 62:1401-1415. [PMID: 33951195 DOI: 10.1111/epi.16906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Dezhi Cao
- Neurology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Berlin Free University, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Accardi A. Not so transport incompetent after all: Revisiting a CLC-7 mutant sheds new mechanistic light on lysosomal physiology. J Gen Physiol 2021; 153:211783. [PMID: 33570555 PMCID: PMC7883728 DOI: 10.1085/jgp.202012805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY.,Department of Biochemistry, Weill Cornell Medical College, New York, NY
| |
Collapse
|
11
|
Cao X, Soleimani M, Hughes BA. SLC26A7 constitutes the thiocyanate-selective anion conductance of the basolateral membrane of the retinal pigment epithelium. Am J Physiol Cell Physiol 2020; 319:C641-C656. [PMID: 32726161 DOI: 10.1152/ajpcell.00027.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion channels in the retinal pigment epithelium (RPE) play an essential role in the transport of Cl- between the outer retina and the choroidal blood to regulate the ionic composition and volume of the subretinal fluid that surrounds the photoreceptor outer segments. Recently, we reported that the anion conductance of the mouse RPE basolateral membrane is highly selective for the biologically active anion thiocyanate (SCN-), a property that does not correspond with any of the Cl- channels that have been found to be expressed in the RPE to date. The purpose of this study was to determine the extent to which SLC26A7, a SCN- permeable-anion exchanger/channel that was reported to be expressed in human RPE, contributes to the RPE basolateral anion conductance. We show by quantitative RT-PCR that Slc26a7 is highly expressed in mouse RPE compared with other members of the Slc26 gene family and Cl- channel genes known to be expressed in the RPE. By applying immunofluorescence microscopy to mouse retinal sections and isolated cells, we localized SLC26A7 to the RPE basolateral membrane. Finally, we performed whole cell and excised patch recordings from RPE cells acutely isolated from Slc26a7 knockout mice to show that the SCN- conductance and permeability of its basolateral membrane are dramatically smaller relative to wild-type mouse RPE cells. These findings establish SLC26A7 as the SCN--selective conductance of the RPE basolateral membrane and provide new insight into the physiology of an anion channel that may participate in anion transport and pH regulation by the RPE.
Collapse
Affiliation(s)
- Xu Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Chivukula AS, Suslova M, Kortzak D, Kovermann P, Fahlke C. Functional consequences of SLC1A3 mutations associated with episodic ataxia 6. Hum Mutat 2020; 41:1892-1905. [PMID: 32741053 DOI: 10.1002/humu.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022]
Abstract
The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.
Collapse
Affiliation(s)
- Aparna S Chivukula
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Mariia Suslova
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
13
|
Kolen B, Kortzak D, Franzen A, Fahlke C. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. J Biol Chem 2020; 295:14936-14947. [PMID: 32820048 DOI: 10.1074/jbc.ra120.013704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
Collapse
Affiliation(s)
- Bettina Kolen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
14
|
Chiariello MG, Bolnykh V, Ippoliti E, Meloni S, Olsen JMH, Beck T, Rothlisberger U, Fahlke C, Carloni P. Molecular Basis of CLC Antiporter Inhibition by Fluoride. J Am Chem Soc 2020; 142:7254-7258. [PMID: 32233472 DOI: 10.1021/jacs.9b13588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CLC channels and transporters conduct or transport various kinds of anions, with the exception of fluoride, which acts as an effective inhibitor. Here, we performed sub-nanosecond DFT-based QM/MM simulations of the E. coli anion/proton exchanger ClC-ec1 and observed that fluoride binds incoming protons within the selectivity filter, with excess protons shared with the gating glutamate E148. Depending on E148 conformation, the competition for the proton can involve either a direct F-/E148 interaction or the modulation of water molecules bridging the two anions. The direct interaction locks E148 in a conformation that does not allow for proton transport, and thus inhibits protein function.
Collapse
Affiliation(s)
- Maria Gabriella Chiariello
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Emiliano Ippoliti
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Simone Meloni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Luigi Borsari 46, I-44121 Ferrara, Italy
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas Beck
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molekular- und Zellphysiologie, Forschungszentrum Jülich, D-54245 Jülich, Germany
| | - Paolo Carloni
- Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany.,Department of Physics, RWTH Aachen University, 52056 Aachen, Germany.,Institute of Neuroscience and Medicine (INM-11), Molecular Neuroscience and Neuroimaging, Forschungszentrum Julich, 52425 Julich, Germany
| |
Collapse
|
15
|
Wang Z, Swanson JMJ, Voth GA. Modulating the Chemical Transport Properties of a Transmembrane Antiporter via Alternative Anion Flux. J Am Chem Soc 2018; 140:16535-16543. [PMID: 30421606 PMCID: PMC6379079 DOI: 10.1021/jacs.8b07614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
ClC-ec1 is a prototype of the ClC
antiporters, proteins that stoichiometrically
exchange Cl– and H+ ions in opposite
directions across a membrane. It has been shown that other polyatomic
anions, such as NO3– and SCN–, can also be transported by ClC-ec1, but with partially or completely
uncoupled proton flux. Herein, with the help of multiscale computer
simulations in which the Grotthuss mechanism of proton transport (PT)
is treated explicitly, we demonstrate how the chemical nature of these
anions alters the coupling mechanism and qualitatively explain the
shifts in the ion stoichiometry. Multidimensional free energy profiles
for PT and the coupled changes in hydration are presented for NO3– and SCN–. The calculated
proton conductances agree with experiment, showing reduced or abolished
proton flux. Surprisingly, the proton affinity of the anion is less
influential on the PT, while its size and interactions with the protein
significantly alter hydration and shift its influence on PT from facilitating
to inhibiting. We find that the hydration of the cavity below the
anion is relatively fast, but connecting the water network past the
steric hindrance of these polyatomic anions is quite slow. Hence,
the most relevant coordinate to the PT free energy barrier is the
water connectivity along the PT pathway, but importantly only in the
presence of the excess proton, and this coordinate is significantly
affected by the nature of the bound anion. This work again demonstrates
how PT is intrinsically coupled with protein cavity hydration changes
as well as influenced by the protein environment. It additionally
suggests ways in which ion exchange can be modulated and exchange
stoichiometries altered.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jessica M J Swanson
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
16
|
Cao X, Pattnaik BR, Hughes BA. Mouse retinal pigment epithelial cells exhibit a thiocyanate-selective conductance. Am J Physiol Cell Physiol 2018; 315:C457-C473. [PMID: 29874109 DOI: 10.1152/ajpcell.00231.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basolateral membrane anion conductance of the retinal pigment epithelium (RPE) is a key component of the transepithelial Cl- transport pathway. Although multiple Cl- channels have been found to be expressed in the RPE, the components of the resting Cl- conductance have not been identified. In this study, we used the patch-clamp method to characterize the ion selectivity of the anion conductance in isolated mouse RPE cells and in excised patches of RPE basolateral and apical membranes. Relative permeabilities ( PA/ PCl) calculated from reversal potentials measured in intact cells under bi-ionic conditions were as follows: SCN- >> ClO4- > [Formula: see text] > I- > Br- > Cl- >> gluconate. Relative conductances ( GA/ GCl) followed a similar trend of SCN- >> ClO4- > [Formula: see text] > I- > Br- ≈Cl- >> gluconate. Whole cell currents were highly time-dependent in 10 mM external SCN-, reflecting collapse of the electrochemical potential gradient due to SCN- accumulation or depletion intracellularly. When the membrane potential was held at -120 mV to minimize SCN- accumulation in cells exposed to 10 mM SCN-, the instantaneous current reversed at -90 mV, revealing that PSCN/ PCl is approximately 500. Macroscopic current recordings from outside-out patches demonstrated that both the basolateral and apical membranes exhibit SCN- conductances, with the basolateral membrane having a larger SCN- current density and higher relative permeability for SCN-. Our results suggest that the RPE basolateral and apical membranes contain previously unappreciated anion channels or electrogenic transporters that may mediate the transmembrane fluxes of SCN- and Cl-.
Collapse
Affiliation(s)
- Xu Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bikash R Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
17
|
Rohrbough J, Nguyen H, Lamb FS. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 2018; 596:4091-4119. [PMID: 29917234 PMCID: PMC6117567 DOI: 10.1113/jp276332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Hong‐Ngan Nguyen
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Fred S. Lamb
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
18
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
19
|
Bignon Y, Alekov A, Frachon N, Lahuna O, Jean-Baptiste Doh-Egueli C, Deschênes G, Vargas-Poussou R, Lourdel S. A novel CLCN5 pathogenic mutation supports Dent disease with normal endosomal acidification. Hum Mutat 2018; 39:1139-1149. [PMID: 29791050 DOI: 10.1002/humu.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
Dent disease is an X-linked recessive renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. Inactivating mutations of CLCN5, the gene encoding the 2Cl- /H+ exchanger ClC-5, have been reported in patients with Dent disease 1. In vivo studies in mice harboring an artificial mutation in the "gating glutamate" of ClC-5 (c.632A > C, p.Glu211Ala) and mathematical modeling suggest that endosomal chloride concentration could be an important parameter in endocytosis, rather than acidification as earlier hypothesized. Here, we described a novel pathogenic mutation affecting the "gating glutamate" of ClC-5 (c.632A>G, p.Glu211Gly) and investigated its molecular consequences. In HEK293T cells, the p.Glu211Gly ClC-5 mutant displayed unaltered N-glycosylation and normal plasma membrane and early endosomes localizations. In Xenopus laevis oocytes and HEK293T cells, we found that contrasting with wild-type ClC-5, the mutation abolished the outward rectification, the sensitivity to extracellular H+ and converted ClC-5 into a Cl- channel. Investigation of endosomal acidification in HEK293T cells using the pH-sensitive pHluorin2 probe showed that the luminal pH of cells expressing a wild-type or p.Glu211Gly ClC-5 was not significantly different. Our study further confirms that impaired acidification of endosomes is not the only parameter leading to defective endocytosis in Dent disease 1.
Collapse
Affiliation(s)
- Yohan Bignon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | - Alexi Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadia Frachon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | | | | | - Georges Deschênes
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Néphrologie Pédiatrique, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de génétique, Paris, France.,Université Paris-Descartes, Faculté de Médecine, Paris, France
| | - Stéphane Lourdel
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| |
Collapse
|
20
|
Guzman RE, Bungert-Plümke S, Franzen A, Fahlke C. Preferential association with ClC-3 permits sorting of ClC-4 into endosomal compartments. J Biol Chem 2017; 292:19055-19065. [PMID: 28972156 DOI: 10.1074/jbc.m117.801951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
ClC-4 is an intracellular Cl-/H+ exchanger that is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. Here we studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b) or recycling endosome (ClC-3c). When expressed in cultured astrocytes, ClC-4 sorted to endocytic compartments in WT cells but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER-localized ClC-4 in WT astrocytes, we performed association studies by high-resolution clear native gel electrophoresis. Although other CLC channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permit regulated targeting of ClC-4 to various endosomal compartment systems via expression of different ClC-3 splice variants.
Collapse
Affiliation(s)
- Raul E Guzman
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | - Christoph Fahlke
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
21
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
22
|
Kao L, Azimov R, Shao XM, Frausto RF, Abuladze N, Newman D, Aldave AJ, Kurtz I. Multifunctional ion transport properties of human SLC4A11: comparison of the SLC4A11-B and SLC4A11-C variants. Am J Physiol Cell Physiol 2016; 311:C820-C830. [PMID: 27581649 DOI: 10.1152/ajpcell.00233.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Congenital hereditary endothelial dystrophy (CHED), Harboyan syndrome (CHED with progressive sensorineural deafness), and potentially a subset of individuals with late-onset Fuchs' endothelial corneal dystrophy are caused by mutations in the SLC4A11 gene that results in corneal endothelial cell abnormalities. Originally classified as a borate transporter, the function of SLC4A11 as a transport protein remains poorly understood. Elucidating the transport function(s) of SLC4A11 is needed to better understand how its loss results in the aforementioned posterior corneal dystrophic disease processes. Quantitative PCR experiments demonstrated that, of the three known human NH2-terminal variants, SLC4A11-C is the major transcript expressed in human corneal endothelium. We studied the expression pattern of the three variants in mammalian HEK-293 cells and demonstrated that the SLC4A11-B and SLC4A11-C variants are plasma membrane proteins, whereas SLC4A11-A is localized intracellularly. SLC4A11-B and SLC4A11-C were shown to be multifunctional ion transporters capable of transporting H+ equivalents in both a Na+-independent and Na+-coupled mode. In both transport modes, SLC4A11-C H+ flux was significantly greater than SLC4A11-B. In the presence of ammonia, SLC4A11-B and SLC4A11-C generated inward currents that were comparable in magnitude. Chimera SLC4A11-C-NH2-terminus-SLC4A11-B experiments demonstrated that the SLC4A11-C NH2-terminus functions as an autoactivating domain, enhancing Na+-independent and Na+-coupled H+ flux without significantly affecting the electrogenic NH3-H(n)+ cotransport mode. All three modes of transport were significantly impaired in the presence of the CHED causing p.R109H (SLC4A11-C numbering) mutation. These complex ion transport properties need to be addressed in the context of corneal endothelial disease processes caused by mutations in SLC4A11.
Collapse
Affiliation(s)
- Liyo Kao
- Division of Nephrology.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Rustam Azimov
- Division of Nephrology.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Xuesi M Shao
- Department of Neurobiology.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ricardo F Frausto
- Stein Eye Institute, and.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Natalia Abuladze
- Division of Nephrology.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Debra Newman
- Division of Nephrology.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Anthony J Aldave
- Stein Eye Institute, and.,David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ira Kurtz
- Division of Nephrology, .,Brain Research Institute.,David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
23
|
Jiang T, Han W, Maduke M, Tajkhorshid E. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl(-)/H(+) Exchanger ClC-ec1. J Am Chem Soc 2016; 138:3066-75. [PMID: 26880377 DOI: 10.1021/jacs.5b12062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cl–/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl– and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F–, and larger physiological anions, such as PO43– and SO42–. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl– binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl–, F–, NO3–, and SCN– display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl–, binding of F– or NO3– leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl–. Binding of SCN–, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl–.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| | - Wei Han
- Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine , Stanford, California 94305-5207, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Computational Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| |
Collapse
|
24
|
Fahlke C, Kortzak D, Machtens JP. Molecular physiology of EAAT anion channels. Pflugers Arch 2015; 468:491-502. [PMID: 26687113 DOI: 10.1007/s00424-015-1768-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.
Collapse
Affiliation(s)
- Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
25
|
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 2015; 5:15382. [PMID: 26502825 PMCID: PMC4621517 DOI: 10.1038/srep15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/23/2015] [Indexed: 12/03/2022] Open
Abstract
Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function.
Collapse
|
26
|
Guzman RE, Miranda-Laferte E, Franzen A, Fahlke C. Neuronal ClC-3 Splice Variants Differ in Subcellular Localizations, but Mediate Identical Transport Functions. J Biol Chem 2015; 290:25851-62. [PMID: 26342074 DOI: 10.1074/jbc.m115.668186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/06/2023] Open
Abstract
ClC-3 is a member of the CLC family of anion channels and transporters, for which multiple functional properties and subcellular localizations have been reported. Since alternative splicing often results in proteins with diverse properties, we investigated to what extent alternative splicing might influence subcellular targeting and function of ClC-3. We identified three alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-3c, in mouse brain, with ClC-3c being the predominant splice variant. Whereas ClC-3a and ClC-3b are present in late endosomes/lysosomes, ClC-3c is targeted to recycling endosomes via a novel N-terminal isoleucine-proline (IP) motif. Surface membrane insertion of a fraction of ClC-3c transporters permitted electrophysiological characterization of this splice variant through whole-cell patch clamping on transfected mammalian cells. In contrast, neutralization of the N-terminal dileucine-like motifs was required for functional analysis of ClC-3a and ClC-3b. Heterologous expression of ClC-3a or ClC-3b carrying mutations in N-terminal dileucine motifs as well as WTClC-3c in HEK293T cells resulted in outwardly rectifying Cl(-) currents with significant capacitive current components. We conclude that alternative splicing of Clcn3 results in proteins with different subcellular localizations, but leaves the transport function of the proteins unaffected.
Collapse
Affiliation(s)
- Raul E Guzman
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Erick Miranda-Laferte
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Arne Franzen
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Christoph Fahlke
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
27
|
Zifarelli G. A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes. J Physiol 2015; 593:4139-50. [PMID: 26036722 DOI: 10.1113/jp270604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/22/2015] [Indexed: 11/08/2022] Open
Abstract
The CLC protein family comprises both Cl(-) channels and H(+) -coupled anion transporters. The understanding of the critical role of CLC proteins in a number of physiological functions has greatly contributed to a revision of the classical paradigm that attributed to Cl(-) ions only a marginal role in human physiology. The endosomal ClC-5 and the lysosomal ClC-7 are the best characterized human CLC transporters. Their dysfunction causes Dent's disease and osteopetrosis, respectively. It had been originally proposed that they would provide a Cl(-) shunt conductance allowing efficient acidification of intracellular compartments. However, this model seems to conflict with the transport properties of these proteins and with recent physiological evidence. Currently, there is no consensus on their specific physiological role. CLC proteins present also a number of peculiar biophysical properties, such as the dimeric architecture, the co-existence of intrinsically different thermodynamic modes of transport based on similar structural principles, and the gating mechanism recently emerging for the transporters, just to name a few. This review focuses on the biophysical properties and physiological roles of ClC-5 and ClC-7.
Collapse
Affiliation(s)
- Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
28
|
Steinke KV, Gorinski N, Wojciechowski D, Todorov V, Guseva D, Ponimaskin E, Fahlke C, Fischer M. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional. J Biol Chem 2015; 290:17390-400. [PMID: 26013830 DOI: 10.1074/jbc.m114.631705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels.
Collapse
Affiliation(s)
- Kim Vanessa Steinke
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Nataliya Gorinski
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Daniel Wojciechowski
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany, Institute of Complex Systems, Zelluläre Biophysik (ICS-4), FZ Jülich, 52428 Jülich, Germany, and
| | - Vladimir Todorov
- Laboratory for Experimental Nephrology, Division of Nephrology, University Hospital Dresden, 01307 Dresden Germany
| | - Daria Guseva
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Evgeni Ponimaskin
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), FZ Jülich, 52428 Jülich, Germany, and
| | - Martin Fischer
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany,
| |
Collapse
|
29
|
Alekov AK. Mutations associated with Dent's disease affect gating and voltage dependence of the human anion/proton exchanger ClC-5. Front Physiol 2015; 6:159. [PMID: 26042048 PMCID: PMC4436585 DOI: 10.3389/fphys.2015.00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Dent's disease is associated with impaired renal endocytosis and endosomal acidification. It is linked to mutations in the membrane chloride/proton exchanger ClC-5; however, a direct link between localization in the protein and functional phenotype of the mutants has not been established until now. Here, two Dent's disease mutations, G212A and E267A, were investigated using heterologous expression in HEK293T cells, patch-clamp measurements and confocal imaging. WT and mutant ClC-5 exhibited mixed cell membrane and vesicular distribution. Reduced ion currents were measured for both mutants and both exhibited reduced capability to support endosomal acidification. Functionally, mutation G212A was capable of mediating anion/proton antiport but dramatically shifted the activation of ClC-5 toward more depolarized potentials. The shift can be explained by impeded movements of the neighboring gating glutamate Gluext, a residue that confers major part of the voltage dependence of ClC-5 and serves as a gate at the extracellular entrance of the anion transport pathway. Cell surface abundance of E267A was reduced by ~50% but also dramatically increased gating currents were detected for this mutant and accordingly reduced probability to undergoing cycles associated with electrogenic ion transport. Structurally, the gating alternations correlate to the proximity of E267A to the proton glutamate Gluin that serves as intracellular gate in the proton transport pathway and regulates the open probability of ClC-5. Remarkably, two other mammalian isoforms, ClC-3 and ClC-4, also differ from ClC-5 in gating characteristics affected by the here investigated disease-causing mutations. This evolutionary specialization, together with the functional defects arising from mutations G212A and E267A, demonstrate that the complex gating behavior exhibited by most of the mammalian CLC transporters is an important determinant of their cellular function.
Collapse
Affiliation(s)
- Alexi K Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| |
Collapse
|
30
|
Pusch M, Zifarelli G. ClC-5: Physiological role and biophysical mechanisms. Cell Calcium 2014; 58:57-66. [PMID: 25443653 DOI: 10.1016/j.ceca.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/05/2023]
Abstract
Cl(-) transport in animal cells has fundamental physiological roles and it is mediated by a variety of protein families, one of them being the CLC family of ion channels and transporters. Besides their physiological relevance, CLC proteins show peculiar biophysical properties. This review will focus on a member of the CLC protein family, the endosomal Cl(-)/H(+) antiporter ClC-5. ClC-5 mutations cause Dent's disease, a renal syndrome due to defective protein reabsorption in the proximal tubule. This established the critical function of ClC-5 for endocytosis. However, our understanding of ClC-5's molecular role in endosomes and of its biophysical properties has proved elusive in spite of important progress achieved in the last two decades. Early models in which ClC-5 would provide a shunt conductance to enable efficient endosomal acidification conflicted with the antiport activity of ClC-5 that has more recently emerged. Currently, the physiological role of ClC-5 is hotly debated and its biophysical properties are still not fully understood.
Collapse
Affiliation(s)
- Michael Pusch
- Istituto di Biofisica, CNR, Via De Marini 6, 16149 Genoa, Italy
| | | |
Collapse
|
31
|
Fahlke C. Behind the Scenes of CLC Gating: Deriving the Voltage Dependence of Membrane Proteins by Admittance Measurements. Biophys J 2014; 107:1261-2. [DOI: 10.1016/j.bpj.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022] Open
|
32
|
Stauber T, Weinert S, Jentsch TJ. Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2013; 2:1701-44. [PMID: 23723021 DOI: 10.1002/cphy.c110038] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins of the CLC gene family assemble to homo- or sometimes heterodimers and either function as Cl(-) channels or as Cl(-)/H(+)-exchangers. CLC proteins are present in all phyla. Detailed structural information is available from crystal structures of bacterial and algal CLCs. Mammals express nine CLC genes, four of which encode Cl(-) channels and five 2Cl(-)/H(+)-exchangers. Two accessory β-subunits are known: (1) barttin and (2) Ostm1. ClC-Ka and ClC-Kb Cl(-) channels need barttin, whereas Ostm1 is required for the function of the lysosomal ClC-7 2Cl(-)/H(+)-exchanger. ClC-1, -2, -Ka and -Kb Cl(-) channels reside in the plasma membrane and function in the control of electrical excitability of muscles or neurons, in extra- and intracellular ion homeostasis, and in transepithelial transport. The mainly endosomal/lysosomal Cl(-)/H(+)-exchangers ClC-3 to ClC-7 may facilitate vesicular acidification by shunting currents of proton pumps and increase vesicular Cl(-) concentration. ClC-3 is also present on synaptic vesicles, whereas ClC-4 and -5 can reach the plasma membrane to some extent. ClC-7/Ostm1 is coinserted with the vesicular H(+)-ATPase into the acid-secreting ruffled border membrane of osteoclasts. Mice or humans lacking ClC-7 or Ostm1 display osteopetrosis and lysosomal storage disease. Disruption of the endosomal ClC-5 Cl(-)/H(+)-exchanger leads to proteinuria and Dent's disease. Mouse models in which ClC-5 or ClC-7 is converted to uncoupled Cl(-) conductors suggest an important role of vesicular Cl(-) accumulation in these pathologies. The important functions of CLC Cl(-) channels were also revealed by human diseases and mouse models, with phenotypes including myotonia, renal loss of salt and water, deafness, blindness, leukodystrophy, and male infertility.
Collapse
Affiliation(s)
- Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie FMP and Max-Delbrück-Centrum für Molekulare Medizin MDC, Berlin, Germany
| | | | | |
Collapse
|
33
|
Schneider N, Cordeiro S, Machtens JP, Braams S, Rauen T, Fahlke C. Functional properties of the retinal glutamate transporters GLT-1c and EAAT5. J Biol Chem 2013; 289:1815-24. [PMID: 24307171 DOI: 10.1074/jbc.m113.517177] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as "excitatory amino acid transporters (EAATs)." Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na(+) and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na(+) and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.
Collapse
Affiliation(s)
- Nicole Schneider
- From the Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, Leo-Brandt-Straβe, 52428 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Catterall WA, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ion channels. Br J Pharmacol 2013; 170:1607-51. [PMID: 24528239 PMCID: PMC3892289 DOI: 10.1111/bph.12447] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
- *
Author for correspondence;
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - William A Catterall
- University of Washington, School of Medicine, Department of PharmacologyBox 357280, Seattle, WA 98195-7280, USA
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
35
|
Church J, Pezeshki S, Davis C, Lin H. Charge Transfer and Polarization for Chloride Ions Bound in ClC Transport Proteins: Natural Bond Orbital and Energy Decomposition Analyses. J Phys Chem B 2013; 117:16029-43. [DOI: 10.1021/jp409306x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan Church
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Soroosh Pezeshki
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Christal Davis
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| | - Hai Lin
- Chemistry Department, University of Colorado Denver, Denver, Colorado 80217-3364, United States
| |
Collapse
|
36
|
Hotzy J, Schneider N, Kovermann P, Fahlke C. Mutating a conserved proline residue within the trimerization domain modifies Na+ binding to excitatory amino acid transporters and associated conformational changes. J Biol Chem 2013; 288:36492-501. [PMID: 24214974 DOI: 10.1074/jbc.m113.489385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are crucial for glutamate homeostasis in the mammalian central nervous system. They are not only secondary active glutamate transporters but also function as anion channels, and different EAATs vary considerably in glutamate transport rates and associated anion current amplitudes. A naturally occurring mutation, which was identified in a patient with episodic ataxia type 6 and that predicts the substitution of a highly conserved proline at position 290 by arginine (P290R), was recently shown to reduce glutamate uptake and to increase anion conduction by hEAAT1. We here used voltage clamp fluorometry to define how the homologous P259R mutation modifies the functional properties of hEAAT3. P259R inverts the voltage dependence, changes the sodium dependence, and alters the time dependence of hEAAT3 fluorescence signals. Kinetic analysis of fluorescence signals indicate that P259R decelerates a conformational change associated with sodium binding to the glutamate-free mutant transporters. This alteration in the glutamate uptake cycle accounts for the experimentally observed changes in glutamate transport and anion conduction by P259R hEAAT3.
Collapse
Affiliation(s)
- Jasmin Hotzy
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover Germany
| | | | | | | |
Collapse
|
37
|
De Stefano S, Pusch M, Zifarelli G. A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter. J Physiol 2013; 591:5879-93. [PMID: 24099800 PMCID: PMC3872759 DOI: 10.1113/jphysiol.2013.260240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ClC-5 is a 2Cl−/1H+ antiporter highly expressed in endosomes of proximal tubule cells. It is essential for endocytosis and mutations in ClC-5 cause Dent's disease, potentially leading to renal failure. However, the physiological role of ClC-5 is still unclear. One of the main issues is whether the strong rectification of ClC-5 currents observed in heterologous systems, with currents elicited only at positive voltages, is preserved in vivo and what is the origin of this rectification. In this work we identified a ClC-5 mutation, D76H, which, besides the typical outward currents of the wild-type (WT), shows inward tail currents at negative potentials that allow the estimation of the reversal of ClC-5 currents for the first time. A detailed analysis of the dependence of these inward tail currents on internal and external pH and [Cl−] shows that they are generated by a coupled transport of Cl− and H+ with a 2 : 1 stoichiometry. From this result we conclude that the inward tail currents are caused by a gating mechanism that regulates ClC-5 transport activity and not by a major alteration of the transport mechanism itself. This implies that the strong rectification of the currents of WT ClC-5 is at least in part caused by a gating mechanism that activates the transporter at positive potentials. These results elucidate the biophysical properties of ClC-5 and contribute to the understanding of its physiological role.
Collapse
Affiliation(s)
- Silvia De Stefano
- G. Zifarelli: Istituto di Biofisica, CNR, Via De Marini 6, I-16149 Genova, Italy.
| | | | | |
Collapse
|
38
|
Guzman RE, Grieschat M, Fahlke C, Alekov AK. ClC-3 is an intracellular chloride/proton exchanger with large voltage-dependent nonlinear capacitance. ACS Chem Neurosci 2013; 4:994-1003. [PMID: 23509947 DOI: 10.1021/cn400032z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The chloride/proton exchangers ClC-3, ClC-4 and ClC-5 are localized in distinct intracellular compartments and regulate their luminal acidity. We used electrophysiology combined with fluorescence pH measurements to compare the functions of these three transporters. Since the expression of WT ClC-3 in the surface membrane was negligible, we removed an N-terminal retention signal for standard electrophysiological characterization of this isoform. This construct (ClC-313-19A) mediated outwardly rectifying coupled Cl(-)/H(+) antiport resembling the properties of ClC-4 and ClC-5. In addition, ClC-3 exhibited large electric capacitance, exceeding the nonlinear capacitances of ClC-4 and ClC-5. Mutations of the proton glutamate, a conserved residue at the internal side of the protein, decreased ion transport but increased nonlinear capacitances in all three isoforms. This suggests that nonlinear capacitances in mammalian ClC transporters are regulated in a similar manner. However, the voltage dependence and the amplitudes of these capacitances differed strongly between the investigated isoforms. Our results indicate that ClC-3 is specialized in mainly performing incomplete capacitive nontransporting cycles, that ClC-4 is an effective coupled transporter, and that ClC-5 displays an intermediate phenotype. Mathematical modeling showed that such functional differences would allow differential regulation of luminal acidification and chloride concentration in intracellular compartments.
Collapse
Affiliation(s)
- Raul E. Guzman
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Matthias Grieschat
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Christoph Fahlke
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Institute of Complex Systems, Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexi K. Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| |
Collapse
|
39
|
Regulation of ClC-2 gating by intracellular ATP. Pflugers Arch 2013; 465:1423-37. [PMID: 23632988 PMCID: PMC3778897 DOI: 10.1007/s00424-013-1286-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/27/2022]
Abstract
ClC-2 is a voltage-dependent chloride channel that activates slowly at voltages negative to the chloride reversal potential. Adenosine triphosphate (ATP) and other nucleotides have been shown to bind to carboxy-terminal cystathionine-ß-synthase (CBS) domains of ClC-2, but the functional consequences of binding are not sufficiently understood. We here studied the effect of nucleotides on channel gating using single-channel and whole-cell patch clamp recordings on transfected mammalian cells. ATP slowed down macroscopic activation and deactivation time courses in a dose-dependent manner. Removal of the complete carboxy-terminus abolishes the effect of ATP, suggesting that CBS domains are necessary for ATP regulation of ClC-2 gating. Single-channel recordings identified long-lasting closed states of ATP-bound channels as basis of this gating deceleration. ClC-2 channel dimers exhibit two largely independent protopores that are opened and closed individually as well as by a common gating process. A seven-state model of common gating with altered voltage dependencies of opening and closing transitions for ATP-bound states correctly describes the effects of ATP on macroscopic and microscopic ClC-2 currents. To test for a potential pathophysiological impact of ClC-2 regulation by ATP, we studied ClC-2 channels carrying naturally occurring sequence variants found in patients with idiopathic generalized epilepsy, G715E, R577Q, and R653T. All naturally occurring sequence variants accelerate common gating in the presence but not in the absence of ATP. We propose that ClC-2 uses ATP as a co-factor to slow down common gating for sufficient electrical stability of neurons under physiological conditions.
Collapse
|
40
|
Ochoa-de la Paz LD, Salazar-Soto DB, Reyes JP, Miledi R, Martinez-Torres A. A hyperpolarization-activated ion current of amphibian oocytes. Pflugers Arch 2013; 465:1087-99. [PMID: 23440457 DOI: 10.1007/s00424-013-1231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022]
Abstract
A comparative analysis of a hyperpolarization-activated ion current present in amphibian oocytes was performed using the two-electrode voltage-clamp technique in Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum. This current appears to be driven mainly by Cl(-) ions, is independent of Ca(2+), and is made evident by applying extremely negative voltage pulses; it shows a slow activating phase and little or no desensitization. The pharmacological profile of the current is complex. The different channel blocker used for Cl(-), K(+), Na(+) and Ca(2+) conductances, exhibited various degrees of inhibition depending of the species. The profiles illustrate the intricacy of the components that give rise to this current. During X. laevis oogenesis, the hyperpolarization-activated current is present at all stages of oocytes tested (II-VI), and the amplitude of the current increases from about 50 nA in stage I to more than 1 μA in stage VI; nevertheless, there was no apparent modification of the kinetics. Our results suggest that the hyperpolarization-activated current is present both in order Anura and Urodela oocytes. However, the electrophysiological and pharmacological characteristics are quite perplexing and seem to suggest a mixture of ionic conductances that includes the activation of both anionic and cationic channels, most probably transiently opened due to the extreme hyperpolarizion of the plasma membrane. As a possible mechanism for the generation of the current, a kinetic model which fits the data suggests the opening of pores in the plasma membrane whose ion selectivity is dependent on the extracellular Cl(-) concentration. The extreme voltage conditions could induce the opening of otherwise latent pores in plasma membrane proteins (i.e., carriers), resembling the ´slippage´ events already described for some carriers. These observations should be valuable for other groups trying to express cloned, voltage-dependent ion channels in oocytes of amphibian in which hyperpolarizing voltage pulses are applied to activate the channels.
Collapse
Affiliation(s)
- L D Ochoa-de la Paz
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro, CP 76230, Mexico.
| | | | | | | | | |
Collapse
|
41
|
Weinberger S, Wojciechowski D, Sternberg D, Lehmann-Horn F, Jurkat-Rott K, Becher T, Begemann B, Fahlke C, Fischer M. Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita. J Physiol 2012; 590:3449-64. [PMID: 22641783 DOI: 10.1113/jphysiol.2012.232785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants' effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I(-) = NO(3)(-) >Br(-)>Cl(-). Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels.
Collapse
Affiliation(s)
- Sebastian Weinberger
- Institut fur Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grieschat M, Alekov AK. Glutamate 268 regulates transport probability of the anion/proton exchanger ClC-5. J Biol Chem 2012; 287:8101-9. [PMID: 22267722 DOI: 10.1074/jbc.m111.298265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Cl(-)/H(+) exchange mediated by ClC transporters can be uncoupled by external SCN(-) and mutations of the proton glutamate, a conserved residue at the internal side of the protein. We show here for the mammalian ClC transporter ClC-5 that acidic internal pH led to a greater increase in currents upon exchanging extracellular Cl(-) for SCN(-). However, transport uncoupling, unitary current amplitudes, and the voltage dependence of the depolarization-induced activation were not altered by low pH values. Therefore, it is likely that an additional gating process regulates ClC-5 transport. Higher internal [H(+)] and the proton glutamate mutant E268H altered the ratio between ClC-5 transport and nonlinear capacitance, indicating that the gating charge movements in ClC-5 arise from incomplete transport cycles and that internal protons increase the transport probability of ClC-5. This was substantiated by site-directed sulfhydryl modification of the proton glutamate mutant E268C. The mutation exhibited small transport currents together with prominent gating charge movements. The charge restoration using a negatively charged sulfhydryl reagent reinstated also the WT phenotype. Neutralization of the charge of the gating glutamate 211 by the E211C mutation abolished the effect of internal protons, showing that the increased transport probability of ClC-5 results from protonation of this residue. S168P (a mutation that decreases the anion affinity of the central binding site) reduced also the internal pH dependence of ClC-5. These results support the idea that protonation of the gating glutamate 211 at the central anion-binding site of ClC-5 is mediated by the proton glutamate 268.
Collapse
Affiliation(s)
- Matthias Grieschat
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | |
Collapse
|
43
|
Abstract
Prestin is a member of the SLC26 solute carrier family and functions as a motor protein in cochlear outer hair cells. While other SLC26 homologues were demonstrated to transport a wide variety of anions, no electrogenic transport activity has been assigned so far to mammalian prestin. We here use heterologous expression in mammalian cells, patch clamp recordings and measurements of expression levels of individual cells to study anion transport by rat prestin. We demonstrated that cells expressing rat prestin exhibit SCN(-) currents that are proportional to the number of prestin molecules. Variation of the SCN(-) concentration resulted in changes of the current reversal potential that obey the Nernst equation indicating that SCN(-) transport is not stoichiometrically coupled to other anions. Application of external SCN(-) causes large increases of anion currents, but only minor changes in non-linear charge movements suggesting that only a very small percentage of prestin molecules function as SCN(-) transporters under these conditions. Unitary current amplitudes are below the resolution limit of noise analysis and thus much smaller than expected for pore-mediated anion transport. A comparison with a non-mammalian prestin from D. rerio - recently shown to function as Cl(-)/SO(4)(2-) antiporter - and an SLC26 anion channel, human SLC26A7, revealed that SCN(-) transport is conserved in these distinct members of the SLC26 family. We conclude that mammalian prestin is capable of mediating electrogenic anion transport and suggest that SLC26 proteins converting membrane voltage oscillations into conformational changes and those functioning as channels or transporters share certain transport capabilities.
Collapse
Affiliation(s)
- Michael Schänzler
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|
44
|
Orhan G, Fahlke C, Alekov AK. Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions. Biophys J 2011; 100:1233-41. [PMID: 21354396 DOI: 10.1016/j.bpj.2011.01.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 11/29/2022] Open
Abstract
ClC-4 is a secondary active transporter that exchanges Cl(-) ions and H(+) with a 2:1 stoichiometry. In external SCN(-), ClC-4 becomes uncoupled and transports anions with high unitary transport rate. Upon voltage steps, the number of active transporters varies in a time-dependent manner, resembling voltage-dependent gating of ion channels. We here investigated modification of the voltage dependence of uncoupled ClC-4 by protons and anions to quantify association of substrates with the transporter. External acidification shifts voltage dependence of ClC-4 transport to more positive potentials and leads to reduced transport currents. Internal pH changes had less pronounced effects. Uncoupled ClC-4 transport is facilitated by elevated external [SCN(-)] but impaired by internal Cl(-) and I(-). Block by internal anions indicates the existence of an internal anion-binding site with high affinity that is not present in ClC channels. The voltage dependence of ClC-4 coupled transport is modulated by external protons and internal Cl(-) in a manner similar to what is observed under uncoupling conditions. Our data illustrate functional differences but also similarities between ClC channels and transporters.
Collapse
Affiliation(s)
- Gökce Orhan
- Institut für Neurophysiologie, Medizinische Hochschule, Hannover, Germany
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Christoph Fahlke
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Lower Saxony 30625, Germany. fahlke.christoph@mh-hannover.de
| |
Collapse
|
46
|
Gradogna A, Pusch M. Molecular Pharmacology of Kidney and Inner Ear CLC-K Chloride Channels. Front Pharmacol 2010; 1:130. [PMID: 21833170 PMCID: PMC3153005 DOI: 10.3389/fphar.2010.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/30/2010] [Indexed: 01/08/2023] Open
Abstract
CLC-K channels belong to the CLC gene family, which comprises both Cl(-) channels and Cl(-)/H(+) antiporters. They form homodimers which additionally co-assemble with the small protein barttin. In the kidney, they are involved in NaCl reabsorption; in the inner ear they are important for endolymph production. Mutations in CLC-Kb lead to renal salt loss (Bartter's syndrome); mutations in barttin lead additionally to deafness. CLC-K channels are interesting potential drug targets. CLC-K channel blockers have potential as alternative diuretics, whereas CLC-K activators could be used for the treatment of patients with Bartter's syndrome. Several small organic acids inhibit CLC-K channels from the outside by binding to a site in the external vestibule of the ion conducting pore. Benzofuran derivatives with affinities better than 10 μM have been discovered. Niflumic acid (NFA) exhibits a complex interaction with CLC-K channels. Below ∼1 mM, NFA activates CLC-Ka, whereas at higher concentrations NFA inhibits channel activity. The co-planarity of the rings of the NFA molecule is essential for its activating action. Mutagenesis has led to the identification of potential regions of the channel that interact with NFA. CLC-K channels are also modulated by pH and [Ca(2+)](ext). The inhibition at low pH has been shown to be mediated by a His-residue at the beginning of helix Q, the penultimate transmembrane helix. Two acidic residues from opposite subunits form two symmetrically related intersubunit Ca(2+) binding sites, whose occupation increases channel activity. The relatively high affinity CLC-K blockers may already serve as leads for the development of useful drugs. On the other hand, the CLC-K potentiator NFA has a quite low affinity, and, being a non-steroidal anti-inflammatory drug, can be expected to exert significant side effects. More specific and more potent activators will be needed and it will be important to understand the molecular mechanisms that underlie NFA activation.
Collapse
|
47
|
Abstract
CLC-5 is a H(+)/Cl(-) exchanger that is expressed primarily in endosomes but can traffic to the plasma membrane in overexpression systems. Mutations altering the expression or function of CLC-5 lead to Dent's disease. Currents mediated by this transporter show extreme outward rectification and are inhibited by acidic extracellular pH. The mechanistic origins of both phenomena are currently not well understood. It has been proposed that rectification arises from the voltage dependence of a H(+) transport step, and that inhibition of CLC-5 currents by low extracellular pH is a result of a reduction in the driving force for exchange caused by a pH gradient. We show here that the pH dependence of CLC-5 currents arises from H(+) binding to a single site located halfway through the transmembrane electric field and driving the transport cycle in a less permissive direction, rather than a reduction in the driving force. We propose that protons bind to the extracellular gating glutamate E211 in CLC-5. It has been shown that CLC-5 becomes severely uncoupled when SCN(-) is the main charge carrier: H(+) transport is drastically reduced while the rate of anion movement is increased. We found that in these conditions, rectification and pH dependence are unaltered. This implies that H(+) translocation is not the main cause of rectification. We propose a simple transport cycle model that qualitatively accounts for these findings.
Collapse
Affiliation(s)
- Alessandra Picollo
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
48
|
Naftalin RJ. Reassessment of Models of Facilitated Transport and Cotransport. J Membr Biol 2010; 234:75-112. [DOI: 10.1007/s00232-010-9228-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 11/29/2022]
|
49
|
Accardi A, Picollo A. CLC channels and transporters: proteins with borderline personalities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1457-64. [PMID: 20188062 DOI: 10.1016/j.bbamem.2010.02.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 11/19/2022]
Abstract
Controlled chloride movement across membranes is essential for a variety of physiological processes ranging from salt homeostasis in the kidneys to acidification of cellular compartments. The CLC family is formed by two, not so distinct, sub-classes of membrane transport proteins: Cl(-) channels and H(+)/Cl(-) exchangers. All CLC's are homodimers with each monomer forming an individual Cl- permeation pathway which appears to be largely unaltered in the two CLC sub-classes. Key residues for ion binding and selectivity are also highly conserved. Most CLC's have large cytosolic carboxy-terminal domains containing two cystathionine beta-synthetase (CBS) domains. The C-termini are critical regulators of protein trafficking and directly modulate Cl- by binding intracellular ATP, H+ or oxidizing compounds. This review focuses on the recent mechanistic insights on the how the structural similarities between CLC channels and transporters translate in unexpected mechanistic analogies between these two sub-classes.
Collapse
Affiliation(s)
- Alessio Accardi
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
50
|
Matsuda JJ, Filali MS, Collins MM, Volk KA, Lamb FS. The ClC-3 Cl-/H+ antiporter becomes uncoupled at low extracellular pH. J Biol Chem 2009; 285:2569-79. [PMID: 19926787 DOI: 10.1074/jbc.m109.018002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenovirus expressing ClC-3 (Ad-ClC-3) induces Cl(-)/H(+) antiport current (I(ClC-3)) in HEK293 cells. The outward rectification and time dependence of I(ClC-3) closely resemble an endogenous HEK293 cell acid-activated Cl(-) current (ICl(acid)) seen at extracellular pH <or= 5.5. ICl(acid) was present in smooth muscle cells from wild-type but not ClC-3 null mice. We therefore sought to determine whether these currents were related. ICl(acid) was larger in cells expressing Ad-ClC-3. Protons shifted the reversal potential (E(rev)) of I(ClC-3) between pH 8.2 and 6.2, but not pH 6.2 and 5.2, suggesting that Cl(-) and H(+) transport become uncoupled at low pH. At pH 4.0 E(rev) was completely Cl(-) dependent (55.8 +/- 2.3 mV/decade). Several findings linked ClC-3 with native ICl(acid); 1) RNA interference directed at ClC-3 message reduced native ICl(acid); 2) removal of the extracellular "fast gate" (E224A) produced large currents that were pH-insensitive; and 3) wild-type I(ClC-3) and ICl(acid) were both inhibited by (2-sulfonatoethyl)methanethiosulfonate (MTSES; 10-500 microm)-induced alkanethiolation at exposed cysteine residues. However, a ClC-3 mutant lacking four extracellular cysteine residues (C103_P130del) was completely resistant to MTSES. C103_P130del currents were still acid-activated, but could be distinguished from wild-type I(ClC-3) and from native ICl(acid) by a much slower response to low pH. Thus, ClC-3 currents are activated by protons and ClC-3 protein may account for native ICl(acid). Low pH uncouples Cl(-)/H(+) transport so that at pH 4.0 ClC-3 behaves as an anion-selective channel. These findings have important implications for the biology of Cl(-)/H(+) antiporters and perhaps for pH regulation in highly acidic intracellular compartments.
Collapse
Affiliation(s)
- James J Matsuda
- Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|