1
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Cameron BA, Kai H, Kaihara K, Iribe G, Quinn TA. Ischemia Enhances the Acute Stretch-Induced Increase in Calcium Spark Rate in Ventricular Myocytes. Front Physiol 2020; 11:289. [PMID: 32372969 PMCID: PMC7179564 DOI: 10.3389/fphys.2020.00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction: In ventricular myocytes, spontaneous release of calcium (Ca2+) from the sarcoplasmic reticulum via ryanodine receptors (“Ca2+ sparks”) is acutely increased by stretch, due to a stretch-induced increase of reactive oxygen species (ROS). In acute regional ischemia there is stretch of ischemic tissue, along with an increase in Ca2+ spark rate and ROS production, each of which has been implicated in arrhythmogenesis. Yet, whether there is an impact of ischemia on the stretch-induced increase in Ca2+ sparks and ROS has not been investigated. We hypothesized that ischemia would enhance the increase of Ca2+ sparks and ROS that occurs with stretch. Methods: Isolated ventricular myocytes from mice (male, C57BL/6J) were loaded with fluorescent dye to detect Ca2+ sparks (4.6 μM Fluo-4, 10 min) or ROS (1 μM DCF, 20 min), exposed to normal Tyrode (NT) or simulated ischemia (SI) solution (hyperkalemia [15 mM potassium], acidosis [6.5 pH], and metabolic inhibition [1 mM sodium cyanide, 20 mM 2-deoxyglucose]), and subjected to sustained stretch by the carbon fiber technique (~10% increase in sarcomere length, 15 s). Ca2+ spark rate and rate of ROS production were measured by confocal microscopy. Results: Baseline Ca2+ spark rate was greater in SI (2.54 ± 0.11 sparks·s−1·100 μm−2; n = 103 cells, N = 10 mice) than NT (0.29 ± 0.05 sparks·s−1·100 μm−2; n = 33 cells, N = 9 mice; p < 0.0001). Stretch resulted in an acute increase in Ca2+ spark rate in both SI (3.03 ± 0.13 sparks·s−1·100 μm−2; p < 0.0001) and NT (0.49 ± 0.07 sparks·s−1·100 μm−2; p < 0.0001), with the increase in SI being greater than NT (+0.49 ± 0.04 vs. +0.20 ± 0.04 sparks·s−1·100 μm−2; p < 0.0001). Baseline rate of ROS production was also greater in SI (1.01 ± 0.01 normalized slope; n = 11, N = 8 mice) than NT (0.98 ± 0.01 normalized slope; n = 12, N = 4 mice; p < 0.05), but there was an acute increase with stretch only in SI (+12.5 ± 2.6%; p < 0.001). Conclusion: Ischemia enhances the stretch-induced increase of Ca2+ sparks in ventricular myocytes, with an associated enhancement of stretch-induced ROS production. This effect may be important for premature excitation and/or in the development of an arrhythmogenic substrate in acute regional ischemia.
Collapse
Affiliation(s)
- Breanne A Cameron
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Hiroaki Kai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiko Kaihara
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Gentaro Iribe
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Physiology, Asahikawa Medical University, Asahikawa, Japan
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.,School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Pancaroglu R, Van Petegem F. Calcium Channelopathies: Structural Insights into Disorders of the Muscle Excitation–Contraction Complex. Annu Rev Genet 2018; 52:373-396. [DOI: 10.1146/annurev-genet-120417-031311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ion channels are membrane proteins responsible for the passage of ions down their electrochemical gradients and across biological membranes. In this, they generate and shape action potentials and provide secondary messengers for various signaling pathways. They are often part of larger complexes containing auxiliary subunits and regulatory proteins. Channelopathies arise from mutations in the genes encoding ion channels or their associated proteins. Recent advances in cryo-electron microscopy have resulted in an explosion of ion channel structures in multiple states, generating a wealth of new information on channelopathies. Disease-associated mutations fall into different categories, interfering with ion permeation, protein folding, voltage sensing, ligand and protein binding, and allosteric modulation of channel gating. Prime examples of these are Ca2+-selective channels expressed in myocytes, for which multiple structures in distinct conformational states have recently been uncovered. We discuss the latest insights into these calcium channelopathies from a structural viewpoint.
Collapse
Affiliation(s)
- Raika Pancaroglu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
4
|
Affiliation(s)
- Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Departments of Molecular Physiology & Biophysics, Department of Medicine (Cardiology), and Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
5
|
Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N. Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 2017; 148:341-55. [PMID: 27670899 PMCID: PMC5037341 DOI: 10.1085/jgp.201611604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.
Collapse
Affiliation(s)
- Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
6
|
Santos MS, Oliveira ED, Santos-Miranda A, Cruz JS, Gondim ANS, Menezes-Filho JER, Souza DS, Pinho-da-Silva L, Jesus ICG, Roman-Campos D, Guatimosim S, Lara A, Conde-Garcia EA, Vasconcelos CML. Dissection of the Effects of Quercetin on Mouse Myocardium. Basic Clin Pharmacol Toxicol 2017; 120:550-559. [PMID: 27992670 DOI: 10.1111/bcpt.12743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 12/05/2016] [Indexed: 12/01/2022]
Abstract
Quercetin is a plant flavonoid with several biological activities. This study aimed to describe quercetin effects on contractile and electrophysiological properties of the cardiac muscle as well as on calcium handling. Quercetin elicited positive inotropism that was significantly reduced by propranolol indicating an involvement of the sympathetic nervous system. In cardiomyocytes, 30 μM quercetin increased ICa,L at 0 mV from -0.95 ± 0.01 A/F to -1.21 ± 0.08 A/F. The membrane potential at which 50% of the channels are activated (V0.5 ) shifted towards more negative potentials from -13.06 ± 1.52 mV to -19.26 ± 1.72 mV and did not alter the slope factor. Furthermore, quercetin increased [Ca2+ ]i transient by 28% when compared to control. Quercetin accelerated [Ca2+ ]i transient decay time, which could be attributed to SERCA activation. In resting cardiomyocytes, quercetin did not change amplitude or frequency of Ca2+ sparks. In isolated heart, quercetin increased heart rate and decreased PRi, QTc and duration of the QRS complex. Thus, we showed that quercetin activates β-adrenoceptors, leading to increased L-type Ca2+ current and cell-wide intracellular Ca2+ transient without visible changes in Ca2+ sparks.
Collapse
Affiliation(s)
- Michel Santana Santos
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Evaleide Diniz Oliveira
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.,Department of Physiotherapy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Artur Santos-Miranda
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jader Santos Cruz
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Nei Santana Gondim
- Laboratory of Biophysics and Pharmacology of the Heart, Department of Education, Campus XII, University of the State of Bahia, Guanambi, BA, Brazil
| | | | - Diego Santos Souza
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Leidiane Pinho-da-Silva
- Excitable Membranes Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Itamar Couto Guedes Jesus
- Cardiomyocyte Intracellular Signaling Laboratory, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Guatimosim
- Cardiomyocyte Intracellular Signaling Laboratory, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Lara
- Cardiomyocyte Intracellular Signaling Laboratory, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Antônio Conde-Garcia
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Carla Maria Lins Vasconcelos
- Laboratory of Heart Biophysics, Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| |
Collapse
|
7
|
Shimozawa T, Hirokawa E, Kobirumaki-Shimozawa F, Oyama K, Shintani SA, Terui T, Kushida Y, Tsukamoto S, Fujii T, Ishiwata S, Fukuda N. In vivo cardiac nano-imaging: A new technology for high-precision analyses of sarcomere dynamics in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 124:31-40. [PMID: 27664770 DOI: 10.1016/j.pbiomolbio.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
The cardiac pump function is a result of a rise in intracellular Ca2+ and the ensuing sarcomeric contractions [i.e., excitation-contraction (EC) coupling] in myocytes in various locations of the heart. In order to elucidate the heart's mechanical properties under various settings, cardiac imaging is widely performed in today's clinical as well as experimental cardiology by using echocardiogram, magnetic resonance imaging and computed tomography. However, because these common techniques detect local myocardial movements at a spatial resolution of ∼100 μm, our knowledge on the sub-cellular mechanisms of the physiology and pathophysiology of the heart in vivo is limited. This is because (1) EC coupling occurs in the μm partition in a myocyte and (2) cardiac sarcomeres generate active force upon a length change of ∼100 nm on a beat-to-beat basis. Recent advances in optical technologies have enabled measurements of intracellular Ca2+ dynamics and sarcomere length displacements at high spatial and temporal resolution in the beating heart of living rodents. Future studies with these technologies are warranted to open a new era in cardiac research.
Collapse
Affiliation(s)
- Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Erisa Hirokawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takako Terui
- Department of Anesthesiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuharu Kushida
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
8
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
9
|
Previs MJ, Prosser BL, Mun JY, Previs SB, Gulick J, Lee K, Robbins J, Craig R, Lederer WJ, Warshaw DM. Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling. SCIENCE ADVANCES 2015; 1:e1400205. [PMID: 25839057 PMCID: PMC4380226 DOI: 10.1126/sciadv.1400205] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 05/30/2023]
Abstract
The beating heart exhibits remarkable contractile fidelity over a lifetime, which reflects the tight coupling of electrical, chemical, and mechanical elements within the sarcomere, the elementary contractile unit. On a beat-to-beat basis, calcium is released from the ends of the sarcomere and must diffuse toward the sarcomere center to fully activate the myosin- and actin-based contractile proteins. The resultant spatial and temporal gradient in free calcium across the sarcomere should lead to nonuniform and inefficient activation of contraction. We show that myosin-binding protein C (MyBP-C), through its positioning on the myosin thick filaments, corrects this nonuniformity in calcium activation by exquisitely sensitizing the contractile apparatus to calcium in a manner that precisely counterbalances the calcium gradient. Thus, the presence and correct localization of MyBP-C within the sarcomere is critically important for normal cardiac function, and any disturbance of MyBP-C localization or function will contribute to the consequent cardiac pathologies.
Collapse
Affiliation(s)
- Michael J. Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, The University of Vermont, Burlington, VT 05405, USA
| | - Benjamin L. Prosser
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ji Young Mun
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam-Si 461-701, Gyeonggi-Do, Republic of Korea
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, The University of Vermont, Burlington, VT 05405, USA
| | - James Gulick
- Department of Pediatrics and the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyounghwan Lee
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeffrey Robbins
- Department of Pediatrics and the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - W. J. Lederer
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, The University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Wagner E, Brandenburg S, Kohl T, Lehnart SE. Analysis of tubular membrane networks in cardiac myocytes from atria and ventricles. J Vis Exp 2014:e51823. [PMID: 25350293 PMCID: PMC4541455 DOI: 10.3791/51823] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Collapse
Affiliation(s)
- Eva Wagner
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen; German Center for Cardiovascular Research (DZHK) partner site Goettingen
| | - Sören Brandenburg
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen
| | - Tobias Kohl
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen
| | - Stephan E Lehnart
- Heart Research Center Goettingen; Clinic of Cardiology & Pulmonology, University Medical Center Goettingen; German Center for Cardiovascular Research (DZHK) partner site Goettingen; BioMET, Center for Biomedical Engineering & Technology, University of Maryland School of Medicine;
| |
Collapse
|
11
|
O-Uchi J, Jhun BS, Xu S, Hurst S, Raffaello A, Liu X, Yi B, Zhang H, Gross P, Mishra J, Ainbinder A, Kettlewell S, Smith GL, Dirksen RT, Wang W, Rizzuto R, Sheu SS. Adrenergic signaling regulates mitochondrial Ca2+ uptake through Pyk2-dependent tyrosine phosphorylation of the mitochondrial Ca2+ uniporter. Antioxid Redox Signal 2014; 21:863-79. [PMID: 24800979 PMCID: PMC4116095 DOI: 10.1089/ars.2013.5394] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Mitochondrial Ca2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. RESULTS α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that α1-AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca2+ overload. INNOVATION Our data indicate that inhibition of α1-AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. CONCLUSION The α1-AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca2+ entry and apoptosis in cardiac cells.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen YJ, Horvath B, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 2014; 7:ra27. [PMID: 24643800 DOI: 10.1126/scisignal.2005046] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.
Collapse
Affiliation(s)
- Zhong Jian
- 1Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen F, Hadfield JM, Berzingi C, Hollander JM, Miller DB, Nichols CE, Finkel MS. N-acetylcysteine reverses cardiac myocyte dysfunction in a rodent model of behavioral stress. J Appl Physiol (1985) 2013; 115:514-24. [PMID: 23722706 DOI: 10.1152/japplphysiol.01471.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Compelling clinical reports reveal that behavioral stress alone is sufficient to cause reversible myocardial dysfunction in selected individuals. We developed a rodent stress cardiomyopathy model by a combination of prenatal and postnatal behavioral stresses (Stress). We previously reported a decrease in percent fractional shortening by echo, both systolic and diastolic dysfunction by catheter-based hemodynamics, as well as attenuated hemodynamic and inotropic responses to the β-adrenergic agonist, isoproterenol (ISO) in Stress rats compared with matched controls (Kan H, Birkle D, Jain AC, Failinger C, Xie S, Finkel MS. J Appl Physiol 98: 77-82, 2005). We now report enhanced catecholamine responses to behavioral stress, as evidenced by increased circulating plasma levels of norepinephrine (P < 0.01) and epinephrine (P < 0.01) in Stress rats vs. controls. Cardiac myocytes isolated from Stress rats also reveal evidence of oxidative stress, as indicated by decreased ATP, increased GSSG, and decreased GSH-to-GSSG ratio in the presence of increased GSH peroxidase and catalase activities (P < 0.01, for each). We also report blunted inotropic and intracellular Ca(2+) concentration responses to extracellular Ca(2+) (P < 0.05), as well as altered inotropic responses to the intracellular calcium regulator, caffeine (20 mM; P < 0.01). Treatment of cardiac myocytes with N-acetylcysteine (NAC) (10(-3) M) normalized calcium handling in response to ISO and extracellular Ca(2+) concentration and inotropic response to caffeine (P < 0.01, for each). NAC also attenuated the blunted inotropic response to ISO and Ca(2+) (P < 0.01, for each). Surprisingly, NAC did not reverse the changes in GSH, GSSG, or GSH-to-GSSG ratio. These data support a GSH-independent salutary effect of NAC on intracellular calcium signaling in this rodent model of stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Fangping Chen
- Department of Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca²⁺]i. J Mol Cell Cardiol 2012; 58:172-81. [PMID: 23220288 DOI: 10.1016/j.yjmcc.2012.11.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/23/2012] [Accepted: 11/22/2012] [Indexed: 02/02/2023]
Abstract
X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Department of Physiology, Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
15
|
Li N, Wehrens XHT. Extinguishing intracellular calcium leak: a promising antiarrhythmic approach. Heart Rhythm 2012; 10:108-9. [PMID: 23085093 DOI: 10.1016/j.hrthm.2012.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 01/12/2023]
|
16
|
Janiek R, Zahradníková A, Poláková E, Pavelková J, Zahradník I, Zahradníková A. Calcium spike variability in cardiac myocytes results from activation of small cohorts of ryanodine receptor 2 channels. J Physiol 2012; 590:5091-106. [PMID: 22890710 DOI: 10.1113/jphysiol.2012.234823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cardiac myocytes, the elementary calcium releases triggered by step voltage stimuli manifest either as solitary or as twin spikes that vary widely in kinetics and amplitude for unknown reasons. Here we examined the variability of calcium spikes measured using line-scanning confocal microscopy in patch-clamped rat ventricular myocytes. Amplitude distributions of the single and of the first of twin spikes were broader than those of the second spikes. All could be best approximated by a sum of a few elementary Gaussian probability distribution functions. The latency distributions of the single and the first spikes were identical, much shorter and less variable than those of the second spikes. The multimodal distribution of spike amplitudes and the probability of occurrence of twin spikes were stochastically congruent with activation of only a few of the many RyR2 channels present in the release site cluster. The occurrence of twin release events was rare due to refractoriness of release, induced with a probability proportional to the number of RyR2s activated in the primary release event. We conclude that the variability of the elementary calcium release events supports a calcium signalling mechanism that arises from stochastics of RyR2 gating and from inactivation of local origin.
Collapse
Affiliation(s)
- Radoslav Janiek
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vl´arska 5, 833 34 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
17
|
Chen F, Lewis W, Hollander JM, Baseler W, Finkel MS. N-acetylcysteine reverses cardiac myocyte dysfunction in HIV-Tat proteinopathy. J Appl Physiol (1985) 2012; 113:105-13. [PMID: 22556393 DOI: 10.1152/japplphysiol.00068.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
HIV cardiomyopathy remains highly prevalent among the estimated 33 million HIV-infected individuals worldwide. This is particularly true in developing countries. Potential mechanisms responsible for myocardial dysfunction following HIV infection include direct effects of HIV proteins. We have previously reported that cardiac myocyte-specific expression of HIV-Tat (Tat) results in a murine cardiomyopathy model. We now report that Tat exhibits decreased myocardial ATP [wild type (WT) vs. Tat transgenic (TG), P < 0.01] and myocyte GSH levels (WT vs. TG, P < 0.01), decreased GSH/GSSG ratio (WT vs. TG, P < 0.01), increased H(2)O(2) levels (WT vs. TG, P < 0.05), and increased catalase (TG vs. WT, P < 0.05) and GPX1 (glutathione peroxidase 1) activities (WT vs. TG, P < 0.05), blunted cardiac myocyte positive inotropy (% peak shortening, WT vs. TG, P < 0.01; +dl/dt, WT vs. TG, P < 0.01) and negative inotropy (-dl/dt, WT vs. TG, P < 0.01), and blunted inotropic responses to Ca(2+) (P < 0.01, for each) and shortened anatomical and functional survival in vitro (P < 0.01). The sulfhydryl donor, N-acetylcysteine (NAC; 10(-4) M), completely reversed both the positive and negative inotropic defects in Tat; increased GSH (P < 0.01) and GSH/GSSG (P < 0.01); reversed H(2)O(2) level (P < 0.05) and GPX1 activity (P < 0.05); and normalized the blunted inotropic response to Ca(2+) (P < 0.01). NAC (10(-7)) M normalized duration of contractile function from <40 min to >120 min (P < 0.01), with no effect on GSH and GSH/GSSG. NAC (10(-4) M) reverses cardiac myocyte dysfunction and markers of oxidative stress. NAC (10(-7) M) enhances myocyte function independent of changes in glutathione. Elucidating the molecular mechanisms involved in the GSH-dependent and GSH-independent salutary effects of NAC should identify novel therapeutic targets for myocardial proteinopathies recently appreciated in human cardiomyopathies.
Collapse
Affiliation(s)
- Fangping Chen
- Department of Medicine, West Virginia University School of Medicine, Morgantown, WV 26506-9157, USA
| | | | | | | | | |
Collapse
|
18
|
Ullrich ND, Valdivia HH, Niggli E. PKA phosphorylation of cardiac ryanodine receptor modulates SR luminal Ca2+ sensitivity. J Mol Cell Cardiol 2012; 53:33-42. [PMID: 22487381 DOI: 10.1016/j.yjmcc.2012.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/26/2022]
Abstract
During physical exercise and stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor activation, resulting in protein kinase A (PKA)-mediated phosphorylation of the cardiac ryanodine receptor, RyR2, at Ser2808. Hyperphosphorylation of RyR2-S2808 has been proposed as a mechanism contributing to arrhythmogenesis and heart failure. However, the role of RyR2 phosphorylation during β-adrenergic stimulation remains controversial. We examined the contribution of RyR2-S2808 phosphorylation to altered excitation-contraction coupling and Ca(2+) signaling using an experimental approach at the interface of molecular and cellular levels and a transgenic mouse with ablation of the RyR2-S2808 phosphorylation site (RyR2-S2808A). Experimentally challenging the communication between L-type Ca(2+) channels and RyR2 led to a spatiotemporal de-synchronization of RyR2 openings, as visualized using confocal Ca(2+) imaging. β-Adrenergic stimulation re-synchronized RyR2s, but less efficiently in RyR2-S2808A than in control cardiomyocytes, as indicated by comprehensive analysis of RyR2 activation. In addition, spontaneous Ca(2+) waves in RyR2-S2808A myocytes showed significantly slowed propagation and complete absence of acceleration during β-adrenergic stress, unlike wild type cells. Single channel recordings revealed an attenuation of luminal Ca(2+) sensitivity in RyR2-S2808A channels upon addition of PKA. This suggests that phosphorylation of RyR2-S2808 may be involved in RyR2 modulation by luminal (intra-SR) Ca(2+) ([Ca(2+)](SR)). We show here by three independent experimental approaches that PKA-dependent RyR2-S2808 phosphorylation plays significant functional roles at the subcellular level, namely, Ca(2+) release synchronization, Ca(2+) wave propagation and functional adaptation of RyR2 to variable [Ca(2+)](SR). These results indicate a direct mechanistic link between RyR2 phosphorylation and SR luminal Ca(2+) sensing.
Collapse
Affiliation(s)
- Nina D Ullrich
- Department of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
19
|
Sobie EA, Lederer WJ. Dynamic local changes in sarcoplasmic reticulum calcium: physiological and pathophysiological roles. J Mol Cell Cardiol 2012; 52:304-11. [PMID: 21767546 PMCID: PMC3217160 DOI: 10.1016/j.yjmcc.2011.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Evidence obtained in recent years indicates that, in cardiac myocytes, release of Ca(2+) from the sarcoplasmic reticulum (SR) is regulated by changes in the concentration of Ca(2+) within the SR. In this review, we summarize recent advances in our understanding of this regulatory role, with a particular emphasis on dynamic and local changes in SR [Ca(2+)]. We focus on five important questions that are to some extent unresolved and controversial. These questions concern: (1) the importance of SR [Ca(2+)] depletion in the termination of Ca(2+) release; (2) the quantitative extent of depletion during local release events such as Ca(2+) sparks; (3) the influence of SR [Ca(2+)] refilling on release refractoriness and the propensity for pathological Ca(2+) release; (4) dynamic changes in SR [Ca(2+)] during propagating Ca(2+) waves; and (5) the speed of Ca(2+) diffusion within the SR. With each issue, we discuss data supporting alternative viewpoints, and we identify fundamental questions that are being actively investigated. We conclude with a discussion of experimental and computational advances that will help to resolve controversies. This article is part of a special issue entitled "Local Signaling in Myocytes."
Collapse
Affiliation(s)
- Eric A Sobie
- Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
20
|
Ke J, Xiao X, Chen F, He L, Dai MS, Wang XP, Chen B, Chen M, Zhang CT. Function of the CaMKII-ryanodine receptor signaling pathway in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia. World J Emerg Med 2012; 3:65-70. [PMID: 25215041 DOI: 10.5847/wjem.j.issn.1920-8642.2012.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Calcium calmodulin-dependent kinase II (CaMKII) can be more active in patients with left ventricular hypertrophy (LVH), which in turn causes phosphorylation of ryanodine receptors, resulting in inactivation and the instability of intracellular calcium homeostasis. The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia. METHODS Forty New Zealand rabbits were randomized into four groups (10 per group): sham group, LVH group, KN-93 group (LVH+KN-93), and ryanodine group (LVH+ryanodine). Rabbits in the LVH, KN-93, and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta, while those in the sham group did not undergo the coarctation. After eight weeks, action potentials (APs) were recorded simultaneously in the endocardium and epicardium, and a transmural electrocardiogram (ECG) was also recorded in the rabbit left ventricular wedge model. Drugs were administered to the animals in the KN-93 and ryanodine groups, and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline (1 μmol/L) and high-frequency stimulation. RESULTS The frequency (animals/group) of triggered APs was 0/10 in the sham group, 10/10 in the LVH group, 4/10 in the KN-93 group, and 1/10 in the ryanodine group. The frequencies of ventricular tachycardia were 0/10, 9/10, 3/10, and 1/10, respectively. The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10, 7/10, 2/10, and 1/10, respectively. The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group (P<0.05). CONCLUSIONS KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH. The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.
Collapse
Affiliation(s)
- Jun Ke
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Xing Xiao
- Integrated Department, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| | - Feng Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Li He
- Department of Cardiology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| | - Mu-Sen Dai
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Xiao-Ping Wang
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Bing Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Min Chen
- Department of Emergency Internal Medicine, Fujian Provincial Hospital, Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Cun-Tai Zhang
- Integrated Department, Tongji Hospital Affiliated to Tongji Medical College of Huazhong Science Technology University, Wuhan 430030, China
| |
Collapse
|
21
|
Brochet DXP, Yang D, Cheng H, Lederer WJ. Elementary calcium release events from the sarcoplasmic reticulum in the heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:499-509. [PMID: 22453956 DOI: 10.1007/978-94-007-2888-2_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca(2+) release events underlie global Ca(2+) signaling yet they are regulated by local, subcellular signaling features. Here we review the latest developments of different elementary Ca(2+) release features that include Ca(2+) sparks, Ca(2+) blinks (the corresponding depletion of Ca(2+) in the sarcoplasmic reticulum (SR) during a spark) and the recently identified small Ca(2+) release events called quarky SR Ca(2+) release (QCR). QCR events arise from the opening of only a few type 2 ryanodine receptors (RyR2s) - possibly only one. Recent reports suggest that QCR events can be commingled with Ca(2+) sparks and may thus explain some variations observed in Ca(2+) sparks. The Ca(2+) spark termination mechanism and the number of RyR2 channels activated during a Ca(2+) spark will be discussed with respect to both Ca(2+) sparks and QCR events.
Collapse
Affiliation(s)
- Didier X P Brochet
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, University of Maryland, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
22
|
Prosser BL, Ward CW, Lederer WJ. X-ROS Signaling: Rapid Mechano-Chemo Transduction in Heart. Science 2011; 333:1440-5. [DOI: 10.1126/science.1202768] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
|
24
|
Yan X, Gao S, Tang M, Xi J, Gao L, Zhu M, Luo H, Hu X, Zheng Y, Hescheler J, Liang H. Adenylyl cyclase/cAMP-PKA-mediated phosphorylation of basal L-type Ca(2+) channels in mouse embryonic ventricular myocytes. Cell Calcium 2011; 50:433-43. [PMID: 21824653 DOI: 10.1016/j.ceca.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/16/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (I(Ca,L)) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca(2+) channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, I(Ca,L) increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca(2+) influx via LTCCs on AC activity, leading to the inability to inhibit AC.
Collapse
Affiliation(s)
- Xisheng Yan
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Meli AC, Refaat MM, Dura M, Reiken S, Wronska A, Wojciak J, Carroll J, Scheinman MM, Marks AR. A novel ryanodine receptor mutation linked to sudden death increases sensitivity to cytosolic calcium. Circ Res 2011; 109:281-90. [PMID: 21659649 DOI: 10.1161/circresaha.111.244970] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in the cardiac type 2 ryanodine receptor (RyR2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT-associated RyR2 mutations cause fatal ventricular arrhythmias in young individuals during β-adrenergic stimulation. OBJECTIVE This study sought to determine the effects of a novel RyR2-G230C mutation and whether this mutation and RyR2-P2328S alter the sensitivity of the channel to luminal calcium (Ca(2+)). METHODS AND RESULTS Functional characterizations of recombinant human RyR2-G230C channels were performed under conditions mimicking stress. Human RyR2 mutant channels were generated by site-directed mutagenesis and heterologously expressed in HEK293 cells together with calstabin2. RyR2 channels were measured to examine the regulation of the channels by cytosolic versus luminal sarcoplasmic reticulum Ca(2+). A 50-year-old white man with repeated syncopal episodes after exercise had a cardiac arrest and harbored the mutation RyR2-G230C. cAMP-dependent protein kinase-phosphorylated RyR2-G230C channels exhibited a significantly higher open probability at diastolic Ca(2+) concentrations, associated with a depletion of calstabin2. The luminal Ca(2+) sensitivities of RyR2-G230C and RyR2-P2328S channels were WT-like. CONCLUSIONS The RyR2-G230C mutant exhibits similar biophysical defects compared with previously characterized CPVT mutations: decreased binding of the stabilizing subunit calstabin2 and a leftward shift in the Ca(2+) dependence for activation under conditions that simulate exercise, consistent with a "leaky" channel. Both RyR2-G230C and RyR2-P2328S channels exhibit normal luminal Ca(2+) activation. Thus, diastolic sarcoplasmic reticulum Ca(2+) leak caused by reduced calstabin2 binding and a leftward shift in the Ca(2+) dependence for activation by diastolic levels of cytosolic Ca(2+) is a common mechanism underlying CPVT.
Collapse
Affiliation(s)
- Albano C Meli
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dobrev D, Voigt N, Wehrens XHT. The ryanodine receptor channel as a molecular motif in atrial fibrillation: pathophysiological and therapeutic implications. Cardiovasc Res 2010; 89:734-43. [PMID: 20943673 DOI: 10.1093/cvr/cvq324] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with substantial morbidity and mortality. It causes profound changes in sarcoplasmic reticulum (SR) Ca(2+) homeostasis, including ryanodine receptor channel dysfunction and diastolic SR Ca(2+) leak, which might contribute to both decreased contractile function and increased propensity to atrial arrhythmias. In this review, we will focus on the molecular basis of ryanodine receptor channel dysfunction and enhanced diastolic SR Ca(2+) leak in AF. The potential relevance of increased incidence of spontaneous SR Ca(2+) release for both AF induction and/or maintenance and the development of novel mechanism-based therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|